kernel - Simplify umtx_sleep and umtx_wakeup support
[dragonfly.git] / sys / kern / kern_fork.c
blobd6d5e5a9d1b9331b8a76a53f6bf19237cf57e253
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
35 * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
38 #include "opt_ktrace.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysproto.h>
43 #include <sys/filedesc.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/malloc.h>
47 #include <sys/proc.h>
48 #include <sys/resourcevar.h>
49 #include <sys/vnode.h>
50 #include <sys/acct.h>
51 #include <sys/ktrace.h>
52 #include <sys/unistd.h>
53 #include <sys/jail.h>
54 #include <sys/lwp.h>
56 #include <vm/vm.h>
57 #include <sys/lock.h>
58 #include <vm/pmap.h>
59 #include <vm/vm_map.h>
60 #include <vm/vm_extern.h>
62 #include <sys/vmmeter.h>
63 #include <sys/refcount.h>
64 #include <sys/thread2.h>
65 #include <sys/signal2.h>
66 #include <sys/spinlock2.h>
68 #include <sys/dsched.h>
70 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
71 static MALLOC_DEFINE(M_REAPER, "reaper", "process reapers");
74 * These are the stuctures used to create a callout list for things to do
75 * when forking a process
77 struct forklist {
78 forklist_fn function;
79 TAILQ_ENTRY(forklist) next;
82 TAILQ_HEAD(forklist_head, forklist);
83 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
85 static struct lwp *lwp_fork(struct lwp *, struct proc *, int flags,
86 const cpumask_t *mask);
87 static int lwp_create1(struct lwp_params *params,
88 const cpumask_t *mask);
89 static struct lock reaper_lock = LOCK_INITIALIZER("reapgl", 0, 0);
91 int forksleep; /* Place for fork1() to sleep on. */
94 * Red-Black tree support for LWPs
97 static int
98 rb_lwp_compare(struct lwp *lp1, struct lwp *lp2)
100 if (lp1->lwp_tid < lp2->lwp_tid)
101 return(-1);
102 if (lp1->lwp_tid > lp2->lwp_tid)
103 return(1);
104 return(0);
107 RB_GENERATE2(lwp_rb_tree, lwp, u.lwp_rbnode, rb_lwp_compare, lwpid_t, lwp_tid);
110 * When forking, memory underpinning umtx-supported mutexes may be set
111 * COW causing the physical address to change. We must wakeup any threads
112 * blocked on the physical address to allow them to re-resolve their VM.
114 static void
115 wake_umtx_threads(struct proc *p1)
117 struct lwp *lp;
118 struct thread *td;
120 RB_FOREACH(lp, lwp_rb_tree, &p1->p_lwp_tree) {
121 td = lp->lwp_thread;
122 if (td && (td->td_flags & TDF_TSLEEPQ) &&
123 (td->td_wdomain & PDOMAIN_MASK) == PDOMAIN_UMTX) {
124 wakeup_domain(td->td_wchan, PDOMAIN_UMTX);
130 * fork() system call
133 sys_fork(struct fork_args *uap)
135 struct lwp *lp = curthread->td_lwp;
136 struct proc *p2;
137 int error;
139 error = fork1(lp, RFFDG | RFPROC | RFPGLOCK, &p2);
140 if (error == 0) {
141 PHOLD(p2);
142 start_forked_proc(lp, p2);
143 uap->sysmsg_fds[0] = p2->p_pid;
144 uap->sysmsg_fds[1] = 0;
145 PRELE(p2);
147 return error;
151 * vfork() system call
154 sys_vfork(struct vfork_args *uap)
156 struct lwp *lp = curthread->td_lwp;
157 struct proc *p2;
158 int error;
160 error = fork1(lp, RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK, &p2);
161 if (error == 0) {
162 PHOLD(p2);
163 start_forked_proc(lp, p2);
164 uap->sysmsg_fds[0] = p2->p_pid;
165 uap->sysmsg_fds[1] = 0;
166 PRELE(p2);
168 return error;
172 * Handle rforks. An rfork may (1) operate on the current process without
173 * creating a new, (2) create a new process that shared the current process's
174 * vmspace, signals, and/or descriptors, or (3) create a new process that does
175 * not share these things (normal fork).
177 * Note that we only call start_forked_proc() if a new process is actually
178 * created.
180 * rfork { int flags }
183 sys_rfork(struct rfork_args *uap)
185 struct lwp *lp = curthread->td_lwp;
186 struct proc *p2;
187 int error;
189 if ((uap->flags & RFKERNELONLY) != 0)
190 return (EINVAL);
192 error = fork1(lp, uap->flags | RFPGLOCK, &p2);
193 if (error == 0) {
194 if (p2) {
195 PHOLD(p2);
196 start_forked_proc(lp, p2);
197 uap->sysmsg_fds[0] = p2->p_pid;
198 uap->sysmsg_fds[1] = 0;
199 PRELE(p2);
200 } else {
201 uap->sysmsg_fds[0] = 0;
202 uap->sysmsg_fds[1] = 0;
205 return error;
208 static int
209 lwp_create1(struct lwp_params *uprm, const cpumask_t *umask)
211 struct proc *p = curproc;
212 struct lwp *lp;
213 struct lwp_params params;
214 cpumask_t *mask = NULL, mask0;
215 int error;
217 error = copyin(uprm, &params, sizeof(params));
218 if (error)
219 goto fail2;
221 if (umask != NULL) {
222 error = copyin(umask, &mask0, sizeof(mask0));
223 if (error)
224 goto fail2;
225 CPUMASK_ANDMASK(mask0, smp_active_mask);
226 if (CPUMASK_TESTNZERO(mask0))
227 mask = &mask0;
230 lwkt_gettoken(&p->p_token);
231 plimit_lwp_fork(p); /* force exclusive access */
232 lp = lwp_fork(curthread->td_lwp, p, RFPROC | RFMEM, mask);
233 error = cpu_prepare_lwp(lp, &params);
234 if (error)
235 goto fail;
236 if (params.lwp_tid1 != NULL &&
237 (error = copyout(&lp->lwp_tid, params.lwp_tid1, sizeof(lp->lwp_tid))))
238 goto fail;
239 if (params.lwp_tid2 != NULL &&
240 (error = copyout(&lp->lwp_tid, params.lwp_tid2, sizeof(lp->lwp_tid))))
241 goto fail;
244 * Now schedule the new lwp.
246 p->p_usched->resetpriority(lp);
247 crit_enter();
248 lp->lwp_stat = LSRUN;
249 p->p_usched->setrunqueue(lp);
250 crit_exit();
251 lwkt_reltoken(&p->p_token);
253 return (0);
255 fail:
257 * Make sure no one is using this lwp, before it is removed from
258 * the tree. If we didn't wait it here, lwp tree iteration with
259 * blocking operation would be broken.
261 while (lp->lwp_lock > 0)
262 tsleep(lp, 0, "lwpfail", 1);
263 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
264 --p->p_nthreads;
265 /* lwp_dispose expects an exited lwp, and a held proc */
266 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
267 lp->lwp_thread->td_flags |= TDF_EXITING;
268 lwkt_remove_tdallq(lp->lwp_thread);
269 PHOLD(p);
270 biosched_done(lp->lwp_thread);
271 dsched_exit_thread(lp->lwp_thread);
272 lwp_dispose(lp);
273 lwkt_reltoken(&p->p_token);
274 fail2:
275 return (error);
279 * Low level thread create used by pthreads.
282 sys_lwp_create(struct lwp_create_args *uap)
285 return (lwp_create1(uap->params, NULL));
289 sys_lwp_create2(struct lwp_create2_args *uap)
292 return (lwp_create1(uap->params, uap->mask));
295 int nprocs = 1; /* process 0 */
298 fork1(struct lwp *lp1, int flags, struct proc **procp)
300 struct proc *p1 = lp1->lwp_proc;
301 struct proc *p2;
302 struct proc *pptr;
303 struct pgrp *p1grp;
304 struct pgrp *plkgrp;
305 struct sysreaper *reap;
306 uid_t uid;
307 int ok, error;
308 static int curfail = 0;
309 static struct timeval lastfail;
310 struct forklist *ep;
311 struct filedesc_to_leader *fdtol;
313 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
314 return (EINVAL);
316 lwkt_gettoken(&p1->p_token);
317 plkgrp = NULL;
318 p2 = NULL;
321 * Here we don't create a new process, but we divorce
322 * certain parts of a process from itself.
324 if ((flags & RFPROC) == 0) {
326 * This kind of stunt does not work anymore if
327 * there are native threads (lwps) running
329 if (p1->p_nthreads != 1) {
330 error = EINVAL;
331 goto done;
334 vm_fork(p1, 0, flags);
335 wake_umtx_threads(p1);
338 * Close all file descriptors.
340 if (flags & RFCFDG) {
341 struct filedesc *fdtmp;
342 fdtmp = fdinit(p1);
343 fdfree(p1, fdtmp);
347 * Unshare file descriptors (from parent.)
349 if (flags & RFFDG) {
350 if (p1->p_fd->fd_refcnt > 1) {
351 struct filedesc *newfd;
352 error = fdcopy(p1, &newfd);
353 if (error != 0) {
354 error = ENOMEM;
355 goto done;
357 fdfree(p1, newfd);
360 *procp = NULL;
361 error = 0;
362 goto done;
366 * Interlock against process group signal delivery. If signals
367 * are pending after the interlock is obtained we have to restart
368 * the system call to process the signals. If we don't the child
369 * can miss a pgsignal (such as ^C) sent during the fork.
371 * We can't use CURSIG() here because it will process any STOPs
372 * and cause the process group lock to be held indefinitely. If
373 * a STOP occurs, the fork will be restarted after the CONT.
375 p1grp = p1->p_pgrp;
376 if ((flags & RFPGLOCK) && (plkgrp = p1->p_pgrp) != NULL) {
377 pgref(plkgrp);
378 lockmgr(&plkgrp->pg_lock, LK_SHARED);
379 if (CURSIG_NOBLOCK(lp1)) {
380 error = ERESTART;
381 goto done;
386 * Although process entries are dynamically created, we still keep
387 * a global limit on the maximum number we will create. Don't allow
388 * a nonprivileged user to use the last ten processes; don't let root
389 * exceed the limit. The variable nprocs is the current number of
390 * processes, maxproc is the limit.
392 uid = lp1->lwp_thread->td_ucred->cr_ruid;
393 if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
394 if (ppsratecheck(&lastfail, &curfail, 1))
395 kprintf("maxproc limit exceeded by uid %d, please "
396 "see tuning(7) and login.conf(5).\n", uid);
397 tsleep(&forksleep, 0, "fork", hz / 2);
398 error = EAGAIN;
399 goto done;
403 * Increment the nprocs resource before blocking can occur. There
404 * are hard-limits as to the number of processes that can run.
406 atomic_add_int(&nprocs, 1);
409 * Increment the count of procs running with this uid. This also
410 * applies to root.
412 ok = chgproccnt(lp1->lwp_thread->td_ucred->cr_ruidinfo, 1,
413 plimit_getadjvalue(RLIMIT_NPROC));
414 if (!ok) {
416 * Back out the process count
418 atomic_add_int(&nprocs, -1);
419 if (ppsratecheck(&lastfail, &curfail, 1)) {
420 kprintf("maxproc limit of %jd "
421 "exceeded by \"%s\" uid %d, "
422 "please see tuning(7) and login.conf(5).\n",
423 plimit_getadjvalue(RLIMIT_NPROC),
424 p1->p_comm,
425 uid);
427 tsleep(&forksleep, 0, "fork", hz / 2);
428 error = EAGAIN;
429 goto done;
433 * Allocate a new process, don't get fancy: zero the structure.
435 p2 = kmalloc(sizeof(struct proc), M_PROC, M_WAITOK|M_ZERO);
438 * Core initialization. SIDL is a safety state that protects the
439 * partially initialized process once it starts getting hooked
440 * into system structures and becomes addressable.
442 * We must be sure to acquire p2->p_token as well, we must hold it
443 * once the process is on the allproc list to avoid things such
444 * as competing modifications to p_flags.
446 mycpu->gd_forkid += ncpus;
447 p2->p_forkid = mycpu->gd_forkid + mycpu->gd_cpuid;
448 p2->p_lasttid = 0; /* first tid will be 1 */
449 p2->p_stat = SIDL;
452 * NOTE: Process 0 will not have a reaper, but process 1 (init) and
453 * all other processes always will.
455 if ((reap = p1->p_reaper) != NULL) {
456 reaper_hold(reap);
457 p2->p_reaper = reap;
458 } else {
459 p2->p_reaper = NULL;
462 RB_INIT(&p2->p_lwp_tree);
463 spin_init(&p2->p_spin, "procfork1");
464 lwkt_token_init(&p2->p_token, "proc");
465 lwkt_gettoken(&p2->p_token);
468 * Setup linkage for kernel based threading XXX lwp. Also add the
469 * process to the allproclist.
471 * The process structure is addressable after this point.
473 if (flags & RFTHREAD) {
474 p2->p_peers = p1->p_peers;
475 p1->p_peers = p2;
476 p2->p_leader = p1->p_leader;
477 } else {
478 p2->p_leader = p2;
480 proc_add_allproc(p2);
483 * Initialize the section which is copied verbatim from the parent.
485 bcopy(&p1->p_startcopy, &p2->p_startcopy,
486 ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
489 * Duplicate sub-structures as needed. Increase reference counts
490 * on shared objects.
492 * NOTE: because we are now on the allproc list it is possible for
493 * other consumers to gain temporary references to p2
494 * (p2->p_lock can change).
496 if (p1->p_flags & P_PROFIL)
497 startprofclock(p2);
498 p2->p_ucred = crhold(lp1->lwp_thread->td_ucred);
500 if (jailed(p2->p_ucred))
501 p2->p_flags |= P_JAILED;
503 if (p2->p_args)
504 refcount_acquire(&p2->p_args->ar_ref);
506 p2->p_usched = p1->p_usched;
507 /* XXX: verify copy of the secondary iosched stuff */
508 dsched_enter_proc(p2);
510 if (flags & RFSIGSHARE) {
511 p2->p_sigacts = p1->p_sigacts;
512 refcount_acquire(&p2->p_sigacts->ps_refcnt);
513 } else {
514 p2->p_sigacts = kmalloc(sizeof(*p2->p_sigacts),
515 M_SUBPROC, M_WAITOK);
516 bcopy(p1->p_sigacts, p2->p_sigacts, sizeof(*p2->p_sigacts));
517 refcount_init(&p2->p_sigacts->ps_refcnt, 1);
519 if (flags & RFLINUXTHPN)
520 p2->p_sigparent = SIGUSR1;
521 else
522 p2->p_sigparent = SIGCHLD;
524 /* bump references to the text vnode (for procfs) */
525 p2->p_textvp = p1->p_textvp;
526 if (p2->p_textvp)
527 vref(p2->p_textvp);
529 /* copy namecache handle to the text file */
530 if (p1->p_textnch.mount)
531 cache_copy(&p1->p_textnch, &p2->p_textnch);
534 * Handle file descriptors
536 if (flags & RFCFDG) {
537 p2->p_fd = fdinit(p1);
538 fdtol = NULL;
539 } else if (flags & RFFDG) {
540 error = fdcopy(p1, &p2->p_fd);
541 if (error != 0) {
542 error = ENOMEM;
543 goto done;
545 fdtol = NULL;
546 } else {
547 p2->p_fd = fdshare(p1);
548 if (p1->p_fdtol == NULL) {
549 p1->p_fdtol = filedesc_to_leader_alloc(NULL,
550 p1->p_leader);
552 if ((flags & RFTHREAD) != 0) {
554 * Shared file descriptor table and
555 * shared process leaders.
557 fdtol = p1->p_fdtol;
558 fdtol->fdl_refcount++;
559 } else {
561 * Shared file descriptor table, and
562 * different process leaders
564 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
567 p2->p_fdtol = fdtol;
568 p2->p_limit = plimit_fork(p1);
571 * Adjust depth for resource downscaling
573 if ((p2->p_depth & 31) != 31)
574 ++p2->p_depth;
577 * Preserve some more flags in subprocess. P_PROFIL has already
578 * been preserved.
580 p2->p_flags |= p1->p_flags & P_SUGID;
581 if (p1->p_session->s_ttyvp != NULL && (p1->p_flags & P_CONTROLT))
582 p2->p_flags |= P_CONTROLT;
583 if (flags & RFPPWAIT) {
584 p2->p_flags |= P_PPWAIT;
585 if (p1->p_upmap)
586 atomic_add_int(&p1->p_upmap->invfork, 1);
590 * Inherit the virtual kernel structure (allows a virtual kernel
591 * to fork to simulate multiple cpus).
593 if (p1->p_vkernel)
594 vkernel_inherit(p1, p2);
597 * Once we are on a pglist we may receive signals. XXX we might
598 * race a ^C being sent to the process group by not receiving it
599 * at all prior to this line.
601 pgref(p1grp);
602 lwkt_gettoken(&p1grp->pg_token);
603 LIST_INSERT_AFTER(p1, p2, p_pglist);
604 lwkt_reltoken(&p1grp->pg_token);
607 * Attach the new process to its parent.
609 * If RFNOWAIT is set, the newly created process becomes a child
610 * of the reaper (typically init). This effectively disassociates
611 * the child from the parent.
613 * Temporarily hold pptr for the RFNOWAIT case to avoid ripouts.
615 if (flags & RFNOWAIT) {
616 pptr = reaper_get(reap);
617 if (pptr == NULL) {
618 pptr = initproc;
619 PHOLD(pptr);
621 } else {
622 pptr = p1;
624 p2->p_pptr = pptr;
625 LIST_INIT(&p2->p_children);
627 lwkt_gettoken(&pptr->p_token);
628 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
629 lwkt_reltoken(&pptr->p_token);
631 if (flags & RFNOWAIT)
632 PRELE(pptr);
634 varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
635 callout_init_mp(&p2->p_ithandle);
637 #ifdef KTRACE
639 * Copy traceflag and tracefile if enabled. If not inherited,
640 * these were zeroed above but we still could have a trace race
641 * so make sure p2's p_tracenode is NULL.
643 if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracenode == NULL) {
644 p2->p_traceflag = p1->p_traceflag;
645 p2->p_tracenode = ktrinherit(p1->p_tracenode);
647 #endif
650 * This begins the section where we must prevent the parent
651 * from being swapped.
653 * Gets PRELE'd in the caller in start_forked_proc().
655 PHOLD(p1);
657 vm_fork(p1, p2, flags);
658 wake_umtx_threads(p1);
661 * Create the first lwp associated with the new proc.
662 * It will return via a different execution path later, directly
663 * into userland, after it was put on the runq by
664 * start_forked_proc().
666 lwp_fork(lp1, p2, flags, NULL);
668 if (flags == (RFFDG | RFPROC | RFPGLOCK)) {
669 mycpu->gd_cnt.v_forks++;
670 mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize +
671 p2->p_vmspace->vm_ssize;
672 } else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK)) {
673 mycpu->gd_cnt.v_vforks++;
674 mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize +
675 p2->p_vmspace->vm_ssize;
676 } else if (p1 == &proc0) {
677 mycpu->gd_cnt.v_kthreads++;
678 mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize +
679 p2->p_vmspace->vm_ssize;
680 } else {
681 mycpu->gd_cnt.v_rforks++;
682 mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize +
683 p2->p_vmspace->vm_ssize;
687 * Both processes are set up, now check if any loadable modules want
688 * to adjust anything.
689 * What if they have an error? XXX
691 TAILQ_FOREACH(ep, &fork_list, next) {
692 (*ep->function)(p1, p2, flags);
696 * Set the start time. Note that the process is not runnable. The
697 * caller is responsible for making it runnable.
699 microtime(&p2->p_start);
700 p2->p_acflag = AFORK;
703 * tell any interested parties about the new process
705 KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
708 * Return child proc pointer to parent.
710 *procp = p2;
711 error = 0;
712 done:
713 if (p2)
714 lwkt_reltoken(&p2->p_token);
715 lwkt_reltoken(&p1->p_token);
716 if (plkgrp) {
717 lockmgr(&plkgrp->pg_lock, LK_RELEASE);
718 pgrel(plkgrp);
720 return (error);
723 static struct lwp *
724 lwp_fork(struct lwp *origlp, struct proc *destproc, int flags,
725 const cpumask_t *mask)
727 globaldata_t gd = mycpu;
728 struct lwp *lp;
729 struct thread *td;
731 lp = kmalloc(sizeof(struct lwp), M_LWP, M_WAITOK|M_ZERO);
733 lp->lwp_proc = destproc;
734 lp->lwp_vmspace = destproc->p_vmspace;
735 lp->lwp_stat = LSRUN;
736 bcopy(&origlp->lwp_startcopy, &lp->lwp_startcopy,
737 (unsigned) ((caddr_t)&lp->lwp_endcopy -
738 (caddr_t)&lp->lwp_startcopy));
739 if (mask != NULL)
740 lp->lwp_cpumask = *mask;
743 * Reset the sigaltstack if memory is shared, otherwise inherit
744 * it.
746 if (flags & RFMEM) {
747 lp->lwp_sigstk.ss_flags = SS_DISABLE;
748 lp->lwp_sigstk.ss_size = 0;
749 lp->lwp_sigstk.ss_sp = NULL;
750 lp->lwp_flags &= ~LWP_ALTSTACK;
751 } else {
752 lp->lwp_flags |= origlp->lwp_flags & LWP_ALTSTACK;
756 * Set cpbase to the last timeout that occured (not the upcoming
757 * timeout).
759 * A critical section is required since a timer IPI can update
760 * scheduler specific data.
762 crit_enter();
763 lp->lwp_cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
764 destproc->p_usched->heuristic_forking(origlp, lp);
765 crit_exit();
766 CPUMASK_ANDMASK(lp->lwp_cpumask, usched_mastermask);
767 lwkt_token_init(&lp->lwp_token, "lwp_token");
768 spin_init(&lp->lwp_spin, "lwptoken");
771 * Assign the thread to the current cpu to begin with so we
772 * can manipulate it.
774 td = lwkt_alloc_thread(NULL, LWKT_THREAD_STACK, gd->gd_cpuid, 0);
775 lp->lwp_thread = td;
776 td->td_ucred = crhold(destproc->p_ucred);
777 td->td_proc = destproc;
778 td->td_lwp = lp;
779 td->td_switch = cpu_heavy_switch;
780 #ifdef NO_LWKT_SPLIT_USERPRI
781 lwkt_setpri(td, TDPRI_USER_NORM);
782 #else
783 lwkt_setpri(td, TDPRI_KERN_USER);
784 #endif
785 lwkt_set_comm(td, "%s", destproc->p_comm);
788 * cpu_fork will copy and update the pcb, set up the kernel stack,
789 * and make the child ready to run.
791 cpu_fork(origlp, lp, flags);
792 kqueue_init(&lp->lwp_kqueue, destproc->p_fd);
795 * Assign a TID to the lp. Loop until the insert succeeds (returns
796 * NULL).
798 * If we are in a vfork assign the same TID as the lwp that did the
799 * vfork(). This way if the user program messes around with
800 * pthread calls inside the vfork(), it will operate like an
801 * extension of the (blocked) parent. Also note that since the
802 * address space is being shared, insofar as pthreads is concerned,
803 * the code running in the vfork() is part of the original process.
805 if (flags & RFPPWAIT) {
806 lp->lwp_tid = origlp->lwp_tid - 1;
807 } else {
808 lp->lwp_tid = destproc->p_lasttid;
811 do {
812 if (++lp->lwp_tid <= 0)
813 lp->lwp_tid = 1;
814 } while (lwp_rb_tree_RB_INSERT(&destproc->p_lwp_tree, lp) != NULL);
816 destproc->p_lasttid = lp->lwp_tid;
817 destproc->p_nthreads++;
820 * This flag is set and never cleared. It means that the process
821 * was threaded at some point. Used to improve exit performance.
823 destproc->p_flags |= P_MAYBETHREADED;
825 return (lp);
829 * The next two functionms are general routines to handle adding/deleting
830 * items on the fork callout list.
832 * at_fork():
833 * Take the arguments given and put them onto the fork callout list,
834 * However first make sure that it's not already there.
835 * Returns 0 on success or a standard error number.
838 at_fork(forklist_fn function)
840 struct forklist *ep;
842 #ifdef INVARIANTS
843 /* let the programmer know if he's been stupid */
844 if (rm_at_fork(function)) {
845 kprintf("WARNING: fork callout entry (%p) already present\n",
846 function);
848 #endif
849 ep = kmalloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO);
850 ep->function = function;
851 TAILQ_INSERT_TAIL(&fork_list, ep, next);
852 return (0);
856 * Scan the exit callout list for the given item and remove it..
857 * Returns the number of items removed (0 or 1)
860 rm_at_fork(forklist_fn function)
862 struct forklist *ep;
864 TAILQ_FOREACH(ep, &fork_list, next) {
865 if (ep->function == function) {
866 TAILQ_REMOVE(&fork_list, ep, next);
867 kfree(ep, M_ATFORK);
868 return(1);
871 return (0);
875 * Add a forked process to the run queue after any remaining setup, such
876 * as setting the fork handler, has been completed.
878 * p2 is held by the caller.
880 void
881 start_forked_proc(struct lwp *lp1, struct proc *p2)
883 struct lwp *lp2 = ONLY_LWP_IN_PROC(p2);
884 int pflags;
887 * Move from SIDL to RUN queue, and activate the process's thread.
888 * Activation of the thread effectively makes the process "a"
889 * current process, so we do not setrunqueue().
891 * YYY setrunqueue works here but we should clean up the trampoline
892 * code so we just schedule the LWKT thread and let the trampoline
893 * deal with the userland scheduler on return to userland.
895 KASSERT(p2->p_stat == SIDL,
896 ("cannot start forked process, bad status: %p", p2));
897 p2->p_usched->resetpriority(lp2);
898 crit_enter();
899 p2->p_stat = SACTIVE;
900 lp2->lwp_stat = LSRUN;
901 p2->p_usched->setrunqueue(lp2);
902 crit_exit();
905 * Now can be swapped.
907 PRELE(lp1->lwp_proc);
910 * Preserve synchronization semantics of vfork. P_PPWAIT is set in
911 * the child until it has retired the parent's resources. The parent
912 * must wait for the flag to be cleared by the child.
914 * Interlock the flag/tsleep with atomic ops to avoid unnecessary
915 * p_token conflicts.
917 * XXX Is this use of an atomic op on a field that is not normally
918 * manipulated with atomic ops ok?
920 while ((pflags = p2->p_flags) & P_PPWAIT) {
921 cpu_ccfence();
922 tsleep_interlock(lp1->lwp_proc, 0);
923 if (atomic_cmpset_int(&p2->p_flags, pflags, pflags))
924 tsleep(lp1->lwp_proc, PINTERLOCKED, "ppwait", 0);
929 * procctl (idtype_t idtype, id_t id, int cmd, void *arg)
932 sys_procctl(struct procctl_args *uap)
934 struct proc *p = curproc;
935 struct proc *p2;
936 struct sysreaper *reap;
937 union reaper_info udata;
938 int error;
940 if (uap->idtype != P_PID || uap->id != (id_t)p->p_pid)
941 return EINVAL;
943 switch(uap->cmd) {
944 case PROC_REAP_ACQUIRE:
945 lwkt_gettoken(&p->p_token);
946 reap = kmalloc(sizeof(*reap), M_REAPER, M_WAITOK|M_ZERO);
947 if (p->p_reaper == NULL || p->p_reaper->p != p) {
948 reaper_init(p, reap);
949 error = 0;
950 } else {
951 kfree(reap, M_REAPER);
952 error = EALREADY;
954 lwkt_reltoken(&p->p_token);
955 break;
956 case PROC_REAP_RELEASE:
957 lwkt_gettoken(&p->p_token);
958 release_again:
959 reap = p->p_reaper;
960 KKASSERT(reap != NULL);
961 if (reap->p == p) {
962 reaper_hold(reap); /* in case of thread race */
963 lockmgr(&reap->lock, LK_EXCLUSIVE);
964 if (reap->p != p) {
965 lockmgr(&reap->lock, LK_RELEASE);
966 reaper_drop(reap);
967 goto release_again;
969 reap->p = NULL;
970 p->p_reaper = reap->parent;
971 if (p->p_reaper)
972 reaper_hold(p->p_reaper);
973 lockmgr(&reap->lock, LK_RELEASE);
974 reaper_drop(reap); /* our ref */
975 reaper_drop(reap); /* old p_reaper ref */
976 error = 0;
977 } else {
978 error = ENOTCONN;
980 lwkt_reltoken(&p->p_token);
981 break;
982 case PROC_REAP_STATUS:
983 bzero(&udata, sizeof(udata));
984 lwkt_gettoken_shared(&p->p_token);
985 if ((reap = p->p_reaper) != NULL && reap->p == p) {
986 udata.status.flags = reap->flags;
987 udata.status.refs = reap->refs - 1; /* minus ours */
989 p2 = LIST_FIRST(&p->p_children);
990 udata.status.pid_head = p2 ? p2->p_pid : -1;
991 lwkt_reltoken(&p->p_token);
993 if (uap->data) {
994 error = copyout(&udata, uap->data,
995 sizeof(udata.status));
996 } else {
997 error = 0;
999 break;
1000 default:
1001 error = EINVAL;
1002 break;
1004 return error;
1008 * Bump ref on reaper, preventing destruction
1010 void
1011 reaper_hold(struct sysreaper *reap)
1013 KKASSERT(reap->refs > 0);
1014 refcount_acquire(&reap->refs);
1018 * Drop ref on reaper, destroy the structure on the 1->0
1019 * transition and loop on the parent.
1021 void
1022 reaper_drop(struct sysreaper *next)
1024 struct sysreaper *reap;
1026 while ((reap = next) != NULL) {
1027 if (refcount_release(&reap->refs)) {
1028 next = reap->parent;
1029 KKASSERT(reap->p == NULL);
1030 lockmgr(&reaper_lock, LK_EXCLUSIVE);
1031 reap->parent = NULL;
1032 kfree(reap, M_REAPER);
1033 lockmgr(&reaper_lock, LK_RELEASE);
1034 } else {
1035 next = NULL;
1041 * Initialize a static or newly allocated reaper structure
1043 void
1044 reaper_init(struct proc *p, struct sysreaper *reap)
1046 reap->parent = p->p_reaper;
1047 reap->p = p;
1048 if (p == initproc) {
1049 reap->flags = REAPER_STAT_OWNED | REAPER_STAT_REALINIT;
1050 reap->refs = 2;
1051 } else {
1052 reap->flags = REAPER_STAT_OWNED;
1053 reap->refs = 1;
1055 lockinit(&reap->lock, "subrp", 0, 0);
1056 cpu_sfence();
1057 p->p_reaper = reap;
1061 * Called with p->p_token held during exit.
1063 * This is a bit simpler than RELEASE because there are no threads remaining
1064 * to race. We only release if we own the reaper, the exit code will handle
1065 * the final p_reaper release.
1067 struct sysreaper *
1068 reaper_exit(struct proc *p)
1070 struct sysreaper *reap;
1073 * Release acquired reaper
1075 if ((reap = p->p_reaper) != NULL && reap->p == p) {
1076 lockmgr(&reap->lock, LK_EXCLUSIVE);
1077 p->p_reaper = reap->parent;
1078 if (p->p_reaper)
1079 reaper_hold(p->p_reaper);
1080 reap->p = NULL;
1081 lockmgr(&reap->lock, LK_RELEASE);
1082 reaper_drop(reap);
1086 * Return and clear reaper (caller is holding p_token for us)
1087 * (reap->p does not equal p). Caller must drop it.
1089 if ((reap = p->p_reaper) != NULL) {
1090 p->p_reaper = NULL;
1092 return reap;
1096 * Return a held (PHOLD) process representing the reaper for process (p).
1097 * NULL should not normally be returned. Caller should PRELE() the returned
1098 * reaper process when finished.
1100 * Remove dead internal nodes while we are at it.
1102 * Process (p)'s token must be held on call.
1103 * The returned process's token is NOT acquired by this routine.
1105 struct proc *
1106 reaper_get(struct sysreaper *reap)
1108 struct sysreaper *next;
1109 struct proc *reproc;
1111 if (reap == NULL)
1112 return NULL;
1115 * Extra hold for loop
1117 reaper_hold(reap);
1119 while (reap) {
1120 lockmgr(&reap->lock, LK_SHARED);
1121 if (reap->p) {
1123 * Probable reaper
1125 if (reap->p) {
1126 reproc = reap->p;
1127 PHOLD(reproc);
1128 lockmgr(&reap->lock, LK_RELEASE);
1129 reaper_drop(reap);
1130 return reproc;
1134 * Raced, try again
1136 lockmgr(&reap->lock, LK_RELEASE);
1137 continue;
1141 * Traverse upwards in the reaper topology, destroy
1142 * dead internal nodes when possible.
1144 * NOTE: Our ref on next means that a dead node should
1145 * have 2 (ours and reap->parent's).
1147 next = reap->parent;
1148 while (next) {
1149 reaper_hold(next);
1150 if (next->refs == 2 && next->p == NULL) {
1151 lockmgr(&reap->lock, LK_RELEASE);
1152 lockmgr(&reap->lock, LK_EXCLUSIVE);
1153 if (next->refs == 2 &&
1154 reap->parent == next &&
1155 next->p == NULL) {
1157 * reap->parent inherits ref from next.
1159 reap->parent = next->parent;
1160 next->parent = NULL;
1161 reaper_drop(next); /* ours */
1162 reaper_drop(next); /* old parent */
1163 next = reap->parent;
1164 continue; /* possible chain */
1167 break;
1169 lockmgr(&reap->lock, LK_RELEASE);
1170 reaper_drop(reap);
1171 reap = next;
1173 return NULL;
1177 * Test that the sender is allowed to send a signal to the target.
1178 * The sender process is assumed to have a stable reaper. The
1179 * target can be e.g. from a scan callback.
1181 * Target cannot be the reaper process itself unless reaper_ok is specified,
1182 * or sender == target.
1185 reaper_sigtest(struct proc *sender, struct proc *target, int reaper_ok)
1187 struct sysreaper *sreap;
1188 struct sysreaper *reap;
1189 int r;
1191 sreap = sender->p_reaper;
1192 if (sreap == NULL)
1193 return 1;
1195 if (sreap == target->p_reaper) {
1196 if (sreap->p == target && sreap->p != sender && reaper_ok == 0)
1197 return 0;
1198 return 1;
1200 lockmgr(&reaper_lock, LK_SHARED);
1201 r = 0;
1202 for (reap = target->p_reaper; reap; reap = reap->parent) {
1203 if (sreap == reap) {
1204 if (sreap->p != target || reaper_ok)
1205 r = 1;
1206 break;
1209 lockmgr(&reaper_lock, LK_RELEASE);
1211 return r;