2 * Copyright (c) 1994,1997 John S. Dyson
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme. Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
23 * Author: John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
27 * see man buf(9) for more info. Note that man buf(9) doesn't reflect
28 * the actual buf/bio implementation in DragonFly.
31 #include <sys/param.h>
32 #include <sys/systm.h>
35 #include <sys/devicestat.h>
36 #include <sys/eventhandler.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
43 #include <sys/reboot.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <sys/dsched.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_pager.h>
58 #include <vm/swap_pager.h>
61 #include <sys/thread2.h>
62 #include <sys/spinlock2.h>
63 #include <sys/mplock2.h>
64 #include <vm/vm_page2.h>
75 BQUEUE_NONE
, /* not on any queue */
76 BQUEUE_LOCKED
, /* locked buffers */
77 BQUEUE_CLEAN
, /* non-B_DELWRI buffers */
78 BQUEUE_DIRTY
, /* B_DELWRI buffers */
79 BQUEUE_DIRTY_HW
, /* B_DELWRI buffers - heavy weight */
80 BQUEUE_EMPTYKVA
, /* empty buffer headers with KVA assignment */
81 BQUEUE_EMPTY
, /* empty buffer headers */
83 BUFFER_QUEUES
/* number of buffer queues */
86 typedef enum bufq_type bufq_type_t
;
88 #define BD_WAKE_SIZE 16384
89 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1)
91 TAILQ_HEAD(bqueues
, buf
);
95 struct bqueues bufqueues
[BUFFER_QUEUES
];
98 struct bufpcpu bufpcpu
[MAXCPU
];
100 static MALLOC_DEFINE(M_BIOBUF
, "BIO buffer", "BIO buffer");
102 struct buf
*buf
; /* buffer header pool */
104 static void vfs_clean_pages(struct buf
*bp
);
105 static void vfs_clean_one_page(struct buf
*bp
, int pageno
, vm_page_t m
);
107 static void vfs_dirty_one_page(struct buf
*bp
, int pageno
, vm_page_t m
);
109 static void vfs_vmio_release(struct buf
*bp
);
110 static int flushbufqueues(struct buf
*marker
, bufq_type_t q
);
111 static vm_page_t
bio_page_alloc(struct buf
*bp
, vm_object_t obj
,
112 vm_pindex_t pg
, int deficit
);
114 static void bd_signal(long totalspace
);
115 static void buf_daemon(void);
116 static void buf_daemon_hw(void);
119 * bogus page -- for I/O to/from partially complete buffers
120 * this is a temporary solution to the problem, but it is not
121 * really that bad. it would be better to split the buffer
122 * for input in the case of buffers partially already in memory,
123 * but the code is intricate enough already.
125 vm_page_t bogus_page
;
128 * These are all static, but make the ones we export globals so we do
129 * not need to use compiler magic.
131 long bufspace
; /* locked by buffer_map */
133 static long bufmallocspace
; /* atomic ops */
134 long maxbufmallocspace
, lobufspace
, hibufspace
;
135 static long bufreusecnt
, bufdefragcnt
, buffreekvacnt
;
136 static long lorunningspace
;
137 static long hirunningspace
;
138 static long dirtykvaspace
; /* atomic */
139 long dirtybufspace
; /* atomic (global for systat) */
140 static long dirtybufcount
; /* atomic */
141 static long dirtybufspacehw
; /* atomic */
142 static long dirtybufcounthw
; /* atomic */
143 static long runningbufspace
; /* atomic */
144 static long runningbufcount
; /* atomic */
145 long lodirtybufspace
;
146 long hidirtybufspace
;
147 static int getnewbufcalls
;
148 static int getnewbufrestarts
;
149 static int recoverbufcalls
;
150 static int needsbuffer
; /* atomic */
151 static int runningbufreq
; /* atomic */
152 static int bd_request
; /* atomic */
153 static int bd_request_hw
; /* atomic */
154 static u_int bd_wake_ary
[BD_WAKE_SIZE
];
155 static u_int bd_wake_index
;
156 static u_int vm_cycle_point
= 40; /* 23-36 will migrate more act->inact */
157 static int debug_commit
;
158 static int debug_bufbio
;
160 static struct thread
*bufdaemon_td
;
161 static struct thread
*bufdaemonhw_td
;
162 static u_int lowmempgallocs
;
163 static u_int lowmempgfails
;
166 * Sysctls for operational control of the buffer cache.
168 SYSCTL_LONG(_vfs
, OID_AUTO
, lodirtybufspace
, CTLFLAG_RW
, &lodirtybufspace
, 0,
169 "Number of dirty buffers to flush before bufdaemon becomes inactive");
170 SYSCTL_LONG(_vfs
, OID_AUTO
, hidirtybufspace
, CTLFLAG_RW
, &hidirtybufspace
, 0,
171 "High watermark used to trigger explicit flushing of dirty buffers");
172 SYSCTL_LONG(_vfs
, OID_AUTO
, lorunningspace
, CTLFLAG_RW
, &lorunningspace
, 0,
173 "Minimum amount of buffer space required for active I/O");
174 SYSCTL_LONG(_vfs
, OID_AUTO
, hirunningspace
, CTLFLAG_RW
, &hirunningspace
, 0,
175 "Maximum amount of buffer space to usable for active I/O");
176 SYSCTL_UINT(_vfs
, OID_AUTO
, lowmempgallocs
, CTLFLAG_RW
, &lowmempgallocs
, 0,
177 "Page allocations done during periods of very low free memory");
178 SYSCTL_UINT(_vfs
, OID_AUTO
, lowmempgfails
, CTLFLAG_RW
, &lowmempgfails
, 0,
179 "Page allocations which failed during periods of very low free memory");
180 SYSCTL_UINT(_vfs
, OID_AUTO
, vm_cycle_point
, CTLFLAG_RW
, &vm_cycle_point
, 0,
181 "Recycle pages to active or inactive queue transition pt 0-64");
183 * Sysctls determining current state of the buffer cache.
185 SYSCTL_LONG(_vfs
, OID_AUTO
, nbuf
, CTLFLAG_RD
, &nbuf
, 0,
186 "Total number of buffers in buffer cache");
187 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtykvaspace
, CTLFLAG_RD
, &dirtykvaspace
, 0,
188 "KVA reserved by dirty buffers (all)");
189 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtybufspace
, CTLFLAG_RD
, &dirtybufspace
, 0,
190 "Pending bytes of dirty buffers (all)");
191 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtybufspacehw
, CTLFLAG_RD
, &dirtybufspacehw
, 0,
192 "Pending bytes of dirty buffers (heavy weight)");
193 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtybufcount
, CTLFLAG_RD
, &dirtybufcount
, 0,
194 "Pending number of dirty buffers");
195 SYSCTL_LONG(_vfs
, OID_AUTO
, dirtybufcounthw
, CTLFLAG_RD
, &dirtybufcounthw
, 0,
196 "Pending number of dirty buffers (heavy weight)");
197 SYSCTL_LONG(_vfs
, OID_AUTO
, runningbufspace
, CTLFLAG_RD
, &runningbufspace
, 0,
198 "I/O bytes currently in progress due to asynchronous writes");
199 SYSCTL_LONG(_vfs
, OID_AUTO
, runningbufcount
, CTLFLAG_RD
, &runningbufcount
, 0,
200 "I/O buffers currently in progress due to asynchronous writes");
201 SYSCTL_LONG(_vfs
, OID_AUTO
, maxbufspace
, CTLFLAG_RD
, &maxbufspace
, 0,
202 "Hard limit on maximum amount of memory usable for buffer space");
203 SYSCTL_LONG(_vfs
, OID_AUTO
, hibufspace
, CTLFLAG_RD
, &hibufspace
, 0,
204 "Soft limit on maximum amount of memory usable for buffer space");
205 SYSCTL_LONG(_vfs
, OID_AUTO
, lobufspace
, CTLFLAG_RD
, &lobufspace
, 0,
206 "Minimum amount of memory to reserve for system buffer space");
207 SYSCTL_LONG(_vfs
, OID_AUTO
, bufspace
, CTLFLAG_RD
, &bufspace
, 0,
208 "Amount of memory available for buffers");
209 SYSCTL_LONG(_vfs
, OID_AUTO
, maxmallocbufspace
, CTLFLAG_RD
, &maxbufmallocspace
,
210 0, "Maximum amount of memory reserved for buffers using malloc");
211 SYSCTL_LONG(_vfs
, OID_AUTO
, bufmallocspace
, CTLFLAG_RD
, &bufmallocspace
, 0,
212 "Amount of memory left for buffers using malloc-scheme");
213 SYSCTL_INT(_vfs
, OID_AUTO
, getnewbufcalls
, CTLFLAG_RD
, &getnewbufcalls
, 0,
214 "New buffer header acquisition requests");
215 SYSCTL_INT(_vfs
, OID_AUTO
, getnewbufrestarts
, CTLFLAG_RD
, &getnewbufrestarts
,
216 0, "New buffer header acquisition restarts");
217 SYSCTL_INT(_vfs
, OID_AUTO
, recoverbufcalls
, CTLFLAG_RD
, &recoverbufcalls
, 0,
218 "Recover VM space in an emergency");
219 SYSCTL_INT(_vfs
, OID_AUTO
, bufdefragcnt
, CTLFLAG_RD
, &bufdefragcnt
, 0,
220 "Buffer acquisition restarts due to fragmented buffer map");
221 SYSCTL_INT(_vfs
, OID_AUTO
, buffreekvacnt
, CTLFLAG_RD
, &buffreekvacnt
, 0,
222 "Amount of time KVA space was deallocated in an arbitrary buffer");
223 SYSCTL_INT(_vfs
, OID_AUTO
, bufreusecnt
, CTLFLAG_RD
, &bufreusecnt
, 0,
224 "Amount of time buffer re-use operations were successful");
225 SYSCTL_INT(_vfs
, OID_AUTO
, debug_commit
, CTLFLAG_RW
, &debug_commit
, 0, "");
226 SYSCTL_INT(_vfs
, OID_AUTO
, debug_bufbio
, CTLFLAG_RW
, &debug_bufbio
, 0, "");
227 SYSCTL_INT(_debug_sizeof
, OID_AUTO
, buf
, CTLFLAG_RD
, 0, sizeof(struct buf
),
228 "sizeof(struct buf)");
230 char *buf_wmesg
= BUF_WMESG
;
232 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
233 #define VFS_BIO_NEED_UNUSED02 0x02
234 #define VFS_BIO_NEED_UNUSED04 0x04
235 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
240 * Called when buffer space is potentially available for recovery.
241 * getnewbuf() will block on this flag when it is unable to free
242 * sufficient buffer space. Buffer space becomes recoverable when
243 * bp's get placed back in the queues.
249 * If someone is waiting for BUF space, wake them up. Even
250 * though we haven't freed the kva space yet, the waiting
251 * process will be able to now.
254 int flags
= needsbuffer
;
256 if ((flags
& VFS_BIO_NEED_BUFSPACE
) == 0)
258 if (atomic_cmpset_int(&needsbuffer
, flags
,
259 flags
& ~VFS_BIO_NEED_BUFSPACE
)) {
260 wakeup(&needsbuffer
);
270 * Accounting for I/O in progress.
274 runningbufwakeup(struct buf
*bp
)
279 if ((totalspace
= bp
->b_runningbufspace
) != 0) {
280 atomic_add_long(&runningbufspace
, -totalspace
);
281 atomic_add_long(&runningbufcount
, -1);
282 bp
->b_runningbufspace
= 0;
285 * see waitrunningbufspace() for limit test.
288 flags
= runningbufreq
;
292 if (atomic_cmpset_int(&runningbufreq
, flags
, 0)) {
293 wakeup(&runningbufreq
);
298 bd_signal(totalspace
);
305 * Called when a buffer has been added to one of the free queues to
306 * account for the buffer and to wakeup anyone waiting for free buffers.
307 * This typically occurs when large amounts of metadata are being handled
308 * by the buffer cache ( else buffer space runs out first, usually ).
319 if (atomic_cmpset_int(&needsbuffer
, flags
,
320 (flags
& ~VFS_BIO_NEED_ANY
))) {
321 wakeup(&needsbuffer
);
329 * waitrunningbufspace()
331 * If runningbufspace exceeds 4/6 hirunningspace we block until
332 * runningbufspace drops to 3/6 hirunningspace. We also block if another
333 * thread blocked here in order to be fair, even if runningbufspace
334 * is now lower than the limit.
336 * The caller may be using this function to block in a tight loop, we
337 * must block while runningbufspace is greater than at least
338 * hirunningspace * 3 / 6.
341 waitrunningbufspace(void)
343 long limit
= hirunningspace
* 4 / 6;
346 while (runningbufspace
> limit
|| runningbufreq
) {
347 tsleep_interlock(&runningbufreq
, 0);
348 flags
= atomic_fetchadd_int(&runningbufreq
, 1);
349 if (runningbufspace
> limit
|| flags
)
350 tsleep(&runningbufreq
, PINTERLOCKED
, "wdrn1", hz
);
355 * buf_dirty_count_severe:
357 * Return true if we have too many dirty buffers.
360 buf_dirty_count_severe(void)
362 return (runningbufspace
+ dirtykvaspace
>= hidirtybufspace
||
363 dirtybufcount
>= nbuf
/ 2);
367 * Return true if the amount of running I/O is severe and BIOQ should
371 buf_runningbufspace_severe(void)
373 return (runningbufspace
>= hirunningspace
* 4 / 6);
377 * vfs_buf_test_cache:
379 * Called when a buffer is extended. This function clears the B_CACHE
380 * bit if the newly extended portion of the buffer does not contain
383 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
384 * cache buffers. The VM pages remain dirty, as someone had mmap()'d
385 * them while a clean buffer was present.
389 vfs_buf_test_cache(struct buf
*bp
,
390 vm_ooffset_t foff
, vm_offset_t off
, vm_offset_t size
,
393 if (bp
->b_flags
& B_CACHE
) {
394 int base
= (foff
+ off
) & PAGE_MASK
;
395 if (vm_page_is_valid(m
, base
, size
) == 0)
396 bp
->b_flags
&= ~B_CACHE
;
403 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
410 if (dirtykvaspace
< lodirtybufspace
&& dirtybufcount
< nbuf
/ 2)
413 if (bd_request
== 0 &&
414 (dirtykvaspace
> lodirtybufspace
/ 2 ||
415 dirtybufcount
- dirtybufcounthw
>= nbuf
/ 2)) {
416 if (atomic_fetchadd_int(&bd_request
, 1) == 0)
419 if (bd_request_hw
== 0 &&
420 (dirtykvaspace
> lodirtybufspace
/ 2 ||
421 dirtybufcounthw
>= nbuf
/ 2)) {
422 if (atomic_fetchadd_int(&bd_request_hw
, 1) == 0)
423 wakeup(&bd_request_hw
);
430 * Get the buf_daemon heated up when the number of running and dirty
431 * buffers exceeds the mid-point.
433 * Return the total number of dirty bytes past the second mid point
434 * as a measure of how much excess dirty data there is in the system.
443 mid1
= lodirtybufspace
+ (hidirtybufspace
- lodirtybufspace
) / 2;
445 totalspace
= runningbufspace
+ dirtykvaspace
;
446 if (totalspace
>= mid1
|| dirtybufcount
>= nbuf
/ 2) {
448 mid2
= mid1
+ (hidirtybufspace
- mid1
) / 2;
449 if (totalspace
>= mid2
)
450 return(totalspace
- mid2
);
458 * Wait for the buffer cache to flush (totalspace) bytes worth of
459 * buffers, then return.
461 * Regardless this function blocks while the number of dirty buffers
462 * exceeds hidirtybufspace.
465 bd_wait(long totalspace
)
472 if (curthread
== bufdaemonhw_td
|| curthread
== bufdaemon_td
)
475 while (totalspace
> 0) {
479 * Order is important. Suppliers adjust bd_wake_index after
480 * updating runningbufspace/dirtykvaspace. We want to fetch
481 * bd_wake_index before accessing. Any error should thus
484 i
= atomic_fetchadd_int(&bd_wake_index
, 0);
485 if (totalspace
> runningbufspace
+ dirtykvaspace
)
486 totalspace
= runningbufspace
+ dirtykvaspace
;
487 count
= totalspace
/ BKVASIZE
;
488 if (count
>= BD_WAKE_SIZE
/ 2)
489 count
= BD_WAKE_SIZE
/ 2;
491 mi
= i
& BD_WAKE_MASK
;
494 * This is not a strict interlock, so we play a bit loose
495 * with locking access to dirtybufspace*. We have to re-check
496 * bd_wake_index to ensure that it hasn't passed us.
498 tsleep_interlock(&bd_wake_ary
[mi
], 0);
499 atomic_add_int(&bd_wake_ary
[mi
], 1);
500 j
= atomic_fetchadd_int(&bd_wake_index
, 0);
501 if ((int)(i
- j
) >= 0)
502 tsleep(&bd_wake_ary
[mi
], PINTERLOCKED
, "flstik", hz
);
504 totalspace
= runningbufspace
+ dirtykvaspace
- hidirtybufspace
;
511 * This function is called whenever runningbufspace or dirtykvaspace
512 * is reduced. Track threads waiting for run+dirty buffer I/O
516 bd_signal(long totalspace
)
520 if (totalspace
> 0) {
521 if (totalspace
> BKVASIZE
* BD_WAKE_SIZE
)
522 totalspace
= BKVASIZE
* BD_WAKE_SIZE
;
523 while (totalspace
> 0) {
524 i
= atomic_fetchadd_int(&bd_wake_index
, 1);
526 if (atomic_readandclear_int(&bd_wake_ary
[i
]))
527 wakeup(&bd_wake_ary
[i
]);
528 totalspace
-= BKVASIZE
;
534 * BIO tracking support routines.
536 * Release a ref on a bio_track. Wakeup requests are atomically released
537 * along with the last reference so bk_active will never wind up set to
542 bio_track_rel(struct bio_track
*track
)
550 active
= track
->bk_active
;
551 if (active
== 1 && atomic_cmpset_int(&track
->bk_active
, 1, 0))
555 * Full-on. Note that the wait flag is only atomically released on
556 * the 1->0 count transition.
558 * We check for a negative count transition using bit 30 since bit 31
559 * has a different meaning.
562 desired
= (active
& 0x7FFFFFFF) - 1;
564 desired
|= active
& 0x80000000;
565 if (atomic_cmpset_int(&track
->bk_active
, active
, desired
)) {
566 if (desired
& 0x40000000)
567 panic("bio_track_rel: bad count: %p", track
);
568 if (active
& 0x80000000)
572 active
= track
->bk_active
;
577 * Wait for the tracking count to reach 0.
579 * Use atomic ops such that the wait flag is only set atomically when
580 * bk_active is non-zero.
583 bio_track_wait(struct bio_track
*track
, int slp_flags
, int slp_timo
)
592 if (track
->bk_active
== 0)
596 * Full-on. Note that the wait flag may only be atomically set if
597 * the active count is non-zero.
599 * NOTE: We cannot optimize active == desired since a wakeup could
600 * clear active prior to our tsleep_interlock().
603 while ((active
= track
->bk_active
) != 0) {
605 desired
= active
| 0x80000000;
606 tsleep_interlock(track
, slp_flags
);
607 if (atomic_cmpset_int(&track
->bk_active
, active
, desired
)) {
608 error
= tsleep(track
, slp_flags
| PINTERLOCKED
,
620 * Load time initialisation of the buffer cache, called from machine
621 * dependant initialization code.
625 bufinit(void *dummy __unused
)
627 struct bufpcpu
*pcpu
;
629 vm_offset_t bogus_offset
;
634 /* next, make a null set of free lists */
635 for (i
= 0; i
< ncpus
; ++i
) {
637 spin_init(&pcpu
->spin
, "bufinit");
638 for (j
= 0; j
< BUFFER_QUEUES
; j
++)
639 TAILQ_INIT(&pcpu
->bufqueues
[j
]);
642 /* finally, initialize each buffer header and stick on empty q */
646 for (n
= 0; n
< nbuf
; n
++) {
648 bzero(bp
, sizeof *bp
);
649 bp
->b_flags
= B_INVAL
; /* we're just an empty header */
650 bp
->b_cmd
= BUF_CMD_DONE
;
651 bp
->b_qindex
= BQUEUE_EMPTY
;
654 xio_init(&bp
->b_xio
);
656 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
664 * maxbufspace is the absolute maximum amount of buffer space we are
665 * allowed to reserve in KVM and in real terms. The absolute maximum
666 * is nominally used by buf_daemon. hibufspace is the nominal maximum
667 * used by most other processes. The differential is required to
668 * ensure that buf_daemon is able to run when other processes might
669 * be blocked waiting for buffer space.
671 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
672 * this may result in KVM fragmentation which is not handled optimally
675 maxbufspace
= nbuf
* BKVASIZE
;
676 hibufspace
= lmax(3 * maxbufspace
/ 4, maxbufspace
- MAXBSIZE
* 10);
677 lobufspace
= hibufspace
- MAXBSIZE
;
679 lorunningspace
= 512 * 1024;
680 /* hirunningspace -- see below */
683 * Limit the amount of malloc memory since it is wired permanently
684 * into the kernel space. Even though this is accounted for in
685 * the buffer allocation, we don't want the malloced region to grow
686 * uncontrolled. The malloc scheme improves memory utilization
687 * significantly on average (small) directories.
689 maxbufmallocspace
= hibufspace
/ 20;
692 * Reduce the chance of a deadlock occuring by limiting the number
693 * of delayed-write dirty buffers we allow to stack up.
695 * We don't want too much actually queued to the device at once
696 * (XXX this needs to be per-mount!), because the buffers will
697 * wind up locked for a very long period of time while the I/O
700 hidirtybufspace
= hibufspace
/ 2; /* dirty + running */
701 hirunningspace
= hibufspace
/ 16; /* locked & queued to device */
702 if (hirunningspace
< 1024 * 1024)
703 hirunningspace
= 1024 * 1024;
709 lodirtybufspace
= hidirtybufspace
/ 2;
712 * Maximum number of async ops initiated per buf_daemon loop. This is
713 * somewhat of a hack at the moment, we really need to limit ourselves
714 * based on the number of bytes of I/O in-transit that were initiated
718 bogus_offset
= kmem_alloc_pageable(&kernel_map
, PAGE_SIZE
);
719 vm_object_hold(&kernel_object
);
720 bogus_page
= vm_page_alloc(&kernel_object
,
721 (bogus_offset
>> PAGE_SHIFT
),
723 vm_object_drop(&kernel_object
);
724 vmstats
.v_wire_count
++;
728 SYSINIT(do_bufinit
, SI_BOOT2_MACHDEP
, SI_ORDER_FIRST
, bufinit
, NULL
);
731 * Initialize the embedded bio structures, typically used by
732 * deprecated code which tries to allocate its own struct bufs.
735 initbufbio(struct buf
*bp
)
737 bp
->b_bio1
.bio_buf
= bp
;
738 bp
->b_bio1
.bio_prev
= NULL
;
739 bp
->b_bio1
.bio_offset
= NOOFFSET
;
740 bp
->b_bio1
.bio_next
= &bp
->b_bio2
;
741 bp
->b_bio1
.bio_done
= NULL
;
742 bp
->b_bio1
.bio_flags
= 0;
744 bp
->b_bio2
.bio_buf
= bp
;
745 bp
->b_bio2
.bio_prev
= &bp
->b_bio1
;
746 bp
->b_bio2
.bio_offset
= NOOFFSET
;
747 bp
->b_bio2
.bio_next
= NULL
;
748 bp
->b_bio2
.bio_done
= NULL
;
749 bp
->b_bio2
.bio_flags
= 0;
755 * Reinitialize the embedded bio structures as well as any additional
756 * translation cache layers.
759 reinitbufbio(struct buf
*bp
)
763 for (bio
= &bp
->b_bio1
; bio
; bio
= bio
->bio_next
) {
764 bio
->bio_done
= NULL
;
765 bio
->bio_offset
= NOOFFSET
;
770 * Undo the effects of an initbufbio().
773 uninitbufbio(struct buf
*bp
)
780 * Push another BIO layer onto an existing BIO and return it. The new
781 * BIO layer may already exist, holding cached translation data.
784 push_bio(struct bio
*bio
)
788 if ((nbio
= bio
->bio_next
) == NULL
) {
789 int index
= bio
- &bio
->bio_buf
->b_bio_array
[0];
790 if (index
>= NBUF_BIO
- 1) {
791 panic("push_bio: too many layers %d for bp %p",
792 index
, bio
->bio_buf
);
794 nbio
= &bio
->bio_buf
->b_bio_array
[index
+ 1];
795 bio
->bio_next
= nbio
;
796 nbio
->bio_prev
= bio
;
797 nbio
->bio_buf
= bio
->bio_buf
;
798 nbio
->bio_offset
= NOOFFSET
;
799 nbio
->bio_done
= NULL
;
800 nbio
->bio_next
= NULL
;
802 KKASSERT(nbio
->bio_done
== NULL
);
807 * Pop a BIO translation layer, returning the previous layer. The
808 * must have been previously pushed.
811 pop_bio(struct bio
*bio
)
813 return(bio
->bio_prev
);
817 clearbiocache(struct bio
*bio
)
820 bio
->bio_offset
= NOOFFSET
;
828 * Free the KVA allocation for buffer 'bp'.
830 * Must be called from a critical section as this is the only locking for
833 * Since this call frees up buffer space, we call bufspacewakeup().
836 bfreekva(struct buf
*bp
)
842 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
843 vm_map_lock(&buffer_map
);
844 bufspace
-= bp
->b_kvasize
;
845 vm_map_delete(&buffer_map
,
846 (vm_offset_t
) bp
->b_kvabase
,
847 (vm_offset_t
) bp
->b_kvabase
+ bp
->b_kvasize
,
850 vm_map_unlock(&buffer_map
);
851 vm_map_entry_release(count
);
853 bp
->b_kvabase
= NULL
;
859 * Remove the buffer from the appropriate free list.
860 * (caller must be locked)
863 _bremfree(struct buf
*bp
)
865 struct bufpcpu
*pcpu
= &bufpcpu
[bp
->b_qcpu
];
867 if (bp
->b_qindex
!= BQUEUE_NONE
) {
868 KASSERT(BUF_REFCNTNB(bp
) == 1,
869 ("bremfree: bp %p not locked",bp
));
870 TAILQ_REMOVE(&pcpu
->bufqueues
[bp
->b_qindex
], bp
, b_freelist
);
871 bp
->b_qindex
= BQUEUE_NONE
;
873 if (BUF_REFCNTNB(bp
) <= 1)
874 panic("bremfree: removing a buffer not on a queue");
879 * bremfree() - must be called with a locked buffer
882 bremfree(struct buf
*bp
)
884 struct bufpcpu
*pcpu
= &bufpcpu
[bp
->b_qcpu
];
886 spin_lock(&pcpu
->spin
);
888 spin_unlock(&pcpu
->spin
);
892 * bremfree_locked - must be called with pcpu->spin locked
895 bremfree_locked(struct buf
*bp
)
901 * This version of bread issues any required I/O asyncnronously and
902 * makes a callback on completion.
904 * The callback must check whether BIO_DONE is set in the bio and issue
905 * the bpdone(bp, 0) if it isn't. The callback is responsible for clearing
906 * BIO_DONE and disposing of the I/O (bqrelse()ing it).
909 breadcb(struct vnode
*vp
, off_t loffset
, int size
,
910 void (*func
)(struct bio
*), void *arg
)
914 bp
= getblk(vp
, loffset
, size
, 0, 0);
916 /* if not found in cache, do some I/O */
917 if ((bp
->b_flags
& B_CACHE
) == 0) {
918 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
| B_INVAL
);
919 bp
->b_cmd
= BUF_CMD_READ
;
920 bp
->b_bio1
.bio_done
= func
;
921 bp
->b_bio1
.bio_caller_info1
.ptr
= arg
;
922 vfs_busy_pages(vp
, bp
);
924 vn_strategy(vp
, &bp
->b_bio1
);
927 * Since we are issuing the callback synchronously it cannot
928 * race the BIO_DONE, so no need for atomic ops here.
930 /*bp->b_bio1.bio_done = func;*/
931 bp
->b_bio1
.bio_caller_info1
.ptr
= arg
;
932 bp
->b_bio1
.bio_flags
|= BIO_DONE
;
940 * breadnx() - Terminal function for bread() and breadn().
942 * This function will start asynchronous I/O on read-ahead blocks as well
943 * as satisfy the primary request.
945 * We must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE is
946 * set, the buffer is valid and we do not have to do anything.
949 breadnx(struct vnode
*vp
, off_t loffset
, int size
, off_t
*raoffset
,
950 int *rabsize
, int cnt
, struct buf
**bpp
)
952 struct buf
*bp
, *rabp
;
954 int rv
= 0, readwait
= 0;
959 *bpp
= bp
= getblk(vp
, loffset
, size
, 0, 0);
961 /* if not found in cache, do some I/O */
962 if ((bp
->b_flags
& B_CACHE
) == 0) {
963 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
| B_INVAL
);
964 bp
->b_cmd
= BUF_CMD_READ
;
965 bp
->b_bio1
.bio_done
= biodone_sync
;
966 bp
->b_bio1
.bio_flags
|= BIO_SYNC
;
967 vfs_busy_pages(vp
, bp
);
968 vn_strategy(vp
, &bp
->b_bio1
);
972 for (i
= 0; i
< cnt
; i
++, raoffset
++, rabsize
++) {
973 if (inmem(vp
, *raoffset
))
975 rabp
= getblk(vp
, *raoffset
, *rabsize
, 0, 0);
977 if ((rabp
->b_flags
& B_CACHE
) == 0) {
978 rabp
->b_flags
&= ~(B_ERROR
| B_EINTR
| B_INVAL
);
979 rabp
->b_cmd
= BUF_CMD_READ
;
980 vfs_busy_pages(vp
, rabp
);
982 vn_strategy(vp
, &rabp
->b_bio1
);
988 rv
= biowait(&bp
->b_bio1
, "biord");
995 * Synchronous write, waits for completion.
997 * Write, release buffer on completion. (Done by iodone
998 * if async). Do not bother writing anything if the buffer
1001 * Note that we set B_CACHE here, indicating that buffer is
1002 * fully valid and thus cacheable. This is true even of NFS
1003 * now so we set it generally. This could be set either here
1004 * or in biodone() since the I/O is synchronous. We put it
1008 bwrite(struct buf
*bp
)
1012 if (bp
->b_flags
& B_INVAL
) {
1016 if (BUF_REFCNTNB(bp
) == 0)
1017 panic("bwrite: buffer is not busy???");
1020 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1021 * call because it will remove the buffer from the vnode's
1022 * dirty buffer list prematurely and possibly cause filesystem
1023 * checks to race buffer flushes. This is now handled in
1026 * bundirty(bp); REMOVED
1029 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
);
1030 bp
->b_flags
|= B_CACHE
;
1031 bp
->b_cmd
= BUF_CMD_WRITE
;
1032 bp
->b_bio1
.bio_done
= biodone_sync
;
1033 bp
->b_bio1
.bio_flags
|= BIO_SYNC
;
1034 vfs_busy_pages(bp
->b_vp
, bp
);
1037 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1038 * valid for vnode-backed buffers.
1040 bsetrunningbufspace(bp
, bp
->b_bufsize
);
1041 vn_strategy(bp
->b_vp
, &bp
->b_bio1
);
1042 error
= biowait(&bp
->b_bio1
, "biows");
1051 * Asynchronous write. Start output on a buffer, but do not wait for
1052 * it to complete. The buffer is released when the output completes.
1054 * bwrite() ( or the VOP routine anyway ) is responsible for handling
1055 * B_INVAL buffers. Not us.
1058 bawrite(struct buf
*bp
)
1060 if (bp
->b_flags
& B_INVAL
) {
1064 if (BUF_REFCNTNB(bp
) == 0)
1065 panic("bawrite: buffer is not busy???");
1068 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1069 * call because it will remove the buffer from the vnode's
1070 * dirty buffer list prematurely and possibly cause filesystem
1071 * checks to race buffer flushes. This is now handled in
1074 * bundirty(bp); REMOVED
1076 bp
->b_flags
&= ~(B_ERROR
| B_EINTR
);
1077 bp
->b_flags
|= B_CACHE
;
1078 bp
->b_cmd
= BUF_CMD_WRITE
;
1079 KKASSERT(bp
->b_bio1
.bio_done
== NULL
);
1080 vfs_busy_pages(bp
->b_vp
, bp
);
1083 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1084 * valid for vnode-backed buffers.
1086 bsetrunningbufspace(bp
, bp
->b_bufsize
);
1088 vn_strategy(bp
->b_vp
, &bp
->b_bio1
);
1094 * Ordered write. Start output on a buffer, and flag it so that the
1095 * device will write it in the order it was queued. The buffer is
1096 * released when the output completes. bwrite() ( or the VOP routine
1097 * anyway ) is responsible for handling B_INVAL buffers.
1100 bowrite(struct buf
*bp
)
1102 bp
->b_flags
|= B_ORDERED
;
1110 * Delayed write. (Buffer is marked dirty). Do not bother writing
1111 * anything if the buffer is marked invalid.
1113 * Note that since the buffer must be completely valid, we can safely
1114 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
1115 * biodone() in order to prevent getblk from writing the buffer
1116 * out synchronously.
1119 bdwrite(struct buf
*bp
)
1121 if (BUF_REFCNTNB(bp
) == 0)
1122 panic("bdwrite: buffer is not busy");
1124 if (bp
->b_flags
& B_INVAL
) {
1130 dsched_buf_enter(bp
); /* might stack */
1133 * Set B_CACHE, indicating that the buffer is fully valid. This is
1134 * true even of NFS now.
1136 bp
->b_flags
|= B_CACHE
;
1139 * This bmap keeps the system from needing to do the bmap later,
1140 * perhaps when the system is attempting to do a sync. Since it
1141 * is likely that the indirect block -- or whatever other datastructure
1142 * that the filesystem needs is still in memory now, it is a good
1143 * thing to do this. Note also, that if the pageout daemon is
1144 * requesting a sync -- there might not be enough memory to do
1145 * the bmap then... So, this is important to do.
1147 if (bp
->b_bio2
.bio_offset
== NOOFFSET
) {
1148 VOP_BMAP(bp
->b_vp
, bp
->b_loffset
, &bp
->b_bio2
.bio_offset
,
1149 NULL
, NULL
, BUF_CMD_WRITE
);
1153 * Because the underlying pages may still be mapped and
1154 * writable trying to set the dirty buffer (b_dirtyoff/end)
1155 * range here will be inaccurate.
1157 * However, we must still clean the pages to satisfy the
1158 * vnode_pager and pageout daemon, so theythink the pages
1159 * have been "cleaned". What has really occured is that
1160 * they've been earmarked for later writing by the buffer
1163 * So we get the b_dirtyoff/end update but will not actually
1164 * depend on it (NFS that is) until the pages are busied for
1167 vfs_clean_pages(bp
);
1171 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1172 * due to the softdep code.
1177 * Fake write - return pages to VM system as dirty, leave the buffer clean.
1178 * This is used by tmpfs.
1180 * It is important for any VFS using this routine to NOT use it for
1181 * IO_SYNC or IO_ASYNC operations which occur when the system really
1182 * wants to flush VM pages to backing store.
1185 buwrite(struct buf
*bp
)
1191 * Only works for VMIO buffers. If the buffer is already
1192 * marked for delayed-write we can't avoid the bdwrite().
1194 if ((bp
->b_flags
& B_VMIO
) == 0 || (bp
->b_flags
& B_DELWRI
)) {
1200 * Mark as needing a commit.
1202 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
1203 m
= bp
->b_xio
.xio_pages
[i
];
1204 vm_page_need_commit(m
);
1212 * Turn buffer into delayed write request by marking it B_DELWRI.
1213 * B_RELBUF and B_NOCACHE must be cleared.
1215 * We reassign the buffer to itself to properly update it in the
1216 * dirty/clean lists.
1218 * Must be called from a critical section.
1219 * The buffer must be on BQUEUE_NONE.
1222 bdirty(struct buf
*bp
)
1224 KASSERT(bp
->b_qindex
== BQUEUE_NONE
,
1225 ("bdirty: buffer %p still on queue %d", bp
, bp
->b_qindex
));
1226 if (bp
->b_flags
& B_NOCACHE
) {
1227 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp
);
1228 bp
->b_flags
&= ~B_NOCACHE
;
1230 if (bp
->b_flags
& B_INVAL
) {
1231 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp
);
1233 bp
->b_flags
&= ~B_RELBUF
;
1235 if ((bp
->b_flags
& B_DELWRI
) == 0) {
1236 lwkt_gettoken(&bp
->b_vp
->v_token
);
1237 bp
->b_flags
|= B_DELWRI
;
1239 lwkt_reltoken(&bp
->b_vp
->v_token
);
1241 atomic_add_long(&dirtybufcount
, 1);
1242 atomic_add_long(&dirtykvaspace
, bp
->b_kvasize
);
1243 atomic_add_long(&dirtybufspace
, bp
->b_bufsize
);
1244 if (bp
->b_flags
& B_HEAVY
) {
1245 atomic_add_long(&dirtybufcounthw
, 1);
1246 atomic_add_long(&dirtybufspacehw
, bp
->b_bufsize
);
1253 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1254 * needs to be flushed with a different buf_daemon thread to avoid
1255 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
1258 bheavy(struct buf
*bp
)
1260 if ((bp
->b_flags
& B_HEAVY
) == 0) {
1261 bp
->b_flags
|= B_HEAVY
;
1262 if (bp
->b_flags
& B_DELWRI
) {
1263 atomic_add_long(&dirtybufcounthw
, 1);
1264 atomic_add_long(&dirtybufspacehw
, bp
->b_bufsize
);
1272 * Clear B_DELWRI for buffer.
1274 * Must be called from a critical section.
1276 * The buffer is typically on BQUEUE_NONE but there is one case in
1277 * brelse() that calls this function after placing the buffer on
1278 * a different queue.
1281 bundirty(struct buf
*bp
)
1283 if (bp
->b_flags
& B_DELWRI
) {
1284 lwkt_gettoken(&bp
->b_vp
->v_token
);
1285 bp
->b_flags
&= ~B_DELWRI
;
1287 lwkt_reltoken(&bp
->b_vp
->v_token
);
1289 atomic_add_long(&dirtybufcount
, -1);
1290 atomic_add_long(&dirtykvaspace
, -bp
->b_kvasize
);
1291 atomic_add_long(&dirtybufspace
, -bp
->b_bufsize
);
1292 if (bp
->b_flags
& B_HEAVY
) {
1293 atomic_add_long(&dirtybufcounthw
, -1);
1294 atomic_add_long(&dirtybufspacehw
, -bp
->b_bufsize
);
1296 bd_signal(bp
->b_bufsize
);
1299 * Since it is now being written, we can clear its deferred write flag.
1301 bp
->b_flags
&= ~B_DEFERRED
;
1305 * Set the b_runningbufspace field, used to track how much I/O is
1306 * in progress at any given moment.
1309 bsetrunningbufspace(struct buf
*bp
, int bytes
)
1311 bp
->b_runningbufspace
= bytes
;
1313 atomic_add_long(&runningbufspace
, bytes
);
1314 atomic_add_long(&runningbufcount
, 1);
1321 * Release a busy buffer and, if requested, free its resources. The
1322 * buffer will be stashed in the appropriate bufqueue[] allowing it
1323 * to be accessed later as a cache entity or reused for other purposes.
1326 brelse(struct buf
*bp
)
1328 struct bufpcpu
*pcpu
;
1330 int saved_flags
= bp
->b_flags
;
1333 KASSERT(!(bp
->b_flags
& (B_CLUSTER
|B_PAGING
)),
1334 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp
));
1337 * If B_NOCACHE is set we are being asked to destroy the buffer and
1338 * its backing store. Clear B_DELWRI.
1340 * B_NOCACHE is set in two cases: (1) when the caller really wants
1341 * to destroy the buffer and backing store and (2) when the caller
1342 * wants to destroy the buffer and backing store after a write
1345 if ((bp
->b_flags
& (B_NOCACHE
|B_DELWRI
)) == (B_NOCACHE
|B_DELWRI
)) {
1349 if ((bp
->b_flags
& (B_INVAL
| B_DELWRI
)) == B_DELWRI
) {
1351 * A re-dirtied buffer is only subject to destruction
1352 * by B_INVAL. B_ERROR and B_NOCACHE are ignored.
1354 /* leave buffer intact */
1355 } else if ((bp
->b_flags
& (B_NOCACHE
| B_INVAL
| B_ERROR
)) ||
1356 (bp
->b_bufsize
<= 0)) {
1358 * Either a failed read or we were asked to free or not
1359 * cache the buffer. This path is reached with B_DELWRI
1360 * set only if B_INVAL is already set. B_NOCACHE governs
1361 * backing store destruction.
1363 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1364 * buffer cannot be immediately freed.
1366 bp
->b_flags
|= B_INVAL
;
1367 if (LIST_FIRST(&bp
->b_dep
) != NULL
)
1369 if (bp
->b_flags
& B_DELWRI
) {
1370 atomic_add_long(&dirtybufcount
, -1);
1371 atomic_add_long(&dirtykvaspace
, -bp
->b_kvasize
);
1372 atomic_add_long(&dirtybufspace
, -bp
->b_bufsize
);
1373 if (bp
->b_flags
& B_HEAVY
) {
1374 atomic_add_long(&dirtybufcounthw
, -1);
1375 atomic_add_long(&dirtybufspacehw
,
1378 bd_signal(bp
->b_bufsize
);
1380 bp
->b_flags
&= ~(B_DELWRI
| B_CACHE
);
1384 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1385 * or if b_refs is non-zero.
1387 * If vfs_vmio_release() is called with either bit set, the
1388 * underlying pages may wind up getting freed causing a previous
1389 * write (bdwrite()) to get 'lost' because pages associated with
1390 * a B_DELWRI bp are marked clean. Pages associated with a
1391 * B_LOCKED buffer may be mapped by the filesystem.
1393 * If we want to release the buffer ourselves (rather then the
1394 * originator asking us to release it), give the originator a
1395 * chance to countermand the release by setting B_LOCKED.
1397 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1398 * if B_DELWRI is set.
1400 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1401 * on pages to return pages to the VM page queues.
1403 if ((bp
->b_flags
& (B_DELWRI
| B_LOCKED
)) || bp
->b_refs
) {
1404 bp
->b_flags
&= ~B_RELBUF
;
1405 } else if (vm_page_count_min(0)) {
1406 if (LIST_FIRST(&bp
->b_dep
) != NULL
)
1407 buf_deallocate(bp
); /* can set B_LOCKED */
1408 if (bp
->b_flags
& (B_DELWRI
| B_LOCKED
))
1409 bp
->b_flags
&= ~B_RELBUF
;
1411 bp
->b_flags
|= B_RELBUF
;
1415 * Make sure b_cmd is clear. It may have already been cleared by
1418 * At this point destroying the buffer is governed by the B_INVAL
1419 * or B_RELBUF flags.
1421 bp
->b_cmd
= BUF_CMD_DONE
;
1422 dsched_buf_exit(bp
);
1425 * VMIO buffer rundown. Make sure the VM page array is restored
1426 * after an I/O may have replaces some of the pages with bogus pages
1427 * in order to not destroy dirty pages in a fill-in read.
1429 * Note that due to the code above, if a buffer is marked B_DELWRI
1430 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1431 * B_INVAL may still be set, however.
1433 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1434 * but not the backing store. B_NOCACHE will destroy the backing
1437 * Note that dirty NFS buffers contain byte-granular write ranges
1438 * and should not be destroyed w/ B_INVAL even if the backing store
1441 if (bp
->b_flags
& B_VMIO
) {
1443 * Rundown for VMIO buffers which are not dirty NFS buffers.
1455 * Get the base offset and length of the buffer. Note that
1456 * in the VMIO case if the buffer block size is not
1457 * page-aligned then b_data pointer may not be page-aligned.
1458 * But our b_xio.xio_pages array *IS* page aligned.
1460 * block sizes less then DEV_BSIZE (usually 512) are not
1461 * supported due to the page granularity bits (m->valid,
1462 * m->dirty, etc...).
1464 * See man buf(9) for more information
1467 resid
= bp
->b_bufsize
;
1468 foff
= bp
->b_loffset
;
1470 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
1471 m
= bp
->b_xio
.xio_pages
[i
];
1472 vm_page_flag_clear(m
, PG_ZERO
);
1474 * If we hit a bogus page, fixup *all* of them
1475 * now. Note that we left these pages wired
1476 * when we removed them so they had better exist,
1477 * and they cannot be ripped out from under us so
1478 * no critical section protection is necessary.
1480 if (m
== bogus_page
) {
1482 poff
= OFF_TO_IDX(bp
->b_loffset
);
1484 vm_object_hold(obj
);
1485 for (j
= i
; j
< bp
->b_xio
.xio_npages
; j
++) {
1488 mtmp
= bp
->b_xio
.xio_pages
[j
];
1489 if (mtmp
== bogus_page
) {
1490 mtmp
= vm_page_lookup(obj
, poff
+ j
);
1492 panic("brelse: page missing");
1494 bp
->b_xio
.xio_pages
[j
] = mtmp
;
1497 bp
->b_flags
&= ~B_HASBOGUS
;
1498 vm_object_drop(obj
);
1500 if ((bp
->b_flags
& B_INVAL
) == 0) {
1501 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
1502 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
1504 m
= bp
->b_xio
.xio_pages
[i
];
1508 * Invalidate the backing store if B_NOCACHE is set
1509 * (e.g. used with vinvalbuf()). If this is NFS
1510 * we impose a requirement that the block size be
1511 * a multiple of PAGE_SIZE and create a temporary
1512 * hack to basically invalidate the whole page. The
1513 * problem is that NFS uses really odd buffer sizes
1514 * especially when tracking piecemeal writes and
1515 * it also vinvalbuf()'s a lot, which would result
1516 * in only partial page validation and invalidation
1517 * here. If the file page is mmap()'d, however,
1518 * all the valid bits get set so after we invalidate
1519 * here we would end up with weird m->valid values
1520 * like 0xfc. nfs_getpages() can't handle this so
1521 * we clear all the valid bits for the NFS case
1522 * instead of just some of them.
1524 * The real bug is the VM system having to set m->valid
1525 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1526 * itself is an artifact of the whole 512-byte
1527 * granular mess that exists to support odd block
1528 * sizes and UFS meta-data block sizes (e.g. 6144).
1529 * A complete rewrite is required.
1533 if (bp
->b_flags
& (B_NOCACHE
|B_ERROR
)) {
1534 int poffset
= foff
& PAGE_MASK
;
1537 presid
= PAGE_SIZE
- poffset
;
1538 if (bp
->b_vp
->v_tag
== VT_NFS
&&
1539 bp
->b_vp
->v_type
== VREG
) {
1541 } else if (presid
> resid
) {
1544 KASSERT(presid
>= 0, ("brelse: extra page"));
1545 vm_page_set_invalid(m
, poffset
, presid
);
1548 * Also make sure any swap cache is removed
1549 * as it is now stale (HAMMER in particular
1550 * uses B_NOCACHE to deal with buffer
1553 swap_pager_unswapped(m
);
1555 resid
-= PAGE_SIZE
- (foff
& PAGE_MASK
);
1556 foff
= (foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
1558 if (bp
->b_flags
& (B_INVAL
| B_RELBUF
))
1559 vfs_vmio_release(bp
);
1562 * Rundown for non-VMIO buffers.
1564 if (bp
->b_flags
& (B_INVAL
| B_RELBUF
)) {
1567 KKASSERT (LIST_FIRST(&bp
->b_dep
) == NULL
);
1573 if (bp
->b_qindex
!= BQUEUE_NONE
)
1574 panic("brelse: free buffer onto another queue???");
1575 if (BUF_REFCNTNB(bp
) > 1) {
1576 /* Temporary panic to verify exclusive locking */
1577 /* This panic goes away when we allow shared refs */
1578 panic("brelse: multiple refs");
1584 * Figure out the correct queue to place the cleaned up buffer on.
1585 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1586 * disassociated from their vnode.
1588 * Return the buffer to its original pcpu area
1590 pcpu
= &bufpcpu
[bp
->b_qcpu
];
1591 spin_lock(&pcpu
->spin
);
1593 if (bp
->b_flags
& B_LOCKED
) {
1595 * Buffers that are locked are placed in the locked queue
1596 * immediately, regardless of their state.
1598 bp
->b_qindex
= BQUEUE_LOCKED
;
1599 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1601 } else if (bp
->b_bufsize
== 0) {
1603 * Buffers with no memory. Due to conditionals near the top
1604 * of brelse() such buffers should probably already be
1605 * marked B_INVAL and disassociated from their vnode.
1607 bp
->b_flags
|= B_INVAL
;
1608 KASSERT(bp
->b_vp
== NULL
,
1609 ("bp1 %p flags %08x/%08x vnode %p "
1610 "unexpectededly still associated!",
1611 bp
, saved_flags
, bp
->b_flags
, bp
->b_vp
));
1612 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
1613 if (bp
->b_kvasize
) {
1614 bp
->b_qindex
= BQUEUE_EMPTYKVA
;
1616 bp
->b_qindex
= BQUEUE_EMPTY
;
1618 TAILQ_INSERT_HEAD(&pcpu
->bufqueues
[bp
->b_qindex
],
1620 } else if (bp
->b_flags
& (B_INVAL
| B_NOCACHE
| B_RELBUF
)) {
1622 * Buffers with junk contents. Again these buffers had better
1623 * already be disassociated from their vnode.
1625 KASSERT(bp
->b_vp
== NULL
,
1626 ("bp2 %p flags %08x/%08x vnode %p unexpectededly "
1627 "still associated!",
1628 bp
, saved_flags
, bp
->b_flags
, bp
->b_vp
));
1629 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
1630 bp
->b_flags
|= B_INVAL
;
1631 bp
->b_qindex
= BQUEUE_CLEAN
;
1632 TAILQ_INSERT_HEAD(&pcpu
->bufqueues
[bp
->b_qindex
],
1636 * Remaining buffers. These buffers are still associated with
1639 switch(bp
->b_flags
& (B_DELWRI
|B_HEAVY
)) {
1641 bp
->b_qindex
= BQUEUE_DIRTY
;
1642 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1645 case B_DELWRI
| B_HEAVY
:
1646 bp
->b_qindex
= BQUEUE_DIRTY_HW
;
1647 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1652 * NOTE: Buffers are always placed at the end of the
1653 * queue. If B_AGE is not set the buffer will cycle
1654 * through the queue twice.
1656 bp
->b_qindex
= BQUEUE_CLEAN
;
1657 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1662 spin_unlock(&pcpu
->spin
);
1665 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1666 * on the correct queue but we have not yet unlocked it.
1668 if ((bp
->b_flags
& (B_INVAL
|B_DELWRI
)) == (B_INVAL
|B_DELWRI
))
1672 * The bp is on an appropriate queue unless locked. If it is not
1673 * locked or dirty we can wakeup threads waiting for buffer space.
1675 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1676 * if B_INVAL is set ).
1678 if ((bp
->b_flags
& (B_LOCKED
|B_DELWRI
)) == 0)
1682 * Something we can maybe free or reuse
1684 if (bp
->b_bufsize
|| bp
->b_kvasize
)
1688 * Clean up temporary flags and unlock the buffer.
1690 bp
->b_flags
&= ~(B_ORDERED
| B_NOCACHE
| B_RELBUF
| B_DIRECT
);
1697 * Release a buffer back to the appropriate queue but do not try to free
1698 * it. The buffer is expected to be used again soon.
1700 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1701 * biodone() to requeue an async I/O on completion. It is also used when
1702 * known good buffers need to be requeued but we think we may need the data
1705 * XXX we should be able to leave the B_RELBUF hint set on completion.
1708 bqrelse(struct buf
*bp
)
1710 struct bufpcpu
*pcpu
;
1712 KASSERT(!(bp
->b_flags
& (B_CLUSTER
|B_PAGING
)),
1713 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp
));
1715 if (bp
->b_qindex
!= BQUEUE_NONE
)
1716 panic("bqrelse: free buffer onto another queue???");
1717 if (BUF_REFCNTNB(bp
) > 1) {
1718 /* do not release to free list */
1719 panic("bqrelse: multiple refs");
1723 buf_act_advance(bp
);
1725 pcpu
= &bufpcpu
[bp
->b_qcpu
];
1726 spin_lock(&pcpu
->spin
);
1728 if (bp
->b_flags
& B_LOCKED
) {
1730 * Locked buffers are released to the locked queue. However,
1731 * if the buffer is dirty it will first go into the dirty
1732 * queue and later on after the I/O completes successfully it
1733 * will be released to the locked queue.
1735 bp
->b_qindex
= BQUEUE_LOCKED
;
1736 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1738 } else if (bp
->b_flags
& B_DELWRI
) {
1739 bp
->b_qindex
= (bp
->b_flags
& B_HEAVY
) ?
1740 BQUEUE_DIRTY_HW
: BQUEUE_DIRTY
;
1741 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1743 } else if (vm_page_count_min(0)) {
1745 * We are too low on memory, we have to try to free the
1746 * buffer (most importantly: the wired pages making up its
1747 * backing store) *now*.
1749 spin_unlock(&pcpu
->spin
);
1753 bp
->b_qindex
= BQUEUE_CLEAN
;
1754 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[bp
->b_qindex
],
1757 spin_unlock(&pcpu
->spin
);
1760 * We have now placed the buffer on the proper queue, but have yet
1763 if ((bp
->b_flags
& B_LOCKED
) == 0 &&
1764 ((bp
->b_flags
& B_INVAL
) || (bp
->b_flags
& B_DELWRI
) == 0)) {
1769 * Something we can maybe free or reuse.
1771 if (bp
->b_bufsize
&& !(bp
->b_flags
& B_DELWRI
))
1775 * Final cleanup and unlock. Clear bits that are only used while a
1776 * buffer is actively locked.
1778 bp
->b_flags
&= ~(B_ORDERED
| B_NOCACHE
| B_RELBUF
);
1779 dsched_buf_exit(bp
);
1784 * Hold a buffer, preventing it from being reused. This will prevent
1785 * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1786 * operations. If a B_INVAL operation occurs the buffer will remain held
1787 * but the underlying pages may get ripped out.
1789 * These functions are typically used in VOP_READ/VOP_WRITE functions
1790 * to hold a buffer during a copyin or copyout, preventing deadlocks
1791 * or recursive lock panics when read()/write() is used over mmap()'d
1794 * NOTE: bqhold() requires that the buffer be locked at the time of the
1795 * hold. bqdrop() has no requirements other than the buffer having
1796 * previously been held.
1799 bqhold(struct buf
*bp
)
1801 atomic_add_int(&bp
->b_refs
, 1);
1805 bqdrop(struct buf
*bp
)
1807 KKASSERT(bp
->b_refs
> 0);
1808 atomic_add_int(&bp
->b_refs
, -1);
1812 * Return backing pages held by the buffer 'bp' back to the VM system.
1813 * This routine is called when the bp is invalidated, released, or
1816 * The KVA mapping (b_data) for the underlying pages is removed by
1819 * WARNING! This routine is integral to the low memory critical path
1820 * when a buffer is B_RELBUF'd. If the system has a severe page
1821 * deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1822 * queues so they can be reused in the current pageout daemon
1826 vfs_vmio_release(struct buf
*bp
)
1831 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
1832 m
= bp
->b_xio
.xio_pages
[i
];
1833 bp
->b_xio
.xio_pages
[i
] = NULL
;
1836 * We need to own the page in order to safely unwire it.
1838 vm_page_busy_wait(m
, FALSE
, "vmiopg");
1841 * The VFS is telling us this is not a meta-data buffer
1842 * even if it is backed by a block device.
1844 if (bp
->b_flags
& B_NOTMETA
)
1845 vm_page_flag_set(m
, PG_NOTMETA
);
1848 * This is a very important bit of code. We try to track
1849 * VM page use whether the pages are wired into the buffer
1850 * cache or not. While wired into the buffer cache the
1851 * bp tracks the act_count.
1853 * We can choose to place unwired pages on the inactive
1854 * queue (0) or active queue (1). If we place too many
1855 * on the active queue the queue will cycle the act_count
1856 * on pages we'd like to keep, just from single-use pages
1857 * (such as when doing a tar-up or file scan).
1859 if (bp
->b_act_count
< vm_cycle_point
)
1860 vm_page_unwire(m
, 0);
1862 vm_page_unwire(m
, 1);
1865 * If the wire_count has dropped to 0 we may need to take
1866 * further action before unbusying the page.
1868 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1870 if (m
->wire_count
== 0) {
1871 vm_page_flag_clear(m
, PG_ZERO
);
1873 if (bp
->b_flags
& B_DIRECT
) {
1875 * Attempt to free the page if B_DIRECT is
1876 * set, the caller does not desire the page
1880 vm_page_try_to_free(m
);
1881 } else if ((bp
->b_flags
& B_NOTMETA
) ||
1882 vm_page_count_min(0)) {
1884 * Attempt to move the page to PQ_CACHE
1885 * if B_NOTMETA is set. This flag is set
1886 * by HAMMER to remove one of the two pages
1887 * present when double buffering is enabled.
1889 * Attempt to move the page to PQ_CACHE
1890 * If we have a severe page deficit. This
1891 * will cause buffer cache operations related
1892 * to pageouts to recycle the related pages
1893 * in order to avoid a low memory deadlock.
1895 m
->act_count
= bp
->b_act_count
;
1897 vm_page_try_to_cache(m
);
1900 * Nominal case, leave the page on the
1901 * queue the original unwiring placed it on
1902 * (active or inactive).
1904 m
->act_count
= bp
->b_act_count
;
1912 pmap_qremove(trunc_page((vm_offset_t
) bp
->b_data
),
1913 bp
->b_xio
.xio_npages
);
1914 if (bp
->b_bufsize
) {
1918 bp
->b_xio
.xio_npages
= 0;
1919 bp
->b_flags
&= ~B_VMIO
;
1920 KKASSERT (LIST_FIRST(&bp
->b_dep
) == NULL
);
1926 * Find and initialize a new buffer header, freeing up existing buffers
1927 * in the bufqueues as necessary. The new buffer is returned locked.
1929 * Important: B_INVAL is not set. If the caller wishes to throw the
1930 * buffer away, the caller must set B_INVAL prior to calling brelse().
1933 * We have insufficient buffer headers
1934 * We have insufficient buffer space
1935 * buffer_map is too fragmented ( space reservation fails )
1936 * If we have to flush dirty buffers ( but we try to avoid this )
1938 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1939 * Instead we ask the buf daemon to do it for us. We attempt to
1940 * avoid piecemeal wakeups of the pageout daemon.
1943 getnewbuf(int blkflags
, int slptimeo
, int size
, int maxsize
)
1945 struct bufpcpu
*pcpu
;
1951 int slpflags
= (blkflags
& GETBLK_PCATCH
) ? PCATCH
: 0;
1952 int maxloops
= 200000;
1953 int restart_reason
= 0;
1954 struct buf
*restart_bp
= NULL
;
1955 static int flushingbufs
;
1958 * We can't afford to block since we might be holding a vnode lock,
1959 * which may prevent system daemons from running. We deal with
1960 * low-memory situations by proactively returning memory and running
1961 * async I/O rather then sync I/O.
1965 --getnewbufrestarts
;
1966 nqcpu
= mycpu
->gd_cpuid
;
1968 ++getnewbufrestarts
;
1970 if (debug_bufbio
&& --maxloops
== 0)
1971 panic("getnewbuf, excessive loops on cpu %d restart %d (%p)",
1972 mycpu
->gd_cpuid
, restart_reason
, restart_bp
);
1975 * Setup for scan. If we do not have enough free buffers,
1976 * we setup a degenerate case that immediately fails. Note
1977 * that if we are specially marked process, we are allowed to
1978 * dip into our reserves.
1980 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
1982 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
1983 * However, there are a number of cases (defragging, reusing, ...)
1984 * where we cannot backup.
1986 pcpu
= &bufpcpu
[nqcpu
];
1987 nqindex
= BQUEUE_EMPTYKVA
;
1988 spin_lock(&pcpu
->spin
);
1990 nbp
= TAILQ_FIRST(&pcpu
->bufqueues
[BQUEUE_EMPTYKVA
]);
1994 * If no EMPTYKVA buffers and we are either
1995 * defragging or reusing, locate a CLEAN buffer
1996 * to free or reuse. If bufspace useage is low
1997 * skip this step so we can allocate a new buffer.
1999 if (defrag
|| bufspace
>= lobufspace
) {
2000 nqindex
= BQUEUE_CLEAN
;
2001 nbp
= TAILQ_FIRST(&pcpu
->bufqueues
[BQUEUE_CLEAN
]);
2005 * If we could not find or were not allowed to reuse a
2006 * CLEAN buffer, check to see if it is ok to use an EMPTY
2007 * buffer. We can only use an EMPTY buffer if allocating
2008 * its KVA would not otherwise run us out of buffer space.
2010 if (nbp
== NULL
&& defrag
== 0 &&
2011 bufspace
+ maxsize
< hibufspace
) {
2012 nqindex
= BQUEUE_EMPTY
;
2013 nbp
= TAILQ_FIRST(&pcpu
->bufqueues
[BQUEUE_EMPTY
]);
2018 * Run scan, possibly freeing data and/or kva mappings on the fly
2021 * WARNING! spin is held!
2023 while ((bp
= nbp
) != NULL
) {
2024 int qindex
= nqindex
;
2026 nbp
= TAILQ_NEXT(bp
, b_freelist
);
2029 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
2030 * cycles through the queue twice before being selected.
2032 if (qindex
== BQUEUE_CLEAN
&&
2033 (bp
->b_flags
& B_AGE
) == 0 && nbp
) {
2034 bp
->b_flags
|= B_AGE
;
2035 TAILQ_REMOVE(&pcpu
->bufqueues
[qindex
],
2037 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[qindex
],
2043 * Calculate next bp ( we can only use it if we do not block
2044 * or do other fancy things ).
2049 nqindex
= BQUEUE_EMPTYKVA
;
2050 if ((nbp
= TAILQ_FIRST(&pcpu
->bufqueues
[BQUEUE_EMPTYKVA
])))
2053 case BQUEUE_EMPTYKVA
:
2054 nqindex
= BQUEUE_CLEAN
;
2055 if ((nbp
= TAILQ_FIRST(&pcpu
->bufqueues
[BQUEUE_CLEAN
])))
2069 KASSERT(bp
->b_qindex
== qindex
,
2070 ("getnewbuf: inconsistent queue %d bp %p", qindex
, bp
));
2073 * Note: we no longer distinguish between VMIO and non-VMIO
2076 KASSERT((bp
->b_flags
& B_DELWRI
) == 0,
2077 ("delwri buffer %p found in queue %d", bp
, qindex
));
2080 * Do not try to reuse a buffer with a non-zero b_refs.
2081 * This is an unsynchronized test. A synchronized test
2082 * is also performed after we lock the buffer.
2088 * If we are defragging then we need a buffer with
2089 * b_kvasize != 0. XXX this situation should no longer
2090 * occur, if defrag is non-zero the buffer's b_kvasize
2091 * should also be non-zero at this point. XXX
2093 if (defrag
&& bp
->b_kvasize
== 0) {
2094 kprintf("Warning: defrag empty buffer %p\n", bp
);
2099 * Start freeing the bp. This is somewhat involved. nbp
2100 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers
2101 * on the clean list must be disassociated from their
2102 * current vnode. Buffers on the empty[kva] lists have
2103 * already been disassociated.
2105 * b_refs is checked after locking along with queue changes.
2106 * We must check here to deal with zero->nonzero transitions
2107 * made by the owner of the buffer lock, which is used by
2108 * VFS's to hold the buffer while issuing an unlocked
2109 * uiomove()s. We cannot invalidate the buffer's pages
2110 * for this case. Once we successfully lock a buffer the
2111 * only 0->1 transitions of b_refs will occur via findblk().
2113 * We must also check for queue changes after successful
2114 * locking as the current lock holder may dispose of the
2115 * buffer and change its queue.
2117 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
) != 0) {
2118 spin_unlock(&pcpu
->spin
);
2119 tsleep(&bd_request
, 0, "gnbxxx", (hz
+ 99) / 100);
2124 if (bp
->b_qindex
!= qindex
|| bp
->b_refs
) {
2125 spin_unlock(&pcpu
->spin
);
2131 bremfree_locked(bp
);
2132 spin_unlock(&pcpu
->spin
);
2135 * Dependancies must be handled before we disassociate the
2138 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2139 * be immediately disassociated. HAMMER then becomes
2140 * responsible for releasing the buffer.
2142 * NOTE: spin is UNLOCKED now.
2144 if (LIST_FIRST(&bp
->b_dep
) != NULL
) {
2146 if (bp
->b_flags
& B_LOCKED
) {
2152 KKASSERT(LIST_FIRST(&bp
->b_dep
) == NULL
);
2155 if (qindex
== BQUEUE_CLEAN
) {
2156 if (bp
->b_flags
& B_VMIO
)
2157 vfs_vmio_release(bp
);
2163 * NOTE: nbp is now entirely invalid. We can only restart
2164 * the scan from this point on.
2166 * Get the rest of the buffer freed up. b_kva* is still
2167 * valid after this operation.
2169 KASSERT(bp
->b_vp
== NULL
,
2170 ("bp3 %p flags %08x vnode %p qindex %d "
2171 "unexpectededly still associated!",
2172 bp
, bp
->b_flags
, bp
->b_vp
, qindex
));
2173 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
2176 * critical section protection is not required when
2177 * scrapping a buffer's contents because it is already
2183 if (bp
->b_flags
& (B_VNDIRTY
| B_VNCLEAN
| B_HASHED
)) {
2184 kprintf("getnewbuf: caught bug vp queue "
2185 "%p/%08x qidx %d\n",
2186 bp
, bp
->b_flags
, qindex
);
2189 bp
->b_flags
= B_BNOCLIP
;
2190 bp
->b_cmd
= BUF_CMD_DONE
;
2195 bp
->b_xio
.xio_npages
= 0;
2196 bp
->b_dirtyoff
= bp
->b_dirtyend
= 0;
2197 bp
->b_act_count
= ACT_INIT
;
2199 KKASSERT(LIST_FIRST(&bp
->b_dep
) == NULL
);
2201 if (blkflags
& GETBLK_BHEAVY
)
2202 bp
->b_flags
|= B_HEAVY
;
2205 * If we are defragging then free the buffer.
2208 bp
->b_flags
|= B_INVAL
;
2218 * If we are overcomitted then recover the buffer and its
2219 * KVM space. This occurs in rare situations when multiple
2220 * processes are blocked in getnewbuf() or allocbuf().
2222 * On 64-bit systems BKVASIZE == MAXBSIZE and overcommit
2223 * should not be possible.
2225 if (bufspace
>= hibufspace
)
2227 if (BKVASIZE
!= MAXBSIZE
) {
2228 if (flushingbufs
&& bp
->b_kvasize
!= 0) {
2229 bp
->b_flags
|= B_INVAL
;
2237 if (bufspace
< lobufspace
)
2241 * b_refs can transition to a non-zero value while we hold
2242 * the buffer locked due to a findblk(). Our brelvp() above
2243 * interlocked any future possible transitions due to
2246 * If we find b_refs to be non-zero we can destroy the
2247 * buffer's contents but we cannot yet reuse the buffer.
2250 bp
->b_flags
|= B_INVAL
;
2251 if (BKVASIZE
!= MAXBSIZE
)
2259 /* NOT REACHED, spin not held */
2263 * If we exhausted our list, iterate other cpus. If that fails,
2264 * sleep as appropriate. We may have to wakeup various daemons
2265 * and write out some dirty buffers.
2267 * Generally we are sleeping due to insufficient buffer space.
2269 * NOTE: spin is held if bp is NULL, else it is not held.
2275 spin_unlock(&pcpu
->spin
);
2277 nqcpu
= (nqcpu
+ 1) % ncpus
;
2278 if (nqcpu
!= mycpu
->gd_cpuid
) {
2285 flags
= VFS_BIO_NEED_BUFSPACE
;
2287 } else if (bufspace
>= hibufspace
) {
2289 flags
= VFS_BIO_NEED_BUFSPACE
;
2292 flags
= VFS_BIO_NEED_ANY
;
2295 bd_speedup(); /* heeeelp */
2296 atomic_set_int(&needsbuffer
, flags
);
2297 while (needsbuffer
& flags
) {
2300 tsleep_interlock(&needsbuffer
, 0);
2301 value
= atomic_fetchadd_int(&needsbuffer
, 0);
2302 if (value
& flags
) {
2303 if (tsleep(&needsbuffer
, PINTERLOCKED
|slpflags
,
2304 waitmsg
, slptimeo
)) {
2311 * We finally have a valid bp. We aren't quite out of the
2312 * woods, we still have to reserve kva space. In order
2313 * to keep fragmentation sane we only allocate kva in
2316 * (spin is not held)
2318 maxsize
= (maxsize
+ BKVAMASK
) & ~BKVAMASK
;
2320 if (maxsize
!= bp
->b_kvasize
) {
2321 vm_offset_t addr
= 0;
2326 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
2327 vm_map_lock(&buffer_map
);
2329 if (vm_map_findspace(&buffer_map
,
2330 vm_map_min(&buffer_map
), maxsize
,
2331 maxsize
, 0, &addr
)) {
2333 * Uh oh. Buffer map is too fragmented. We
2334 * must defragment the map.
2336 vm_map_unlock(&buffer_map
);
2337 vm_map_entry_release(count
);
2340 bp
->b_flags
|= B_INVAL
;
2347 vm_map_insert(&buffer_map
, &count
,
2349 0, addr
, addr
+ maxsize
,
2351 VM_PROT_ALL
, VM_PROT_ALL
,
2354 bp
->b_kvabase
= (caddr_t
) addr
;
2355 bp
->b_kvasize
= maxsize
;
2356 bufspace
+= bp
->b_kvasize
;
2359 vm_map_unlock(&buffer_map
);
2360 vm_map_entry_release(count
);
2362 bp
->b_data
= bp
->b_kvabase
;
2370 * Buffer flushing daemon. Buffers are normally flushed by the
2371 * update daemon but if it cannot keep up this process starts to
2372 * take the load in an attempt to prevent getnewbuf() from blocking.
2374 * Once a flush is initiated it does not stop until the number
2375 * of buffers falls below lodirtybuffers, but we will wake up anyone
2376 * waiting at the mid-point.
2378 static struct kproc_desc buf_kp
= {
2383 SYSINIT(bufdaemon
, SI_SUB_KTHREAD_BUF
, SI_ORDER_FIRST
,
2384 kproc_start
, &buf_kp
);
2386 static struct kproc_desc bufhw_kp
= {
2391 SYSINIT(bufdaemon_hw
, SI_SUB_KTHREAD_BUF
, SI_ORDER_FIRST
,
2392 kproc_start
, &bufhw_kp
);
2395 buf_daemon1(struct thread
*td
, int queue
, int (*buf_limit_fn
)(long),
2401 marker
= kmalloc(sizeof(*marker
), M_BIOBUF
, M_WAITOK
| M_ZERO
);
2402 marker
->b_flags
|= B_MARKER
;
2403 marker
->b_qindex
= BQUEUE_NONE
;
2407 * This process needs to be suspended prior to shutdown sync.
2409 EVENTHANDLER_REGISTER(shutdown_pre_sync
, shutdown_kproc
,
2410 td
, SHUTDOWN_PRI_LAST
);
2411 curthread
->td_flags
|= TDF_SYSTHREAD
;
2414 * This process is allowed to take the buffer cache to the limit
2417 kproc_suspend_loop();
2420 * Do the flush as long as the number of dirty buffers
2421 * (including those running) exceeds lodirtybufspace.
2423 * When flushing limit running I/O to hirunningspace
2424 * Do the flush. Limit the amount of in-transit I/O we
2425 * allow to build up, otherwise we would completely saturate
2426 * the I/O system. Wakeup any waiting processes before we
2427 * normally would so they can run in parallel with our drain.
2429 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2430 * but because we split the operation into two threads we
2431 * have to cut it in half for each thread.
2433 waitrunningbufspace();
2434 limit
= lodirtybufspace
/ 2;
2435 while (buf_limit_fn(limit
)) {
2436 if (flushbufqueues(marker
, queue
) == 0)
2438 if (runningbufspace
< hirunningspace
)
2440 waitrunningbufspace();
2444 * We reached our low water mark, reset the
2445 * request and sleep until we are needed again.
2446 * The sleep is just so the suspend code works.
2448 tsleep_interlock(bd_req
, 0);
2449 if (atomic_swap_int(bd_req
, 0) == 0)
2450 tsleep(bd_req
, PINTERLOCKED
, "psleep", hz
);
2453 /*kfree(marker, M_BIOBUF);*/
2457 buf_daemon_limit(long limit
)
2459 return (runningbufspace
+ dirtykvaspace
> limit
||
2460 dirtybufcount
- dirtybufcounthw
>= nbuf
/ 2);
2464 buf_daemon_hw_limit(long limit
)
2466 return (runningbufspace
+ dirtykvaspace
> limit
||
2467 dirtybufcounthw
>= nbuf
/ 2);
2473 buf_daemon1(bufdaemon_td
, BQUEUE_DIRTY
, buf_daemon_limit
,
2480 buf_daemon1(bufdaemonhw_td
, BQUEUE_DIRTY_HW
, buf_daemon_hw_limit
,
2487 * Try to flush a buffer in the dirty queue. We must be careful to
2488 * free up B_INVAL buffers instead of write them, which NFS is
2489 * particularly sensitive to.
2491 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate
2492 * that we really want to try to get the buffer out and reuse it
2493 * due to the write load on the machine.
2495 * We must lock the buffer in order to check its validity before we
2496 * can mess with its contents. spin isn't enough.
2499 flushbufqueues(struct buf
*marker
, bufq_type_t q
)
2501 struct bufpcpu
*pcpu
;
2504 int lcpu
= marker
->b_qcpu
;
2506 KKASSERT(marker
->b_qindex
== BQUEUE_NONE
);
2507 KKASSERT(marker
->b_flags
& B_MARKER
);
2511 * Spinlock needed to perform operations on the queue and may be
2512 * held through a non-blocking BUF_LOCK(), but cannot be held when
2513 * BUF_UNLOCK()ing or through any other major operation.
2515 pcpu
= &bufpcpu
[marker
->b_qcpu
];
2516 spin_lock(&pcpu
->spin
);
2517 marker
->b_qindex
= q
;
2518 TAILQ_INSERT_HEAD(&pcpu
->bufqueues
[q
], marker
, b_freelist
);
2521 while ((bp
= TAILQ_NEXT(bp
, b_freelist
)) != NULL
) {
2523 * NOTE: spinlock is always held at the top of the loop
2525 if (bp
->b_flags
& B_MARKER
)
2527 if ((bp
->b_flags
& B_DELWRI
) == 0) {
2528 kprintf("Unexpected clean buffer %p\n", bp
);
2531 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
))
2533 KKASSERT(bp
->b_qcpu
== marker
->b_qcpu
&& bp
->b_qindex
== q
);
2536 * Once the buffer is locked we will have no choice but to
2537 * unlock the spinlock around a later BUF_UNLOCK and re-set
2538 * bp = marker when looping. Move the marker now to make
2541 TAILQ_REMOVE(&pcpu
->bufqueues
[q
], marker
, b_freelist
);
2542 TAILQ_INSERT_AFTER(&pcpu
->bufqueues
[q
], bp
, marker
, b_freelist
);
2545 * Must recheck B_DELWRI after successfully locking
2548 if ((bp
->b_flags
& B_DELWRI
) == 0) {
2549 spin_unlock(&pcpu
->spin
);
2551 spin_lock(&pcpu
->spin
);
2557 * Remove the buffer from its queue. We still own the
2563 * Disposing of an invalid buffer counts as a flush op
2565 if (bp
->b_flags
& B_INVAL
) {
2566 spin_unlock(&pcpu
->spin
);
2568 spin_lock(&pcpu
->spin
);
2574 * Release the spinlock for the more complex ops we
2575 * are now going to do.
2577 spin_unlock(&pcpu
->spin
);
2581 * This is a bit messy
2583 if (LIST_FIRST(&bp
->b_dep
) != NULL
&&
2584 (bp
->b_flags
& B_DEFERRED
) == 0 &&
2585 buf_countdeps(bp
, 0)) {
2586 spin_lock(&pcpu
->spin
);
2587 TAILQ_INSERT_TAIL(&pcpu
->bufqueues
[q
], bp
, b_freelist
);
2589 bp
->b_flags
|= B_DEFERRED
;
2590 spin_unlock(&pcpu
->spin
);
2592 spin_lock(&pcpu
->spin
);
2598 * spinlock not held here.
2600 * If the buffer has a dependancy, buf_checkwrite() must
2601 * also return 0 for us to be able to initate the write.
2603 * If the buffer is flagged B_ERROR it may be requeued
2604 * over and over again, we try to avoid a live lock.
2606 if (LIST_FIRST(&bp
->b_dep
) != NULL
&& buf_checkwrite(bp
)) {
2608 } else if (bp
->b_flags
& B_ERROR
) {
2609 tsleep(bp
, 0, "bioer", 1);
2610 bp
->b_flags
&= ~B_AGE
;
2613 bp
->b_flags
|= B_AGE
;
2616 spin_lock(&pcpu
->spin
);
2621 TAILQ_REMOVE(&pcpu
->bufqueues
[q
], marker
, b_freelist
);
2622 marker
->b_qindex
= BQUEUE_NONE
;
2623 spin_unlock(&pcpu
->spin
);
2626 * Advance the marker to be fair.
2628 marker
->b_qcpu
= (marker
->b_qcpu
+ 1) % ncpus
;
2630 if (marker
->b_qcpu
!= lcpu
)
2640 * Returns true if no I/O is needed to access the associated VM object.
2641 * This is like findblk except it also hunts around in the VM system for
2644 * Note that we ignore vm_page_free() races from interrupts against our
2645 * lookup, since if the caller is not protected our return value will not
2646 * be any more valid then otherwise once we exit the critical section.
2649 inmem(struct vnode
*vp
, off_t loffset
)
2652 vm_offset_t toff
, tinc
, size
;
2656 if (findblk(vp
, loffset
, FINDBLK_TEST
))
2658 if (vp
->v_mount
== NULL
)
2660 if ((obj
= vp
->v_object
) == NULL
)
2664 if (size
> vp
->v_mount
->mnt_stat
.f_iosize
)
2665 size
= vp
->v_mount
->mnt_stat
.f_iosize
;
2667 vm_object_hold(obj
);
2668 for (toff
= 0; toff
< vp
->v_mount
->mnt_stat
.f_iosize
; toff
+= tinc
) {
2669 m
= vm_page_lookup(obj
, OFF_TO_IDX(loffset
+ toff
));
2675 if (tinc
> PAGE_SIZE
- ((toff
+ loffset
) & PAGE_MASK
))
2676 tinc
= PAGE_SIZE
- ((toff
+ loffset
) & PAGE_MASK
);
2677 if (vm_page_is_valid(m
,
2678 (vm_offset_t
) ((toff
+ loffset
) & PAGE_MASK
), tinc
) == 0) {
2683 vm_object_drop(obj
);
2690 * Locate and return the specified buffer. Unless flagged otherwise,
2691 * a locked buffer will be returned if it exists or NULL if it does not.
2693 * findblk()'d buffers are still on the bufqueues and if you intend
2694 * to use your (locked NON-TEST) buffer you need to bremfree(bp)
2695 * and possibly do other stuff to it.
2697 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible
2698 * for locking the buffer and ensuring that it remains
2699 * the desired buffer after locking.
2701 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable
2702 * to acquire the lock we return NULL, even if the
2705 * FINDBLK_REF - Returns the buffer ref'd, which prevents normal
2706 * reuse by getnewbuf() but does not prevent
2707 * disassociation (B_INVAL). Used to avoid deadlocks
2708 * against random (vp,loffset)s due to reassignment.
2710 * (0) - Lock the buffer blocking.
2713 findblk(struct vnode
*vp
, off_t loffset
, int flags
)
2718 lkflags
= LK_EXCLUSIVE
;
2719 if (flags
& FINDBLK_NBLOCK
)
2720 lkflags
|= LK_NOWAIT
;
2724 * Lookup. Ref the buf while holding v_token to prevent
2725 * reuse (but does not prevent diassociation).
2727 lwkt_gettoken_shared(&vp
->v_token
);
2728 bp
= buf_rb_hash_RB_LOOKUP(&vp
->v_rbhash_tree
, loffset
);
2730 lwkt_reltoken(&vp
->v_token
);
2734 lwkt_reltoken(&vp
->v_token
);
2737 * If testing only break and return bp, do not lock.
2739 if (flags
& FINDBLK_TEST
)
2743 * Lock the buffer, return an error if the lock fails.
2744 * (only FINDBLK_NBLOCK can cause the lock to fail).
2746 if (BUF_LOCK(bp
, lkflags
)) {
2747 atomic_subtract_int(&bp
->b_refs
, 1);
2748 /* bp = NULL; not needed */
2753 * Revalidate the locked buf before allowing it to be
2756 if (bp
->b_vp
== vp
&& bp
->b_loffset
== loffset
)
2758 atomic_subtract_int(&bp
->b_refs
, 1);
2765 if ((flags
& FINDBLK_REF
) == 0)
2766 atomic_subtract_int(&bp
->b_refs
, 1);
2773 * Similar to getblk() except only returns the buffer if it is
2774 * B_CACHE and requires no other manipulation. Otherwise NULL
2775 * is returned. NULL is also returned if GETBLK_NOWAIT is set
2776 * and the getblk() would block.
2778 * If B_RAM is set the buffer might be just fine, but we return
2779 * NULL anyway because we want the code to fall through to the
2780 * cluster read. Otherwise read-ahead breaks.
2782 * If blksize is 0 the buffer cache buffer must already be fully
2785 * If blksize is non-zero getblk() will be used, allowing a buffer
2786 * to be reinstantiated from its VM backing store. The buffer must
2787 * still be fully cached after reinstantiation to be returned.
2790 getcacheblk(struct vnode
*vp
, off_t loffset
, int blksize
, int blkflags
)
2793 int fndflags
= (blkflags
& GETBLK_NOWAIT
) ? FINDBLK_NBLOCK
: 0;
2796 bp
= getblk(vp
, loffset
, blksize
, blkflags
, 0);
2798 if ((bp
->b_flags
& (B_INVAL
| B_CACHE
| B_RAM
)) ==
2800 bp
->b_flags
&= ~B_AGE
;
2807 bp
= findblk(vp
, loffset
, fndflags
);
2809 if ((bp
->b_flags
& (B_INVAL
| B_CACHE
| B_RAM
)) ==
2811 bp
->b_flags
&= ~B_AGE
;
2825 * Get a block given a specified block and offset into a file/device.
2826 * B_INVAL may or may not be set on return. The caller should clear
2827 * B_INVAL prior to initiating a READ.
2829 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2830 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2831 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2832 * without doing any of those things the system will likely believe
2833 * the buffer to be valid (especially if it is not B_VMIO), and the
2834 * next getblk() will return the buffer with B_CACHE set.
2836 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2837 * an existing buffer.
2839 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2840 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2841 * and then cleared based on the backing VM. If the previous buffer is
2842 * non-0-sized but invalid, B_CACHE will be cleared.
2844 * If getblk() must create a new buffer, the new buffer is returned with
2845 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2846 * case it is returned with B_INVAL clear and B_CACHE set based on the
2849 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2850 * B_CACHE bit is clear.
2852 * What this means, basically, is that the caller should use B_CACHE to
2853 * determine whether the buffer is fully valid or not and should clear
2854 * B_INVAL prior to issuing a read. If the caller intends to validate
2855 * the buffer by loading its data area with something, the caller needs
2856 * to clear B_INVAL. If the caller does this without issuing an I/O,
2857 * the caller should set B_CACHE ( as an optimization ), else the caller
2858 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2859 * a write attempt or if it was a successfull read. If the caller
2860 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2861 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2865 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2866 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2869 getblk(struct vnode
*vp
, off_t loffset
, int size
, int blkflags
, int slptimeo
)
2872 int slpflags
= (blkflags
& GETBLK_PCATCH
) ? PCATCH
: 0;
2876 if (size
> MAXBSIZE
)
2877 panic("getblk: size(%d) > MAXBSIZE(%d)", size
, MAXBSIZE
);
2878 if (vp
->v_object
== NULL
)
2879 panic("getblk: vnode %p has no object!", vp
);
2882 if ((bp
= findblk(vp
, loffset
, FINDBLK_REF
| FINDBLK_TEST
)) != NULL
) {
2884 * The buffer was found in the cache, but we need to lock it.
2885 * We must acquire a ref on the bp to prevent reuse, but
2886 * this will not prevent disassociation (brelvp()) so we
2887 * must recheck (vp,loffset) after acquiring the lock.
2889 * Without the ref the buffer could potentially be reused
2890 * before we acquire the lock and create a deadlock
2891 * situation between the thread trying to reuse the buffer
2892 * and us due to the fact that we would wind up blocking
2893 * on a random (vp,loffset).
2895 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
)) {
2896 if (blkflags
& GETBLK_NOWAIT
) {
2900 lkflags
= LK_EXCLUSIVE
| LK_SLEEPFAIL
;
2901 if (blkflags
& GETBLK_PCATCH
)
2902 lkflags
|= LK_PCATCH
;
2903 error
= BUF_TIMELOCK(bp
, lkflags
, "getblk", slptimeo
);
2906 if (error
== ENOLCK
)
2910 /* buffer may have changed on us */
2915 * Once the buffer has been locked, make sure we didn't race
2916 * a buffer recyclement. Buffers that are no longer hashed
2917 * will have b_vp == NULL, so this takes care of that check
2920 if (bp
->b_vp
!= vp
|| bp
->b_loffset
!= loffset
) {
2921 kprintf("Warning buffer %p (vp %p loffset %lld) "
2923 bp
, vp
, (long long)loffset
);
2929 * If SZMATCH any pre-existing buffer must be of the requested
2930 * size or NULL is returned. The caller absolutely does not
2931 * want getblk() to bwrite() the buffer on a size mismatch.
2933 if ((blkflags
& GETBLK_SZMATCH
) && size
!= bp
->b_bcount
) {
2939 * All vnode-based buffers must be backed by a VM object.
2941 KKASSERT(bp
->b_flags
& B_VMIO
);
2942 KKASSERT(bp
->b_cmd
== BUF_CMD_DONE
);
2943 bp
->b_flags
&= ~B_AGE
;
2946 * Make sure that B_INVAL buffers do not have a cached
2947 * block number translation.
2949 if ((bp
->b_flags
& B_INVAL
) && (bp
->b_bio2
.bio_offset
!= NOOFFSET
)) {
2950 kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2951 " did not have cleared bio_offset cache\n",
2952 bp
, vp
, (long long)loffset
);
2953 clearbiocache(&bp
->b_bio2
);
2957 * The buffer is locked. B_CACHE is cleared if the buffer is
2960 if (bp
->b_flags
& B_INVAL
)
2961 bp
->b_flags
&= ~B_CACHE
;
2965 * Any size inconsistancy with a dirty buffer or a buffer
2966 * with a softupdates dependancy must be resolved. Resizing
2967 * the buffer in such circumstances can lead to problems.
2969 * Dirty or dependant buffers are written synchronously.
2970 * Other types of buffers are simply released and
2971 * reconstituted as they may be backed by valid, dirty VM
2972 * pages (but not marked B_DELWRI).
2974 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2975 * and may be left over from a prior truncation (and thus
2976 * no longer represent the actual EOF point), so we
2977 * definitely do not want to B_NOCACHE the backing store.
2979 if (size
!= bp
->b_bcount
) {
2980 if (bp
->b_flags
& B_DELWRI
) {
2981 bp
->b_flags
|= B_RELBUF
;
2983 } else if (LIST_FIRST(&bp
->b_dep
)) {
2984 bp
->b_flags
|= B_RELBUF
;
2987 bp
->b_flags
|= B_RELBUF
;
2992 KKASSERT(size
<= bp
->b_kvasize
);
2993 KASSERT(bp
->b_loffset
!= NOOFFSET
,
2994 ("getblk: no buffer offset"));
2997 * A buffer with B_DELWRI set and B_CACHE clear must
2998 * be committed before we can return the buffer in
2999 * order to prevent the caller from issuing a read
3000 * ( due to B_CACHE not being set ) and overwriting
3003 * Most callers, including NFS and FFS, need this to
3004 * operate properly either because they assume they
3005 * can issue a read if B_CACHE is not set, or because
3006 * ( for example ) an uncached B_DELWRI might loop due
3007 * to softupdates re-dirtying the buffer. In the latter
3008 * case, B_CACHE is set after the first write completes,
3009 * preventing further loops.
3011 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
3012 * above while extending the buffer, we cannot allow the
3013 * buffer to remain with B_CACHE set after the write
3014 * completes or it will represent a corrupt state. To
3015 * deal with this we set B_NOCACHE to scrap the buffer
3018 * XXX Should this be B_RELBUF instead of B_NOCACHE?
3019 * I'm not even sure this state is still possible
3020 * now that getblk() writes out any dirty buffers
3023 * We might be able to do something fancy, like setting
3024 * B_CACHE in bwrite() except if B_DELWRI is already set,
3025 * so the below call doesn't set B_CACHE, but that gets real
3026 * confusing. This is much easier.
3029 if ((bp
->b_flags
& (B_CACHE
|B_DELWRI
)) == B_DELWRI
) {
3030 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
3031 "and CACHE clear, b_flags %08x\n",
3032 bp
, (uintmax_t)bp
->b_loffset
, bp
->b_flags
);
3033 bp
->b_flags
|= B_NOCACHE
;
3039 * Buffer is not in-core, create new buffer. The buffer
3040 * returned by getnewbuf() is locked. Note that the returned
3041 * buffer is also considered valid (not marked B_INVAL).
3043 * Calculating the offset for the I/O requires figuring out
3044 * the block size. We use DEV_BSIZE for VBLK or VCHR and
3045 * the mount's f_iosize otherwise. If the vnode does not
3046 * have an associated mount we assume that the passed size is
3049 * Note that vn_isdisk() cannot be used here since it may
3050 * return a failure for numerous reasons. Note that the
3051 * buffer size may be larger then the block size (the caller
3052 * will use block numbers with the proper multiple). Beware
3053 * of using any v_* fields which are part of unions. In
3054 * particular, in DragonFly the mount point overloading
3055 * mechanism uses the namecache only and the underlying
3056 * directory vnode is not a special case.
3060 if (vp
->v_type
== VBLK
|| vp
->v_type
== VCHR
)
3062 else if (vp
->v_mount
)
3063 bsize
= vp
->v_mount
->mnt_stat
.f_iosize
;
3067 maxsize
= size
+ (loffset
& PAGE_MASK
);
3068 maxsize
= imax(maxsize
, bsize
);
3070 bp
= getnewbuf(blkflags
, slptimeo
, size
, maxsize
);
3072 if (slpflags
|| slptimeo
)
3078 * Atomically insert the buffer into the hash, so that it can
3079 * be found by findblk().
3081 * If bgetvp() returns non-zero a collision occured, and the
3082 * bp will not be associated with the vnode.
3084 * Make sure the translation layer has been cleared.
3086 bp
->b_loffset
= loffset
;
3087 bp
->b_bio2
.bio_offset
= NOOFFSET
;
3088 /* bp->b_bio2.bio_next = NULL; */
3090 if (bgetvp(vp
, bp
, size
)) {
3091 bp
->b_flags
|= B_INVAL
;
3097 * All vnode-based buffers must be backed by a VM object.
3099 KKASSERT(vp
->v_object
!= NULL
);
3100 bp
->b_flags
|= B_VMIO
;
3101 KKASSERT(bp
->b_cmd
== BUF_CMD_DONE
);
3111 * Reacquire a buffer that was previously released to the locked queue,
3112 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3113 * set B_LOCKED (which handles the acquisition race).
3115 * To this end, either B_LOCKED must be set or the dependancy list must be
3119 regetblk(struct buf
*bp
)
3121 KKASSERT((bp
->b_flags
& B_LOCKED
) || LIST_FIRST(&bp
->b_dep
) != NULL
);
3122 BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_RETRY
);
3129 * Get an empty, disassociated buffer of given size. The buffer is
3130 * initially set to B_INVAL.
3132 * critical section protection is not required for the allocbuf()
3133 * call because races are impossible here.
3141 maxsize
= (size
+ BKVAMASK
) & ~BKVAMASK
;
3143 while ((bp
= getnewbuf(0, 0, size
, maxsize
)) == NULL
)
3146 bp
->b_flags
|= B_INVAL
; /* b_dep cleared by getnewbuf() */
3154 * This code constitutes the buffer memory from either anonymous system
3155 * memory (in the case of non-VMIO operations) or from an associated
3156 * VM object (in the case of VMIO operations). This code is able to
3157 * resize a buffer up or down.
3159 * Note that this code is tricky, and has many complications to resolve
3160 * deadlock or inconsistant data situations. Tread lightly!!!
3161 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3162 * the caller. Calling this code willy nilly can result in the loss of
3165 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
3166 * B_CACHE for the non-VMIO case.
3168 * This routine does not need to be called from a critical section but you
3169 * must own the buffer.
3172 allocbuf(struct buf
*bp
, int size
)
3174 int newbsize
, mbsize
;
3177 if (BUF_REFCNT(bp
) == 0)
3178 panic("allocbuf: buffer not busy");
3180 if (bp
->b_kvasize
< size
)
3181 panic("allocbuf: buffer too small");
3183 if ((bp
->b_flags
& B_VMIO
) == 0) {
3187 * Just get anonymous memory from the kernel. Don't
3188 * mess with B_CACHE.
3190 mbsize
= roundup2(size
, DEV_BSIZE
);
3191 if (bp
->b_flags
& B_MALLOC
)
3194 newbsize
= round_page(size
);
3196 if (newbsize
< bp
->b_bufsize
) {
3198 * Malloced buffers are not shrunk
3200 if (bp
->b_flags
& B_MALLOC
) {
3202 bp
->b_bcount
= size
;
3204 kfree(bp
->b_data
, M_BIOBUF
);
3205 if (bp
->b_bufsize
) {
3206 atomic_subtract_long(&bufmallocspace
, bp
->b_bufsize
);
3210 bp
->b_data
= bp
->b_kvabase
;
3212 bp
->b_flags
&= ~B_MALLOC
;
3218 (vm_offset_t
) bp
->b_data
+ newbsize
,
3219 (vm_offset_t
) bp
->b_data
+ bp
->b_bufsize
);
3220 } else if (newbsize
> bp
->b_bufsize
) {
3222 * We only use malloced memory on the first allocation.
3223 * and revert to page-allocated memory when the buffer
3226 if ((bufmallocspace
< maxbufmallocspace
) &&
3227 (bp
->b_bufsize
== 0) &&
3228 (mbsize
<= PAGE_SIZE
/2)) {
3230 bp
->b_data
= kmalloc(mbsize
, M_BIOBUF
, M_WAITOK
);
3231 bp
->b_bufsize
= mbsize
;
3232 bp
->b_bcount
= size
;
3233 bp
->b_flags
|= B_MALLOC
;
3234 atomic_add_long(&bufmallocspace
, mbsize
);
3240 * If the buffer is growing on its other-than-first
3241 * allocation, then we revert to the page-allocation
3244 if (bp
->b_flags
& B_MALLOC
) {
3245 origbuf
= bp
->b_data
;
3246 origbufsize
= bp
->b_bufsize
;
3247 bp
->b_data
= bp
->b_kvabase
;
3248 if (bp
->b_bufsize
) {
3249 atomic_subtract_long(&bufmallocspace
,
3254 bp
->b_flags
&= ~B_MALLOC
;
3255 newbsize
= round_page(newbsize
);
3259 (vm_offset_t
) bp
->b_data
+ bp
->b_bufsize
,
3260 (vm_offset_t
) bp
->b_data
+ newbsize
);
3262 bcopy(origbuf
, bp
->b_data
, origbufsize
);
3263 kfree(origbuf
, M_BIOBUF
);
3270 newbsize
= roundup2(size
, DEV_BSIZE
);
3271 desiredpages
= ((int)(bp
->b_loffset
& PAGE_MASK
) +
3272 newbsize
+ PAGE_MASK
) >> PAGE_SHIFT
;
3273 KKASSERT(desiredpages
<= XIO_INTERNAL_PAGES
);
3275 if (bp
->b_flags
& B_MALLOC
)
3276 panic("allocbuf: VMIO buffer can't be malloced");
3278 * Set B_CACHE initially if buffer is 0 length or will become
3281 if (size
== 0 || bp
->b_bufsize
== 0)
3282 bp
->b_flags
|= B_CACHE
;
3284 if (newbsize
< bp
->b_bufsize
) {
3286 * DEV_BSIZE aligned new buffer size is less then the
3287 * DEV_BSIZE aligned existing buffer size. Figure out
3288 * if we have to remove any pages.
3290 if (desiredpages
< bp
->b_xio
.xio_npages
) {
3291 for (i
= desiredpages
; i
< bp
->b_xio
.xio_npages
; i
++) {
3293 * the page is not freed here -- it
3294 * is the responsibility of
3295 * vnode_pager_setsize
3297 m
= bp
->b_xio
.xio_pages
[i
];
3298 KASSERT(m
!= bogus_page
,
3299 ("allocbuf: bogus page found"));
3300 vm_page_busy_wait(m
, TRUE
, "biodep");
3301 bp
->b_xio
.xio_pages
[i
] = NULL
;
3302 vm_page_unwire(m
, 0);
3305 pmap_qremove((vm_offset_t
) trunc_page((vm_offset_t
)bp
->b_data
) +
3306 (desiredpages
<< PAGE_SHIFT
), (bp
->b_xio
.xio_npages
- desiredpages
));
3307 bp
->b_xio
.xio_npages
= desiredpages
;
3309 } else if (size
> bp
->b_bcount
) {
3311 * We are growing the buffer, possibly in a
3312 * byte-granular fashion.
3320 * Step 1, bring in the VM pages from the object,
3321 * allocating them if necessary. We must clear
3322 * B_CACHE if these pages are not valid for the
3323 * range covered by the buffer.
3325 * critical section protection is required to protect
3326 * against interrupts unbusying and freeing pages
3327 * between our vm_page_lookup() and our
3328 * busycheck/wiring call.
3333 vm_object_hold(obj
);
3334 while (bp
->b_xio
.xio_npages
< desiredpages
) {
3339 pi
= OFF_TO_IDX(bp
->b_loffset
) +
3340 bp
->b_xio
.xio_npages
;
3343 * Blocking on m->busy might lead to a
3346 * vm_fault->getpages->cluster_read->allocbuf
3348 m
= vm_page_lookup_busy_try(obj
, pi
, FALSE
,
3351 vm_page_sleep_busy(m
, FALSE
, "pgtblk");
3356 * note: must allocate system pages
3357 * since blocking here could intefere
3358 * with paging I/O, no matter which
3361 m
= bio_page_alloc(bp
, obj
, pi
, desiredpages
- bp
->b_xio
.xio_npages
);
3364 vm_page_flag_clear(m
, PG_ZERO
);
3366 bp
->b_flags
&= ~B_CACHE
;
3367 bp
->b_xio
.xio_pages
[bp
->b_xio
.xio_npages
] = m
;
3368 ++bp
->b_xio
.xio_npages
;
3374 * We found a page and were able to busy it.
3376 vm_page_flag_clear(m
, PG_ZERO
);
3379 bp
->b_xio
.xio_pages
[bp
->b_xio
.xio_npages
] = m
;
3380 ++bp
->b_xio
.xio_npages
;
3381 if (bp
->b_act_count
< m
->act_count
)
3382 bp
->b_act_count
= m
->act_count
;
3384 vm_object_drop(obj
);
3387 * Step 2. We've loaded the pages into the buffer,
3388 * we have to figure out if we can still have B_CACHE
3389 * set. Note that B_CACHE is set according to the
3390 * byte-granular range ( bcount and size ), not the
3391 * aligned range ( newbsize ).
3393 * The VM test is against m->valid, which is DEV_BSIZE
3394 * aligned. Needless to say, the validity of the data
3395 * needs to also be DEV_BSIZE aligned. Note that this
3396 * fails with NFS if the server or some other client
3397 * extends the file's EOF. If our buffer is resized,
3398 * B_CACHE may remain set! XXX
3401 toff
= bp
->b_bcount
;
3402 tinc
= PAGE_SIZE
- ((bp
->b_loffset
+ toff
) & PAGE_MASK
);
3404 while ((bp
->b_flags
& B_CACHE
) && toff
< size
) {
3407 if (tinc
> (size
- toff
))
3410 pi
= ((bp
->b_loffset
& PAGE_MASK
) + toff
) >>
3418 bp
->b_xio
.xio_pages
[pi
]
3425 * Step 3, fixup the KVM pmap. Remember that
3426 * bp->b_data is relative to bp->b_loffset, but
3427 * bp->b_loffset may be offset into the first page.
3430 bp
->b_data
= (caddr_t
)
3431 trunc_page((vm_offset_t
)bp
->b_data
);
3433 (vm_offset_t
)bp
->b_data
,
3434 bp
->b_xio
.xio_pages
,
3435 bp
->b_xio
.xio_npages
3437 bp
->b_data
= (caddr_t
)((vm_offset_t
)bp
->b_data
|
3438 (vm_offset_t
)(bp
->b_loffset
& PAGE_MASK
));
3442 /* adjust space use on already-dirty buffer */
3443 if (bp
->b_flags
& B_DELWRI
) {
3444 /* dirtykvaspace unchanged */
3445 atomic_add_long(&dirtybufspace
, newbsize
- bp
->b_bufsize
);
3446 if (bp
->b_flags
& B_HEAVY
) {
3447 atomic_add_long(&dirtybufspacehw
,
3448 newbsize
- bp
->b_bufsize
);
3451 if (newbsize
< bp
->b_bufsize
)
3453 bp
->b_bufsize
= newbsize
; /* actual buffer allocation */
3454 bp
->b_bcount
= size
; /* requested buffer size */
3461 * Wait for buffer I/O completion, returning error status. B_EINTR
3462 * is converted into an EINTR error but not cleared (since a chain
3463 * of biowait() calls may occur).
3465 * On return bpdone() will have been called but the buffer will remain
3466 * locked and will not have been brelse()'d.
3468 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is
3469 * likely still in progress on return.
3471 * NOTE! This operation is on a BIO, not a BUF.
3473 * NOTE! BIO_DONE is cleared by vn_strategy()
3476 _biowait(struct bio
*bio
, const char *wmesg
, int to
)
3478 struct buf
*bp
= bio
->bio_buf
;
3483 KKASSERT(bio
== &bp
->b_bio1
);
3485 flags
= bio
->bio_flags
;
3486 if (flags
& BIO_DONE
)
3488 nflags
= flags
| BIO_WANT
;
3489 tsleep_interlock(bio
, 0);
3490 if (atomic_cmpset_int(&bio
->bio_flags
, flags
, nflags
)) {
3492 error
= tsleep(bio
, PINTERLOCKED
, wmesg
, to
);
3493 else if (bp
->b_cmd
== BUF_CMD_READ
)
3494 error
= tsleep(bio
, PINTERLOCKED
, "biord", to
);
3496 error
= tsleep(bio
, PINTERLOCKED
, "biowr", to
);
3498 kprintf("tsleep error biowait %d\n", error
);
3507 KKASSERT(bp
->b_cmd
== BUF_CMD_DONE
);
3508 bio
->bio_flags
&= ~(BIO_DONE
| BIO_SYNC
);
3509 if (bp
->b_flags
& B_EINTR
)
3511 if (bp
->b_flags
& B_ERROR
)
3512 return (bp
->b_error
? bp
->b_error
: EIO
);
3517 biowait(struct bio
*bio
, const char *wmesg
)
3519 return(_biowait(bio
, wmesg
, 0));
3523 biowait_timeout(struct bio
*bio
, const char *wmesg
, int to
)
3525 return(_biowait(bio
, wmesg
, to
));
3529 * This associates a tracking count with an I/O. vn_strategy() and
3530 * dev_dstrategy() do this automatically but there are a few cases
3531 * where a vnode or device layer is bypassed when a block translation
3532 * is cached. In such cases bio_start_transaction() may be called on
3533 * the bypassed layers so the system gets an I/O in progress indication
3534 * for those higher layers.
3537 bio_start_transaction(struct bio
*bio
, struct bio_track
*track
)
3539 bio
->bio_track
= track
;
3540 bio_track_ref(track
);
3541 dsched_buf_enter(bio
->bio_buf
); /* might stack */
3545 * Initiate I/O on a vnode.
3547 * SWAPCACHE OPERATION:
3549 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately
3550 * devfs also uses b_vp for fake buffers so we also have to check
3551 * that B_PAGING is 0. In this case the passed 'vp' is probably the
3552 * underlying block device. The swap assignments are related to the
3553 * buffer cache buffer's b_vp, not the passed vp.
3555 * The passed vp == bp->b_vp only in the case where the strategy call
3556 * is made on the vp itself for its own buffers (a regular file or
3557 * block device vp). The filesystem usually then re-calls vn_strategy()
3558 * after translating the request to an underlying device.
3560 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3561 * underlying buffer cache buffers.
3563 * We can only deal with page-aligned buffers at the moment, because
3564 * we can't tell what the real dirty state for pages straddling a buffer
3567 * In order to call swap_pager_strategy() we must provide the VM object
3568 * and base offset for the underlying buffer cache pages so it can find
3572 vn_strategy(struct vnode
*vp
, struct bio
*bio
)
3574 struct bio_track
*track
;
3575 struct buf
*bp
= bio
->bio_buf
;
3577 KKASSERT(bp
->b_cmd
!= BUF_CMD_DONE
);
3580 * Set when an I/O is issued on the bp. Cleared by consumers
3581 * (aka HAMMER), allowing the consumer to determine if I/O had
3582 * actually occurred.
3584 bp
->b_flags
|= B_IODEBUG
;
3587 * Handle the swap cache intercept.
3589 if (vn_cache_strategy(vp
, bio
))
3593 * Otherwise do the operation through the filesystem
3595 if (bp
->b_cmd
== BUF_CMD_READ
)
3596 track
= &vp
->v_track_read
;
3598 track
= &vp
->v_track_write
;
3599 KKASSERT((bio
->bio_flags
& BIO_DONE
) == 0);
3600 bio
->bio_track
= track
;
3601 bio_track_ref(track
);
3602 dsched_buf_enter(bp
); /* might stack */
3603 vop_strategy(*vp
->v_ops
, vp
, bio
);
3606 static void vn_cache_strategy_callback(struct bio
*bio
);
3609 vn_cache_strategy(struct vnode
*vp
, struct bio
*bio
)
3611 struct buf
*bp
= bio
->bio_buf
;
3618 * Stop using swapcache if paniced, dumping, or dumped
3620 if (panicstr
|| dumping
)
3624 * Is this buffer cache buffer suitable for reading from
3627 if (vm_swapcache_read_enable
== 0 ||
3628 bp
->b_cmd
!= BUF_CMD_READ
||
3629 ((bp
->b_flags
& B_CLUSTER
) == 0 &&
3630 (bp
->b_vp
== NULL
|| (bp
->b_flags
& B_PAGING
))) ||
3631 ((int)bp
->b_loffset
& PAGE_MASK
) != 0 ||
3632 (bp
->b_bcount
& PAGE_MASK
) != 0) {
3637 * Figure out the original VM object (it will match the underlying
3638 * VM pages). Note that swap cached data uses page indices relative
3639 * to that object, not relative to bio->bio_offset.
3641 if (bp
->b_flags
& B_CLUSTER
)
3642 object
= vp
->v_object
;
3644 object
= bp
->b_vp
->v_object
;
3647 * In order to be able to use the swap cache all underlying VM
3648 * pages must be marked as such, and we can't have any bogus pages.
3650 for (i
= 0; i
< bp
->b_xio
.xio_npages
; ++i
) {
3651 m
= bp
->b_xio
.xio_pages
[i
];
3652 if ((m
->flags
& PG_SWAPPED
) == 0)
3654 if (m
== bogus_page
)
3659 * If we are good then issue the I/O using swap_pager_strategy().
3661 * We can only do this if the buffer actually supports object-backed
3662 * I/O. If it doesn't npages will be 0.
3664 if (i
&& i
== bp
->b_xio
.xio_npages
) {
3665 m
= bp
->b_xio
.xio_pages
[0];
3666 nbio
= push_bio(bio
);
3667 nbio
->bio_done
= vn_cache_strategy_callback
;
3668 nbio
->bio_offset
= ptoa(m
->pindex
);
3669 KKASSERT(m
->object
== object
);
3670 swap_pager_strategy(object
, nbio
);
3677 * This is a bit of a hack but since the vn_cache_strategy() function can
3678 * override a VFS's strategy function we must make sure that the bio, which
3679 * is probably bio2, doesn't leak an unexpected offset value back to the
3680 * filesystem. The filesystem (e.g. UFS) might otherwise assume that the
3681 * bio went through its own file strategy function and the the bio2 offset
3682 * is a cached disk offset when, in fact, it isn't.
3685 vn_cache_strategy_callback(struct bio
*bio
)
3687 bio
->bio_offset
= NOOFFSET
;
3688 biodone(pop_bio(bio
));
3694 * Finish I/O on a buffer after all BIOs have been processed.
3695 * Called when the bio chain is exhausted or by biowait. If called
3696 * by biowait, elseit is typically 0.
3698 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3699 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3700 * assuming B_INVAL is clear.
3702 * For the VMIO case, we set B_CACHE if the op was a read and no
3703 * read error occured, or if the op was a write. B_CACHE is never
3704 * set if the buffer is invalid or otherwise uncacheable.
3706 * bpdone does not mess with B_INVAL, allowing the I/O routine or the
3707 * initiator to leave B_INVAL set to brelse the buffer out of existance
3708 * in the biodone routine.
3710 * bpdone is responsible for calling bundirty() on the buffer after a
3711 * successful write. We previously did this prior to initiating the
3712 * write under the assumption that the buffer might be dirtied again
3713 * while the write was in progress, however doing it before-hand creates
3714 * a race condition prior to the call to vn_strategy() where the
3715 * filesystem may not be aware that a dirty buffer is present.
3716 * It should not be possible for the buffer or its underlying pages to
3717 * be redirtied prior to bpdone()'s unbusying of the underlying VM
3721 bpdone(struct buf
*bp
, int elseit
)
3725 KASSERT(BUF_REFCNTNB(bp
) > 0,
3726 ("bpdone: bp %p not busy %d", bp
, BUF_REFCNTNB(bp
)));
3727 KASSERT(bp
->b_cmd
!= BUF_CMD_DONE
,
3728 ("bpdone: bp %p already done!", bp
));
3731 * No more BIOs are left. All completion functions have been dealt
3732 * with, now we clean up the buffer.
3735 bp
->b_cmd
= BUF_CMD_DONE
;
3738 * Only reads and writes are processed past this point.
3740 if (cmd
!= BUF_CMD_READ
&& cmd
!= BUF_CMD_WRITE
) {
3741 if (cmd
== BUF_CMD_FREEBLKS
)
3742 bp
->b_flags
|= B_NOCACHE
;
3749 * A failed write must re-dirty the buffer unless B_INVAL
3752 * A successful write must clear the dirty flag. This is done after
3753 * the write to ensure that the buffer remains on the vnode's dirty
3754 * list for filesystem interlocks / checks until the write is actually
3755 * complete. HAMMER2 is sensitive to this issue.
3757 * Only applicable to normal buffers (with VPs). vinum buffers may
3760 * Must be done prior to calling buf_complete() as the callback might
3761 * re-dirty the buffer.
3763 if (cmd
== BUF_CMD_WRITE
) {
3764 if ((bp
->b_flags
& (B_ERROR
| B_INVAL
)) == B_ERROR
) {
3765 bp
->b_flags
&= ~B_NOCACHE
;
3775 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3776 * a lot worse. XXX - move this above the clearing of b_cmd
3778 if (LIST_FIRST(&bp
->b_dep
) != NULL
)
3781 if (bp
->b_flags
& B_VMIO
) {
3787 struct vnode
*vp
= bp
->b_vp
;
3791 #if defined(VFS_BIO_DEBUG)
3792 if (vp
->v_auxrefs
== 0)
3793 panic("bpdone: zero vnode hold count");
3794 if ((vp
->v_flag
& VOBJBUF
) == 0)
3795 panic("bpdone: vnode is not setup for merged cache");
3798 foff
= bp
->b_loffset
;
3799 KASSERT(foff
!= NOOFFSET
, ("bpdone: no buffer offset"));
3800 KASSERT(obj
!= NULL
, ("bpdone: missing VM object"));
3802 #if defined(VFS_BIO_DEBUG)
3803 if (obj
->paging_in_progress
< bp
->b_xio
.xio_npages
) {
3804 kprintf("bpdone: paging in progress(%d) < "
3805 "bp->b_xio.xio_npages(%d)\n",
3806 obj
->paging_in_progress
,
3807 bp
->b_xio
.xio_npages
);
3812 * Set B_CACHE if the op was a normal read and no error
3813 * occured. B_CACHE is set for writes in the b*write()
3816 iosize
= bp
->b_bcount
- bp
->b_resid
;
3817 if (cmd
== BUF_CMD_READ
&&
3818 (bp
->b_flags
& (B_INVAL
|B_NOCACHE
|B_ERROR
)) == 0) {
3819 bp
->b_flags
|= B_CACHE
;
3822 vm_object_hold(obj
);
3823 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3827 resid
= ((foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
) - foff
;
3832 * cleanup bogus pages, restoring the originals. Since
3833 * the originals should still be wired, we don't have
3834 * to worry about interrupt/freeing races destroying
3835 * the VM object association.
3837 m
= bp
->b_xio
.xio_pages
[i
];
3838 if (m
== bogus_page
) {
3840 m
= vm_page_lookup(obj
, OFF_TO_IDX(foff
));
3842 panic("bpdone: page disappeared");
3843 bp
->b_xio
.xio_pages
[i
] = m
;
3844 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
3845 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
3847 #if defined(VFS_BIO_DEBUG)
3848 if (OFF_TO_IDX(foff
) != m
->pindex
) {
3849 kprintf("bpdone: foff(%lu)/m->pindex(%ld) "
3851 (unsigned long)foff
, (long)m
->pindex
);
3856 * In the write case, the valid and clean bits are
3857 * already changed correctly (see bdwrite()), so we
3858 * only need to do this here in the read case.
3860 vm_page_busy_wait(m
, FALSE
, "bpdpgw");
3861 if (cmd
== BUF_CMD_READ
&& !bogusflag
&& resid
> 0) {
3862 vfs_clean_one_page(bp
, i
, m
);
3864 vm_page_flag_clear(m
, PG_ZERO
);
3867 * when debugging new filesystems or buffer I/O
3868 * methods, this is the most common error that pops
3869 * up. if you see this, you have not set the page
3870 * busy flag correctly!!!
3873 kprintf("bpdone: page busy < 0, "
3874 "pindex: %d, foff: 0x(%x,%x), "
3875 "resid: %d, index: %d\n",
3876 (int) m
->pindex
, (int)(foff
>> 32),
3877 (int) foff
& 0xffffffff, resid
, i
);
3878 if (!vn_isdisk(vp
, NULL
))
3879 kprintf(" iosize: %ld, loffset: %lld, "
3880 "flags: 0x%08x, npages: %d\n",
3881 bp
->b_vp
->v_mount
->mnt_stat
.f_iosize
,
3882 (long long)bp
->b_loffset
,
3883 bp
->b_flags
, bp
->b_xio
.xio_npages
);
3885 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3886 (long long)bp
->b_loffset
,
3887 bp
->b_flags
, bp
->b_xio
.xio_npages
);
3888 kprintf(" valid: 0x%x, dirty: 0x%x, "
3892 panic("bpdone: page busy < 0");
3894 vm_page_io_finish(m
);
3896 vm_object_pip_wakeup(obj
);
3897 foff
= (foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
3900 bp
->b_flags
&= ~B_HASBOGUS
;
3901 vm_object_drop(obj
);
3905 * Finish up by releasing the buffer. There are no more synchronous
3906 * or asynchronous completions, those were handled by bio_done
3910 if (bp
->b_flags
& (B_NOCACHE
|B_INVAL
|B_ERROR
|B_RELBUF
))
3921 biodone(struct bio
*bio
)
3923 struct buf
*bp
= bio
->bio_buf
;
3925 runningbufwakeup(bp
);
3928 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
3931 biodone_t
*done_func
;
3932 struct bio_track
*track
;
3935 * BIO tracking. Most but not all BIOs are tracked.
3937 if ((track
= bio
->bio_track
) != NULL
) {
3938 bio_track_rel(track
);
3939 bio
->bio_track
= NULL
;
3943 * A bio_done function terminates the loop. The function
3944 * will be responsible for any further chaining and/or
3945 * buffer management.
3947 * WARNING! The done function can deallocate the buffer!
3949 if ((done_func
= bio
->bio_done
) != NULL
) {
3950 bio
->bio_done
= NULL
;
3954 bio
= bio
->bio_prev
;
3958 * If we've run out of bio's do normal [a]synchronous completion.
3964 * Synchronous biodone - this terminates a synchronous BIO.
3966 * bpdone() is called with elseit=FALSE, leaving the buffer completed
3967 * but still locked. The caller must brelse() the buffer after waiting
3971 biodone_sync(struct bio
*bio
)
3973 struct buf
*bp
= bio
->bio_buf
;
3977 KKASSERT(bio
== &bp
->b_bio1
);
3981 flags
= bio
->bio_flags
;
3982 nflags
= (flags
| BIO_DONE
) & ~BIO_WANT
;
3984 if (atomic_cmpset_int(&bio
->bio_flags
, flags
, nflags
)) {
3985 if (flags
& BIO_WANT
)
3995 * This routine is called in lieu of iodone in the case of
3996 * incomplete I/O. This keeps the busy status for pages
4000 vfs_unbusy_pages(struct buf
*bp
)
4004 runningbufwakeup(bp
);
4006 if (bp
->b_flags
& B_VMIO
) {
4007 struct vnode
*vp
= bp
->b_vp
;
4011 vm_object_hold(obj
);
4013 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4014 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
4017 * When restoring bogus changes the original pages
4018 * should still be wired, so we are in no danger of
4019 * losing the object association and do not need
4020 * critical section protection particularly.
4022 if (m
== bogus_page
) {
4023 m
= vm_page_lookup(obj
, OFF_TO_IDX(bp
->b_loffset
) + i
);
4025 panic("vfs_unbusy_pages: page missing");
4027 bp
->b_xio
.xio_pages
[i
] = m
;
4028 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
4029 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
4031 vm_page_busy_wait(m
, FALSE
, "bpdpgw");
4032 vm_page_flag_clear(m
, PG_ZERO
);
4033 vm_page_io_finish(m
);
4035 vm_object_pip_wakeup(obj
);
4037 bp
->b_flags
&= ~B_HASBOGUS
;
4038 vm_object_drop(obj
);
4045 * This routine is called before a device strategy routine.
4046 * It is used to tell the VM system that paging I/O is in
4047 * progress, and treat the pages associated with the buffer
4048 * almost as being PG_BUSY. Also the object 'paging_in_progress'
4049 * flag is handled to make sure that the object doesn't become
4052 * Since I/O has not been initiated yet, certain buffer flags
4053 * such as B_ERROR or B_INVAL may be in an inconsistant state
4054 * and should be ignored.
4057 vfs_busy_pages(struct vnode
*vp
, struct buf
*bp
)
4060 struct lwp
*lp
= curthread
->td_lwp
;
4063 * The buffer's I/O command must already be set. If reading,
4064 * B_CACHE must be 0 (double check against callers only doing
4065 * I/O when B_CACHE is 0).
4067 KKASSERT(bp
->b_cmd
!= BUF_CMD_DONE
);
4068 KKASSERT(bp
->b_cmd
== BUF_CMD_WRITE
|| (bp
->b_flags
& B_CACHE
) == 0);
4070 if (bp
->b_flags
& B_VMIO
) {
4074 KASSERT(bp
->b_loffset
!= NOOFFSET
,
4075 ("vfs_busy_pages: no buffer offset"));
4078 * Busy all the pages. We have to busy them all at once
4079 * to avoid deadlocks.
4082 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4083 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
4085 if (vm_page_busy_try(m
, FALSE
)) {
4086 vm_page_sleep_busy(m
, FALSE
, "vbpage");
4088 vm_page_wakeup(bp
->b_xio
.xio_pages
[i
]);
4094 * Setup for I/O, soft-busy the page right now because
4095 * the next loop may block.
4097 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4098 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
4100 vm_page_flag_clear(m
, PG_ZERO
);
4101 if ((bp
->b_flags
& B_CLUSTER
) == 0) {
4102 vm_object_pip_add(obj
, 1);
4103 vm_page_io_start(m
);
4108 * Adjust protections for I/O and do bogus-page mapping.
4109 * Assume that vm_page_protect() can block (it can block
4110 * if VM_PROT_NONE, don't take any chances regardless).
4112 * In particular note that for writes we must incorporate
4113 * page dirtyness from the VM system into the buffer's
4116 * For reads we theoretically must incorporate page dirtyness
4117 * from the VM system to determine if the page needs bogus
4118 * replacement, but we shortcut the test by simply checking
4119 * that all m->valid bits are set, indicating that the page
4120 * is fully valid and does not need to be re-read. For any
4121 * VM system dirtyness the page will also be fully valid
4122 * since it was mapped at one point.
4125 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4126 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
4128 vm_page_flag_clear(m
, PG_ZERO
); /* XXX */
4129 if (bp
->b_cmd
== BUF_CMD_WRITE
) {
4131 * When readying a vnode-backed buffer for
4132 * a write we must zero-fill any invalid
4133 * portions of the backing VM pages, mark
4134 * it valid and clear related dirty bits.
4136 * vfs_clean_one_page() incorporates any
4137 * VM dirtyness and updates the b_dirtyoff
4138 * range (after we've made the page RO).
4140 * It is also expected that the pmap modified
4141 * bit has already been cleared by the
4142 * vm_page_protect(). We may not be able
4143 * to clear all dirty bits for a page if it
4144 * was also memory mapped (NFS).
4146 * Finally be sure to unassign any swap-cache
4147 * backing store as it is now stale.
4149 vm_page_protect(m
, VM_PROT_READ
);
4150 vfs_clean_one_page(bp
, i
, m
);
4151 swap_pager_unswapped(m
);
4152 } else if (m
->valid
== VM_PAGE_BITS_ALL
) {
4154 * When readying a vnode-backed buffer for
4155 * read we must replace any dirty pages with
4156 * a bogus page so dirty data is not destroyed
4157 * when filling gaps.
4159 * To avoid testing whether the page is
4160 * dirty we instead test that the page was
4161 * at some point mapped (m->valid fully
4162 * valid) with the understanding that
4163 * this also covers the dirty case.
4165 bp
->b_xio
.xio_pages
[i
] = bogus_page
;
4166 bp
->b_flags
|= B_HASBOGUS
;
4168 } else if (m
->valid
& m
->dirty
) {
4170 * This case should not occur as partial
4171 * dirtyment can only happen if the buffer
4172 * is B_CACHE, and this code is not entered
4173 * if the buffer is B_CACHE.
4175 kprintf("Warning: vfs_busy_pages - page not "
4176 "fully valid! loff=%jx bpf=%08x "
4177 "idx=%d val=%02x dir=%02x\n",
4178 (uintmax_t)bp
->b_loffset
, bp
->b_flags
,
4179 i
, m
->valid
, m
->dirty
);
4180 vm_page_protect(m
, VM_PROT_NONE
);
4183 * The page is not valid and can be made
4186 vm_page_protect(m
, VM_PROT_NONE
);
4191 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
4192 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
4197 * This is the easiest place to put the process accounting for the I/O
4201 if (bp
->b_cmd
== BUF_CMD_READ
)
4202 lp
->lwp_ru
.ru_inblock
++;
4204 lp
->lwp_ru
.ru_oublock
++;
4209 * Tell the VM system that the pages associated with this buffer
4210 * are clean. This is used for delayed writes where the data is
4211 * going to go to disk eventually without additional VM intevention.
4213 * NOTE: While we only really need to clean through to b_bcount, we
4214 * just go ahead and clean through to b_bufsize.
4217 vfs_clean_pages(struct buf
*bp
)
4222 if ((bp
->b_flags
& B_VMIO
) == 0)
4225 KASSERT(bp
->b_loffset
!= NOOFFSET
,
4226 ("vfs_clean_pages: no buffer offset"));
4228 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4229 m
= bp
->b_xio
.xio_pages
[i
];
4230 vfs_clean_one_page(bp
, i
, m
);
4235 * vfs_clean_one_page:
4237 * Set the valid bits and clear the dirty bits in a page within a
4238 * buffer. The range is restricted to the buffer's size and the
4239 * buffer's logical offset might index into the first page.
4241 * The caller has busied or soft-busied the page and it is not mapped,
4242 * test and incorporate the dirty bits into b_dirtyoff/end before
4243 * clearing them. Note that we need to clear the pmap modified bits
4244 * after determining the the page was dirty, vm_page_set_validclean()
4245 * does not do it for us.
4247 * This routine is typically called after a read completes (dirty should
4248 * be zero in that case as we are not called on bogus-replace pages),
4249 * or before a write is initiated.
4252 vfs_clean_one_page(struct buf
*bp
, int pageno
, vm_page_t m
)
4260 * Calculate offset range within the page but relative to buffer's
4261 * loffset. loffset might be offset into the first page.
4263 xoff
= (int)bp
->b_loffset
& PAGE_MASK
; /* loffset offset into pg 0 */
4264 bcount
= bp
->b_bcount
+ xoff
; /* offset adjusted */
4270 soff
= (pageno
<< PAGE_SHIFT
);
4271 eoff
= soff
+ PAGE_SIZE
;
4279 * Test dirty bits and adjust b_dirtyoff/end.
4281 * If dirty pages are incorporated into the bp any prior
4282 * B_NEEDCOMMIT state (NFS) must be cleared because the
4283 * caller has not taken into account the new dirty data.
4285 * If the page was memory mapped the dirty bits might go beyond the
4286 * end of the buffer, but we can't really make the assumption that
4287 * a file EOF straddles the buffer (even though this is the case for
4288 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing
4289 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4290 * This also saves some console spam.
4292 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4293 * NFS can handle huge commits but not huge writes.
4295 vm_page_test_dirty(m
);
4297 if ((bp
->b_flags
& B_NEEDCOMMIT
) &&
4298 (m
->dirty
& vm_page_bits(soff
& PAGE_MASK
, eoff
- soff
))) {
4300 kprintf("Warning: vfs_clean_one_page: bp %p "
4301 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4302 " cmd %d vd %02x/%02x x/s/e %d %d %d "
4304 bp
, (uintmax_t)bp
->b_loffset
, bp
->b_bcount
,
4305 bp
->b_flags
, bp
->b_cmd
,
4306 m
->valid
, m
->dirty
, xoff
, soff
, eoff
,
4307 bp
->b_dirtyoff
, bp
->b_dirtyend
);
4308 bp
->b_flags
&= ~(B_NEEDCOMMIT
| B_CLUSTEROK
);
4310 print_backtrace(-1);
4313 * Only clear the pmap modified bits if ALL the dirty bits
4314 * are set, otherwise the system might mis-clear portions
4317 if (m
->dirty
== VM_PAGE_BITS_ALL
&&
4318 (bp
->b_flags
& B_NEEDCOMMIT
) == 0) {
4319 pmap_clear_modify(m
);
4321 if (bp
->b_dirtyoff
> soff
- xoff
)
4322 bp
->b_dirtyoff
= soff
- xoff
;
4323 if (bp
->b_dirtyend
< eoff
- xoff
)
4324 bp
->b_dirtyend
= eoff
- xoff
;
4328 * Set related valid bits, clear related dirty bits.
4329 * Does not mess with the pmap modified bit.
4331 * WARNING! We cannot just clear all of m->dirty here as the
4332 * buffer cache buffers may use a DEV_BSIZE'd aligned
4333 * block size, or have an odd size (e.g. NFS at file EOF).
4334 * The putpages code can clear m->dirty to 0.
4336 * If a VOP_WRITE generates a buffer cache buffer which
4337 * covers the same space as mapped writable pages the
4338 * buffer flush might not be able to clear all the dirty
4339 * bits and still require a putpages from the VM system
4342 * WARNING! vm_page_set_validclean() currently assumes vm_token
4343 * is held. The page might not be busied (bdwrite() case).
4344 * XXX remove this comment once we've validated that this
4345 * is no longer an issue.
4347 vm_page_set_validclean(m
, soff
& PAGE_MASK
, eoff
- soff
);
4352 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4353 * The page data is assumed to be valid (there is no zeroing here).
4356 vfs_dirty_one_page(struct buf
*bp
, int pageno
, vm_page_t m
)
4364 * Calculate offset range within the page but relative to buffer's
4365 * loffset. loffset might be offset into the first page.
4367 xoff
= (int)bp
->b_loffset
& PAGE_MASK
; /* loffset offset into pg 0 */
4368 bcount
= bp
->b_bcount
+ xoff
; /* offset adjusted */
4374 soff
= (pageno
<< PAGE_SHIFT
);
4375 eoff
= soff
+ PAGE_SIZE
;
4381 vm_page_set_validdirty(m
, soff
& PAGE_MASK
, eoff
- soff
);
4388 * Clear a buffer. This routine essentially fakes an I/O, so we need
4389 * to clear B_ERROR and B_INVAL.
4391 * Note that while we only theoretically need to clear through b_bcount,
4392 * we go ahead and clear through b_bufsize.
4396 vfs_bio_clrbuf(struct buf
*bp
)
4400 if ((bp
->b_flags
& (B_VMIO
| B_MALLOC
)) == B_VMIO
) {
4401 bp
->b_flags
&= ~(B_INVAL
| B_EINTR
| B_ERROR
);
4402 if ((bp
->b_xio
.xio_npages
== 1) && (bp
->b_bufsize
< PAGE_SIZE
) &&
4403 (bp
->b_loffset
& PAGE_MASK
) == 0) {
4404 mask
= (1 << (bp
->b_bufsize
/ DEV_BSIZE
)) - 1;
4405 if ((bp
->b_xio
.xio_pages
[0]->valid
& mask
) == mask
) {
4409 if (((bp
->b_xio
.xio_pages
[0]->flags
& PG_ZERO
) == 0) &&
4410 ((bp
->b_xio
.xio_pages
[0]->valid
& mask
) == 0)) {
4411 bzero(bp
->b_data
, bp
->b_bufsize
);
4412 bp
->b_xio
.xio_pages
[0]->valid
|= mask
;
4418 for(i
=0;i
<bp
->b_xio
.xio_npages
;i
++,sa
=ea
) {
4419 int j
= ((vm_offset_t
)sa
& PAGE_MASK
) / DEV_BSIZE
;
4420 ea
= (caddr_t
)trunc_page((vm_offset_t
)sa
+ PAGE_SIZE
);
4421 ea
= (caddr_t
)(vm_offset_t
)ulmin(
4422 (u_long
)(vm_offset_t
)ea
,
4423 (u_long
)(vm_offset_t
)bp
->b_data
+ bp
->b_bufsize
);
4424 mask
= ((1 << ((ea
- sa
) / DEV_BSIZE
)) - 1) << j
;
4425 if ((bp
->b_xio
.xio_pages
[i
]->valid
& mask
) == mask
)
4427 if ((bp
->b_xio
.xio_pages
[i
]->valid
& mask
) == 0) {
4428 if ((bp
->b_xio
.xio_pages
[i
]->flags
& PG_ZERO
) == 0) {
4432 for (; sa
< ea
; sa
+= DEV_BSIZE
, j
++) {
4433 if (((bp
->b_xio
.xio_pages
[i
]->flags
& PG_ZERO
) == 0) &&
4434 (bp
->b_xio
.xio_pages
[i
]->valid
& (1<<j
)) == 0)
4435 bzero(sa
, DEV_BSIZE
);
4438 bp
->b_xio
.xio_pages
[i
]->valid
|= mask
;
4439 vm_page_flag_clear(bp
->b_xio
.xio_pages
[i
], PG_ZERO
);
4448 * vm_hold_load_pages:
4450 * Load pages into the buffer's address space. The pages are
4451 * allocated from the kernel object in order to reduce interference
4452 * with the any VM paging I/O activity. The range of loaded
4453 * pages will be wired.
4455 * If a page cannot be allocated, the 'pagedaemon' is woken up to
4456 * retrieve the full range (to - from) of pages.
4459 vm_hold_load_pages(struct buf
*bp
, vm_offset_t from
, vm_offset_t to
)
4465 to
= round_page(to
);
4466 from
= round_page(from
);
4467 index
= (from
- trunc_page((vm_offset_t
)bp
->b_data
)) >> PAGE_SHIFT
;
4472 * Note: must allocate system pages since blocking here
4473 * could intefere with paging I/O, no matter which
4476 vm_object_hold(&kernel_object
);
4477 p
= bio_page_alloc(bp
, &kernel_object
, pg
>> PAGE_SHIFT
,
4478 (vm_pindex_t
)((to
- pg
) >> PAGE_SHIFT
));
4479 vm_object_drop(&kernel_object
);
4482 p
->valid
= VM_PAGE_BITS_ALL
;
4483 vm_page_flag_clear(p
, PG_ZERO
);
4484 pmap_kenter(pg
, VM_PAGE_TO_PHYS(p
));
4485 bp
->b_xio
.xio_pages
[index
] = p
;
4492 bp
->b_xio
.xio_npages
= index
;
4496 * Allocate a page for a buffer cache buffer.
4498 * If NULL is returned the caller is expected to retry (typically check if
4499 * the page already exists on retry before trying to allocate one).
4501 * NOTE! Low-memory handling is dealt with in b[q]relse(), not here. This
4502 * function will use the system reserve with the hope that the page
4503 * allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4504 * is done with the buffer.
4506 * NOTE! However, TMPFS is a special case because flushing a dirty buffer
4507 * to TMPFS doesn't clean the page. For TMPFS, only the pagedaemon
4508 * is capable of retiring pages (to swap). For TMPFS we don't dig
4509 * into the system reserve because doing so could stall out pretty
4510 * much every process running on the system.
4514 bio_page_alloc(struct buf
*bp
, vm_object_t obj
, vm_pindex_t pg
, int deficit
)
4516 int vmflags
= VM_ALLOC_NORMAL
| VM_ALLOC_NULL_OK
;
4519 ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj
));
4522 * Try a normal allocation first.
4524 p
= vm_page_alloc(obj
, pg
, vmflags
);
4527 if (vm_page_lookup(obj
, pg
))
4529 vm_pageout_deficit
+= deficit
;
4532 * Try again, digging into the system reserve.
4534 * Trying to recover pages from the buffer cache here can deadlock
4535 * against other threads trying to busy underlying pages so we
4536 * depend on the code in brelse() and bqrelse() to free/cache the
4537 * underlying buffer cache pages when memory is low.
4539 if (curthread
->td_flags
& TDF_SYSTHREAD
)
4540 vmflags
|= VM_ALLOC_SYSTEM
| VM_ALLOC_INTERRUPT
;
4541 else if (bp
->b_vp
&& bp
->b_vp
->v_tag
== VT_TMPFS
)
4544 vmflags
|= VM_ALLOC_SYSTEM
;
4546 /*recoverbufpages();*/
4547 p
= vm_page_alloc(obj
, pg
, vmflags
);
4550 if (vm_page_lookup(obj
, pg
))
4554 * Wait for memory to free up and try again
4556 if (vm_page_count_severe())
4558 vm_wait(hz
/ 20 + 1);
4560 p
= vm_page_alloc(obj
, pg
, vmflags
);
4563 if (vm_page_lookup(obj
, pg
))
4567 * Ok, now we are really in trouble.
4570 static struct krate biokrate
= { .freq
= 1 };
4571 krateprintf(&biokrate
,
4572 "Warning: bio_page_alloc: memory exhausted "
4573 "during bufcache page allocation from %s\n",
4574 curthread
->td_comm
);
4576 if (curthread
->td_flags
& TDF_SYSTHREAD
)
4577 vm_wait(hz
/ 20 + 1);
4579 vm_wait(hz
/ 2 + 1);
4584 * vm_hold_free_pages:
4586 * Return pages associated with the buffer back to the VM system.
4588 * The range of pages underlying the buffer's address space will
4589 * be unmapped and un-wired.
4592 vm_hold_free_pages(struct buf
*bp
, vm_offset_t from
, vm_offset_t to
)
4596 int index
, newnpages
;
4598 from
= round_page(from
);
4599 to
= round_page(to
);
4600 index
= (from
- trunc_page((vm_offset_t
)bp
->b_data
)) >> PAGE_SHIFT
;
4603 for (pg
= from
; pg
< to
; pg
+= PAGE_SIZE
, index
++) {
4604 p
= bp
->b_xio
.xio_pages
[index
];
4605 if (p
&& (index
< bp
->b_xio
.xio_npages
)) {
4607 kprintf("vm_hold_free_pages: doffset: %lld, "
4609 (long long)bp
->b_bio2
.bio_offset
,
4610 (long long)bp
->b_loffset
);
4612 bp
->b_xio
.xio_pages
[index
] = NULL
;
4614 vm_page_busy_wait(p
, FALSE
, "vmhldpg");
4615 vm_page_unwire(p
, 0);
4619 bp
->b_xio
.xio_npages
= newnpages
;
4625 * Map a user buffer into KVM via a pbuf. On return the buffer's
4626 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4630 vmapbuf(struct buf
*bp
, caddr_t udata
, int bytes
)
4641 * bp had better have a command and it better be a pbuf.
4643 KKASSERT(bp
->b_cmd
!= BUF_CMD_DONE
);
4644 KKASSERT(bp
->b_flags
& B_PAGING
);
4645 KKASSERT(bp
->b_kvabase
);
4651 * Map the user data into KVM. Mappings have to be page-aligned.
4653 addr
= (caddr_t
)trunc_page((vm_offset_t
)udata
);
4656 vmprot
= VM_PROT_READ
;
4657 if (bp
->b_cmd
== BUF_CMD_READ
)
4658 vmprot
|= VM_PROT_WRITE
;
4660 while (addr
< udata
+ bytes
) {
4662 * Do the vm_fault if needed; do the copy-on-write thing
4663 * when reading stuff off device into memory.
4665 * vm_fault_page*() returns a held VM page.
4667 va
= (addr
>= udata
) ? (vm_offset_t
)addr
: (vm_offset_t
)udata
;
4668 va
= trunc_page(va
);
4670 m
= vm_fault_page_quick(va
, vmprot
, &error
);
4672 for (i
= 0; i
< pidx
; ++i
) {
4673 vm_page_unhold(bp
->b_xio
.xio_pages
[i
]);
4674 bp
->b_xio
.xio_pages
[i
] = NULL
;
4678 bp
->b_xio
.xio_pages
[pidx
] = m
;
4684 * Map the page array and set the buffer fields to point to
4685 * the mapped data buffer.
4687 if (pidx
> btoc(MAXPHYS
))
4688 panic("vmapbuf: mapped more than MAXPHYS");
4689 pmap_qenter((vm_offset_t
)bp
->b_kvabase
, bp
->b_xio
.xio_pages
, pidx
);
4691 bp
->b_xio
.xio_npages
= pidx
;
4692 bp
->b_data
= bp
->b_kvabase
+ ((int)(intptr_t)udata
& PAGE_MASK
);
4693 bp
->b_bcount
= bytes
;
4694 bp
->b_bufsize
= bytes
;
4701 * Free the io map PTEs associated with this IO operation.
4702 * We also invalidate the TLB entries and restore the original b_addr.
4705 vunmapbuf(struct buf
*bp
)
4710 KKASSERT(bp
->b_flags
& B_PAGING
);
4712 npages
= bp
->b_xio
.xio_npages
;
4713 pmap_qremove(trunc_page((vm_offset_t
)bp
->b_data
), npages
);
4714 for (pidx
= 0; pidx
< npages
; ++pidx
) {
4715 vm_page_unhold(bp
->b_xio
.xio_pages
[pidx
]);
4716 bp
->b_xio
.xio_pages
[pidx
] = NULL
;
4718 bp
->b_xio
.xio_npages
= 0;
4719 bp
->b_data
= bp
->b_kvabase
;
4723 * Scan all buffers in the system and issue the callback.
4726 scan_all_buffers(int (*callback
)(struct buf
*, void *), void *info
)
4732 for (n
= 0; n
< nbuf
; ++n
) {
4733 if ((error
= callback(&buf
[n
], info
)) < 0) {
4743 * nestiobuf_iodone: biodone callback for nested buffers and propagate
4744 * completion to the master buffer.
4747 nestiobuf_iodone(struct bio
*bio
)
4750 struct buf
*mbp
, *bp
;
4751 struct devstat
*stats
;
4756 mbio
= bio
->bio_caller_info1
.ptr
;
4757 stats
= bio
->bio_caller_info2
.ptr
;
4758 mbp
= mbio
->bio_buf
;
4760 KKASSERT(bp
->b_bcount
<= bp
->b_bufsize
);
4761 KKASSERT(mbp
!= bp
);
4763 error
= bp
->b_error
;
4764 if (bp
->b_error
== 0 &&
4765 (bp
->b_bcount
< bp
->b_bufsize
|| bp
->b_resid
> 0)) {
4767 * Not all got transfered, raise an error. We have no way to
4768 * propagate these conditions to mbp.
4773 donebytes
= bp
->b_bufsize
;
4777 nestiobuf_done(mbio
, donebytes
, error
, stats
);
4781 nestiobuf_done(struct bio
*mbio
, int donebytes
, int error
, struct devstat
*stats
)
4785 mbp
= mbio
->bio_buf
;
4787 KKASSERT((int)(intptr_t)mbio
->bio_driver_info
> 0);
4790 * If an error occured, propagate it to the master buffer.
4792 * Several biodone()s may wind up running concurrently so
4793 * use an atomic op to adjust b_flags.
4796 mbp
->b_error
= error
;
4797 atomic_set_int(&mbp
->b_flags
, B_ERROR
);
4801 * Decrement the operations in progress counter and terminate the
4802 * I/O if this was the last bit.
4804 if (atomic_fetchadd_int((int *)&mbio
->bio_driver_info
, -1) == 1) {
4807 devstat_end_transaction_buf(stats
, mbp
);
4813 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent
4814 * the mbio from being biodone()'d while we are still adding sub-bios to
4818 nestiobuf_init(struct bio
*bio
)
4820 bio
->bio_driver_info
= (void *)1;
4824 * The BIOs added to the nestedio have already been started, remove the
4825 * count that placeheld our mbio and biodone() it if the count would
4829 nestiobuf_start(struct bio
*mbio
)
4831 struct buf
*mbp
= mbio
->bio_buf
;
4834 * Decrement the operations in progress counter and terminate the
4835 * I/O if this was the last bit.
4837 if (atomic_fetchadd_int((int *)&mbio
->bio_driver_info
, -1) == 1) {
4838 if (mbp
->b_flags
& B_ERROR
)
4839 mbp
->b_resid
= mbp
->b_bcount
;
4847 * Set an intermediate error prior to calling nestiobuf_start()
4850 nestiobuf_error(struct bio
*mbio
, int error
)
4852 struct buf
*mbp
= mbio
->bio_buf
;
4855 mbp
->b_error
= error
;
4856 atomic_set_int(&mbp
->b_flags
, B_ERROR
);
4861 * nestiobuf_add: setup a "nested" buffer.
4863 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4864 * => 'bp' should be a buffer allocated by getiobuf.
4865 * => 'offset' is a byte offset in the master buffer.
4866 * => 'size' is a size in bytes of this nested buffer.
4869 nestiobuf_add(struct bio
*mbio
, struct buf
*bp
, int offset
, size_t size
, struct devstat
*stats
)
4871 struct buf
*mbp
= mbio
->bio_buf
;
4872 struct vnode
*vp
= mbp
->b_vp
;
4874 KKASSERT(mbp
->b_bcount
>= offset
+ size
);
4876 atomic_add_int((int *)&mbio
->bio_driver_info
, 1);
4878 /* kernel needs to own the lock for it to be released in biodone */
4881 bp
->b_cmd
= mbp
->b_cmd
;
4882 bp
->b_bio1
.bio_done
= nestiobuf_iodone
;
4883 bp
->b_data
= (char *)mbp
->b_data
+ offset
;
4884 bp
->b_resid
= bp
->b_bcount
= size
;
4885 bp
->b_bufsize
= bp
->b_bcount
;
4887 bp
->b_bio1
.bio_track
= NULL
;
4888 bp
->b_bio1
.bio_caller_info1
.ptr
= mbio
;
4889 bp
->b_bio1
.bio_caller_info2
.ptr
= stats
;
4894 DB_SHOW_COMMAND(buffer
, db_show_buffer
)
4897 struct buf
*bp
= (struct buf
*)addr
;
4900 db_printf("usage: show buffer <addr>\n");
4904 db_printf("b_flags = 0x%b\n", (u_int
)bp
->b_flags
, PRINT_BUF_FLAGS
);
4905 db_printf("b_cmd = %d\n", bp
->b_cmd
);
4906 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4907 "b_resid = %d\n, b_data = %p, "
4908 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4909 bp
->b_error
, bp
->b_bufsize
, bp
->b_bcount
, bp
->b_resid
,
4911 (long long)bp
->b_bio2
.bio_offset
,
4912 (long long)(bp
->b_bio2
.bio_next
?
4913 bp
->b_bio2
.bio_next
->bio_offset
: (off_t
)-1));
4914 if (bp
->b_xio
.xio_npages
) {
4916 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4917 bp
->b_xio
.xio_npages
);
4918 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
4920 m
= bp
->b_xio
.xio_pages
[i
];
4921 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m
->object
,
4922 (u_long
)m
->pindex
, (u_long
)VM_PAGE_TO_PHYS(m
));
4923 if ((i
+ 1) < bp
->b_xio
.xio_npages
)