dma: factor out mail handling code
[dragonfly.git] / sys / vfs / hammer / hammer_flusher.c
blobbdc9a6e793eacf812097420792717180c774292a
1 /*
2 * Copyright (c) 2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_flusher.c,v 1.45 2008/07/31 04:42:04 dillon Exp $
37 * HAMMER dependancy flusher thread
39 * Meta data updates create buffer dependancies which are arranged as a
40 * hierarchy of lists.
43 #include "hammer.h"
45 static void hammer_flusher_master_thread(void *arg);
46 static void hammer_flusher_slave_thread(void *arg);
47 static void hammer_flusher_flush(hammer_mount_t hmp);
48 static void hammer_flusher_flush_inode(hammer_inode_t ip,
49 hammer_transaction_t trans);
52 * Support structures for the flusher threads.
54 struct hammer_flusher_info {
55 TAILQ_ENTRY(hammer_flusher_info) entry;
56 struct hammer_mount *hmp;
57 thread_t td;
58 int runstate;
59 int count;
60 hammer_flush_group_t flg;
61 hammer_inode_t work_array[HAMMER_FLUSH_GROUP_SIZE];
64 typedef struct hammer_flusher_info *hammer_flusher_info_t;
67 * Sync all inodes pending on the flusher.
69 * All flush groups will be flushed. This does not queue dirty inodes
70 * to the flush groups, it just flushes out what has already been queued!
72 void
73 hammer_flusher_sync(hammer_mount_t hmp)
75 int seq;
77 seq = hammer_flusher_async(hmp, NULL);
78 hammer_flusher_wait(hmp, seq);
82 * Sync all inodes pending on the flusher - return immediately.
84 * All flush groups will be flushed.
86 int
87 hammer_flusher_async(hammer_mount_t hmp, hammer_flush_group_t close_flg)
89 hammer_flush_group_t flg;
90 int seq = hmp->flusher.next;
92 TAILQ_FOREACH(flg, &hmp->flush_group_list, flush_entry) {
93 if (flg->running == 0)
94 ++seq;
95 flg->closed = 1;
96 if (flg == close_flg)
97 break;
99 if (hmp->flusher.td) {
100 if (hmp->flusher.signal++ == 0)
101 wakeup(&hmp->flusher.signal);
102 } else {
103 seq = hmp->flusher.done;
105 return(seq);
109 hammer_flusher_async_one(hammer_mount_t hmp)
111 int seq;
113 if (hmp->flusher.td) {
114 seq = hmp->flusher.next;
115 if (hmp->flusher.signal++ == 0)
116 wakeup(&hmp->flusher.signal);
117 } else {
118 seq = hmp->flusher.done;
120 return(seq);
124 * Wait for the flusher to get to the specified sequence number.
125 * Signal the flusher as often as necessary to keep it going.
127 void
128 hammer_flusher_wait(hammer_mount_t hmp, int seq)
130 while ((int)(seq - hmp->flusher.done) > 0) {
131 if (hmp->flusher.act != seq) {
132 if (hmp->flusher.signal++ == 0)
133 wakeup(&hmp->flusher.signal);
135 tsleep(&hmp->flusher.done, 0, "hmrfls", 0);
139 void
140 hammer_flusher_wait_next(hammer_mount_t hmp)
142 int seq;
144 seq = hammer_flusher_async_one(hmp);
145 hammer_flusher_wait(hmp, seq);
148 void
149 hammer_flusher_create(hammer_mount_t hmp)
151 hammer_flusher_info_t info;
152 int i;
154 hmp->flusher.signal = 0;
155 hmp->flusher.act = 0;
156 hmp->flusher.done = 0;
157 hmp->flusher.next = 1;
158 hammer_ref(&hmp->flusher.finalize_lock);
159 TAILQ_INIT(&hmp->flusher.run_list);
160 TAILQ_INIT(&hmp->flusher.ready_list);
162 lwkt_create(hammer_flusher_master_thread, hmp,
163 &hmp->flusher.td, NULL, 0, -1, "hammer-M");
164 for (i = 0; i < HAMMER_MAX_FLUSHERS; ++i) {
165 info = kmalloc(sizeof(*info), hmp->m_misc, M_WAITOK|M_ZERO);
166 info->hmp = hmp;
167 TAILQ_INSERT_TAIL(&hmp->flusher.ready_list, info, entry);
168 lwkt_create(hammer_flusher_slave_thread, info,
169 &info->td, NULL, 0, -1, "hammer-S%d", i);
173 void
174 hammer_flusher_destroy(hammer_mount_t hmp)
176 hammer_flusher_info_t info;
179 * Kill the master
181 hmp->flusher.exiting = 1;
182 while (hmp->flusher.td) {
183 ++hmp->flusher.signal;
184 wakeup(&hmp->flusher.signal);
185 tsleep(&hmp->flusher.exiting, 0, "hmrwex", hz);
189 * Kill the slaves
191 while ((info = TAILQ_FIRST(&hmp->flusher.ready_list)) != NULL) {
192 KKASSERT(info->runstate == 0);
193 TAILQ_REMOVE(&hmp->flusher.ready_list, info, entry);
194 info->runstate = -1;
195 wakeup(&info->runstate);
196 while (info->td)
197 tsleep(&info->td, 0, "hmrwwc", 0);
198 kfree(info, hmp->m_misc);
203 * The master flusher thread manages the flusher sequence id and
204 * synchronization with the slave work threads.
206 static void
207 hammer_flusher_master_thread(void *arg)
209 hammer_flush_group_t flg;
210 hammer_mount_t hmp;
212 hmp = arg;
214 for (;;) {
216 * Do at least one flush cycle. We may have to update the
217 * UNDO FIFO even if no inodes are queued.
219 for (;;) {
220 while (hmp->flusher.group_lock)
221 tsleep(&hmp->flusher.group_lock, 0, "hmrhld", 0);
222 hmp->flusher.act = hmp->flusher.next;
223 ++hmp->flusher.next;
224 hammer_flusher_clean_loose_ios(hmp);
225 hammer_flusher_flush(hmp);
226 hmp->flusher.done = hmp->flusher.act;
227 wakeup(&hmp->flusher.done);
228 flg = TAILQ_FIRST(&hmp->flush_group_list);
229 if (flg == NULL || flg->closed == 0)
230 break;
231 if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
232 break;
236 * Wait for activity.
238 if (hmp->flusher.exiting && TAILQ_EMPTY(&hmp->flush_group_list))
239 break;
240 while (hmp->flusher.signal == 0)
241 tsleep(&hmp->flusher.signal, 0, "hmrwwa", 0);
244 * Flush for each count on signal but only allow one extra
245 * flush request to build up.
247 if (--hmp->flusher.signal != 0)
248 hmp->flusher.signal = 1;
252 * And we are done.
254 hmp->flusher.td = NULL;
255 wakeup(&hmp->flusher.exiting);
256 lwkt_exit();
260 * Flush all inodes in the current flush group.
262 static void
263 hammer_flusher_flush(hammer_mount_t hmp)
265 hammer_flusher_info_t info;
266 hammer_flush_group_t flg;
267 hammer_reserve_t resv;
268 hammer_inode_t ip;
269 hammer_inode_t next_ip;
270 int slave_index;
271 int count;
274 * Just in-case there's a flush race on mount
276 if (TAILQ_FIRST(&hmp->flusher.ready_list) == NULL)
277 return;
280 * We only do one flg but we may have to loop/retry.
282 count = 0;
283 while ((flg = TAILQ_FIRST(&hmp->flush_group_list)) != NULL) {
284 ++count;
285 if (hammer_debug_general & 0x0001) {
286 kprintf("hammer_flush %d ttl=%d recs=%d\n",
287 hmp->flusher.act,
288 flg->total_count, flg->refs);
290 if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
291 break;
292 hammer_start_transaction_fls(&hmp->flusher.trans, hmp);
295 * If the previous flush cycle just about exhausted our
296 * UNDO space we may have to do a dummy cycle to move the
297 * first_offset up before actually digging into a new cycle,
298 * or the new cycle will not have sufficient undo space.
300 if (hammer_flusher_undo_exhausted(&hmp->flusher.trans, 3))
301 hammer_flusher_finalize(&hmp->flusher.trans, 0);
304 * Ok, we are running this flush group now (this prevents new
305 * additions to it).
307 flg->running = 1;
308 if (hmp->next_flush_group == flg)
309 hmp->next_flush_group = TAILQ_NEXT(flg, flush_entry);
312 * Iterate the inodes in the flg's flush_list and assign
313 * them to slaves.
315 slave_index = 0;
316 info = TAILQ_FIRST(&hmp->flusher.ready_list);
317 next_ip = TAILQ_FIRST(&flg->flush_list);
319 while ((ip = next_ip) != NULL) {
320 next_ip = TAILQ_NEXT(ip, flush_entry);
322 if (++hmp->check_yield > hammer_yield_check) {
323 hmp->check_yield = 0;
324 lwkt_user_yield();
328 * Add ip to the slave's work array. The slave is
329 * not currently running.
331 info->work_array[info->count++] = ip;
332 if (info->count != HAMMER_FLUSH_GROUP_SIZE)
333 continue;
336 * Get the slave running
338 TAILQ_REMOVE(&hmp->flusher.ready_list, info, entry);
339 TAILQ_INSERT_TAIL(&hmp->flusher.run_list, info, entry);
340 info->flg = flg;
341 info->runstate = 1;
342 wakeup(&info->runstate);
345 * Get a new slave. We may have to wait for one to
346 * finish running.
348 while ((info = TAILQ_FIRST(&hmp->flusher.ready_list)) == NULL) {
349 tsleep(&hmp->flusher.ready_list, 0, "hmrfcc", 0);
354 * Run the current slave if necessary
356 if (info->count) {
357 TAILQ_REMOVE(&hmp->flusher.ready_list, info, entry);
358 TAILQ_INSERT_TAIL(&hmp->flusher.run_list, info, entry);
359 info->flg = flg;
360 info->runstate = 1;
361 wakeup(&info->runstate);
365 * Wait for all slaves to finish running
367 while (TAILQ_FIRST(&hmp->flusher.run_list) != NULL)
368 tsleep(&hmp->flusher.ready_list, 0, "hmrfcc", 0);
371 * Do the final finalization, clean up
373 hammer_flusher_finalize(&hmp->flusher.trans, 1);
374 hmp->flusher.tid = hmp->flusher.trans.tid;
376 hammer_done_transaction(&hmp->flusher.trans);
379 * Loop up on the same flg. If the flg is done clean it up
380 * and break out. We only flush one flg.
382 if (TAILQ_FIRST(&flg->flush_list) == NULL) {
383 KKASSERT(TAILQ_EMPTY(&flg->flush_list));
384 KKASSERT(flg->refs == 0);
385 TAILQ_REMOVE(&hmp->flush_group_list, flg, flush_entry);
386 kfree(flg, hmp->m_misc);
387 break;
392 * We may have pure meta-data to flush, or we may have to finish
393 * cycling the UNDO FIFO, even if there were no flush groups.
395 if (count == 0 && hammer_flusher_haswork(hmp)) {
396 hammer_start_transaction_fls(&hmp->flusher.trans, hmp);
397 hammer_flusher_finalize(&hmp->flusher.trans, 1);
398 hammer_done_transaction(&hmp->flusher.trans);
402 * Clean up any freed big-blocks (typically zone-2).
403 * resv->flush_group is typically set several flush groups ahead
404 * of the free to ensure that the freed block is not reused until
405 * it can no longer be reused.
407 while ((resv = TAILQ_FIRST(&hmp->delay_list)) != NULL) {
408 if (resv->flush_group != hmp->flusher.act)
409 break;
410 hammer_reserve_clrdelay(hmp, resv);
416 * The slave flusher thread pulls work off the master flush_list until no
417 * work is left.
419 static void
420 hammer_flusher_slave_thread(void *arg)
422 hammer_flush_group_t flg;
423 hammer_flusher_info_t info;
424 hammer_mount_t hmp;
425 hammer_inode_t ip;
426 int i;
428 info = arg;
429 hmp = info->hmp;
431 for (;;) {
432 while (info->runstate == 0)
433 tsleep(&info->runstate, 0, "hmrssw", 0);
434 if (info->runstate < 0)
435 break;
436 flg = info->flg;
438 for (i = 0; i < info->count; ++i) {
439 ip = info->work_array[i];
440 hammer_flusher_flush_inode(ip, &hmp->flusher.trans);
441 ++hammer_stats_inode_flushes;
443 info->count = 0;
444 info->runstate = 0;
445 TAILQ_REMOVE(&hmp->flusher.run_list, info, entry);
446 TAILQ_INSERT_TAIL(&hmp->flusher.ready_list, info, entry);
447 wakeup(&hmp->flusher.ready_list);
449 info->td = NULL;
450 wakeup(&info->td);
451 lwkt_exit();
454 void
455 hammer_flusher_clean_loose_ios(hammer_mount_t hmp)
457 hammer_buffer_t buffer;
458 hammer_io_t io;
461 * loose ends - buffers without bp's aren't tracked by the kernel
462 * and can build up, so clean them out. This can occur when an
463 * IO completes on a buffer with no references left.
465 if ((io = TAILQ_FIRST(&hmp->lose_list)) != NULL) {
466 crit_enter(); /* biodone() race */
467 while ((io = TAILQ_FIRST(&hmp->lose_list)) != NULL) {
468 KKASSERT(io->mod_list == &hmp->lose_list);
469 TAILQ_REMOVE(&hmp->lose_list, io, mod_entry);
470 io->mod_list = NULL;
471 if (io->lock.refs == 0)
472 ++hammer_count_refedbufs;
473 hammer_ref(&io->lock);
474 buffer = (void *)io;
475 hammer_rel_buffer(buffer, 0);
477 crit_exit();
482 * Flush a single inode that is part of a flush group.
484 * Flusher errors are extremely serious, even ENOSPC shouldn't occur because
485 * the front-end should have reserved sufficient space on the media. Any
486 * error other then EWOULDBLOCK will force the mount to be read-only.
488 static
489 void
490 hammer_flusher_flush_inode(hammer_inode_t ip, hammer_transaction_t trans)
492 hammer_mount_t hmp = ip->hmp;
493 int error;
495 hammer_flusher_clean_loose_ios(hmp);
496 error = hammer_sync_inode(trans, ip);
499 * EWOULDBLOCK can happen under normal operation, all other errors
500 * are considered extremely serious. We must set WOULDBLOCK
501 * mechanics to deal with the mess left over from the abort of the
502 * previous flush.
504 if (error) {
505 ip->flags |= HAMMER_INODE_WOULDBLOCK;
506 if (error == EWOULDBLOCK)
507 error = 0;
509 hammer_flush_inode_done(ip, error);
510 while (hmp->flusher.finalize_want)
511 tsleep(&hmp->flusher.finalize_want, 0, "hmrsxx", 0);
512 if (hammer_flusher_undo_exhausted(trans, 1)) {
513 kprintf("HAMMER: Warning: UNDO area too small!\n");
514 hammer_flusher_finalize(trans, 1);
515 } else if (hammer_flusher_meta_limit(trans->hmp)) {
516 hammer_flusher_finalize(trans, 0);
521 * Return non-zero if the UNDO area has less then (QUARTER / 4) of its
522 * space left.
524 * 1/4 - Emergency free undo space level. Below this point the flusher
525 * will finalize even if directory dependancies have not been resolved.
527 * 2/4 - Used by the pruning and reblocking code. These functions may be
528 * running in parallel with a flush and cannot be allowed to drop
529 * available undo space to emergency levels.
531 * 3/4 - Used at the beginning of a flush to force-sync the volume header
532 * to give the flush plenty of runway to work in.
535 hammer_flusher_undo_exhausted(hammer_transaction_t trans, int quarter)
537 if (hammer_undo_space(trans) <
538 hammer_undo_max(trans->hmp) * quarter / 4) {
539 return(1);
540 } else {
541 return(0);
546 * Flush all pending UNDOs, wait for write completion, update the volume
547 * header with the new UNDO end position, and flush it. Then
548 * asynchronously flush the meta-data.
550 * If this is the last finalization in a flush group we also synchronize
551 * our cached blockmap and set hmp->flusher_undo_start and our cached undo
552 * fifo first_offset so the next flush resets the FIFO pointers.
554 * If this is not final it is being called because too many dirty meta-data
555 * buffers have built up and must be flushed with UNDO synchronization to
556 * avoid a buffer cache deadlock.
558 void
559 hammer_flusher_finalize(hammer_transaction_t trans, int final)
561 hammer_volume_t root_volume;
562 hammer_blockmap_t cundomap, dundomap;
563 hammer_mount_t hmp;
564 hammer_io_t io;
565 int count;
566 int i;
568 hmp = trans->hmp;
569 root_volume = trans->rootvol;
572 * Exclusively lock the flusher. This guarantees that all dirty
573 * buffers will be idled (have a mod-count of 0).
575 ++hmp->flusher.finalize_want;
576 hammer_lock_ex(&hmp->flusher.finalize_lock);
579 * If this isn't the final sync several threads may have hit the
580 * meta-limit at the same time and raced. Only sync if we really
581 * have to, after acquiring the lock.
583 if (final == 0 && !hammer_flusher_meta_limit(hmp))
584 goto done;
586 if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
587 goto done;
590 * Flush data buffers. This can occur asynchronously and at any
591 * time. We must interlock against the frontend direct-data write
592 * but do not have to acquire the sync-lock yet.
594 count = 0;
595 while ((io = TAILQ_FIRST(&hmp->data_list)) != NULL) {
596 if (io->ioerror)
597 break;
598 if (io->lock.refs == 0)
599 ++hammer_count_refedbufs;
600 hammer_ref(&io->lock);
601 hammer_io_write_interlock(io);
602 KKASSERT(io->type != HAMMER_STRUCTURE_VOLUME);
603 hammer_io_flush(io, 0);
604 hammer_io_done_interlock(io);
605 hammer_rel_buffer((hammer_buffer_t)io, 0);
606 ++count;
610 * The sync-lock is required for the remaining sequence. This lock
611 * prevents meta-data from being modified.
613 hammer_sync_lock_ex(trans);
616 * If we have been asked to finalize the volume header sync the
617 * cached blockmap to the on-disk blockmap. Generate an UNDO
618 * record for the update.
620 if (final) {
621 cundomap = &hmp->blockmap[0];
622 dundomap = &root_volume->ondisk->vol0_blockmap[0];
623 if (root_volume->io.modified) {
624 hammer_modify_volume(trans, root_volume,
625 dundomap, sizeof(hmp->blockmap));
626 for (i = 0; i < HAMMER_MAX_ZONES; ++i)
627 hammer_crc_set_blockmap(&cundomap[i]);
628 bcopy(cundomap, dundomap, sizeof(hmp->blockmap));
629 hammer_modify_volume_done(root_volume);
634 * Flush UNDOs
636 count = 0;
637 while ((io = TAILQ_FIRST(&hmp->undo_list)) != NULL) {
638 if (io->ioerror)
639 break;
640 KKASSERT(io->modify_refs == 0);
641 if (io->lock.refs == 0)
642 ++hammer_count_refedbufs;
643 hammer_ref(&io->lock);
644 KKASSERT(io->type != HAMMER_STRUCTURE_VOLUME);
645 hammer_io_flush(io, hammer_undo_reclaim(io));
646 hammer_rel_buffer((hammer_buffer_t)io, 0);
647 ++count;
651 * Wait for I/Os to complete
653 hammer_flusher_clean_loose_ios(hmp);
654 hammer_io_wait_all(hmp, "hmrfl1");
656 if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
657 goto failed;
660 * Update the on-disk volume header with new UNDO FIFO end position
661 * (do not generate new UNDO records for this change). We have to
662 * do this for the UNDO FIFO whether (final) is set or not.
664 * Also update the on-disk next_tid field. This does not require
665 * an UNDO. However, because our TID is generated before we get
666 * the sync lock another sync may have beat us to the punch.
668 * This also has the side effect of updating first_offset based on
669 * a prior finalization when the first finalization of the next flush
670 * cycle occurs, removing any undo info from the prior finalization
671 * from consideration.
673 * The volume header will be flushed out synchronously.
675 dundomap = &root_volume->ondisk->vol0_blockmap[HAMMER_ZONE_UNDO_INDEX];
676 cundomap = &hmp->blockmap[HAMMER_ZONE_UNDO_INDEX];
678 if (dundomap->first_offset != cundomap->first_offset ||
679 dundomap->next_offset != cundomap->next_offset) {
680 hammer_modify_volume(NULL, root_volume, NULL, 0);
681 dundomap->first_offset = cundomap->first_offset;
682 dundomap->next_offset = cundomap->next_offset;
683 hammer_crc_set_blockmap(dundomap);
684 hammer_modify_volume_done(root_volume);
688 * vol0_next_tid is used for TID selection and is updated without
689 * an UNDO so we do not reuse a TID that may have been rolled-back.
691 * vol0_last_tid is the highest fully-synchronized TID. It is
692 * set-up when the UNDO fifo is fully synced, later on (not here).
694 if (root_volume->io.modified) {
695 hammer_modify_volume(NULL, root_volume, NULL, 0);
696 if (root_volume->ondisk->vol0_next_tid < trans->tid)
697 root_volume->ondisk->vol0_next_tid = trans->tid;
698 hammer_crc_set_volume(root_volume->ondisk);
699 hammer_modify_volume_done(root_volume);
700 hammer_io_flush(&root_volume->io, 0);
704 * Wait for I/Os to complete
706 hammer_flusher_clean_loose_ios(hmp);
707 hammer_io_wait_all(hmp, "hmrfl2");
709 if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
710 goto failed;
713 * Flush meta-data. The meta-data will be undone if we crash
714 * so we can safely flush it asynchronously.
716 * Repeated catchups will wind up flushing this update's meta-data
717 * and the UNDO buffers for the next update simultaniously. This
718 * is ok.
720 count = 0;
721 while ((io = TAILQ_FIRST(&hmp->meta_list)) != NULL) {
722 if (io->ioerror)
723 break;
724 KKASSERT(io->modify_refs == 0);
725 if (io->lock.refs == 0)
726 ++hammer_count_refedbufs;
727 hammer_ref(&io->lock);
728 KKASSERT(io->type != HAMMER_STRUCTURE_VOLUME);
729 hammer_io_flush(io, 0);
730 hammer_rel_buffer((hammer_buffer_t)io, 0);
731 ++count;
735 * If this is the final finalization for the flush group set
736 * up for the next sequence by setting a new first_offset in
737 * our cached blockmap and clearing the undo history.
739 * Even though we have updated our cached first_offset, the on-disk
740 * first_offset still governs available-undo-space calculations.
742 if (final) {
743 cundomap = &hmp->blockmap[HAMMER_ZONE_UNDO_INDEX];
744 if (cundomap->first_offset == cundomap->next_offset) {
745 hmp->hflags &= ~HMNT_UNDO_DIRTY;
746 } else {
747 cundomap->first_offset = cundomap->next_offset;
748 hmp->hflags |= HMNT_UNDO_DIRTY;
750 hammer_clear_undo_history(hmp);
753 * Flush tid sequencing. flush_tid1 is fully synchronized,
754 * meaning a crash will not roll it back. flush_tid2 has
755 * been written out asynchronously and a crash will roll
756 * it back. flush_tid1 is used for all mirroring masters.
758 if (hmp->flush_tid1 != hmp->flush_tid2) {
759 hmp->flush_tid1 = hmp->flush_tid2;
760 wakeup(&hmp->flush_tid1);
762 hmp->flush_tid2 = trans->tid;
766 * Cleanup. Report any critical errors.
768 failed:
769 hammer_sync_unlock(trans);
771 if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) {
772 kprintf("HAMMER(%s): Critical write error during flush, "
773 "refusing to sync UNDO FIFO\n",
774 root_volume->ondisk->vol_name);
777 done:
778 hammer_unlock(&hmp->flusher.finalize_lock);
780 if (--hmp->flusher.finalize_want == 0)
781 wakeup(&hmp->flusher.finalize_want);
782 hammer_stats_commits += final;
786 * Return non-zero if too many dirty meta-data buffers have built up.
788 * Since we cannot allow such buffers to flush until we have dealt with
789 * the UNDOs, we risk deadlocking the kernel's buffer cache.
792 hammer_flusher_meta_limit(hammer_mount_t hmp)
794 if (hmp->locked_dirty_space + hmp->io_running_space >
795 hammer_limit_dirtybufspace) {
796 return(1);
798 return(0);
802 * Return non-zero if too many dirty meta-data buffers have built up.
804 * This version is used by background operations (mirror, prune, reblock)
805 * to leave room for foreground operations.
808 hammer_flusher_meta_halflimit(hammer_mount_t hmp)
810 if (hmp->locked_dirty_space + hmp->io_running_space >
811 hammer_limit_dirtybufspace / 2) {
812 return(1);
814 return(0);
818 * Return non-zero if the flusher still has something to flush.
821 hammer_flusher_haswork(hammer_mount_t hmp)
823 if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
824 return(0);
825 if (TAILQ_FIRST(&hmp->flush_group_list) || /* dirty inodes */
826 TAILQ_FIRST(&hmp->volu_list) || /* dirty bufffers */
827 TAILQ_FIRST(&hmp->undo_list) ||
828 TAILQ_FIRST(&hmp->data_list) ||
829 TAILQ_FIRST(&hmp->meta_list) ||
830 (hmp->hflags & HMNT_UNDO_DIRTY) /* UNDO FIFO sync */
832 return(1);
834 return(0);