The pbuf subsystem now initializes b_kvabase and b_kvasize at startup and
[dragonfly.git] / sys / kern / vfs_bio.c
blob3ac6febdf0062a18adbaf9227779e1831b316e58
1 /*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.69 2006/04/30 18:52:36 dillon Exp $
19 * this file contains a new buffer I/O scheme implementing a coherent
20 * VM object and buffer cache scheme. Pains have been taken to make
21 * sure that the performance degradation associated with schemes such
22 * as this is not realized.
24 * Author: John S. Dyson
25 * Significant help during the development and debugging phases
26 * had been provided by David Greenman, also of the FreeBSD core team.
28 * see man buf(9) for more info.
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <vm/vm_page2.h>
62 * Buffer queues.
64 #define BUFFER_QUEUES 6
65 enum bufq_type {
66 BQUEUE_NONE, /* not on any queue */
67 BQUEUE_LOCKED, /* locked buffers */
68 BQUEUE_CLEAN, /* non-B_DELWRI buffers */
69 BQUEUE_DIRTY, /* B_DELWRI buffers */
70 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */
71 BQUEUE_EMPTY /* empty buffer headers */
73 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
75 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
77 struct bio_ops bioops; /* I/O operation notification */
79 struct buf *buf; /* buffer header pool */
81 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
82 vm_offset_t to);
83 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
84 vm_offset_t to);
85 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
86 int pageno, vm_page_t m);
87 static void vfs_clean_pages(struct buf * bp);
88 static void vfs_setdirty(struct buf *bp);
89 static void vfs_vmio_release(struct buf *bp);
90 static int flushbufqueues(void);
92 static int bd_request;
94 static void buf_daemon (void);
96 * bogus page -- for I/O to/from partially complete buffers
97 * this is a temporary solution to the problem, but it is not
98 * really that bad. it would be better to split the buffer
99 * for input in the case of buffers partially already in memory,
100 * but the code is intricate enough already.
102 vm_page_t bogus_page;
103 int runningbufspace;
105 static int bufspace, maxbufspace,
106 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
107 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
108 static int needsbuffer;
109 static int lorunningspace, hirunningspace, runningbufreq;
110 static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
111 static int numfreebuffers, lofreebuffers, hifreebuffers;
112 static int getnewbufcalls;
113 static int getnewbufrestarts;
116 * Sysctls for operational control of the buffer cache.
118 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
119 "Number of dirty buffers to flush before bufdaemon becomes inactive");
120 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
121 "High watermark used to trigger explicit flushing of dirty buffers");
122 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
123 "Low watermark for special reserve in low-memory situations");
124 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
125 "High watermark for special reserve in low-memory situations");
126 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
127 "Minimum amount of buffer space required for active I/O");
128 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
129 "Maximum amount of buffer space to usable for active I/O");
131 * Sysctls determining current state of the buffer cache.
133 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
134 "Pending number of dirty buffers");
135 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
136 "Number of free buffers on the buffer cache free list");
137 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
138 "I/O bytes currently in progress due to asynchronous writes");
139 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
140 "Hard limit on maximum amount of memory usable for buffer space");
141 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
142 "Soft limit on maximum amount of memory usable for buffer space");
143 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
144 "Minimum amount of memory to reserve for system buffer space");
145 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
146 "Amount of memory available for buffers");
147 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
148 0, "Maximum amount of memory reserved for buffers using malloc");
149 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
150 "Amount of memory left for buffers using malloc-scheme");
151 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
152 "New buffer header acquisition requests");
153 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
154 0, "New buffer header acquisition restarts");
155 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
156 "Buffer acquisition restarts due to fragmented buffer map");
157 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
158 "Amount of time KVA space was deallocated in an arbitrary buffer");
159 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
160 "Amount of time buffer re-use operations were successful");
161 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
162 "sizeof(struct buf)");
164 char *buf_wmesg = BUF_WMESG;
166 extern int vm_swap_size;
168 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
169 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */
170 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */
171 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
174 * numdirtywakeup:
176 * If someone is blocked due to there being too many dirty buffers,
177 * and numdirtybuffers is now reasonable, wake them up.
180 static __inline void
181 numdirtywakeup(int level)
183 if (numdirtybuffers <= level) {
184 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
185 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
186 wakeup(&needsbuffer);
192 * bufspacewakeup:
194 * Called when buffer space is potentially available for recovery.
195 * getnewbuf() will block on this flag when it is unable to free
196 * sufficient buffer space. Buffer space becomes recoverable when
197 * bp's get placed back in the queues.
200 static __inline void
201 bufspacewakeup(void)
204 * If someone is waiting for BUF space, wake them up. Even
205 * though we haven't freed the kva space yet, the waiting
206 * process will be able to now.
208 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
209 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
210 wakeup(&needsbuffer);
215 * runningbufwakeup:
217 * Accounting for I/O in progress.
220 static __inline void
221 runningbufwakeup(struct buf *bp)
223 if (bp->b_runningbufspace) {
224 runningbufspace -= bp->b_runningbufspace;
225 bp->b_runningbufspace = 0;
226 if (runningbufreq && runningbufspace <= lorunningspace) {
227 runningbufreq = 0;
228 wakeup(&runningbufreq);
234 * bufcountwakeup:
236 * Called when a buffer has been added to one of the free queues to
237 * account for the buffer and to wakeup anyone waiting for free buffers.
238 * This typically occurs when large amounts of metadata are being handled
239 * by the buffer cache ( else buffer space runs out first, usually ).
242 static __inline void
243 bufcountwakeup(void)
245 ++numfreebuffers;
246 if (needsbuffer) {
247 needsbuffer &= ~VFS_BIO_NEED_ANY;
248 if (numfreebuffers >= hifreebuffers)
249 needsbuffer &= ~VFS_BIO_NEED_FREE;
250 wakeup(&needsbuffer);
255 * waitrunningbufspace()
257 * runningbufspace is a measure of the amount of I/O currently
258 * running. This routine is used in async-write situations to
259 * prevent creating huge backups of pending writes to a device.
260 * Only asynchronous writes are governed by this function.
262 * Reads will adjust runningbufspace, but will not block based on it.
263 * The read load has a side effect of reducing the allowed write load.
265 * This does NOT turn an async write into a sync write. It waits
266 * for earlier writes to complete and generally returns before the
267 * caller's write has reached the device.
269 static __inline void
270 waitrunningbufspace(void)
272 if (runningbufspace > hirunningspace) {
273 crit_enter();
274 while (runningbufspace > hirunningspace) {
275 ++runningbufreq;
276 tsleep(&runningbufreq, 0, "wdrain", 0);
278 crit_exit();
283 * vfs_buf_test_cache:
285 * Called when a buffer is extended. This function clears the B_CACHE
286 * bit if the newly extended portion of the buffer does not contain
287 * valid data.
289 static __inline__
290 void
291 vfs_buf_test_cache(struct buf *bp,
292 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
293 vm_page_t m)
295 if (bp->b_flags & B_CACHE) {
296 int base = (foff + off) & PAGE_MASK;
297 if (vm_page_is_valid(m, base, size) == 0)
298 bp->b_flags &= ~B_CACHE;
303 * bd_wakeup:
305 * Wake up the buffer daemon if the number of outstanding dirty buffers
306 * is above specified threshold 'dirtybuflevel'.
308 * The buffer daemon is explicitly woken up when (a) the pending number
309 * of dirty buffers exceeds the recovery and stall mid-point value,
310 * (b) during bwillwrite() or (c) buf freelist was exhausted.
312 static __inline__
313 void
314 bd_wakeup(int dirtybuflevel)
316 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
317 bd_request = 1;
318 wakeup(&bd_request);
323 * bd_speedup:
325 * Speed up the buffer cache flushing process.
328 static __inline__
329 void
330 bd_speedup(void)
332 bd_wakeup(1);
336 * bufinit:
338 * Load time initialisation of the buffer cache, called from machine
339 * dependant initialization code.
341 void
342 bufinit(void)
344 struct buf *bp;
345 vm_offset_t bogus_offset;
346 int i;
348 /* next, make a null set of free lists */
349 for (i = 0; i < BUFFER_QUEUES; i++)
350 TAILQ_INIT(&bufqueues[i]);
352 /* finally, initialize each buffer header and stick on empty q */
353 for (i = 0; i < nbuf; i++) {
354 bp = &buf[i];
355 bzero(bp, sizeof *bp);
356 bp->b_flags = B_INVAL; /* we're just an empty header */
357 bp->b_cmd = BUF_CMD_DONE;
358 bp->b_qindex = BQUEUE_EMPTY;
359 initbufbio(bp);
360 xio_init(&bp->b_xio);
361 LIST_INIT(&bp->b_dep);
362 BUF_LOCKINIT(bp);
363 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
367 * maxbufspace is the absolute maximum amount of buffer space we are
368 * allowed to reserve in KVM and in real terms. The absolute maximum
369 * is nominally used by buf_daemon. hibufspace is the nominal maximum
370 * used by most other processes. The differential is required to
371 * ensure that buf_daemon is able to run when other processes might
372 * be blocked waiting for buffer space.
374 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
375 * this may result in KVM fragmentation which is not handled optimally
376 * by the system.
378 maxbufspace = nbuf * BKVASIZE;
379 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
380 lobufspace = hibufspace - MAXBSIZE;
382 lorunningspace = 512 * 1024;
383 hirunningspace = 1024 * 1024;
386 * Limit the amount of malloc memory since it is wired permanently into
387 * the kernel space. Even though this is accounted for in the buffer
388 * allocation, we don't want the malloced region to grow uncontrolled.
389 * The malloc scheme improves memory utilization significantly on average
390 * (small) directories.
392 maxbufmallocspace = hibufspace / 20;
395 * Reduce the chance of a deadlock occuring by limiting the number
396 * of delayed-write dirty buffers we allow to stack up.
398 hidirtybuffers = nbuf / 4 + 20;
399 numdirtybuffers = 0;
401 * To support extreme low-memory systems, make sure hidirtybuffers cannot
402 * eat up all available buffer space. This occurs when our minimum cannot
403 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming
404 * BKVASIZE'd (8K) buffers.
406 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
407 hidirtybuffers >>= 1;
409 lodirtybuffers = hidirtybuffers / 2;
412 * Try to keep the number of free buffers in the specified range,
413 * and give special processes (e.g. like buf_daemon) access to an
414 * emergency reserve.
416 lofreebuffers = nbuf / 18 + 5;
417 hifreebuffers = 2 * lofreebuffers;
418 numfreebuffers = nbuf;
421 * Maximum number of async ops initiated per buf_daemon loop. This is
422 * somewhat of a hack at the moment, we really need to limit ourselves
423 * based on the number of bytes of I/O in-transit that were initiated
424 * from buf_daemon.
427 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
428 bogus_page = vm_page_alloc(kernel_object,
429 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
430 VM_ALLOC_NORMAL);
431 vmstats.v_wire_count++;
436 * Initialize the embedded bio structures
438 void
439 initbufbio(struct buf *bp)
441 bp->b_bio1.bio_buf = bp;
442 bp->b_bio1.bio_prev = NULL;
443 bp->b_bio1.bio_offset = NOOFFSET;
444 bp->b_bio1.bio_next = &bp->b_bio2;
445 bp->b_bio1.bio_done = NULL;
447 bp->b_bio2.bio_buf = bp;
448 bp->b_bio2.bio_prev = &bp->b_bio1;
449 bp->b_bio2.bio_offset = NOOFFSET;
450 bp->b_bio2.bio_next = NULL;
451 bp->b_bio2.bio_done = NULL;
455 * Reinitialize the embedded bio structures as well as any additional
456 * translation cache layers.
458 void
459 reinitbufbio(struct buf *bp)
461 struct bio *bio;
463 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
464 bio->bio_done = NULL;
465 bio->bio_offset = NOOFFSET;
470 * Push another BIO layer onto an existing BIO and return it. The new
471 * BIO layer may already exist, holding cached translation data.
473 struct bio *
474 push_bio(struct bio *bio)
476 struct bio *nbio;
478 if ((nbio = bio->bio_next) == NULL) {
479 int index = bio - &bio->bio_buf->b_bio_array[0];
480 if (index >= NBUF_BIO) {
481 panic("push_bio: too many layers bp %p\n",
482 bio->bio_buf);
484 nbio = &bio->bio_buf->b_bio_array[index + 1];
485 bio->bio_next = nbio;
486 nbio->bio_prev = bio;
487 nbio->bio_buf = bio->bio_buf;
488 nbio->bio_offset = NOOFFSET;
489 nbio->bio_done = NULL;
490 nbio->bio_next = NULL;
492 KKASSERT(nbio->bio_done == NULL);
493 return(nbio);
496 void
497 pop_bio(struct bio *bio)
499 /* NOP */
502 void
503 clearbiocache(struct bio *bio)
505 while (bio) {
506 bio->bio_offset = NOOFFSET;
507 bio = bio->bio_next;
512 * bfreekva:
514 * Free the KVA allocation for buffer 'bp'.
516 * Must be called from a critical section as this is the only locking for
517 * buffer_map.
519 * Since this call frees up buffer space, we call bufspacewakeup().
521 static void
522 bfreekva(struct buf *bp)
524 int count;
526 if (bp->b_kvasize) {
527 ++buffreekvacnt;
528 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
529 vm_map_lock(buffer_map);
530 bufspace -= bp->b_kvasize;
531 vm_map_delete(buffer_map,
532 (vm_offset_t) bp->b_kvabase,
533 (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
534 &count
536 vm_map_unlock(buffer_map);
537 vm_map_entry_release(count);
538 bp->b_kvasize = 0;
539 bufspacewakeup();
544 * bremfree:
546 * Remove the buffer from the appropriate free list.
548 void
549 bremfree(struct buf * bp)
551 int old_qindex;
553 crit_enter();
554 old_qindex = bp->b_qindex;
556 if (bp->b_qindex != BQUEUE_NONE) {
557 KASSERT(BUF_REFCNTNB(bp) == 1,
558 ("bremfree: bp %p not locked",bp));
559 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
560 bp->b_qindex = BQUEUE_NONE;
561 } else {
562 if (BUF_REFCNTNB(bp) <= 1)
563 panic("bremfree: removing a buffer not on a queue");
567 * Fixup numfreebuffers count. If the buffer is invalid or not
568 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
569 * the buffer was free and we must decrement numfreebuffers.
571 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
572 switch(old_qindex) {
573 case BQUEUE_DIRTY:
574 case BQUEUE_CLEAN:
575 case BQUEUE_EMPTY:
576 case BQUEUE_EMPTYKVA:
577 --numfreebuffers;
578 break;
579 default:
580 break;
583 crit_exit();
588 * bread:
590 * Get a buffer with the specified data. Look in the cache first. We
591 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
592 * is set, the buffer is valid and we do not have to do anything ( see
593 * getblk() ).
596 bread(struct vnode * vp, off_t loffset, int size, struct buf ** bpp)
598 struct buf *bp;
600 bp = getblk(vp, loffset, size, 0, 0);
601 *bpp = bp;
603 /* if not found in cache, do some I/O */
604 if ((bp->b_flags & B_CACHE) == 0) {
605 KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
606 bp->b_flags &= ~(B_ERROR | B_INVAL);
607 bp->b_cmd = BUF_CMD_READ;
608 vfs_busy_pages(vp, bp);
609 vn_strategy(vp, &bp->b_bio1);
610 return (biowait(bp));
612 return (0);
616 * breadn:
618 * Operates like bread, but also starts asynchronous I/O on
619 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior
620 * to initiating I/O . If B_CACHE is set, the buffer is valid
621 * and we do not have to do anything.
624 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
625 int *rabsize, int cnt, struct buf ** bpp)
627 struct buf *bp, *rabp;
628 int i;
629 int rv = 0, readwait = 0;
631 *bpp = bp = getblk(vp, loffset, size, 0, 0);
633 /* if not found in cache, do some I/O */
634 if ((bp->b_flags & B_CACHE) == 0) {
635 bp->b_flags &= ~(B_ERROR | B_INVAL);
636 bp->b_cmd = BUF_CMD_READ;
637 vfs_busy_pages(vp, bp);
638 vn_strategy(vp, &bp->b_bio1);
639 ++readwait;
642 for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
643 if (inmem(vp, *raoffset))
644 continue;
645 rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
647 if ((rabp->b_flags & B_CACHE) == 0) {
648 rabp->b_flags |= B_ASYNC;
649 rabp->b_flags &= ~(B_ERROR | B_INVAL);
650 rabp->b_cmd = BUF_CMD_READ;
651 vfs_busy_pages(vp, rabp);
652 BUF_KERNPROC(rabp);
653 vn_strategy(vp, &rabp->b_bio1);
654 } else {
655 brelse(rabp);
659 if (readwait) {
660 rv = biowait(bp);
662 return (rv);
666 * bwrite:
668 * Write, release buffer on completion. (Done by iodone
669 * if async). Do not bother writing anything if the buffer
670 * is invalid.
672 * Note that we set B_CACHE here, indicating that buffer is
673 * fully valid and thus cacheable. This is true even of NFS
674 * now so we set it generally. This could be set either here
675 * or in biodone() since the I/O is synchronous. We put it
676 * here.
679 bwrite(struct buf * bp)
681 int oldflags;
683 if (bp->b_flags & B_INVAL) {
684 brelse(bp);
685 return (0);
688 oldflags = bp->b_flags;
690 if (BUF_REFCNTNB(bp) == 0)
691 panic("bwrite: buffer is not busy???");
692 crit_enter();
694 /* Mark the buffer clean */
695 bundirty(bp);
697 bp->b_flags &= ~B_ERROR;
698 bp->b_flags |= B_CACHE;
699 bp->b_cmd = BUF_CMD_WRITE;
700 vfs_busy_pages(bp->b_vp, bp);
703 * Normal bwrites pipeline writes
705 bp->b_runningbufspace = bp->b_bufsize;
706 runningbufspace += bp->b_runningbufspace;
708 crit_exit();
709 if (oldflags & B_ASYNC)
710 BUF_KERNPROC(bp);
711 vn_strategy(bp->b_vp, &bp->b_bio1);
713 if ((oldflags & B_ASYNC) == 0) {
714 int rtval = biowait(bp);
715 brelse(bp);
716 return (rtval);
717 } else if ((oldflags & B_NOWDRAIN) == 0) {
719 * don't allow the async write to saturate the I/O
720 * system. Deadlocks can occur only if a device strategy
721 * routine (like in VN) turns around and issues another
722 * high-level write, in which case B_NOWDRAIN is expected
723 * to be set. Otherwise we will not deadlock here because
724 * we are blocking waiting for I/O that is already in-progress
725 * to complete.
727 waitrunningbufspace();
730 return (0);
734 * bdwrite:
736 * Delayed write. (Buffer is marked dirty). Do not bother writing
737 * anything if the buffer is marked invalid.
739 * Note that since the buffer must be completely valid, we can safely
740 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
741 * biodone() in order to prevent getblk from writing the buffer
742 * out synchronously.
744 void
745 bdwrite(struct buf *bp)
747 if (BUF_REFCNTNB(bp) == 0)
748 panic("bdwrite: buffer is not busy");
750 if (bp->b_flags & B_INVAL) {
751 brelse(bp);
752 return;
754 bdirty(bp);
757 * Set B_CACHE, indicating that the buffer is fully valid. This is
758 * true even of NFS now.
760 bp->b_flags |= B_CACHE;
763 * This bmap keeps the system from needing to do the bmap later,
764 * perhaps when the system is attempting to do a sync. Since it
765 * is likely that the indirect block -- or whatever other datastructure
766 * that the filesystem needs is still in memory now, it is a good
767 * thing to do this. Note also, that if the pageout daemon is
768 * requesting a sync -- there might not be enough memory to do
769 * the bmap then... So, this is important to do.
771 if (bp->b_bio2.bio_offset == NOOFFSET) {
772 VOP_BMAP(bp->b_vp, bp->b_loffset, NULL, &bp->b_bio2.bio_offset,
773 NULL, NULL);
777 * Set the *dirty* buffer range based upon the VM system dirty pages.
779 vfs_setdirty(bp);
782 * We need to do this here to satisfy the vnode_pager and the
783 * pageout daemon, so that it thinks that the pages have been
784 * "cleaned". Note that since the pages are in a delayed write
785 * buffer -- the VFS layer "will" see that the pages get written
786 * out on the next sync, or perhaps the cluster will be completed.
788 vfs_clean_pages(bp);
789 bqrelse(bp);
792 * Wakeup the buffer flushing daemon if we have a lot of dirty
793 * buffers (midpoint between our recovery point and our stall
794 * point).
796 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
799 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
800 * due to the softdep code.
805 * bdirty:
807 * Turn buffer into delayed write request by marking it B_DELWRI.
808 * B_RELBUF and B_NOCACHE must be cleared.
810 * We reassign the buffer to itself to properly update it in the
811 * dirty/clean lists.
813 * Since the buffer is not on a queue, we do not update the
814 * numfreebuffers count.
816 * Must be called from a critical section.
817 * The buffer must be on BQUEUE_NONE.
819 void
820 bdirty(struct buf *bp)
822 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
823 if (bp->b_flags & B_NOCACHE) {
824 printf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
825 bp->b_flags &= ~B_NOCACHE;
827 if (bp->b_flags & B_INVAL) {
828 printf("bdirty: warning, dirtying invalid buffer %p\n", bp);
830 bp->b_flags &= ~B_RELBUF;
832 if ((bp->b_flags & B_DELWRI) == 0) {
833 bp->b_flags |= B_DELWRI;
834 reassignbuf(bp);
835 ++numdirtybuffers;
836 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
841 * bundirty:
843 * Clear B_DELWRI for buffer.
845 * Since the buffer is not on a queue, we do not update the numfreebuffers
846 * count.
848 * Must be called from a critical section.
850 * The buffer is typically on BQUEUE_NONE but there is one case in
851 * brelse() that calls this function after placing the buffer on
852 * a different queue.
855 void
856 bundirty(struct buf *bp)
858 if (bp->b_flags & B_DELWRI) {
859 bp->b_flags &= ~B_DELWRI;
860 reassignbuf(bp);
861 --numdirtybuffers;
862 numdirtywakeup(lodirtybuffers);
865 * Since it is now being written, we can clear its deferred write flag.
867 bp->b_flags &= ~B_DEFERRED;
871 * bawrite:
873 * Asynchronous write. Start output on a buffer, but do not wait for
874 * it to complete. The buffer is released when the output completes.
876 * bwrite() ( or the VOP routine anyway ) is responsible for handling
877 * B_INVAL buffers. Not us.
879 void
880 bawrite(struct buf * bp)
882 bp->b_flags |= B_ASYNC;
883 (void) VOP_BWRITE(bp->b_vp, bp);
887 * bowrite:
889 * Ordered write. Start output on a buffer, and flag it so that the
890 * device will write it in the order it was queued. The buffer is
891 * released when the output completes. bwrite() ( or the VOP routine
892 * anyway ) is responsible for handling B_INVAL buffers.
895 bowrite(struct buf * bp)
897 bp->b_flags |= B_ORDERED | B_ASYNC;
898 return (VOP_BWRITE(bp->b_vp, bp));
902 * bwillwrite:
904 * Called prior to the locking of any vnodes when we are expecting to
905 * write. We do not want to starve the buffer cache with too many
906 * dirty buffers so we block here. By blocking prior to the locking
907 * of any vnodes we attempt to avoid the situation where a locked vnode
908 * prevents the various system daemons from flushing related buffers.
911 void
912 bwillwrite(void)
914 if (numdirtybuffers >= hidirtybuffers) {
915 crit_enter();
916 while (numdirtybuffers >= hidirtybuffers) {
917 bd_wakeup(1);
918 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
919 tsleep(&needsbuffer, 0, "flswai", 0);
921 crit_exit();
926 * buf_dirty_count_severe:
928 * Return true if we have too many dirty buffers.
931 buf_dirty_count_severe(void)
933 return(numdirtybuffers >= hidirtybuffers);
937 * brelse:
939 * Release a busy buffer and, if requested, free its resources. The
940 * buffer will be stashed in the appropriate bufqueue[] allowing it
941 * to be accessed later as a cache entity or reused for other purposes.
943 void
944 brelse(struct buf * bp)
946 #ifdef INVARIANTS
947 int saved_flags = bp->b_flags;
948 #endif
950 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
952 crit_enter();
954 if ((bp->b_flags & (B_NOCACHE|B_DIRTY)) == (B_NOCACHE|B_DIRTY)) {
955 printf("warning: buf %p marked dirty & B_NOCACHE, clearing B_NOCACHE\n", bp);
956 bp->b_flags &= ~B_NOCACHE;
959 if (bp->b_flags & B_LOCKED)
960 bp->b_flags &= ~B_ERROR;
962 if (bp->b_cmd == BUF_CMD_WRITE &&
963 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
965 * Failed write, redirty. Must clear B_ERROR to prevent
966 * pages from being scrapped. If B_INVAL is set then
967 * this case is not run and the next case is run to
968 * destroy the buffer. B_INVAL can occur if the buffer
969 * is outside the range supported by the underlying device.
971 bp->b_flags &= ~B_ERROR;
972 bdirty(bp);
973 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
974 (bp->b_bufsize <= 0) || bp->b_cmd == BUF_CMD_FREEBLKS) {
976 * Either a failed I/O or we were asked to free or not
977 * cache the buffer.
979 bp->b_flags |= B_INVAL;
980 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
981 (*bioops.io_deallocate)(bp);
982 if (bp->b_flags & B_DELWRI) {
983 --numdirtybuffers;
984 numdirtywakeup(lodirtybuffers);
986 bp->b_flags &= ~(B_DELWRI | B_CACHE);
990 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release()
991 * is called with B_DELWRI set, the underlying pages may wind up
992 * getting freed causing a previous write (bdwrite()) to get 'lost'
993 * because pages associated with a B_DELWRI bp are marked clean.
995 * We still allow the B_INVAL case to call vfs_vmio_release(), even
996 * if B_DELWRI is set.
998 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
999 * on pages to return pages to the VM page queues.
1001 if (bp->b_flags & B_DELWRI)
1002 bp->b_flags &= ~B_RELBUF;
1003 else if (vm_page_count_severe())
1004 bp->b_flags |= B_RELBUF;
1007 * At this point destroying the buffer is governed by the B_INVAL
1008 * or B_RELBUF flags.
1010 bp->b_cmd = BUF_CMD_DONE;
1013 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer
1014 * constituted, not even NFS buffers now. Two flags effect this. If
1015 * B_INVAL, the struct buf is invalidated but the VM object is kept
1016 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1018 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
1019 * invalidated. B_ERROR cannot be set for a failed write unless the
1020 * buffer is also B_INVAL because it hits the re-dirtying code above.
1022 * Normally we can do this whether a buffer is B_DELWRI or not. If
1023 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1024 * the commit state and we cannot afford to lose the buffer. If the
1025 * buffer has a background write in progress, we need to keep it
1026 * around to prevent it from being reconstituted and starting a second
1027 * background write.
1029 if ((bp->b_flags & B_VMIO)
1030 && !(bp->b_vp->v_tag == VT_NFS &&
1031 !vn_isdisk(bp->b_vp, NULL) &&
1032 (bp->b_flags & B_DELWRI))
1035 * Rundown for VMIO buffers which are not dirty NFS buffers.
1037 int i, j, resid;
1038 vm_page_t m;
1039 off_t foff;
1040 vm_pindex_t poff;
1041 vm_object_t obj;
1042 struct vnode *vp;
1044 vp = bp->b_vp;
1047 * Get the base offset and length of the buffer. Note that
1048 * in the VMIO case if the buffer block size is not
1049 * page-aligned then b_data pointer may not be page-aligned.
1050 * But our b_xio.xio_pages array *IS* page aligned.
1052 * block sizes less then DEV_BSIZE (usually 512) are not
1053 * supported due to the page granularity bits (m->valid,
1054 * m->dirty, etc...).
1056 * See man buf(9) for more information
1059 resid = bp->b_bufsize;
1060 foff = bp->b_loffset;
1062 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1063 m = bp->b_xio.xio_pages[i];
1064 vm_page_flag_clear(m, PG_ZERO);
1066 * If we hit a bogus page, fixup *all* of them
1067 * now. Note that we left these pages wired
1068 * when we removed them so they had better exist,
1069 * and they cannot be ripped out from under us so
1070 * no critical section protection is necessary.
1072 if (m == bogus_page) {
1073 obj = vp->v_object;
1074 poff = OFF_TO_IDX(bp->b_loffset);
1076 for (j = i; j < bp->b_xio.xio_npages; j++) {
1077 vm_page_t mtmp;
1079 mtmp = bp->b_xio.xio_pages[j];
1080 if (mtmp == bogus_page) {
1081 mtmp = vm_page_lookup(obj, poff + j);
1082 if (!mtmp) {
1083 panic("brelse: page missing");
1085 bp->b_xio.xio_pages[j] = mtmp;
1089 if ((bp->b_flags & B_INVAL) == 0) {
1090 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1091 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1093 m = bp->b_xio.xio_pages[i];
1097 * Invalidate the backing store if B_NOCACHE is set
1098 * (e.g. used with vinvalbuf()). If this is NFS
1099 * we impose a requirement that the block size be
1100 * a multiple of PAGE_SIZE and create a temporary
1101 * hack to basically invalidate the whole page. The
1102 * problem is that NFS uses really odd buffer sizes
1103 * especially when tracking piecemeal writes and
1104 * it also vinvalbuf()'s a lot, which would result
1105 * in only partial page validation and invalidation
1106 * here. If the file page is mmap()'d, however,
1107 * all the valid bits get set so after we invalidate
1108 * here we would end up with weird m->valid values
1109 * like 0xfc. nfs_getpages() can't handle this so
1110 * we clear all the valid bits for the NFS case
1111 * instead of just some of them.
1113 * The real bug is the VM system having to set m->valid
1114 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1115 * itself is an artifact of the whole 512-byte
1116 * granular mess that exists to support odd block
1117 * sizes and UFS meta-data block sizes (e.g. 6144).
1118 * A complete rewrite is required.
1120 if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1121 int poffset = foff & PAGE_MASK;
1122 int presid;
1124 presid = PAGE_SIZE - poffset;
1125 if (bp->b_vp->v_tag == VT_NFS &&
1126 bp->b_vp->v_type == VREG) {
1127 ; /* entire page */
1128 } else if (presid > resid) {
1129 presid = resid;
1131 KASSERT(presid >= 0, ("brelse: extra page"));
1132 vm_page_set_invalid(m, poffset, presid);
1134 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1135 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1137 if (bp->b_flags & (B_INVAL | B_RELBUF))
1138 vfs_vmio_release(bp);
1139 } else if (bp->b_flags & B_VMIO) {
1141 * Rundown for VMIO buffers which are dirty NFS buffers. Such
1142 * buffers contain tracking ranges for NFS and cannot normally
1143 * be released. Due to the dirty check above this series of
1144 * conditionals, B_RELBUF probably will never be set in this
1145 * codepath.
1147 if (bp->b_flags & (B_INVAL | B_RELBUF))
1148 vfs_vmio_release(bp);
1149 } else {
1151 * Rundown for non-VMIO buffers.
1153 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1154 #if 0
1155 if (bp->b_vp)
1156 printf("brelse bp %p %08x/%08x: Warning, caught and fixed brelvp bug\n", bp, saved_flags, bp->b_flags);
1157 #endif
1158 if (bp->b_bufsize)
1159 allocbuf(bp, 0);
1160 if (bp->b_vp)
1161 brelvp(bp);
1165 if (bp->b_qindex != BQUEUE_NONE)
1166 panic("brelse: free buffer onto another queue???");
1167 if (BUF_REFCNTNB(bp) > 1) {
1168 /* Temporary panic to verify exclusive locking */
1169 /* This panic goes away when we allow shared refs */
1170 panic("brelse: multiple refs");
1171 /* do not release to free list */
1172 BUF_UNLOCK(bp);
1173 crit_exit();
1174 return;
1178 * Figure out the correct queue to place the cleaned up buffer on.
1179 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1180 * disassociated from their vnode.
1183 if (bp->b_bufsize == 0) {
1185 * Buffers with no memory. Due to conditionals near the top
1186 * of brelse() such buffers should probably already be
1187 * marked B_INVAL and disassociated from their vnode.
1189 bp->b_flags |= B_INVAL;
1190 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1191 KKASSERT((bp->b_flags & B_HASHED) == 0);
1192 if (bp->b_kvasize) {
1193 bp->b_qindex = BQUEUE_EMPTYKVA;
1194 } else {
1195 bp->b_qindex = BQUEUE_EMPTY;
1197 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1198 } else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1200 * Buffers with junk contents. Again these buffers had better
1201 * already be disassociated from their vnode.
1203 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1204 KKASSERT((bp->b_flags & B_HASHED) == 0);
1205 bp->b_flags |= B_INVAL;
1206 bp->b_qindex = BQUEUE_CLEAN;
1207 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1208 } else if (bp->b_flags & B_LOCKED) {
1210 * Buffers that are locked.
1212 bp->b_qindex = BQUEUE_LOCKED;
1213 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1214 } else {
1216 * Remaining buffers. These buffers are still associated with
1217 * their vnode.
1219 switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1220 case B_DELWRI | B_AGE:
1221 bp->b_qindex = BQUEUE_DIRTY;
1222 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1223 break;
1224 case B_DELWRI:
1225 bp->b_qindex = BQUEUE_DIRTY;
1226 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1227 break;
1228 case B_AGE:
1229 bp->b_qindex = BQUEUE_CLEAN;
1230 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1231 break;
1232 default:
1233 bp->b_qindex = BQUEUE_CLEAN;
1234 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1235 break;
1240 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1241 * on the correct queue.
1243 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1244 bundirty(bp);
1247 * Fixup numfreebuffers count. The bp is on an appropriate queue
1248 * unless locked. We then bump numfreebuffers if it is not B_DELWRI.
1249 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1250 * if B_INVAL is set ).
1252 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1253 bufcountwakeup();
1256 * Something we can maybe free or reuse
1258 if (bp->b_bufsize || bp->b_kvasize)
1259 bufspacewakeup();
1262 * Clean up temporary flags and unlock the buffer.
1264 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1265 B_DIRECT | B_NOWDRAIN);
1266 BUF_UNLOCK(bp);
1267 crit_exit();
1271 * bqrelse:
1273 * Release a buffer back to the appropriate queue but do not try to free
1274 * it. The buffer is expected to be used again soon.
1276 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1277 * biodone() to requeue an async I/O on completion. It is also used when
1278 * known good buffers need to be requeued but we think we may need the data
1279 * again soon.
1281 * XXX we should be able to leave the B_RELBUF hint set on completion.
1283 void
1284 bqrelse(struct buf * bp)
1286 crit_enter();
1288 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1290 if (bp->b_qindex != BQUEUE_NONE)
1291 panic("bqrelse: free buffer onto another queue???");
1292 if (BUF_REFCNTNB(bp) > 1) {
1293 /* do not release to free list */
1294 panic("bqrelse: multiple refs");
1295 BUF_UNLOCK(bp);
1296 crit_exit();
1297 return;
1299 if (bp->b_flags & B_LOCKED) {
1300 bp->b_flags &= ~B_ERROR;
1301 bp->b_qindex = BQUEUE_LOCKED;
1302 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1303 /* buffers with stale but valid contents */
1304 } else if (bp->b_flags & B_DELWRI) {
1305 bp->b_qindex = BQUEUE_DIRTY;
1306 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1307 } else if (vm_page_count_severe()) {
1309 * We are too low on memory, we have to try to free the
1310 * buffer (most importantly: the wired pages making up its
1311 * backing store) *now*.
1313 crit_exit();
1314 brelse(bp);
1315 return;
1316 } else {
1317 bp->b_qindex = BQUEUE_CLEAN;
1318 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1321 if ((bp->b_flags & B_LOCKED) == 0 &&
1322 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1323 bufcountwakeup();
1327 * Something we can maybe free or reuse.
1329 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1330 bufspacewakeup();
1333 * Final cleanup and unlock. Clear bits that are only used while a
1334 * buffer is actively locked.
1336 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1337 BUF_UNLOCK(bp);
1338 crit_exit();
1342 * vfs_vmio_release:
1344 * Return backing pages held by the buffer 'bp' back to the VM system
1345 * if possible. The pages are freed if they are no longer valid or
1346 * attempt to free if it was used for direct I/O otherwise they are
1347 * sent to the page cache.
1349 * Pages that were marked busy are left alone and skipped.
1351 * The KVA mapping (b_data) for the underlying pages is removed by
1352 * this function.
1354 static void
1355 vfs_vmio_release(struct buf *bp)
1357 int i;
1358 vm_page_t m;
1360 crit_enter();
1361 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1362 m = bp->b_xio.xio_pages[i];
1363 bp->b_xio.xio_pages[i] = NULL;
1365 * In order to keep page LRU ordering consistent, put
1366 * everything on the inactive queue.
1368 vm_page_unwire(m, 0);
1370 * We don't mess with busy pages, it is
1371 * the responsibility of the process that
1372 * busied the pages to deal with them.
1374 if ((m->flags & PG_BUSY) || (m->busy != 0))
1375 continue;
1377 if (m->wire_count == 0) {
1378 vm_page_flag_clear(m, PG_ZERO);
1380 * Might as well free the page if we can and it has
1381 * no valid data. We also free the page if the
1382 * buffer was used for direct I/O.
1384 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1385 m->hold_count == 0) {
1386 vm_page_busy(m);
1387 vm_page_protect(m, VM_PROT_NONE);
1388 vm_page_free(m);
1389 } else if (bp->b_flags & B_DIRECT) {
1390 vm_page_try_to_free(m);
1391 } else if (vm_page_count_severe()) {
1392 vm_page_try_to_cache(m);
1396 crit_exit();
1397 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1398 if (bp->b_bufsize) {
1399 bufspacewakeup();
1400 bp->b_bufsize = 0;
1402 bp->b_xio.xio_npages = 0;
1403 bp->b_flags &= ~B_VMIO;
1404 if (bp->b_vp)
1405 brelvp(bp);
1409 * vfs_bio_awrite:
1411 * Implement clustered async writes for clearing out B_DELWRI buffers.
1412 * This is much better then the old way of writing only one buffer at
1413 * a time. Note that we may not be presented with the buffers in the
1414 * correct order, so we search for the cluster in both directions.
1416 * The buffer is locked on call.
1419 vfs_bio_awrite(struct buf *bp)
1421 int i;
1422 int j;
1423 off_t loffset = bp->b_loffset;
1424 struct vnode *vp = bp->b_vp;
1425 int nbytes;
1426 struct buf *bpa;
1427 int nwritten;
1428 int size;
1430 crit_enter();
1432 * right now we support clustered writing only to regular files. If
1433 * we find a clusterable block we could be in the middle of a cluster
1434 * rather then at the beginning.
1436 * NOTE: b_bio1 contains the logical loffset and is aliased
1437 * to b_loffset. b_bio2 contains the translated block number.
1439 if ((vp->v_type == VREG) &&
1440 (vp->v_mount != 0) && /* Only on nodes that have the size info */
1441 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1443 size = vp->v_mount->mnt_stat.f_iosize;
1445 for (i = size; i < MAXPHYS; i += size) {
1446 if ((bpa = findblk(vp, loffset + i)) &&
1447 BUF_REFCNT(bpa) == 0 &&
1448 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1449 (B_DELWRI | B_CLUSTEROK)) &&
1450 (bpa->b_bufsize == size)) {
1451 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1452 (bpa->b_bio2.bio_offset !=
1453 bp->b_bio2.bio_offset + i))
1454 break;
1455 } else {
1456 break;
1459 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1460 if ((bpa = findblk(vp, loffset - j)) &&
1461 BUF_REFCNT(bpa) == 0 &&
1462 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1463 (B_DELWRI | B_CLUSTEROK)) &&
1464 (bpa->b_bufsize == size)) {
1465 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1466 (bpa->b_bio2.bio_offset !=
1467 bp->b_bio2.bio_offset - j))
1468 break;
1469 } else {
1470 break;
1473 j -= size;
1474 nbytes = (i + j);
1476 * this is a possible cluster write
1478 if (nbytes != size) {
1479 BUF_UNLOCK(bp);
1480 nwritten = cluster_wbuild(vp, size,
1481 loffset - j, nbytes);
1482 crit_exit();
1483 return nwritten;
1487 bremfree(bp);
1488 bp->b_flags |= B_ASYNC;
1490 crit_exit();
1492 * default (old) behavior, writing out only one block
1494 * XXX returns b_bufsize instead of b_bcount for nwritten?
1496 nwritten = bp->b_bufsize;
1497 (void) VOP_BWRITE(bp->b_vp, bp);
1499 return nwritten;
1503 * getnewbuf:
1505 * Find and initialize a new buffer header, freeing up existing buffers
1506 * in the bufqueues as necessary. The new buffer is returned locked.
1508 * Important: B_INVAL is not set. If the caller wishes to throw the
1509 * buffer away, the caller must set B_INVAL prior to calling brelse().
1511 * We block if:
1512 * We have insufficient buffer headers
1513 * We have insufficient buffer space
1514 * buffer_map is too fragmented ( space reservation fails )
1515 * If we have to flush dirty buffers ( but we try to avoid this )
1517 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1518 * Instead we ask the buf daemon to do it for us. We attempt to
1519 * avoid piecemeal wakeups of the pageout daemon.
1522 static struct buf *
1523 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1525 struct buf *bp;
1526 struct buf *nbp;
1527 int defrag = 0;
1528 int nqindex;
1529 static int flushingbufs;
1532 * We can't afford to block since we might be holding a vnode lock,
1533 * which may prevent system daemons from running. We deal with
1534 * low-memory situations by proactively returning memory and running
1535 * async I/O rather then sync I/O.
1538 ++getnewbufcalls;
1539 --getnewbufrestarts;
1540 restart:
1541 ++getnewbufrestarts;
1544 * Setup for scan. If we do not have enough free buffers,
1545 * we setup a degenerate case that immediately fails. Note
1546 * that if we are specially marked process, we are allowed to
1547 * dip into our reserves.
1549 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
1551 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
1552 * However, there are a number of cases (defragging, reusing, ...)
1553 * where we cannot backup.
1555 nqindex = BQUEUE_EMPTYKVA;
1556 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1558 if (nbp == NULL) {
1560 * If no EMPTYKVA buffers and we are either
1561 * defragging or reusing, locate a CLEAN buffer
1562 * to free or reuse. If bufspace useage is low
1563 * skip this step so we can allocate a new buffer.
1565 if (defrag || bufspace >= lobufspace) {
1566 nqindex = BQUEUE_CLEAN;
1567 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1571 * If we could not find or were not allowed to reuse a
1572 * CLEAN buffer, check to see if it is ok to use an EMPTY
1573 * buffer. We can only use an EMPTY buffer if allocating
1574 * its KVA would not otherwise run us out of buffer space.
1576 if (nbp == NULL && defrag == 0 &&
1577 bufspace + maxsize < hibufspace) {
1578 nqindex = BQUEUE_EMPTY;
1579 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1584 * Run scan, possibly freeing data and/or kva mappings on the fly
1585 * depending.
1588 while ((bp = nbp) != NULL) {
1589 int qindex = nqindex;
1592 * Calculate next bp ( we can only use it if we do not block
1593 * or do other fancy things ).
1595 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1596 switch(qindex) {
1597 case BQUEUE_EMPTY:
1598 nqindex = BQUEUE_EMPTYKVA;
1599 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1600 break;
1601 /* fall through */
1602 case BQUEUE_EMPTYKVA:
1603 nqindex = BQUEUE_CLEAN;
1604 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1605 break;
1606 /* fall through */
1607 case BQUEUE_CLEAN:
1609 * nbp is NULL.
1611 break;
1616 * Sanity Checks
1618 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1621 * Note: we no longer distinguish between VMIO and non-VMIO
1622 * buffers.
1625 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1628 * If we are defragging then we need a buffer with
1629 * b_kvasize != 0. XXX this situation should no longer
1630 * occur, if defrag is non-zero the buffer's b_kvasize
1631 * should also be non-zero at this point. XXX
1633 if (defrag && bp->b_kvasize == 0) {
1634 printf("Warning: defrag empty buffer %p\n", bp);
1635 continue;
1639 * Start freeing the bp. This is somewhat involved. nbp
1640 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers
1641 * on the clean list must be disassociated from their
1642 * current vnode. Buffers on the empty[kva] lists have
1643 * already been disassociated.
1646 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1647 printf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1648 tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1649 goto restart;
1651 if (bp->b_qindex != qindex) {
1652 printf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1653 BUF_UNLOCK(bp);
1654 goto restart;
1656 bremfree(bp);
1658 if (qindex == BQUEUE_CLEAN) {
1659 if (bp->b_flags & B_VMIO) {
1660 bp->b_flags &= ~B_ASYNC;
1661 vfs_vmio_release(bp);
1663 if (bp->b_vp)
1664 brelvp(bp);
1668 * NOTE: nbp is now entirely invalid. We can only restart
1669 * the scan from this point on.
1671 * Get the rest of the buffer freed up. b_kva* is still
1672 * valid after this operation.
1675 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1676 KKASSERT((bp->b_flags & B_HASHED) == 0);
1677 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1678 (*bioops.io_deallocate)(bp);
1681 * critical section protection is not required when
1682 * scrapping a buffer's contents because it is already
1683 * wired.
1685 if (bp->b_bufsize)
1686 allocbuf(bp, 0);
1688 bp->b_flags = 0;
1689 bp->b_cmd = BUF_CMD_DONE;
1690 bp->b_vp = NULL;
1691 bp->b_error = 0;
1692 bp->b_resid = 0;
1693 bp->b_bcount = 0;
1694 bp->b_xio.xio_npages = 0;
1695 bp->b_dirtyoff = bp->b_dirtyend = 0;
1696 reinitbufbio(bp);
1698 LIST_INIT(&bp->b_dep);
1701 * If we are defragging then free the buffer.
1703 if (defrag) {
1704 bp->b_flags |= B_INVAL;
1705 bfreekva(bp);
1706 brelse(bp);
1707 defrag = 0;
1708 goto restart;
1712 * If we are overcomitted then recover the buffer and its
1713 * KVM space. This occurs in rare situations when multiple
1714 * processes are blocked in getnewbuf() or allocbuf().
1716 if (bufspace >= hibufspace)
1717 flushingbufs = 1;
1718 if (flushingbufs && bp->b_kvasize != 0) {
1719 bp->b_flags |= B_INVAL;
1720 bfreekva(bp);
1721 brelse(bp);
1722 goto restart;
1724 if (bufspace < lobufspace)
1725 flushingbufs = 0;
1726 break;
1730 * If we exhausted our list, sleep as appropriate. We may have to
1731 * wakeup various daemons and write out some dirty buffers.
1733 * Generally we are sleeping due to insufficient buffer space.
1736 if (bp == NULL) {
1737 int flags;
1738 char *waitmsg;
1740 if (defrag) {
1741 flags = VFS_BIO_NEED_BUFSPACE;
1742 waitmsg = "nbufkv";
1743 } else if (bufspace >= hibufspace) {
1744 waitmsg = "nbufbs";
1745 flags = VFS_BIO_NEED_BUFSPACE;
1746 } else {
1747 waitmsg = "newbuf";
1748 flags = VFS_BIO_NEED_ANY;
1751 bd_speedup(); /* heeeelp */
1753 needsbuffer |= flags;
1754 while (needsbuffer & flags) {
1755 if (tsleep(&needsbuffer, slpflag, waitmsg, slptimeo))
1756 return (NULL);
1758 } else {
1760 * We finally have a valid bp. We aren't quite out of the
1761 * woods, we still have to reserve kva space. In order
1762 * to keep fragmentation sane we only allocate kva in
1763 * BKVASIZE chunks.
1765 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1767 if (maxsize != bp->b_kvasize) {
1768 vm_offset_t addr = 0;
1769 int count;
1771 bfreekva(bp);
1773 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1774 vm_map_lock(buffer_map);
1776 if (vm_map_findspace(buffer_map,
1777 vm_map_min(buffer_map), maxsize,
1778 maxsize, &addr)) {
1780 * Uh oh. Buffer map is too fragmented. We
1781 * must defragment the map.
1783 vm_map_unlock(buffer_map);
1784 vm_map_entry_release(count);
1785 ++bufdefragcnt;
1786 defrag = 1;
1787 bp->b_flags |= B_INVAL;
1788 brelse(bp);
1789 goto restart;
1791 if (addr) {
1792 vm_map_insert(buffer_map, &count,
1793 NULL, 0,
1794 addr, addr + maxsize,
1795 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1797 bp->b_kvabase = (caddr_t) addr;
1798 bp->b_kvasize = maxsize;
1799 bufspace += bp->b_kvasize;
1800 ++bufreusecnt;
1802 vm_map_unlock(buffer_map);
1803 vm_map_entry_release(count);
1805 bp->b_data = bp->b_kvabase;
1807 return(bp);
1811 * buf_daemon:
1813 * Buffer flushing daemon. Buffers are normally flushed by the
1814 * update daemon but if it cannot keep up this process starts to
1815 * take the load in an attempt to prevent getnewbuf() from blocking.
1818 static struct thread *bufdaemonthread;
1820 static struct kproc_desc buf_kp = {
1821 "bufdaemon",
1822 buf_daemon,
1823 &bufdaemonthread
1825 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1827 static void
1828 buf_daemon()
1831 * This process needs to be suspended prior to shutdown sync.
1833 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
1834 bufdaemonthread, SHUTDOWN_PRI_LAST);
1837 * This process is allowed to take the buffer cache to the limit
1839 crit_enter();
1841 for (;;) {
1842 kproc_suspend_loop();
1845 * Do the flush. Limit the amount of in-transit I/O we
1846 * allow to build up, otherwise we would completely saturate
1847 * the I/O system. Wakeup any waiting processes before we
1848 * normally would so they can run in parallel with our drain.
1850 while (numdirtybuffers > lodirtybuffers) {
1851 if (flushbufqueues() == 0)
1852 break;
1853 waitrunningbufspace();
1854 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1858 * Only clear bd_request if we have reached our low water
1859 * mark. The buf_daemon normally waits 5 seconds and
1860 * then incrementally flushes any dirty buffers that have
1861 * built up, within reason.
1863 * If we were unable to hit our low water mark and couldn't
1864 * find any flushable buffers, we sleep half a second.
1865 * Otherwise we loop immediately.
1867 if (numdirtybuffers <= lodirtybuffers) {
1869 * We reached our low water mark, reset the
1870 * request and sleep until we are needed again.
1871 * The sleep is just so the suspend code works.
1873 bd_request = 0;
1874 tsleep(&bd_request, 0, "psleep", hz);
1875 } else {
1877 * We couldn't find any flushable dirty buffers but
1878 * still have too many dirty buffers, we
1879 * have to sleep and try again. (rare)
1881 tsleep(&bd_request, 0, "qsleep", hz / 2);
1887 * flushbufqueues:
1889 * Try to flush a buffer in the dirty queue. We must be careful to
1890 * free up B_INVAL buffers instead of write them, which NFS is
1891 * particularly sensitive to.
1894 static int
1895 flushbufqueues(void)
1897 struct buf *bp;
1898 int r = 0;
1900 bp = TAILQ_FIRST(&bufqueues[BQUEUE_DIRTY]);
1902 while (bp) {
1903 KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1904 if (bp->b_flags & B_DELWRI) {
1905 if (bp->b_flags & B_INVAL) {
1906 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1907 panic("flushbufqueues: locked buf");
1908 bremfree(bp);
1909 brelse(bp);
1910 ++r;
1911 break;
1913 if (LIST_FIRST(&bp->b_dep) != NULL &&
1914 bioops.io_countdeps &&
1915 (bp->b_flags & B_DEFERRED) == 0 &&
1916 (*bioops.io_countdeps)(bp, 0)) {
1917 TAILQ_REMOVE(&bufqueues[BQUEUE_DIRTY],
1918 bp, b_freelist);
1919 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY],
1920 bp, b_freelist);
1921 bp->b_flags |= B_DEFERRED;
1922 bp = TAILQ_FIRST(&bufqueues[BQUEUE_DIRTY]);
1923 continue;
1927 * Only write it out if we can successfully lock
1928 * it.
1930 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
1931 vfs_bio_awrite(bp);
1932 ++r;
1933 break;
1936 bp = TAILQ_NEXT(bp, b_freelist);
1938 return (r);
1942 * inmem:
1944 * Returns true if no I/O is needed to access the associated VM object.
1945 * This is like findblk except it also hunts around in the VM system for
1946 * the data.
1948 * Note that we ignore vm_page_free() races from interrupts against our
1949 * lookup, since if the caller is not protected our return value will not
1950 * be any more valid then otherwise once we exit the critical section.
1953 inmem(struct vnode *vp, off_t loffset)
1955 vm_object_t obj;
1956 vm_offset_t toff, tinc, size;
1957 vm_page_t m;
1959 if (findblk(vp, loffset))
1960 return 1;
1961 if (vp->v_mount == NULL)
1962 return 0;
1963 if ((obj = vp->v_object) == NULL)
1964 return 0;
1966 size = PAGE_SIZE;
1967 if (size > vp->v_mount->mnt_stat.f_iosize)
1968 size = vp->v_mount->mnt_stat.f_iosize;
1970 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1971 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
1972 if (m == NULL)
1973 return 0;
1974 tinc = size;
1975 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
1976 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
1977 if (vm_page_is_valid(m,
1978 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
1979 return 0;
1981 return 1;
1985 * vfs_setdirty:
1987 * Sets the dirty range for a buffer based on the status of the dirty
1988 * bits in the pages comprising the buffer.
1990 * The range is limited to the size of the buffer.
1992 * This routine is primarily used by NFS, but is generalized for the
1993 * B_VMIO case.
1995 static void
1996 vfs_setdirty(struct buf *bp)
1998 int i;
1999 vm_object_t object;
2002 * Degenerate case - empty buffer
2005 if (bp->b_bufsize == 0)
2006 return;
2009 * We qualify the scan for modified pages on whether the
2010 * object has been flushed yet. The OBJ_WRITEABLE flag
2011 * is not cleared simply by protecting pages off.
2014 if ((bp->b_flags & B_VMIO) == 0)
2015 return;
2017 object = bp->b_xio.xio_pages[0]->object;
2019 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2020 printf("Warning: object %p writeable but not mightbedirty\n", object);
2021 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2022 printf("Warning: object %p mightbedirty but not writeable\n", object);
2024 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2025 vm_offset_t boffset;
2026 vm_offset_t eoffset;
2029 * test the pages to see if they have been modified directly
2030 * by users through the VM system.
2032 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2033 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2034 vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2038 * Calculate the encompassing dirty range, boffset and eoffset,
2039 * (eoffset - boffset) bytes.
2042 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2043 if (bp->b_xio.xio_pages[i]->dirty)
2044 break;
2046 boffset = (i << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2048 for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2049 if (bp->b_xio.xio_pages[i]->dirty) {
2050 break;
2053 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2056 * Fit it to the buffer.
2059 if (eoffset > bp->b_bcount)
2060 eoffset = bp->b_bcount;
2063 * If we have a good dirty range, merge with the existing
2064 * dirty range.
2067 if (boffset < eoffset) {
2068 if (bp->b_dirtyoff > boffset)
2069 bp->b_dirtyoff = boffset;
2070 if (bp->b_dirtyend < eoffset)
2071 bp->b_dirtyend = eoffset;
2077 * findblk:
2079 * Locate and return the specified buffer, or NULL if the buffer does
2080 * not exist. Do not attempt to lock the buffer or manipulate it in
2081 * any way. The caller must validate that the correct buffer has been
2082 * obtain after locking it.
2084 struct buf *
2085 findblk(struct vnode *vp, off_t loffset)
2087 struct buf *bp;
2089 crit_enter();
2090 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2091 crit_exit();
2092 return(bp);
2096 * getblk:
2098 * Get a block given a specified block and offset into a file/device.
2099 * B_INVAL may or may not be set on return. The caller should clear
2100 * B_INVAL prior to initiating a READ.
2102 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2103 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2104 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2105 * without doing any of those things the system will likely believe
2106 * the buffer to be valid (especially if it is not B_VMIO), and the
2107 * next getblk() will return the buffer with B_CACHE set.
2109 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2110 * an existing buffer.
2112 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2113 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2114 * and then cleared based on the backing VM. If the previous buffer is
2115 * non-0-sized but invalid, B_CACHE will be cleared.
2117 * If getblk() must create a new buffer, the new buffer is returned with
2118 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2119 * case it is returned with B_INVAL clear and B_CACHE set based on the
2120 * backing VM.
2122 * getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
2123 * B_CACHE bit is clear.
2125 * What this means, basically, is that the caller should use B_CACHE to
2126 * determine whether the buffer is fully valid or not and should clear
2127 * B_INVAL prior to issuing a read. If the caller intends to validate
2128 * the buffer by loading its data area with something, the caller needs
2129 * to clear B_INVAL. If the caller does this without issuing an I/O,
2130 * the caller should set B_CACHE ( as an optimization ), else the caller
2131 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2132 * a write attempt or if it was a successfull read. If the caller
2133 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2134 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2136 struct buf *
2137 getblk(struct vnode *vp, off_t loffset, int size, int slpflag, int slptimeo)
2139 struct buf *bp;
2141 if (size > MAXBSIZE)
2142 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2143 if (vp->v_object == NULL)
2144 panic("getblk: vnode %p has no object!", vp);
2146 crit_enter();
2147 loop:
2149 * Block if we are low on buffers. Certain processes are allowed
2150 * to completely exhaust the buffer cache.
2152 * If this check ever becomes a bottleneck it may be better to
2153 * move it into the else, when findblk() fails. At the moment
2154 * it isn't a problem.
2156 * XXX remove, we cannot afford to block anywhere if holding a vnode
2157 * lock in low-memory situation, so take it to the max.
2159 if (numfreebuffers == 0) {
2160 if (!curproc)
2161 return NULL;
2162 needsbuffer |= VFS_BIO_NEED_ANY;
2163 tsleep(&needsbuffer, slpflag, "newbuf", slptimeo);
2166 if ((bp = findblk(vp, loffset))) {
2168 * The buffer was found in the cache, but we need to lock it.
2169 * Even with LK_NOWAIT the lockmgr may break our critical
2170 * section, so double-check the validity of the buffer
2171 * once the lock has been obtained.
2173 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2174 int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2175 if (slpflag & PCATCH)
2176 lkflags |= LK_PCATCH;
2177 if (BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo) ==
2178 ENOLCK) {
2179 goto loop;
2181 crit_exit();
2182 return (NULL);
2186 * Once the buffer has been locked, make sure we didn't race
2187 * a buffer recyclement. Buffers that are no longer hashed
2188 * will have b_vp == NULL, so this takes care of that check
2189 * as well.
2191 if (bp->b_vp != vp || bp->b_loffset != loffset) {
2192 printf("Warning buffer %p (vp %p loffset %lld) was recycled\n", bp, vp, loffset);
2193 BUF_UNLOCK(bp);
2194 goto loop;
2198 * All vnode-based buffers must be backed by a VM object.
2200 KKASSERT(bp->b_flags & B_VMIO);
2201 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2204 * Make sure that B_INVAL buffers do not have a cached
2205 * block number translation.
2207 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2208 printf("Warning invalid buffer %p (vp %p loffset %lld) did not have cleared bio_offset cache\n", bp, vp, loffset);
2209 clearbiocache(&bp->b_bio2);
2213 * The buffer is locked. B_CACHE is cleared if the buffer is
2214 * invalid.
2216 if (bp->b_flags & B_INVAL)
2217 bp->b_flags &= ~B_CACHE;
2218 bremfree(bp);
2221 * Any size inconsistancy with a dirty buffer or a buffer
2222 * with a softupdates dependancy must be resolved. Resizing
2223 * the buffer in such circumstances can lead to problems.
2225 if (size != bp->b_bcount) {
2226 if (bp->b_flags & B_DELWRI) {
2227 bp->b_flags |= B_NOCACHE;
2228 VOP_BWRITE(bp->b_vp, bp);
2229 } else if (LIST_FIRST(&bp->b_dep)) {
2230 bp->b_flags |= B_NOCACHE;
2231 VOP_BWRITE(bp->b_vp, bp);
2232 } else {
2233 bp->b_flags |= B_RELBUF;
2234 brelse(bp);
2236 goto loop;
2238 KKASSERT(size <= bp->b_kvasize);
2239 KASSERT(bp->b_loffset != NOOFFSET,
2240 ("getblk: no buffer offset"));
2243 * A buffer with B_DELWRI set and B_CACHE clear must
2244 * be committed before we can return the buffer in
2245 * order to prevent the caller from issuing a read
2246 * ( due to B_CACHE not being set ) and overwriting
2247 * it.
2249 * Most callers, including NFS and FFS, need this to
2250 * operate properly either because they assume they
2251 * can issue a read if B_CACHE is not set, or because
2252 * ( for example ) an uncached B_DELWRI might loop due
2253 * to softupdates re-dirtying the buffer. In the latter
2254 * case, B_CACHE is set after the first write completes,
2255 * preventing further loops.
2257 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2258 * above while extending the buffer, we cannot allow the
2259 * buffer to remain with B_CACHE set after the write
2260 * completes or it will represent a corrupt state. To
2261 * deal with this we set B_NOCACHE to scrap the buffer
2262 * after the write.
2264 * We might be able to do something fancy, like setting
2265 * B_CACHE in bwrite() except if B_DELWRI is already set,
2266 * so the below call doesn't set B_CACHE, but that gets real
2267 * confusing. This is much easier.
2270 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2271 bp->b_flags |= B_NOCACHE;
2272 VOP_BWRITE(bp->b_vp, bp);
2273 goto loop;
2275 crit_exit();
2276 } else {
2278 * Buffer is not in-core, create new buffer. The buffer
2279 * returned by getnewbuf() is locked. Note that the returned
2280 * buffer is also considered valid (not marked B_INVAL).
2282 * Calculating the offset for the I/O requires figuring out
2283 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2284 * the mount's f_iosize otherwise. If the vnode does not
2285 * have an associated mount we assume that the passed size is
2286 * the block size.
2288 * Note that vn_isdisk() cannot be used here since it may
2289 * return a failure for numerous reasons. Note that the
2290 * buffer size may be larger then the block size (the caller
2291 * will use block numbers with the proper multiple). Beware
2292 * of using any v_* fields which are part of unions. In
2293 * particular, in DragonFly the mount point overloading
2294 * mechanism is such that the underlying directory (with a
2295 * non-NULL v_mountedhere) is not a special case.
2297 int bsize, maxsize;
2299 if (vp->v_type == VBLK || vp->v_type == VCHR)
2300 bsize = DEV_BSIZE;
2301 else if (vp->v_mount)
2302 bsize = vp->v_mount->mnt_stat.f_iosize;
2303 else
2304 bsize = size;
2306 maxsize = size + (loffset & PAGE_MASK);
2307 maxsize = imax(maxsize, bsize);
2309 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2310 if (slpflag || slptimeo) {
2311 crit_exit();
2312 return NULL;
2314 goto loop;
2318 * This code is used to make sure that a buffer is not
2319 * created while the getnewbuf routine is blocked.
2320 * This can be a problem whether the vnode is locked or not.
2321 * If the buffer is created out from under us, we have to
2322 * throw away the one we just created. There is now window
2323 * race because we are safely running in a critical section
2324 * from the point of the duplicate buffer creation through
2325 * to here, and we've locked the buffer.
2327 if (findblk(vp, loffset)) {
2328 bp->b_flags |= B_INVAL;
2329 brelse(bp);
2330 goto loop;
2334 * Insert the buffer into the hash, so that it can
2335 * be found by findblk().
2337 * Make sure the translation layer has been cleared.
2339 bp->b_loffset = loffset;
2340 bp->b_bio2.bio_offset = NOOFFSET;
2341 /* bp->b_bio2.bio_next = NULL; */
2343 bgetvp(vp, bp);
2346 * All vnode-based buffers must be backed by a VM object.
2348 KKASSERT(vp->v_object != NULL);
2349 bp->b_flags |= B_VMIO;
2350 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2352 allocbuf(bp, size);
2354 crit_exit();
2356 return (bp);
2360 * geteblk:
2362 * Get an empty, disassociated buffer of given size. The buffer is
2363 * initially set to B_INVAL.
2365 * critical section protection is not required for the allocbuf()
2366 * call because races are impossible here.
2368 struct buf *
2369 geteblk(int size)
2371 struct buf *bp;
2372 int maxsize;
2374 maxsize = (size + BKVAMASK) & ~BKVAMASK;
2376 crit_enter();
2377 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2379 crit_exit();
2380 allocbuf(bp, size);
2381 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
2382 return (bp);
2387 * allocbuf:
2389 * This code constitutes the buffer memory from either anonymous system
2390 * memory (in the case of non-VMIO operations) or from an associated
2391 * VM object (in the case of VMIO operations). This code is able to
2392 * resize a buffer up or down.
2394 * Note that this code is tricky, and has many complications to resolve
2395 * deadlock or inconsistant data situations. Tread lightly!!!
2396 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2397 * the caller. Calling this code willy nilly can result in the loss of data.
2399 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
2400 * B_CACHE for the non-VMIO case.
2402 * This routine does not need to be called from a critical section but you
2403 * must own the buffer.
2406 allocbuf(struct buf *bp, int size)
2408 int newbsize, mbsize;
2409 int i;
2411 if (BUF_REFCNT(bp) == 0)
2412 panic("allocbuf: buffer not busy");
2414 if (bp->b_kvasize < size)
2415 panic("allocbuf: buffer too small");
2417 if ((bp->b_flags & B_VMIO) == 0) {
2418 caddr_t origbuf;
2419 int origbufsize;
2421 * Just get anonymous memory from the kernel. Don't
2422 * mess with B_CACHE.
2424 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2425 if (bp->b_flags & B_MALLOC)
2426 newbsize = mbsize;
2427 else
2428 newbsize = round_page(size);
2430 if (newbsize < bp->b_bufsize) {
2432 * Malloced buffers are not shrunk
2434 if (bp->b_flags & B_MALLOC) {
2435 if (newbsize) {
2436 bp->b_bcount = size;
2437 } else {
2438 free(bp->b_data, M_BIOBUF);
2439 if (bp->b_bufsize) {
2440 bufmallocspace -= bp->b_bufsize;
2441 bufspacewakeup();
2442 bp->b_bufsize = 0;
2444 bp->b_data = bp->b_kvabase;
2445 bp->b_bcount = 0;
2446 bp->b_flags &= ~B_MALLOC;
2448 return 1;
2450 vm_hold_free_pages(
2452 (vm_offset_t) bp->b_data + newbsize,
2453 (vm_offset_t) bp->b_data + bp->b_bufsize);
2454 } else if (newbsize > bp->b_bufsize) {
2456 * We only use malloced memory on the first allocation.
2457 * and revert to page-allocated memory when the buffer
2458 * grows.
2460 if ((bufmallocspace < maxbufmallocspace) &&
2461 (bp->b_bufsize == 0) &&
2462 (mbsize <= PAGE_SIZE/2)) {
2464 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2465 bp->b_bufsize = mbsize;
2466 bp->b_bcount = size;
2467 bp->b_flags |= B_MALLOC;
2468 bufmallocspace += mbsize;
2469 return 1;
2471 origbuf = NULL;
2472 origbufsize = 0;
2474 * If the buffer is growing on its other-than-first
2475 * allocation, then we revert to the page-allocation
2476 * scheme.
2478 if (bp->b_flags & B_MALLOC) {
2479 origbuf = bp->b_data;
2480 origbufsize = bp->b_bufsize;
2481 bp->b_data = bp->b_kvabase;
2482 if (bp->b_bufsize) {
2483 bufmallocspace -= bp->b_bufsize;
2484 bufspacewakeup();
2485 bp->b_bufsize = 0;
2487 bp->b_flags &= ~B_MALLOC;
2488 newbsize = round_page(newbsize);
2490 vm_hold_load_pages(
2492 (vm_offset_t) bp->b_data + bp->b_bufsize,
2493 (vm_offset_t) bp->b_data + newbsize);
2494 if (origbuf) {
2495 bcopy(origbuf, bp->b_data, origbufsize);
2496 free(origbuf, M_BIOBUF);
2499 } else {
2500 vm_page_t m;
2501 int desiredpages;
2503 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2504 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
2505 newbsize + PAGE_MASK) >> PAGE_SHIFT;
2506 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
2508 if (bp->b_flags & B_MALLOC)
2509 panic("allocbuf: VMIO buffer can't be malloced");
2511 * Set B_CACHE initially if buffer is 0 length or will become
2512 * 0-length.
2514 if (size == 0 || bp->b_bufsize == 0)
2515 bp->b_flags |= B_CACHE;
2517 if (newbsize < bp->b_bufsize) {
2519 * DEV_BSIZE aligned new buffer size is less then the
2520 * DEV_BSIZE aligned existing buffer size. Figure out
2521 * if we have to remove any pages.
2523 if (desiredpages < bp->b_xio.xio_npages) {
2524 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2526 * the page is not freed here -- it
2527 * is the responsibility of
2528 * vnode_pager_setsize
2530 m = bp->b_xio.xio_pages[i];
2531 KASSERT(m != bogus_page,
2532 ("allocbuf: bogus page found"));
2533 while (vm_page_sleep_busy(m, TRUE, "biodep"))
2536 bp->b_xio.xio_pages[i] = NULL;
2537 vm_page_unwire(m, 0);
2539 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2540 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2541 bp->b_xio.xio_npages = desiredpages;
2543 } else if (size > bp->b_bcount) {
2545 * We are growing the buffer, possibly in a
2546 * byte-granular fashion.
2548 struct vnode *vp;
2549 vm_object_t obj;
2550 vm_offset_t toff;
2551 vm_offset_t tinc;
2554 * Step 1, bring in the VM pages from the object,
2555 * allocating them if necessary. We must clear
2556 * B_CACHE if these pages are not valid for the
2557 * range covered by the buffer.
2559 * critical section protection is required to protect
2560 * against interrupts unbusying and freeing pages
2561 * between our vm_page_lookup() and our
2562 * busycheck/wiring call.
2564 vp = bp->b_vp;
2565 obj = vp->v_object;
2567 crit_enter();
2568 while (bp->b_xio.xio_npages < desiredpages) {
2569 vm_page_t m;
2570 vm_pindex_t pi;
2572 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
2573 if ((m = vm_page_lookup(obj, pi)) == NULL) {
2575 * note: must allocate system pages
2576 * since blocking here could intefere
2577 * with paging I/O, no matter which
2578 * process we are.
2580 m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
2581 if (m == NULL) {
2582 vm_wait();
2583 vm_pageout_deficit += desiredpages -
2584 bp->b_xio.xio_npages;
2585 } else {
2586 vm_page_wire(m);
2587 vm_page_wakeup(m);
2588 bp->b_flags &= ~B_CACHE;
2589 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2590 ++bp->b_xio.xio_npages;
2592 continue;
2596 * We found a page. If we have to sleep on it,
2597 * retry because it might have gotten freed out
2598 * from under us.
2600 * We can only test PG_BUSY here. Blocking on
2601 * m->busy might lead to a deadlock:
2603 * vm_fault->getpages->cluster_read->allocbuf
2607 if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2608 continue;
2611 * We have a good page. Should we wakeup the
2612 * page daemon?
2614 if ((curthread != pagethread) &&
2615 ((m->queue - m->pc) == PQ_CACHE) &&
2616 ((vmstats.v_free_count + vmstats.v_cache_count) <
2617 (vmstats.v_free_min + vmstats.v_cache_min))) {
2618 pagedaemon_wakeup();
2620 vm_page_flag_clear(m, PG_ZERO);
2621 vm_page_wire(m);
2622 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2623 ++bp->b_xio.xio_npages;
2625 crit_exit();
2628 * Step 2. We've loaded the pages into the buffer,
2629 * we have to figure out if we can still have B_CACHE
2630 * set. Note that B_CACHE is set according to the
2631 * byte-granular range ( bcount and size ), not the
2632 * aligned range ( newbsize ).
2634 * The VM test is against m->valid, which is DEV_BSIZE
2635 * aligned. Needless to say, the validity of the data
2636 * needs to also be DEV_BSIZE aligned. Note that this
2637 * fails with NFS if the server or some other client
2638 * extends the file's EOF. If our buffer is resized,
2639 * B_CACHE may remain set! XXX
2642 toff = bp->b_bcount;
2643 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
2645 while ((bp->b_flags & B_CACHE) && toff < size) {
2646 vm_pindex_t pi;
2648 if (tinc > (size - toff))
2649 tinc = size - toff;
2651 pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
2652 PAGE_SHIFT;
2654 vfs_buf_test_cache(
2655 bp,
2656 bp->b_loffset,
2657 toff,
2658 tinc,
2659 bp->b_xio.xio_pages[pi]
2661 toff += tinc;
2662 tinc = PAGE_SIZE;
2666 * Step 3, fixup the KVM pmap. Remember that
2667 * bp->b_data is relative to bp->b_loffset, but
2668 * bp->b_loffset may be offset into the first page.
2671 bp->b_data = (caddr_t)
2672 trunc_page((vm_offset_t)bp->b_data);
2673 pmap_qenter(
2674 (vm_offset_t)bp->b_data,
2675 bp->b_xio.xio_pages,
2676 bp->b_xio.xio_npages
2678 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2679 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
2682 if (newbsize < bp->b_bufsize)
2683 bufspacewakeup();
2684 bp->b_bufsize = newbsize; /* actual buffer allocation */
2685 bp->b_bcount = size; /* requested buffer size */
2686 return 1;
2690 * biowait:
2692 * Wait for buffer I/O completion, returning error status. The buffer
2693 * is left locked on return. B_EINTR is converted into an EINTR error
2694 * and cleared.
2696 * NOTE! The original b_cmd is lost on return, since b_cmd will be
2697 * set to BUF_CMD_DONE.
2700 biowait(struct buf * bp)
2702 crit_enter();
2703 while (bp->b_cmd != BUF_CMD_DONE) {
2704 if (bp->b_cmd == BUF_CMD_READ)
2705 tsleep(bp, 0, "biord", 0);
2706 else
2707 tsleep(bp, 0, "biowr", 0);
2709 crit_exit();
2710 if (bp->b_flags & B_EINTR) {
2711 bp->b_flags &= ~B_EINTR;
2712 return (EINTR);
2714 if (bp->b_flags & B_ERROR) {
2715 return (bp->b_error ? bp->b_error : EIO);
2716 } else {
2717 return (0);
2722 * This associates a tracking count with an I/O. vn_strategy() and
2723 * dev_dstrategy() do this automatically but there are a few cases
2724 * where a vnode or device layer is bypassed when a block translation
2725 * is cached. In such cases bio_start_transaction() may be called on
2726 * the bypassed layers so the system gets an I/O in progress indication
2727 * for those higher layers.
2729 void
2730 bio_start_transaction(struct bio *bio, struct bio_track *track)
2732 bio->bio_track = track;
2733 atomic_add_int(&track->bk_active, 1);
2737 * Initiate I/O on a vnode.
2739 void
2740 vn_strategy(struct vnode *vp, struct bio *bio)
2742 struct bio_track *track;
2744 KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE);
2745 if (bio->bio_buf->b_cmd == BUF_CMD_READ)
2746 track = &vp->v_track_read;
2747 else
2748 track = &vp->v_track_write;
2749 bio->bio_track = track;
2750 atomic_add_int(&track->bk_active, 1);
2751 vop_strategy(*vp->v_ops, vp, bio);
2756 * biodone:
2758 * Finish I/O on a buffer, optionally calling a completion function.
2759 * This is usually called from an interrupt so process blocking is
2760 * not allowed.
2762 * biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2763 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
2764 * assuming B_INVAL is clear.
2766 * For the VMIO case, we set B_CACHE if the op was a read and no
2767 * read error occured, or if the op was a write. B_CACHE is never
2768 * set if the buffer is invalid or otherwise uncacheable.
2770 * biodone does not mess with B_INVAL, allowing the I/O routine or the
2771 * initiator to leave B_INVAL set to brelse the buffer out of existance
2772 * in the biodone routine.
2774 void
2775 biodone(struct bio *bio)
2777 struct buf *bp = bio->bio_buf;
2778 buf_cmd_t cmd;
2780 crit_enter();
2782 KASSERT(BUF_REFCNTNB(bp) > 0,
2783 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
2784 KASSERT(bp->b_cmd != BUF_CMD_DONE,
2785 ("biodone: bp %p already done!", bp));
2787 runningbufwakeup(bp);
2790 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
2792 while (bio) {
2793 biodone_t *done_func;
2794 struct bio_track *track;
2797 * BIO tracking. Most but not all BIOs are tracked.
2799 if ((track = bio->bio_track) != NULL) {
2800 atomic_subtract_int(&track->bk_active, 1);
2801 if (track->bk_active < 0) {
2802 panic("biodone: bad active count bio %p\n",
2803 bio);
2805 if (track->bk_waitflag) {
2806 track->bk_waitflag = 0;
2807 wakeup(track);
2809 bio->bio_track = NULL;
2813 * A bio_done function terminates the loop. The function
2814 * will be responsible for any further chaining and/or
2815 * buffer management.
2817 * WARNING! The done function can deallocate the buffer!
2819 if ((done_func = bio->bio_done) != NULL) {
2820 bio->bio_done = NULL;
2821 done_func(bio);
2822 crit_exit();
2823 return;
2825 bio = bio->bio_prev;
2828 cmd = bp->b_cmd;
2829 bp->b_cmd = BUF_CMD_DONE;
2832 * Only reads and writes are processed past this point.
2834 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
2835 brelse(bp);
2836 crit_exit();
2837 return;
2841 * Warning: softupdates may re-dirty the buffer.
2843 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2844 (*bioops.io_complete)(bp);
2846 if (bp->b_flags & B_VMIO) {
2847 int i;
2848 vm_ooffset_t foff;
2849 vm_page_t m;
2850 vm_object_t obj;
2851 int iosize;
2852 struct vnode *vp = bp->b_vp;
2854 obj = vp->v_object;
2856 #if defined(VFS_BIO_DEBUG)
2857 if (vp->v_holdcnt == 0)
2858 panic("biodone: zero vnode hold count");
2859 if ((vp->v_flag & VOBJBUF) == 0)
2860 panic("biodone: vnode is not setup for merged cache");
2861 #endif
2863 foff = bp->b_loffset;
2864 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
2865 KASSERT(obj != NULL, ("biodone: missing VM object"));
2867 #if defined(VFS_BIO_DEBUG)
2868 if (obj->paging_in_progress < bp->b_xio.xio_npages) {
2869 printf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
2870 obj->paging_in_progress, bp->b_xio.xio_npages);
2872 #endif
2875 * Set B_CACHE if the op was a normal read and no error
2876 * occured. B_CACHE is set for writes in the b*write()
2877 * routines.
2879 iosize = bp->b_bcount - bp->b_resid;
2880 if (cmd == BUF_CMD_READ && (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
2881 bp->b_flags |= B_CACHE;
2884 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2885 int bogusflag = 0;
2886 int resid;
2888 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2889 if (resid > iosize)
2890 resid = iosize;
2893 * cleanup bogus pages, restoring the originals. Since
2894 * the originals should still be wired, we don't have
2895 * to worry about interrupt/freeing races destroying
2896 * the VM object association.
2898 m = bp->b_xio.xio_pages[i];
2899 if (m == bogus_page) {
2900 bogusflag = 1;
2901 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2902 if (m == NULL)
2903 panic("biodone: page disappeared");
2904 bp->b_xio.xio_pages[i] = m;
2905 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2906 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
2908 #if defined(VFS_BIO_DEBUG)
2909 if (OFF_TO_IDX(foff) != m->pindex) {
2910 printf(
2911 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2912 (unsigned long)foff, m->pindex);
2914 #endif
2917 * In the write case, the valid and clean bits are
2918 * already changed correctly ( see bdwrite() ), so we
2919 * only need to do this here in the read case.
2921 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
2922 vfs_page_set_valid(bp, foff, i, m);
2924 vm_page_flag_clear(m, PG_ZERO);
2927 * when debugging new filesystems or buffer I/O methods, this
2928 * is the most common error that pops up. if you see this, you
2929 * have not set the page busy flag correctly!!!
2931 if (m->busy == 0) {
2932 printf("biodone: page busy < 0, "
2933 "pindex: %d, foff: 0x(%x,%x), "
2934 "resid: %d, index: %d\n",
2935 (int) m->pindex, (int)(foff >> 32),
2936 (int) foff & 0xffffffff, resid, i);
2937 if (!vn_isdisk(vp, NULL))
2938 printf(" iosize: %ld, loffset: %lld, flags: 0x%08x, npages: %d\n",
2939 bp->b_vp->v_mount->mnt_stat.f_iosize,
2940 bp->b_loffset,
2941 bp->b_flags, bp->b_xio.xio_npages);
2942 else
2943 printf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
2944 bp->b_loffset,
2945 bp->b_flags, bp->b_xio.xio_npages);
2946 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2947 m->valid, m->dirty, m->wire_count);
2948 panic("biodone: page busy < 0");
2950 vm_page_io_finish(m);
2951 vm_object_pip_subtract(obj, 1);
2952 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2953 iosize -= resid;
2955 if (obj)
2956 vm_object_pip_wakeupn(obj, 0);
2960 * For asynchronous completions, release the buffer now. The brelse
2961 * will do a wakeup there if necessary - so no need to do a wakeup
2962 * here in the async case. The sync case always needs to do a wakeup.
2965 if (bp->b_flags & B_ASYNC) {
2966 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2967 brelse(bp);
2968 else
2969 bqrelse(bp);
2970 } else {
2971 wakeup(bp);
2973 crit_exit();
2977 * vfs_unbusy_pages:
2979 * This routine is called in lieu of iodone in the case of
2980 * incomplete I/O. This keeps the busy status for pages
2981 * consistant.
2983 void
2984 vfs_unbusy_pages(struct buf *bp)
2986 int i;
2988 runningbufwakeup(bp);
2989 if (bp->b_flags & B_VMIO) {
2990 struct vnode *vp = bp->b_vp;
2991 vm_object_t obj;
2993 obj = vp->v_object;
2995 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2996 vm_page_t m = bp->b_xio.xio_pages[i];
2999 * When restoring bogus changes the original pages
3000 * should still be wired, so we are in no danger of
3001 * losing the object association and do not need
3002 * critical section protection particularly.
3004 if (m == bogus_page) {
3005 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3006 if (!m) {
3007 panic("vfs_unbusy_pages: page missing");
3009 bp->b_xio.xio_pages[i] = m;
3010 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3011 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3013 vm_object_pip_subtract(obj, 1);
3014 vm_page_flag_clear(m, PG_ZERO);
3015 vm_page_io_finish(m);
3017 vm_object_pip_wakeupn(obj, 0);
3022 * vfs_page_set_valid:
3024 * Set the valid bits in a page based on the supplied offset. The
3025 * range is restricted to the buffer's size.
3027 * This routine is typically called after a read completes.
3029 static void
3030 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3032 vm_ooffset_t soff, eoff;
3035 * Start and end offsets in buffer. eoff - soff may not cross a
3036 * page boundry or cross the end of the buffer. The end of the
3037 * buffer, in this case, is our file EOF, not the allocation size
3038 * of the buffer.
3040 soff = off;
3041 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3042 if (eoff > bp->b_loffset + bp->b_bcount)
3043 eoff = bp->b_loffset + bp->b_bcount;
3046 * Set valid range. This is typically the entire buffer and thus the
3047 * entire page.
3049 if (eoff > soff) {
3050 vm_page_set_validclean(
3052 (vm_offset_t) (soff & PAGE_MASK),
3053 (vm_offset_t) (eoff - soff)
3059 * vfs_busy_pages:
3061 * This routine is called before a device strategy routine.
3062 * It is used to tell the VM system that paging I/O is in
3063 * progress, and treat the pages associated with the buffer
3064 * almost as being PG_BUSY. Also the object 'paging_in_progress'
3065 * flag is handled to make sure that the object doesn't become
3066 * inconsistant.
3068 * Since I/O has not been initiated yet, certain buffer flags
3069 * such as B_ERROR or B_INVAL may be in an inconsistant state
3070 * and should be ignored.
3072 void
3073 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3075 int i, bogus;
3076 struct proc *p = curthread->td_proc;
3079 * The buffer's I/O command must already be set. If reading,
3080 * B_CACHE must be 0 (double check against callers only doing
3081 * I/O when B_CACHE is 0).
3083 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3084 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3086 if (bp->b_flags & B_VMIO) {
3087 vm_object_t obj;
3088 vm_ooffset_t foff;
3090 obj = vp->v_object;
3091 foff = bp->b_loffset;
3092 KASSERT(bp->b_loffset != NOOFFSET,
3093 ("vfs_busy_pages: no buffer offset"));
3094 vfs_setdirty(bp);
3096 retry:
3097 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3098 vm_page_t m = bp->b_xio.xio_pages[i];
3099 if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3100 goto retry;
3103 bogus = 0;
3104 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3105 vm_page_t m = bp->b_xio.xio_pages[i];
3107 vm_page_flag_clear(m, PG_ZERO);
3108 if ((bp->b_flags & B_CLUSTER) == 0) {
3109 vm_object_pip_add(obj, 1);
3110 vm_page_io_start(m);
3114 * When readying a vnode-backed buffer for a write
3115 * we must zero-fill any invalid portions of the
3116 * backing VM pages.
3118 * When readying a vnode-backed buffer for a read
3119 * we must replace any dirty pages with a bogus
3120 * page so we do not destroy dirty data when
3121 * filling in gaps. Dirty pages might not
3122 * necessarily be marked dirty yet, so use m->valid
3123 * as a reasonable test.
3125 * Bogus page replacement is, uh, bogus. We need
3126 * to find a better way.
3128 vm_page_protect(m, VM_PROT_NONE);
3129 if (bp->b_cmd == BUF_CMD_WRITE) {
3130 vfs_page_set_valid(bp, foff, i, m);
3131 } else if (m->valid == VM_PAGE_BITS_ALL) {
3132 bp->b_xio.xio_pages[i] = bogus_page;
3133 bogus++;
3135 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3137 if (bogus)
3138 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3139 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3143 * This is the easiest place to put the process accounting for the I/O
3144 * for now.
3146 if (p != NULL) {
3147 if (bp->b_cmd == BUF_CMD_READ)
3148 p->p_stats->p_ru.ru_inblock++;
3149 else
3150 p->p_stats->p_ru.ru_oublock++;
3155 * vfs_clean_pages:
3157 * Tell the VM system that the pages associated with this buffer
3158 * are clean. This is used for delayed writes where the data is
3159 * going to go to disk eventually without additional VM intevention.
3161 * Note that while we only really need to clean through to b_bcount, we
3162 * just go ahead and clean through to b_bufsize.
3164 static void
3165 vfs_clean_pages(struct buf *bp)
3167 int i;
3169 if (bp->b_flags & B_VMIO) {
3170 vm_ooffset_t foff;
3172 foff = bp->b_loffset;
3173 KASSERT(foff != NOOFFSET, ("vfs_clean_pages: no buffer offset"));
3174 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3175 vm_page_t m = bp->b_xio.xio_pages[i];
3176 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3177 vm_ooffset_t eoff = noff;
3179 if (eoff > bp->b_loffset + bp->b_bufsize)
3180 eoff = bp->b_loffset + bp->b_bufsize;
3181 vfs_page_set_valid(bp, foff, i, m);
3182 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3183 foff = noff;
3189 * vfs_bio_set_validclean:
3191 * Set the range within the buffer to valid and clean. The range is
3192 * relative to the beginning of the buffer, b_loffset. Note that
3193 * b_loffset itself may be offset from the beginning of the first page.
3196 void
3197 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3199 if (bp->b_flags & B_VMIO) {
3200 int i;
3201 int n;
3204 * Fixup base to be relative to beginning of first page.
3205 * Set initial n to be the maximum number of bytes in the
3206 * first page that can be validated.
3209 base += (bp->b_loffset & PAGE_MASK);
3210 n = PAGE_SIZE - (base & PAGE_MASK);
3212 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3213 vm_page_t m = bp->b_xio.xio_pages[i];
3215 if (n > size)
3216 n = size;
3218 vm_page_set_validclean(m, base & PAGE_MASK, n);
3219 base += n;
3220 size -= n;
3221 n = PAGE_SIZE;
3227 * vfs_bio_clrbuf:
3229 * Clear a buffer. This routine essentially fakes an I/O, so we need
3230 * to clear B_ERROR and B_INVAL.
3232 * Note that while we only theoretically need to clear through b_bcount,
3233 * we go ahead and clear through b_bufsize.
3236 void
3237 vfs_bio_clrbuf(struct buf *bp)
3239 int i, mask = 0;
3240 caddr_t sa, ea;
3241 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3242 bp->b_flags &= ~(B_INVAL|B_ERROR);
3243 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3244 (bp->b_loffset & PAGE_MASK) == 0) {
3245 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3246 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3247 bp->b_resid = 0;
3248 return;
3250 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3251 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3252 bzero(bp->b_data, bp->b_bufsize);
3253 bp->b_xio.xio_pages[0]->valid |= mask;
3254 bp->b_resid = 0;
3255 return;
3258 ea = sa = bp->b_data;
3259 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3260 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3261 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3262 ea = (caddr_t)(vm_offset_t)ulmin(
3263 (u_long)(vm_offset_t)ea,
3264 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3265 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3266 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3267 continue;
3268 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3269 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3270 bzero(sa, ea - sa);
3272 } else {
3273 for (; sa < ea; sa += DEV_BSIZE, j++) {
3274 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3275 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3276 bzero(sa, DEV_BSIZE);
3279 bp->b_xio.xio_pages[i]->valid |= mask;
3280 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3282 bp->b_resid = 0;
3283 } else {
3284 clrbuf(bp);
3289 * vm_hold_load_pages:
3291 * Load pages into the buffer's address space. The pages are
3292 * allocated from the kernel object in order to reduce interference
3293 * with the any VM paging I/O activity. The range of loaded
3294 * pages will be wired.
3296 * If a page cannot be allocated, the 'pagedaemon' is woken up to
3297 * retrieve the full range (to - from) of pages.
3300 void
3301 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3303 vm_offset_t pg;
3304 vm_page_t p;
3305 int index;
3307 to = round_page(to);
3308 from = round_page(from);
3309 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3311 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3313 tryagain:
3316 * Note: must allocate system pages since blocking here
3317 * could intefere with paging I/O, no matter which
3318 * process we are.
3320 p = vm_page_alloc(kernel_object,
3321 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3322 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3323 if (!p) {
3324 vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3325 vm_wait();
3326 goto tryagain;
3328 vm_page_wire(p);
3329 p->valid = VM_PAGE_BITS_ALL;
3330 vm_page_flag_clear(p, PG_ZERO);
3331 pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3332 bp->b_xio.xio_pages[index] = p;
3333 vm_page_wakeup(p);
3335 bp->b_xio.xio_npages = index;
3339 * vm_hold_free_pages:
3341 * Return pages associated with the buffer back to the VM system.
3343 * The range of pages underlying the buffer's address space will
3344 * be unmapped and un-wired.
3346 void
3347 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3349 vm_offset_t pg;
3350 vm_page_t p;
3351 int index, newnpages;
3353 from = round_page(from);
3354 to = round_page(to);
3355 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3357 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3358 p = bp->b_xio.xio_pages[index];
3359 if (p && (index < bp->b_xio.xio_npages)) {
3360 if (p->busy) {
3361 printf("vm_hold_free_pages: doffset: %lld, loffset: %lld\n",
3362 bp->b_bio2.bio_offset, bp->b_loffset);
3364 bp->b_xio.xio_pages[index] = NULL;
3365 pmap_kremove(pg);
3366 vm_page_busy(p);
3367 vm_page_unwire(p, 0);
3368 vm_page_free(p);
3371 bp->b_xio.xio_npages = newnpages;
3375 * vmapbuf:
3377 * Map an IO request into kernel virtual address space.
3379 * All requests are (re)mapped into kernel VA space.
3380 * Notice that we use b_bufsize for the size of the buffer
3381 * to be mapped. b_bcount might be modified by the driver.
3384 vmapbuf(struct buf *bp)
3386 caddr_t addr, v, kva;
3387 vm_paddr_t pa;
3388 int pidx;
3389 int i;
3390 struct vm_page *m;
3393 * bp had better have a command
3395 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3397 if (bp->b_bufsize < 0)
3398 return (-1);
3399 for (v = bp->b_saveaddr,
3400 addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data),
3401 pidx = 0;
3402 addr < bp->b_data + bp->b_bufsize;
3403 addr += PAGE_SIZE, v += PAGE_SIZE, pidx++) {
3405 * Do the vm_fault if needed; do the copy-on-write thing
3406 * when reading stuff off device into memory.
3408 retry:
3409 i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data,
3410 (bp->b_cmd == BUF_CMD_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
3411 if (i < 0) {
3412 for (i = 0; i < pidx; ++i) {
3413 vm_page_unhold(bp->b_xio.xio_pages[i]);
3414 bp->b_xio.xio_pages[i] = NULL;
3416 return(-1);
3420 * WARNING! If sparc support is MFCd in the future this will
3421 * have to be changed from pmap_kextract() to pmap_extract()
3422 * ala -current.
3424 #ifdef __sparc64__
3425 #error "If MFCing sparc support use pmap_extract"
3426 #endif
3427 pa = pmap_kextract((vm_offset_t)addr);
3428 if (pa == 0) {
3429 printf("vmapbuf: warning, race against user address during I/O");
3430 goto retry;
3432 m = PHYS_TO_VM_PAGE(pa);
3433 vm_page_hold(m);
3434 bp->b_xio.xio_pages[pidx] = m;
3436 if (pidx > btoc(MAXPHYS))
3437 panic("vmapbuf: mapped more than MAXPHYS");
3438 pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_xio.xio_pages, pidx);
3440 kva = bp->b_saveaddr;
3441 bp->b_xio.xio_npages = pidx;
3442 bp->b_saveaddr = bp->b_data;
3443 bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3444 return(0);
3448 * vunmapbuf:
3450 * Free the io map PTEs associated with this IO operation.
3451 * We also invalidate the TLB entries and restore the original b_addr.
3453 void
3454 vunmapbuf(struct buf *bp)
3456 int pidx;
3457 int npages;
3458 vm_page_t *m;
3460 npages = bp->b_xio.xio_npages;
3461 pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3462 npages);
3463 m = bp->b_xio.xio_pages;
3464 for (pidx = 0; pidx < npages; pidx++)
3465 vm_page_unhold(*m++);
3467 bp->b_data = bp->b_saveaddr;
3471 * Scan all buffers in the system and issue the callback.
3474 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
3476 int count = 0;
3477 int error;
3478 int n;
3480 for (n = 0; n < nbuf; ++n) {
3481 if ((error = callback(&buf[n], info)) < 0) {
3482 count = error;
3483 break;
3485 count += error;
3487 return (count);
3491 * print out statistics from the current status of the buffer pool
3492 * this can be toggeled by the system control option debug.syncprt
3494 #ifdef DEBUG
3495 void
3496 vfs_bufstats(void)
3498 int i, j, count;
3499 struct buf *bp;
3500 struct bqueues *dp;
3501 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
3502 static char *bname[3] = { "LOCKED", "LRU", "AGE" };
3504 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
3505 count = 0;
3506 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3507 counts[j] = 0;
3508 crit_enter();
3509 TAILQ_FOREACH(bp, dp, b_freelist) {
3510 counts[bp->b_bufsize/PAGE_SIZE]++;
3511 count++;
3513 crit_exit();
3514 printf("%s: total-%d", bname[i], count);
3515 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3516 if (counts[j] != 0)
3517 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
3518 printf("\n");
3521 #endif
3523 #include "opt_ddb.h"
3524 #ifdef DDB
3525 #include <ddb/ddb.h>
3527 DB_SHOW_COMMAND(buffer, db_show_buffer)
3529 /* get args */
3530 struct buf *bp = (struct buf *)addr;
3532 if (!have_addr) {
3533 db_printf("usage: show buffer <addr>\n");
3534 return;
3537 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3538 db_printf("b_cmd = %d\n", bp->b_cmd);
3539 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
3540 "b_resid = %d\n, b_data = %p, "
3541 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
3542 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3543 bp->b_data, bp->b_bio2.bio_offset, (bp->b_bio2.bio_next ? bp->b_bio2.bio_next->bio_offset : (off_t)-1));
3544 if (bp->b_xio.xio_npages) {
3545 int i;
3546 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3547 bp->b_xio.xio_npages);
3548 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3549 vm_page_t m;
3550 m = bp->b_xio.xio_pages[i];
3551 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3552 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3553 if ((i + 1) < bp->b_xio.xio_npages)
3554 db_printf(",");
3556 db_printf("\n");
3559 #endif /* DDB */