kernel - Improve physio performance
[dragonfly.git] / sys / platform / pc64 / x86_64 / machdep.c
blob99fe54e82dd0baf06a1abfffcac7cfb568998b7a
1 /*-
2 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 2003 Peter Wemm.
5 * Copyright (c) 2008 The DragonFly Project.
6 * All rights reserved.
8 * This code is derived from software contributed to Berkeley by
9 * William Jolitz.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the University of
22 * California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
39 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
40 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_compat.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_directio.h"
49 #include "opt_inet.h"
50 #include "opt_msgbuf.h"
51 #include "opt_swap.h"
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/sysproto.h>
56 #include <sys/signalvar.h>
57 #include <sys/kernel.h>
58 #include <sys/linker.h>
59 #include <sys/malloc.h>
60 #include <sys/proc.h>
61 #include <sys/priv.h>
62 #include <sys/buf.h>
63 #include <sys/reboot.h>
64 #include <sys/mbuf.h>
65 #include <sys/msgbuf.h>
66 #include <sys/sysent.h>
67 #include <sys/sysctl.h>
68 #include <sys/vmmeter.h>
69 #include <sys/bus.h>
70 #include <sys/usched.h>
71 #include <sys/reg.h>
72 #include <sys/sbuf.h>
73 #include <sys/ctype.h>
74 #include <sys/serialize.h>
75 #include <sys/systimer.h>
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_pager.h>
85 #include <vm/vm_extern.h>
87 #include <sys/thread2.h>
88 #include <sys/mplock2.h>
89 #include <sys/mutex2.h>
91 #include <sys/user.h>
92 #include <sys/exec.h>
93 #include <sys/cons.h>
95 #include <sys/efi.h>
97 #include <ddb/ddb.h>
99 #include <machine/cpu.h>
100 #include <machine/clock.h>
101 #include <machine/specialreg.h>
102 #if 0 /* JG */
103 #include <machine/bootinfo.h>
104 #endif
105 #include <machine/md_var.h>
106 #include <machine/metadata.h>
107 #include <machine/pc/bios.h>
108 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
109 #include <machine/globaldata.h> /* CPU_prvspace */
110 #include <machine/smp.h>
111 #ifdef PERFMON
112 #include <machine/perfmon.h>
113 #endif
114 #include <machine/cputypes.h>
115 #include <machine/intr_machdep.h>
116 #include <machine/framebuffer.h>
118 #ifdef OLD_BUS_ARCH
119 #include <bus/isa/isa_device.h>
120 #endif
121 #include <machine_base/isa/isa_intr.h>
122 #include <bus/isa/rtc.h>
123 #include <sys/random.h>
124 #include <sys/ptrace.h>
125 #include <machine/sigframe.h>
127 #include <sys/machintr.h>
128 #include <machine_base/icu/icu_abi.h>
129 #include <machine_base/icu/elcr_var.h>
130 #include <machine_base/apic/lapic.h>
131 #include <machine_base/apic/ioapic.h>
132 #include <machine_base/apic/ioapic_abi.h>
133 #include <machine/mptable.h>
135 #define PHYSMAP_ENTRIES 10
137 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
139 extern void printcpuinfo(void); /* XXX header file */
140 extern void identify_cpu(void);
141 #if 0 /* JG */
142 extern void finishidentcpu(void);
143 #endif
144 extern void panicifcpuunsupported(void);
146 static void cpu_startup(void *);
147 static void pic_finish(void *);
148 static void cpu_finish(void *);
150 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
151 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
152 #ifdef DIRECTIO
153 extern void ffs_rawread_setup(void);
154 #endif /* DIRECTIO */
155 static void init_locks(void);
157 extern void pcpu_timer_always(struct intrframe *);
159 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
160 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
161 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
163 #ifdef DDB
164 extern vm_offset_t ksym_start, ksym_end;
165 #endif
167 struct privatespace CPU_prvspace_bsp __aligned(4096);
168 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
170 int _udatasel, _ucodesel, _ucode32sel;
171 u_long atdevbase;
172 int64_t tsc_offsets[MAXCPU];
173 cpumask_t smp_idleinvl_mask;
174 cpumask_t smp_idleinvl_reqs;
176 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
178 #if defined(SWTCH_OPTIM_STATS)
179 extern int swtch_optim_stats;
180 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
181 CTLFLAG_RD, &swtch_optim_stats, 0, "");
182 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
183 CTLFLAG_RD, &tlb_flush_count, 0, "");
184 #endif
185 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
186 CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
187 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
188 "monitor/mwait target state");
190 #define CPU_MWAIT_HAS_CX \
191 ((cpu_feature2 & CPUID2_MON) && \
192 (cpu_mwait_feature & CPUID_MWAIT_EXT))
194 #define CPU_MWAIT_CX_NAMELEN 16
196 #define CPU_MWAIT_C1 1
197 #define CPU_MWAIT_C2 2
198 #define CPU_MWAIT_C3 3
199 #define CPU_MWAIT_CX_MAX 8
201 #define CPU_MWAIT_HINT_AUTO -1 /* C1 and C2 */
202 #define CPU_MWAIT_HINT_AUTODEEP -2 /* C3+ */
204 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
205 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
207 struct cpu_mwait_cx {
208 int subcnt;
209 char name[4];
210 struct sysctl_ctx_list sysctl_ctx;
211 struct sysctl_oid *sysctl_tree;
213 static struct cpu_mwait_cx cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
214 static char cpu_mwait_cx_supported[256];
216 static int cpu_mwait_c1_hints_cnt;
217 static int cpu_mwait_hints_cnt;
218 static int *cpu_mwait_hints;
220 static int cpu_mwait_deep_hints_cnt;
221 static int *cpu_mwait_deep_hints;
223 #define CPU_IDLE_REPEAT_DEFAULT 750
225 static u_int cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
226 static u_long cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
227 static u_int cpu_mwait_repeat_shift = 1;
229 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB 0x1
230 #define CPU_MWAIT_C3_PREAMBLE_BM_STS 0x2
232 static int cpu_mwait_c3_preamble =
233 CPU_MWAIT_C3_PREAMBLE_BM_ARB |
234 CPU_MWAIT_C3_PREAMBLE_BM_STS;
236 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
237 cpu_mwait_cx_supported, 0, "MWAIT supported C states");
238 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
239 &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
241 static int cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
242 int *, boolean_t);
243 static int cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
244 static int cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
245 static int cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
247 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
248 NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
249 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
250 NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
251 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
252 &cpu_mwait_repeat_shift, 0, "");
254 long physmem = 0;
256 u_long ebda_addr = 0;
258 int imcr_present = 0;
260 int naps = 0; /* # of Applications processors */
262 u_int base_memory;
263 struct mtx dt_lock; /* lock for GDT and LDT */
265 static int
266 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
268 u_long pmem = ctob(physmem);
270 int error = sysctl_handle_long(oidp, &pmem, 0, req);
271 return (error);
274 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
275 0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
277 static int
278 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
280 int error = sysctl_handle_int(oidp, 0,
281 ctob(physmem - vmstats.v_wire_count), req);
282 return (error);
285 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
286 0, 0, sysctl_hw_usermem, "IU", "");
288 static int
289 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
291 int error = sysctl_handle_int(oidp, 0,
292 x86_64_btop(avail_end - avail_start), req);
293 return (error);
296 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
297 0, 0, sysctl_hw_availpages, "I", "");
299 vm_paddr_t Maxmem;
300 vm_paddr_t Realmem;
303 * The number of PHYSMAP entries must be one less than the number of
304 * PHYSSEG entries because the PHYSMAP entry that spans the largest
305 * physical address that is accessible by ISA DMA is split into two
306 * PHYSSEG entries.
308 #define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1))
310 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
311 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
313 /* must be 2 less so 0 0 can signal end of chunks */
314 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
315 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
317 static vm_offset_t buffer_sva, buffer_eva;
318 vm_offset_t clean_sva, clean_eva;
319 static vm_offset_t pager_sva, pager_eva;
320 static struct trapframe proc0_tf;
322 static void
323 cpu_startup(void *dummy)
325 caddr_t v;
326 vm_size_t size = 0;
327 vm_offset_t firstaddr;
330 * Good {morning,afternoon,evening,night}.
332 kprintf("%s", version);
333 startrtclock();
334 printcpuinfo();
335 panicifcpuunsupported();
336 #ifdef PERFMON
337 perfmon_init();
338 #endif
339 kprintf("real memory = %ju (%ju MB)\n",
340 (intmax_t)Realmem,
341 (intmax_t)Realmem / 1024 / 1024);
343 * Display any holes after the first chunk of extended memory.
345 if (bootverbose) {
346 int indx;
348 kprintf("Physical memory chunk(s):\n");
349 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
350 vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
352 kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
353 (intmax_t)phys_avail[indx],
354 (intmax_t)phys_avail[indx + 1] - 1,
355 (intmax_t)size1,
356 (intmax_t)(size1 / PAGE_SIZE));
361 * Allocate space for system data structures.
362 * The first available kernel virtual address is in "v".
363 * As pages of kernel virtual memory are allocated, "v" is incremented.
364 * As pages of memory are allocated and cleared,
365 * "firstaddr" is incremented.
366 * An index into the kernel page table corresponding to the
367 * virtual memory address maintained in "v" is kept in "mapaddr".
371 * Make two passes. The first pass calculates how much memory is
372 * needed and allocates it. The second pass assigns virtual
373 * addresses to the various data structures.
375 firstaddr = 0;
376 again:
377 v = (caddr_t)firstaddr;
379 #define valloc(name, type, num) \
380 (name) = (type *)v; v = (caddr_t)((name)+(num))
381 #define valloclim(name, type, num, lim) \
382 (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
385 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
386 * For the first 64MB of ram nominally allocate sufficient buffers to
387 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
388 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing
389 * the buffer cache we limit the eventual kva reservation to
390 * maxbcache bytes.
392 * factor represents the 1/4 x ram conversion.
394 if (nbuf == 0) {
395 long factor = 4 * BKVASIZE / 1024;
396 long kbytes = physmem * (PAGE_SIZE / 1024);
398 nbuf = 50;
399 if (kbytes > 4096)
400 nbuf += min((kbytes - 4096) / factor, 65536 / factor);
401 if (kbytes > 65536)
402 nbuf += (kbytes - 65536) * 2 / (factor * 5);
403 if (maxbcache && nbuf > maxbcache / BKVASIZE)
404 nbuf = maxbcache / BKVASIZE;
408 * Do not allow the buffer_map to be more then 1/2 the size of the
409 * kernel_map.
411 if (nbuf > (virtual_end - virtual_start +
412 virtual2_end - virtual2_start) / (BKVASIZE * 2)) {
413 nbuf = (virtual_end - virtual_start +
414 virtual2_end - virtual2_start) / (BKVASIZE * 2);
415 kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
419 * Do not allow the buffer_map to use more than 50% of available
420 * physical-equivalent memory. Since the VM pages which back
421 * individual buffers are typically wired, having too many bufs
422 * can prevent the system from paging properly.
424 if (nbuf > physmem * PAGE_SIZE / (BKVASIZE * 2)) {
425 nbuf = physmem * PAGE_SIZE / (BKVASIZE * 2);
426 kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
430 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
431 * the valloc space which is just the virtual_end - virtual_start
432 * section. We use valloc() to allocate the buf header array.
434 if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
435 nbuf = (virtual_end - virtual_start) /
436 sizeof(struct buf) / 2;
437 kprintf("Warning: nbufs capped at %ld due to valloc "
438 "considerations", nbuf);
441 nswbuf_mem = lmax(lmin(nbuf / 32, 256), 8);
442 #ifdef NSWBUF_MIN
443 if (nswbuf_mem < NSWBUF_MIN)
444 nswbuf_mem = NSWBUF_MIN;
445 #endif
446 nswbuf_kva = lmax(lmin(nbuf / 4, 256), 16);
447 #ifdef NSWBUF_MIN
448 if (nswbuf_kva < NSWBUF_MIN)
449 nswbuf_kva = NSWBUF_MIN;
450 #endif
451 #ifdef DIRECTIO
452 ffs_rawread_setup();
453 #endif
455 valloc(swbuf_mem, struct buf, nswbuf_mem);
456 valloc(swbuf_kva, struct buf, nswbuf_kva);
457 valloc(buf, struct buf, nbuf);
460 * End of first pass, size has been calculated so allocate memory
462 if (firstaddr == 0) {
463 size = (vm_size_t)(v - firstaddr);
464 firstaddr = kmem_alloc(&kernel_map, round_page(size));
465 if (firstaddr == 0)
466 panic("startup: no room for tables");
467 goto again;
471 * End of second pass, addresses have been assigned
473 * nbuf is an int, make sure we don't overflow the field.
475 * On 64-bit systems we always reserve maximal allocations for
476 * buffer cache buffers and there are no fragmentation issues,
477 * so the KVA segment does not have to be excessively oversized.
479 if ((vm_size_t)(v - firstaddr) != size)
480 panic("startup: table size inconsistency");
482 kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
483 ((vm_offset_t)(nbuf + 16) * BKVASIZE) +
484 ((nswbuf_mem + nswbuf_kva) * MAXPHYS) + pager_map_size);
485 kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
486 ((vm_offset_t)(nbuf + 16) * BKVASIZE));
487 buffer_map.system_map = 1;
488 kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
489 ((vm_offset_t)(nswbuf_mem + nswbuf_kva) * MAXPHYS) +
490 pager_map_size);
491 pager_map.system_map = 1;
492 kprintf("avail memory = %ju (%ju MB)\n",
493 (uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
494 (uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
495 1024 / 1024);
498 struct cpu_idle_stat {
499 int hint;
500 int reserved;
501 u_long halt;
502 u_long spin;
503 u_long repeat;
504 u_long repeat_last;
505 u_long repeat_delta;
506 u_long mwait_cx[CPU_MWAIT_CX_MAX];
507 } __cachealign;
509 #define CPU_IDLE_STAT_HALT -1
510 #define CPU_IDLE_STAT_SPIN -2
512 static struct cpu_idle_stat cpu_idle_stats[MAXCPU];
514 static int
515 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
517 int idx = arg2, cpu, error;
518 u_long val = 0;
520 if (idx == CPU_IDLE_STAT_HALT) {
521 for (cpu = 0; cpu < ncpus; ++cpu)
522 val += cpu_idle_stats[cpu].halt;
523 } else if (idx == CPU_IDLE_STAT_SPIN) {
524 for (cpu = 0; cpu < ncpus; ++cpu)
525 val += cpu_idle_stats[cpu].spin;
526 } else {
527 KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
528 ("invalid index %d", idx));
529 for (cpu = 0; cpu < ncpus; ++cpu)
530 val += cpu_idle_stats[cpu].mwait_cx[idx];
533 error = sysctl_handle_quad(oidp, &val, 0, req);
534 if (error || req->newptr == NULL)
535 return error;
537 if (idx == CPU_IDLE_STAT_HALT) {
538 for (cpu = 0; cpu < ncpus; ++cpu)
539 cpu_idle_stats[cpu].halt = 0;
540 cpu_idle_stats[0].halt = val;
541 } else if (idx == CPU_IDLE_STAT_SPIN) {
542 for (cpu = 0; cpu < ncpus; ++cpu)
543 cpu_idle_stats[cpu].spin = 0;
544 cpu_idle_stats[0].spin = val;
545 } else {
546 KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
547 ("invalid index %d", idx));
548 for (cpu = 0; cpu < ncpus; ++cpu)
549 cpu_idle_stats[cpu].mwait_cx[idx] = 0;
550 cpu_idle_stats[0].mwait_cx[idx] = val;
552 return 0;
555 static void
556 cpu_mwait_attach(void)
558 struct sbuf sb;
559 int hint_idx, i;
561 if (!CPU_MWAIT_HAS_CX)
562 return;
564 if (cpu_vendor_id == CPU_VENDOR_INTEL &&
565 (CPUID_TO_FAMILY(cpu_id) > 0xf ||
566 (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
567 CPUID_TO_MODEL(cpu_id) >= 0xf))) {
568 int bm_sts = 1;
571 * Pentium dual-core, Core 2 and beyond do not need any
572 * additional activities to enter deep C-state, i.e. C3(+).
574 cpu_mwait_cx_no_bmarb();
576 TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
577 if (!bm_sts)
578 cpu_mwait_cx_no_bmsts();
581 sbuf_new(&sb, cpu_mwait_cx_supported,
582 sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
584 for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
585 struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
586 int sub;
588 ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
590 sysctl_ctx_init(&cx->sysctl_ctx);
591 cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
592 SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
593 cx->name, CTLFLAG_RW, NULL, "Cx control/info");
594 if (cx->sysctl_tree == NULL)
595 continue;
597 cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
598 SYSCTL_ADD_INT(&cx->sysctl_ctx,
599 SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
600 "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
601 "sub-state count");
602 SYSCTL_ADD_PROC(&cx->sysctl_ctx,
603 SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
604 "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
605 i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
607 for (sub = 0; sub < cx->subcnt; ++sub)
608 sbuf_printf(&sb, "C%d/%d ", i, sub);
610 sbuf_trim(&sb);
611 sbuf_finish(&sb);
614 * Non-deep C-states
616 cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
617 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
618 cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
619 cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
620 M_DEVBUF, M_WAITOK);
622 hint_idx = 0;
623 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
624 int j, subcnt;
626 subcnt = cpu_mwait_cx_info[i].subcnt;
627 for (j = 0; j < subcnt; ++j) {
628 KASSERT(hint_idx < cpu_mwait_hints_cnt,
629 ("invalid mwait hint index %d", hint_idx));
630 cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
631 ++hint_idx;
634 KASSERT(hint_idx == cpu_mwait_hints_cnt,
635 ("mwait hint count %d != index %d",
636 cpu_mwait_hints_cnt, hint_idx));
638 if (bootverbose) {
639 kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
640 for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
641 int hint = cpu_mwait_hints[i];
643 kprintf(" C%d/%d hint 0x%04x\n",
644 MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
645 hint);
650 * Deep C-states
652 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
653 cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
654 cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
655 M_DEVBUF, M_WAITOK);
657 hint_idx = 0;
658 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
659 int j, subcnt;
661 subcnt = cpu_mwait_cx_info[i].subcnt;
662 for (j = 0; j < subcnt; ++j) {
663 KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
664 ("invalid mwait deep hint index %d", hint_idx));
665 cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
666 ++hint_idx;
669 KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
670 ("mwait deep hint count %d != index %d",
671 cpu_mwait_deep_hints_cnt, hint_idx));
673 if (bootverbose) {
674 kprintf("MWAIT deep hints:\n");
675 for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
676 int hint = cpu_mwait_deep_hints[i];
678 kprintf(" C%d/%d hint 0x%04x\n",
679 MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
680 hint);
683 cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
685 for (i = 0; i < ncpus; ++i) {
686 char name[16];
688 ksnprintf(name, sizeof(name), "idle%d", i);
689 SYSCTL_ADD_PROC(NULL,
690 SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
691 name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
692 0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
696 static void
697 cpu_finish(void *dummy __unused)
699 cpu_setregs();
700 cpu_mwait_attach();
703 static void
704 pic_finish(void *dummy __unused)
706 /* Log ELCR information */
707 elcr_dump();
709 /* Log MPTABLE information */
710 mptable_pci_int_dump();
712 /* Finalize PCI */
713 MachIntrABI.finalize();
717 * Send an interrupt to process.
719 * Stack is set up to allow sigcode stored
720 * at top to call routine, followed by kcall
721 * to sigreturn routine below. After sigreturn
722 * resets the signal mask, the stack, and the
723 * frame pointer, it returns to the user
724 * specified pc, psl.
726 void
727 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
729 struct lwp *lp = curthread->td_lwp;
730 struct proc *p = lp->lwp_proc;
731 struct trapframe *regs;
732 struct sigacts *psp = p->p_sigacts;
733 struct sigframe sf, *sfp;
734 int oonstack;
735 char *sp;
737 regs = lp->lwp_md.md_regs;
738 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
740 /* Save user context */
741 bzero(&sf, sizeof(struct sigframe));
742 sf.sf_uc.uc_sigmask = *mask;
743 sf.sf_uc.uc_stack = lp->lwp_sigstk;
744 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
745 KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
746 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
748 /* Make the size of the saved context visible to userland */
749 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
751 /* Allocate and validate space for the signal handler context. */
752 if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
753 SIGISMEMBER(psp->ps_sigonstack, sig)) {
754 sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
755 sizeof(struct sigframe));
756 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
757 } else {
758 /* We take red zone into account */
759 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
763 * XXX AVX needs 64-byte alignment but sigframe has other fields and
764 * the embedded ucontext is not at the front, so aligning this won't
765 * help us. Fortunately we bcopy in/out of the sigframe, so the
766 * kernel is ok.
768 * The problem though is if userland winds up trying to use the
769 * context directly.
771 sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
773 /* Translate the signal is appropriate */
774 if (p->p_sysent->sv_sigtbl) {
775 if (sig <= p->p_sysent->sv_sigsize)
776 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
780 * Build the argument list for the signal handler.
782 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
784 regs->tf_rdi = sig; /* argument 1 */
785 regs->tf_rdx = (register_t)&sfp->sf_uc; /* argument 3 */
787 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
789 * Signal handler installed with SA_SIGINFO.
791 * action(signo, siginfo, ucontext)
793 regs->tf_rsi = (register_t)&sfp->sf_si; /* argument 2 */
794 regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
795 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
797 /* fill siginfo structure */
798 sf.sf_si.si_signo = sig;
799 sf.sf_si.si_code = code;
800 sf.sf_si.si_addr = (void *)regs->tf_addr;
801 } else {
803 * Old FreeBSD-style arguments.
805 * handler (signo, code, [uc], addr)
807 regs->tf_rsi = (register_t)code; /* argument 2 */
808 regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
809 sf.sf_ahu.sf_handler = catcher;
813 * If we're a vm86 process, we want to save the segment registers.
814 * We also change eflags to be our emulated eflags, not the actual
815 * eflags.
817 #if 0 /* JG */
818 if (regs->tf_eflags & PSL_VM) {
819 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
820 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
822 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
823 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
824 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
825 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
827 if (vm86->vm86_has_vme == 0)
828 sf.sf_uc.uc_mcontext.mc_eflags =
829 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
830 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
833 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
834 * syscalls made by the signal handler. This just avoids
835 * wasting time for our lazy fixup of such faults. PSL_NT
836 * does nothing in vm86 mode, but vm86 programs can set it
837 * almost legitimately in probes for old cpu types.
839 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
841 #endif
844 * Save the FPU state and reinit the FP unit
846 npxpush(&sf.sf_uc.uc_mcontext);
849 * Copy the sigframe out to the user's stack.
851 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
853 * Something is wrong with the stack pointer.
854 * ...Kill the process.
856 sigexit(lp, SIGILL);
859 regs->tf_rsp = (register_t)sfp;
860 regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
863 * i386 abi specifies that the direction flag must be cleared
864 * on function entry
866 regs->tf_rflags &= ~(PSL_T|PSL_D);
869 * 64 bit mode has a code and stack selector but
870 * no data or extra selector. %fs and %gs are not
871 * stored in-context.
873 regs->tf_cs = _ucodesel;
874 regs->tf_ss = _udatasel;
875 clear_quickret();
879 * Sanitize the trapframe for a virtual kernel passing control to a custom
880 * VM context. Remove any items that would otherwise create a privilage
881 * issue.
883 * XXX at the moment we allow userland to set the resume flag. Is this a
884 * bad idea?
887 cpu_sanitize_frame(struct trapframe *frame)
889 frame->tf_cs = _ucodesel;
890 frame->tf_ss = _udatasel;
891 /* XXX VM (8086) mode not supported? */
892 frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
893 frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
895 return(0);
899 * Sanitize the tls so loading the descriptor does not blow up
900 * on us. For x86_64 we don't have to do anything.
903 cpu_sanitize_tls(struct savetls *tls)
905 return(0);
909 * sigreturn(ucontext_t *sigcntxp)
911 * System call to cleanup state after a signal
912 * has been taken. Reset signal mask and
913 * stack state from context left by sendsig (above).
914 * Return to previous pc and psl as specified by
915 * context left by sendsig. Check carefully to
916 * make sure that the user has not modified the
917 * state to gain improper privileges.
919 * MPSAFE
921 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
922 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
925 sys_sigreturn(struct sigreturn_args *uap)
927 struct lwp *lp = curthread->td_lwp;
928 struct trapframe *regs;
929 ucontext_t uc;
930 ucontext_t *ucp;
931 register_t rflags;
932 int cs;
933 int error;
936 * We have to copy the information into kernel space so userland
937 * can't modify it while we are sniffing it.
939 regs = lp->lwp_md.md_regs;
940 error = copyin(uap->sigcntxp, &uc, sizeof(uc));
941 if (error)
942 return (error);
943 ucp = &uc;
944 rflags = ucp->uc_mcontext.mc_rflags;
946 /* VM (8086) mode not supported */
947 rflags &= ~PSL_VM_UNSUPP;
949 #if 0 /* JG */
950 if (eflags & PSL_VM) {
951 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
952 struct vm86_kernel *vm86;
955 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
956 * set up the vm86 area, and we can't enter vm86 mode.
958 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
959 return (EINVAL);
960 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
961 if (vm86->vm86_inited == 0)
962 return (EINVAL);
964 /* go back to user mode if both flags are set */
965 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
966 trapsignal(lp, SIGBUS, 0);
968 if (vm86->vm86_has_vme) {
969 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
970 (eflags & VME_USERCHANGE) | PSL_VM;
971 } else {
972 vm86->vm86_eflags = eflags; /* save VIF, VIP */
973 eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
974 (eflags & VM_USERCHANGE) | PSL_VM;
976 bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
977 tf->tf_eflags = eflags;
978 tf->tf_vm86_ds = tf->tf_ds;
979 tf->tf_vm86_es = tf->tf_es;
980 tf->tf_vm86_fs = tf->tf_fs;
981 tf->tf_vm86_gs = tf->tf_gs;
982 tf->tf_ds = _udatasel;
983 tf->tf_es = _udatasel;
984 tf->tf_fs = _udatasel;
985 tf->tf_gs = _udatasel;
986 } else
987 #endif
990 * Don't allow users to change privileged or reserved flags.
993 * XXX do allow users to change the privileged flag PSL_RF.
994 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
995 * should sometimes set it there too. tf_eflags is kept in
996 * the signal context during signal handling and there is no
997 * other place to remember it, so the PSL_RF bit may be
998 * corrupted by the signal handler without us knowing.
999 * Corruption of the PSL_RF bit at worst causes one more or
1000 * one less debugger trap, so allowing it is fairly harmless.
1002 if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
1003 kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
1004 return(EINVAL);
1008 * Don't allow users to load a valid privileged %cs. Let the
1009 * hardware check for invalid selectors, excess privilege in
1010 * other selectors, invalid %eip's and invalid %esp's.
1012 cs = ucp->uc_mcontext.mc_cs;
1013 if (!CS_SECURE(cs)) {
1014 kprintf("sigreturn: cs = 0x%x\n", cs);
1015 trapsignal(lp, SIGBUS, T_PROTFLT);
1016 return(EINVAL);
1018 bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1022 * Restore the FPU state from the frame
1024 crit_enter();
1025 npxpop(&ucp->uc_mcontext);
1027 if (ucp->uc_mcontext.mc_onstack & 1)
1028 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1029 else
1030 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1032 lp->lwp_sigmask = ucp->uc_sigmask;
1033 SIG_CANTMASK(lp->lwp_sigmask);
1034 clear_quickret();
1035 crit_exit();
1036 return(EJUSTRETURN);
1040 * Machine dependent boot() routine
1042 * I haven't seen anything to put here yet
1043 * Possibly some stuff might be grafted back here from boot()
1045 void
1046 cpu_boot(int howto)
1051 * Shutdown the CPU as much as possible
1053 void
1054 cpu_halt(void)
1056 for (;;)
1057 __asm__ __volatile("hlt");
1061 * cpu_idle() represents the idle LWKT. You cannot return from this function
1062 * (unless you want to blow things up!). Instead we look for runnable threads
1063 * and loop or halt as appropriate. Giant is not held on entry to the thread.
1065 * The main loop is entered with a critical section held, we must release
1066 * the critical section before doing anything else. lwkt_switch() will
1067 * check for pending interrupts due to entering and exiting its own
1068 * critical section.
1070 * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1071 * However, there are cases where the idlethread will be entered with
1072 * the possibility that no IPI will occur and in such cases
1073 * lwkt_switch() sets TDF_IDLE_NOHLT.
1075 * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1076 * must occur before it starts using ACPI halt.
1078 * NOTE: Value overridden in hammer_time().
1080 static int cpu_idle_hlt = 2;
1081 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1082 &cpu_idle_hlt, 0, "Idle loop HLT enable");
1083 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1084 &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1086 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1087 0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1088 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1089 0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1091 static void
1092 cpu_idle_default_hook(void)
1095 * We must guarentee that hlt is exactly the instruction
1096 * following the sti.
1098 __asm __volatile("sti; hlt");
1101 /* Other subsystems (e.g., ACPI) can hook this later. */
1102 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1104 static __inline int
1105 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1107 int hint, cx_idx;
1108 u_int idx;
1110 hint = stat->hint;
1111 if (hint >= 0)
1112 goto done;
1114 idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1115 cpu_mwait_repeat_shift;
1116 if (idx >= cpu_mwait_c1_hints_cnt) {
1117 /* Step up faster, once we walked through all C1 states */
1118 stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1120 if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1121 if (idx >= cpu_mwait_deep_hints_cnt)
1122 idx = cpu_mwait_deep_hints_cnt - 1;
1123 hint = cpu_mwait_deep_hints[idx];
1124 } else {
1125 if (idx >= cpu_mwait_hints_cnt)
1126 idx = cpu_mwait_hints_cnt - 1;
1127 hint = cpu_mwait_hints[idx];
1129 done:
1130 cx_idx = MWAIT_EAX_TO_CX(hint);
1131 if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1132 stat->mwait_cx[cx_idx]++;
1133 return hint;
1136 void
1137 cpu_idle(void)
1139 globaldata_t gd = mycpu;
1140 struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1141 struct thread *td __debugvar = gd->gd_curthread;
1142 int reqflags;
1143 int quick;
1145 stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1147 crit_exit();
1148 KKASSERT(td->td_critcount == 0);
1150 for (;;) {
1152 * See if there are any LWKTs ready to go.
1154 lwkt_switch();
1157 * When halting inside a cli we must check for reqflags
1158 * races, particularly [re]schedule requests. Running
1159 * splz() does the job.
1161 * cpu_idle_hlt:
1162 * 0 Never halt, just spin
1164 * 1 Always use HLT (or MONITOR/MWAIT if avail).
1166 * Better default for modern (Haswell+) Intel
1167 * cpus.
1169 * 2 Use HLT/MONITOR/MWAIT up to a point and then
1170 * use the ACPI halt (default). This is a hybrid
1171 * approach. See machdep.cpu_idle_repeat.
1173 * Better default for modern AMD cpus and older
1174 * Intel cpus.
1176 * 3 Always use the ACPI halt. This typically
1177 * eats the least amount of power but the cpu
1178 * will be slow waking up. Slows down e.g.
1179 * compiles and other pipe/event oriented stuff.
1181 * 4 Always use HLT.
1183 * NOTE: Interrupts are enabled and we are not in a critical
1184 * section.
1186 * NOTE: Preemptions do not reset gd_idle_repeat. Also we
1187 * don't bother capping gd_idle_repeat, it is ok if
1188 * it overflows.
1190 * Implement optimized invltlb operations when halted
1191 * in idle. By setting the bit in smp_idleinvl_mask
1192 * we inform other cpus that they can set _reqs to
1193 * request an invltlb. Current the code to do that
1194 * sets the bits in _reqs anyway, but then check _mask
1195 * to determine if they can assume the invltlb will execute.
1197 * A critical section is required to ensure that interrupts
1198 * do not fully run until after we've had a chance to execute
1199 * the request.
1201 if (gd->gd_idle_repeat == 0) {
1202 stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1203 if (stat->repeat > cpu_idle_repeat_max)
1204 stat->repeat = cpu_idle_repeat_max;
1205 stat->repeat_last = 0;
1206 stat->repeat_delta = 0;
1208 ++stat->repeat_last;
1210 ++gd->gd_idle_repeat;
1211 reqflags = gd->gd_reqflags;
1212 quick = (cpu_idle_hlt == 1) ||
1213 (cpu_idle_hlt < 3 &&
1214 gd->gd_idle_repeat < cpu_idle_repeat);
1216 if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1217 (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1218 splz(); /* XXX */
1219 crit_enter_gd(gd);
1220 ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1221 cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1222 cpu_mwait_cx_hint(stat), 0);
1223 stat->halt++;
1224 ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1225 if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1226 gd->gd_cpuid)) {
1227 cpu_invltlb();
1229 crit_exit_gd(gd);
1230 } else if (cpu_idle_hlt) {
1231 __asm __volatile("cli");
1232 splz();
1233 crit_enter_gd(gd);
1234 ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1235 if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1236 if (quick)
1237 cpu_idle_default_hook();
1238 else
1239 cpu_idle_hook();
1241 __asm __volatile("sti");
1242 stat->halt++;
1243 ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1244 if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1245 gd->gd_cpuid)) {
1246 cpu_invltlb();
1248 crit_exit_gd(gd);
1249 } else {
1250 splz();
1251 __asm __volatile("sti");
1252 stat->spin++;
1258 * This routine is called if a spinlock has been held through the
1259 * exponential backoff period and is seriously contested. On a real cpu
1260 * we let it spin.
1262 void
1263 cpu_spinlock_contested(void)
1265 cpu_pause();
1269 * Clear registers on exec
1271 void
1272 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1274 struct thread *td = curthread;
1275 struct lwp *lp = td->td_lwp;
1276 struct pcb *pcb = td->td_pcb;
1277 struct trapframe *regs = lp->lwp_md.md_regs;
1279 /* was i386_user_cleanup() in NetBSD */
1280 user_ldt_free(pcb);
1282 clear_quickret();
1283 bzero((char *)regs, sizeof(struct trapframe));
1284 regs->tf_rip = entry;
1285 regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1286 regs->tf_rdi = stack; /* argv */
1287 regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1288 regs->tf_ss = _udatasel;
1289 regs->tf_cs = _ucodesel;
1290 regs->tf_rbx = ps_strings;
1293 * Reset the hardware debug registers if they were in use.
1294 * They won't have any meaning for the newly exec'd process.
1296 if (pcb->pcb_flags & PCB_DBREGS) {
1297 pcb->pcb_dr0 = 0;
1298 pcb->pcb_dr1 = 0;
1299 pcb->pcb_dr2 = 0;
1300 pcb->pcb_dr3 = 0;
1301 pcb->pcb_dr6 = 0;
1302 pcb->pcb_dr7 = 0; /* JG set bit 10? */
1303 if (pcb == td->td_pcb) {
1305 * Clear the debug registers on the running
1306 * CPU, otherwise they will end up affecting
1307 * the next process we switch to.
1309 reset_dbregs();
1311 pcb->pcb_flags &= ~PCB_DBREGS;
1315 * Initialize the math emulator (if any) for the current process.
1316 * Actually, just clear the bit that says that the emulator has
1317 * been initialized. Initialization is delayed until the process
1318 * traps to the emulator (if it is done at all) mainly because
1319 * emulators don't provide an entry point for initialization.
1321 pcb->pcb_flags &= ~FP_SOFTFP;
1324 * NOTE: do not set CR0_TS here. npxinit() must do it after clearing
1325 * gd_npxthread. Otherwise a preemptive interrupt thread
1326 * may panic in npxdna().
1328 crit_enter();
1329 load_cr0(rcr0() | CR0_MP);
1332 * NOTE: The MSR values must be correct so we can return to
1333 * userland. gd_user_fs/gs must be correct so the switch
1334 * code knows what the current MSR values are.
1336 pcb->pcb_fsbase = 0; /* Values loaded from PCB on switch */
1337 pcb->pcb_gsbase = 0;
1338 mdcpu->gd_user_fs = 0; /* Cache of current MSR values */
1339 mdcpu->gd_user_gs = 0;
1340 wrmsr(MSR_FSBASE, 0); /* Set MSR values for return to userland */
1341 wrmsr(MSR_KGSBASE, 0);
1343 /* Initialize the npx (if any) for the current process. */
1344 npxinit();
1345 crit_exit();
1347 pcb->pcb_ds = _udatasel;
1348 pcb->pcb_es = _udatasel;
1349 pcb->pcb_fs = _udatasel;
1350 pcb->pcb_gs = _udatasel;
1353 void
1354 cpu_setregs(void)
1356 register_t cr0;
1358 cr0 = rcr0();
1359 cr0 |= CR0_NE; /* Done by npxinit() */
1360 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
1361 cr0 |= CR0_WP | CR0_AM;
1362 load_cr0(cr0);
1363 load_gs(_udatasel);
1366 static int
1367 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1369 int error;
1370 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1371 req);
1372 if (!error && req->newptr)
1373 resettodr();
1374 return (error);
1377 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1378 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1380 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1381 CTLFLAG_RW, &disable_rtc_set, 0, "");
1383 #if 0 /* JG */
1384 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1385 CTLFLAG_RD, &bootinfo, bootinfo, "");
1386 #endif
1388 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1389 CTLFLAG_RW, &wall_cmos_clock, 0, "");
1391 extern u_long bootdev; /* not a cdev_t - encoding is different */
1392 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1393 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1396 * Initialize 386 and configure to run kernel
1400 * Initialize segments & interrupt table
1403 int _default_ldt;
1404 struct user_segment_descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */
1405 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1406 #if 0 /* JG */
1407 union descriptor ldt[NLDT]; /* local descriptor table */
1408 #endif
1410 /* table descriptors - used to load tables by cpu */
1411 struct region_descriptor r_gdt;
1412 struct region_descriptor r_idt_arr[MAXCPU];
1414 /* JG proc0paddr is a virtual address */
1415 void *proc0paddr;
1416 /* JG alignment? */
1417 char proc0paddr_buff[LWKT_THREAD_STACK];
1420 /* software prototypes -- in more palatable form */
1421 struct soft_segment_descriptor gdt_segs[] = {
1422 /* GNULL_SEL 0 Null Descriptor */
1423 { 0x0, /* segment base address */
1424 0x0, /* length */
1425 0, /* segment type */
1426 0, /* segment descriptor priority level */
1427 0, /* segment descriptor present */
1428 0, /* long */
1429 0, /* default 32 vs 16 bit size */
1430 0 /* limit granularity (byte/page units)*/ },
1431 /* GCODE_SEL 1 Code Descriptor for kernel */
1432 { 0x0, /* segment base address */
1433 0xfffff, /* length - all address space */
1434 SDT_MEMERA, /* segment type */
1435 SEL_KPL, /* segment descriptor priority level */
1436 1, /* segment descriptor present */
1437 1, /* long */
1438 0, /* default 32 vs 16 bit size */
1439 1 /* limit granularity (byte/page units)*/ },
1440 /* GDATA_SEL 2 Data Descriptor for kernel */
1441 { 0x0, /* segment base address */
1442 0xfffff, /* length - all address space */
1443 SDT_MEMRWA, /* segment type */
1444 SEL_KPL, /* segment descriptor priority level */
1445 1, /* segment descriptor present */
1446 1, /* long */
1447 0, /* default 32 vs 16 bit size */
1448 1 /* limit granularity (byte/page units)*/ },
1449 /* GUCODE32_SEL 3 32 bit Code Descriptor for user */
1450 { 0x0, /* segment base address */
1451 0xfffff, /* length - all address space */
1452 SDT_MEMERA, /* segment type */
1453 SEL_UPL, /* segment descriptor priority level */
1454 1, /* segment descriptor present */
1455 0, /* long */
1456 1, /* default 32 vs 16 bit size */
1457 1 /* limit granularity (byte/page units)*/ },
1458 /* GUDATA_SEL 4 32/64 bit Data Descriptor for user */
1459 { 0x0, /* segment base address */
1460 0xfffff, /* length - all address space */
1461 SDT_MEMRWA, /* segment type */
1462 SEL_UPL, /* segment descriptor priority level */
1463 1, /* segment descriptor present */
1464 0, /* long */
1465 1, /* default 32 vs 16 bit size */
1466 1 /* limit granularity (byte/page units)*/ },
1467 /* GUCODE_SEL 5 64 bit Code Descriptor for user */
1468 { 0x0, /* segment base address */
1469 0xfffff, /* length - all address space */
1470 SDT_MEMERA, /* segment type */
1471 SEL_UPL, /* segment descriptor priority level */
1472 1, /* segment descriptor present */
1473 1, /* long */
1474 0, /* default 32 vs 16 bit size */
1475 1 /* limit granularity (byte/page units)*/ },
1476 /* GPROC0_SEL 6 Proc 0 Tss Descriptor */
1478 0x0, /* segment base address */
1479 sizeof(struct x86_64tss)-1,/* length - all address space */
1480 SDT_SYSTSS, /* segment type */
1481 SEL_KPL, /* segment descriptor priority level */
1482 1, /* segment descriptor present */
1483 0, /* long */
1484 0, /* unused - default 32 vs 16 bit size */
1485 0 /* limit granularity (byte/page units)*/ },
1486 /* Actually, the TSS is a system descriptor which is double size */
1487 { 0x0, /* segment base address */
1488 0x0, /* length */
1489 0, /* segment type */
1490 0, /* segment descriptor priority level */
1491 0, /* segment descriptor present */
1492 0, /* long */
1493 0, /* default 32 vs 16 bit size */
1494 0 /* limit granularity (byte/page units)*/ },
1495 /* GUGS32_SEL 8 32 bit GS Descriptor for user */
1496 { 0x0, /* segment base address */
1497 0xfffff, /* length - all address space */
1498 SDT_MEMRWA, /* segment type */
1499 SEL_UPL, /* segment descriptor priority level */
1500 1, /* segment descriptor present */
1501 0, /* long */
1502 1, /* default 32 vs 16 bit size */
1503 1 /* limit granularity (byte/page units)*/ },
1506 void
1507 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1509 int cpu;
1511 for (cpu = 0; cpu < MAXCPU; ++cpu) {
1512 struct gate_descriptor *ip = &idt_arr[cpu][idx];
1514 ip->gd_looffset = (uintptr_t)func;
1515 ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1516 ip->gd_ist = ist;
1517 ip->gd_xx = 0;
1518 ip->gd_type = typ;
1519 ip->gd_dpl = dpl;
1520 ip->gd_p = 1;
1521 ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1525 void
1526 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1528 struct gate_descriptor *ip;
1530 KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1532 ip = &idt_arr[cpu][idx];
1533 ip->gd_looffset = (uintptr_t)func;
1534 ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1535 ip->gd_ist = ist;
1536 ip->gd_xx = 0;
1537 ip->gd_type = typ;
1538 ip->gd_dpl = dpl;
1539 ip->gd_p = 1;
1540 ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1543 #define IDTVEC(name) __CONCAT(X,name)
1545 extern inthand_t
1546 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1547 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1548 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1549 IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1550 IDTVEC(xmm), IDTVEC(dblfault),
1551 IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1553 void
1554 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1556 ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
1557 ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1558 ssd->ssd_type = sd->sd_type;
1559 ssd->ssd_dpl = sd->sd_dpl;
1560 ssd->ssd_p = sd->sd_p;
1561 ssd->ssd_def32 = sd->sd_def32;
1562 ssd->ssd_gran = sd->sd_gran;
1565 void
1566 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1569 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1570 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1571 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1572 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1573 sd->sd_type = ssd->ssd_type;
1574 sd->sd_dpl = ssd->ssd_dpl;
1575 sd->sd_p = ssd->ssd_p;
1576 sd->sd_long = ssd->ssd_long;
1577 sd->sd_def32 = ssd->ssd_def32;
1578 sd->sd_gran = ssd->ssd_gran;
1581 void
1582 ssdtosyssd(struct soft_segment_descriptor *ssd,
1583 struct system_segment_descriptor *sd)
1586 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1587 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1588 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1589 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1590 sd->sd_type = ssd->ssd_type;
1591 sd->sd_dpl = ssd->ssd_dpl;
1592 sd->sd_p = ssd->ssd_p;
1593 sd->sd_gran = ssd->ssd_gran;
1597 * Populate the (physmap) array with base/bound pairs describing the
1598 * available physical memory in the system, then test this memory and
1599 * build the phys_avail array describing the actually-available memory.
1601 * If we cannot accurately determine the physical memory map, then use
1602 * value from the 0xE801 call, and failing that, the RTC.
1604 * Total memory size may be set by the kernel environment variable
1605 * hw.physmem or the compile-time define MAXMEM.
1607 * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1608 * of PAGE_SIZE. This also greatly reduces the memory test time
1609 * which would otherwise be excessive on machines with > 8G of ram.
1611 * XXX first should be vm_paddr_t.
1614 #define PHYSMAP_ALIGN (vm_paddr_t)(128 * 1024)
1615 #define PHYSMAP_ALIGN_MASK (vm_paddr_t)(PHYSMAP_ALIGN - 1)
1616 vm_paddr_t physmap[PHYSMAP_SIZE];
1617 struct bios_smap *smapbase, *smap, *smapend;
1618 struct efi_map_header *efihdrbase;
1619 u_int32_t smapsize;
1621 static void
1622 add_smap_entries(int *physmap_idx)
1624 int i;
1626 smapsize = *((u_int32_t *)smapbase - 1);
1627 smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1629 for (smap = smapbase; smap < smapend; smap++) {
1630 if (boothowto & RB_VERBOSE)
1631 kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1632 smap->type, smap->base, smap->length);
1634 if (smap->type != SMAP_TYPE_MEMORY)
1635 continue;
1637 if (smap->length == 0)
1638 continue;
1640 for (i = 0; i <= *physmap_idx; i += 2) {
1641 if (smap->base < physmap[i + 1]) {
1642 if (boothowto & RB_VERBOSE) {
1643 kprintf("Overlapping or non-monotonic "
1644 "memory region, ignoring "
1645 "second region\n");
1647 break;
1650 if (i <= *physmap_idx)
1651 continue;
1653 Realmem += smap->length;
1655 if (smap->base == physmap[*physmap_idx + 1]) {
1656 physmap[*physmap_idx + 1] += smap->length;
1657 continue;
1660 *physmap_idx += 2;
1661 if (*physmap_idx == PHYSMAP_SIZE) {
1662 kprintf("Too many segments in the physical "
1663 "address map, giving up\n");
1664 break;
1666 physmap[*physmap_idx] = smap->base;
1667 physmap[*physmap_idx + 1] = smap->base + smap->length;
1671 #define efi_next_descriptor(ptr, size) \
1672 ((struct efi_md *)(((uint8_t *) ptr) + size))
1674 static void
1675 add_efi_map_entries(int *physmap_idx)
1677 struct efi_md *map, *p;
1678 const char *type;
1679 size_t efisz;
1680 int i, ndesc;
1682 static const char *types[] = {
1683 "Reserved",
1684 "LoaderCode",
1685 "LoaderData",
1686 "BootServicesCode",
1687 "BootServicesData",
1688 "RuntimeServicesCode",
1689 "RuntimeServicesData",
1690 "ConventionalMemory",
1691 "UnusableMemory",
1692 "ACPIReclaimMemory",
1693 "ACPIMemoryNVS",
1694 "MemoryMappedIO",
1695 "MemoryMappedIOPortSpace",
1696 "PalCode"
1700 * Memory map data provided by UEFI via the GetMemoryMap
1701 * Boot Services API.
1703 efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1704 map = (struct efi_md *)((uint8_t *)efihdrbase + efisz);
1706 if (efihdrbase->descriptor_size == 0)
1707 return;
1708 ndesc = efihdrbase->memory_size / efihdrbase->descriptor_size;
1710 if (boothowto & RB_VERBOSE)
1711 kprintf("%23s %12s %12s %8s %4s\n",
1712 "Type", "Physical", "Virtual", "#Pages", "Attr");
1714 for (i = 0, p = map; i < ndesc; i++,
1715 p = efi_next_descriptor(p, efihdrbase->descriptor_size)) {
1716 if (boothowto & RB_VERBOSE) {
1717 if (p->md_type <= EFI_MD_TYPE_PALCODE)
1718 type = types[p->md_type];
1719 else
1720 type = "<INVALID>";
1721 kprintf("%23s %012lx %12p %08lx ", type, p->md_phys,
1722 p->md_virt, p->md_pages);
1723 if (p->md_attr & EFI_MD_ATTR_UC)
1724 kprintf("UC ");
1725 if (p->md_attr & EFI_MD_ATTR_WC)
1726 kprintf("WC ");
1727 if (p->md_attr & EFI_MD_ATTR_WT)
1728 kprintf("WT ");
1729 if (p->md_attr & EFI_MD_ATTR_WB)
1730 kprintf("WB ");
1731 if (p->md_attr & EFI_MD_ATTR_UCE)
1732 kprintf("UCE ");
1733 if (p->md_attr & EFI_MD_ATTR_WP)
1734 kprintf("WP ");
1735 if (p->md_attr & EFI_MD_ATTR_RP)
1736 kprintf("RP ");
1737 if (p->md_attr & EFI_MD_ATTR_XP)
1738 kprintf("XP ");
1739 if (p->md_attr & EFI_MD_ATTR_RT)
1740 kprintf("RUNTIME");
1741 kprintf("\n");
1744 switch (p->md_type) {
1745 case EFI_MD_TYPE_CODE:
1746 case EFI_MD_TYPE_DATA:
1747 case EFI_MD_TYPE_BS_CODE:
1748 case EFI_MD_TYPE_BS_DATA:
1749 case EFI_MD_TYPE_FREE:
1751 * We're allowed to use any entry with these types.
1753 break;
1754 default:
1755 continue;
1758 Realmem += p->md_pages * PAGE_SIZE;
1760 if (p->md_phys == physmap[*physmap_idx + 1]) {
1761 physmap[*physmap_idx + 1] += p->md_pages * PAGE_SIZE;
1762 continue;
1765 *physmap_idx += 2;
1766 if (*physmap_idx == PHYSMAP_SIZE) {
1767 kprintf("Too many segments in the physical "
1768 "address map, giving up\n");
1769 break;
1771 physmap[*physmap_idx] = p->md_phys;
1772 physmap[*physmap_idx + 1] = p->md_phys + p->md_pages * PAGE_SIZE;
1776 struct fb_info efi_fb_info;
1777 static int have_efi_framebuffer = 0;
1779 static void
1780 efi_fb_init_vaddr(int direct_map)
1782 uint64_t sz;
1783 vm_offset_t addr, v;
1785 v = efi_fb_info.vaddr;
1786 sz = efi_fb_info.stride * efi_fb_info.height;
1788 if (direct_map) {
1789 addr = PHYS_TO_DMAP(efi_fb_info.paddr);
1790 if (addr >= DMAP_MIN_ADDRESS && addr + sz < DMAP_MAX_ADDRESS)
1791 efi_fb_info.vaddr = addr;
1792 } else {
1793 efi_fb_info.vaddr = (vm_offset_t)pmap_mapdev_attr(
1794 efi_fb_info.paddr, sz, PAT_WRITE_COMBINING);
1797 if (v == 0 && efi_fb_info.vaddr != 0)
1798 memset((void *)efi_fb_info.vaddr, 0x77, sz);
1802 probe_efi_fb(int early)
1804 struct efi_fb *efifb;
1805 caddr_t kmdp;
1807 if (have_efi_framebuffer) {
1808 if (!early &&
1809 (efi_fb_info.vaddr == 0 ||
1810 efi_fb_info.vaddr == PHYS_TO_DMAP(efi_fb_info.paddr)))
1811 efi_fb_init_vaddr(0);
1812 return 0;
1815 kmdp = preload_search_by_type("elf kernel");
1816 if (kmdp == NULL)
1817 kmdp = preload_search_by_type("elf64 kernel");
1818 efifb = (struct efi_fb *)preload_search_info(kmdp,
1819 MODINFO_METADATA | MODINFOMD_EFI_FB);
1820 if (efifb == NULL)
1821 return 1;
1823 have_efi_framebuffer = 1;
1825 efi_fb_info.is_vga_boot_display = 1;
1826 efi_fb_info.width = efifb->fb_width;
1827 efi_fb_info.height = efifb->fb_height;
1828 efi_fb_info.stride = efifb->fb_stride * 4;
1829 efi_fb_info.depth = 32;
1830 efi_fb_info.paddr = efifb->fb_addr;
1831 if (early) {
1832 efi_fb_info.vaddr = 0;
1833 } else {
1834 efi_fb_init_vaddr(0);
1836 efi_fb_info.restore = NULL;
1837 efi_fb_info.device = NULL;
1839 return 0;
1842 static void
1843 efifb_startup(void *arg)
1845 probe_efi_fb(0);
1848 SYSINIT(efi_fb_info, SI_BOOT1_POST, SI_ORDER_FIRST, efifb_startup, NULL);
1850 static void
1851 getmemsize(caddr_t kmdp, u_int64_t first)
1853 int off, physmap_idx, pa_indx, da_indx;
1854 int i, j;
1855 vm_paddr_t pa;
1856 vm_paddr_t msgbuf_size;
1857 u_long physmem_tunable;
1858 pt_entry_t *pte;
1859 quad_t dcons_addr, dcons_size;
1861 bzero(physmap, sizeof(physmap));
1862 physmap_idx = 0;
1865 * get memory map from INT 15:E820, kindly supplied by the loader.
1867 * subr_module.c says:
1868 * "Consumer may safely assume that size value precedes data."
1869 * ie: an int32_t immediately precedes smap.
1871 efihdrbase = (struct efi_map_header *)preload_search_info(kmdp,
1872 MODINFO_METADATA | MODINFOMD_EFI_MAP);
1873 smapbase = (struct bios_smap *)preload_search_info(kmdp,
1874 MODINFO_METADATA | MODINFOMD_SMAP);
1875 if (smapbase == NULL && efihdrbase == NULL)
1876 panic("No BIOS smap or EFI map info from loader!");
1878 if (efihdrbase == NULL)
1879 add_smap_entries(&physmap_idx);
1880 else
1881 add_efi_map_entries(&physmap_idx);
1883 base_memory = physmap[1] / 1024;
1884 /* make hole for AP bootstrap code */
1885 physmap[1] = mp_bootaddress(base_memory);
1887 /* Save EBDA address, if any */
1888 ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1889 ebda_addr <<= 4;
1892 * Maxmem isn't the "maximum memory", it's one larger than the
1893 * highest page of the physical address space. It should be
1894 * called something like "Maxphyspage". We may adjust this
1895 * based on ``hw.physmem'' and the results of the memory test.
1897 Maxmem = atop(physmap[physmap_idx + 1]);
1899 #ifdef MAXMEM
1900 Maxmem = MAXMEM / 4;
1901 #endif
1903 if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1904 Maxmem = atop(physmem_tunable);
1907 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1908 * in the system.
1910 if (Maxmem > atop(physmap[physmap_idx + 1]))
1911 Maxmem = atop(physmap[physmap_idx + 1]);
1914 * Blowing out the DMAP will blow up the system.
1916 if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1917 kprintf("Limiting Maxmem due to DMAP size\n");
1918 Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1921 if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1922 (boothowto & RB_VERBOSE)) {
1923 kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1927 * Call pmap initialization to make new kernel address space
1929 * Mask off page 0.
1931 pmap_bootstrap(&first);
1932 physmap[0] = PAGE_SIZE;
1935 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1936 * exceeding Maxmem.
1938 for (i = j = 0; i <= physmap_idx; i += 2) {
1939 if (physmap[i+1] > ptoa(Maxmem))
1940 physmap[i+1] = ptoa(Maxmem);
1941 physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1942 ~PHYSMAP_ALIGN_MASK;
1943 physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1945 physmap[j] = physmap[i];
1946 physmap[j+1] = physmap[i+1];
1948 if (physmap[i] < physmap[i+1])
1949 j += 2;
1951 physmap_idx = j - 2;
1954 * Align anything else used in the validation loop.
1956 first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1959 * Size up each available chunk of physical memory.
1961 pa_indx = 0;
1962 da_indx = 1;
1963 phys_avail[pa_indx++] = physmap[0];
1964 phys_avail[pa_indx] = physmap[0];
1965 dump_avail[da_indx] = physmap[0];
1966 pte = CMAP1;
1969 * Get dcons buffer address
1971 if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1972 kgetenv_quad("dcons.size", &dcons_size) == 0)
1973 dcons_addr = 0;
1976 * Validate the physical memory. The physical memory segments
1977 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1978 * of PAGE_SIZE.
1980 for (i = 0; i <= physmap_idx; i += 2) {
1981 vm_paddr_t end;
1983 end = physmap[i + 1];
1985 for (pa = physmap[i]; pa < end; pa += PHYSMAP_ALIGN) {
1986 int tmp, page_bad, full;
1987 int *ptr = (int *)CADDR1;
1989 full = FALSE;
1991 * block out kernel memory as not available.
1993 if (pa >= 0x200000 && pa < first)
1994 goto do_dump_avail;
1997 * block out dcons buffer
1999 if (dcons_addr > 0
2000 && pa >= trunc_page(dcons_addr)
2001 && pa < dcons_addr + dcons_size) {
2002 goto do_dump_avail;
2005 page_bad = FALSE;
2008 * map page into kernel: valid, read/write,non-cacheable
2010 *pte = pa |
2011 kernel_pmap.pmap_bits[PG_V_IDX] |
2012 kernel_pmap.pmap_bits[PG_RW_IDX] |
2013 kernel_pmap.pmap_bits[PG_N_IDX];
2014 cpu_invltlb();
2016 tmp = *ptr;
2018 * Test for alternating 1's and 0's
2020 *(volatile int *)ptr = 0xaaaaaaaa;
2021 cpu_mfence();
2022 if (*(volatile int *)ptr != 0xaaaaaaaa)
2023 page_bad = TRUE;
2025 * Test for alternating 0's and 1's
2027 *(volatile int *)ptr = 0x55555555;
2028 cpu_mfence();
2029 if (*(volatile int *)ptr != 0x55555555)
2030 page_bad = TRUE;
2032 * Test for all 1's
2034 *(volatile int *)ptr = 0xffffffff;
2035 cpu_mfence();
2036 if (*(volatile int *)ptr != 0xffffffff)
2037 page_bad = TRUE;
2039 * Test for all 0's
2041 *(volatile int *)ptr = 0x0;
2042 cpu_mfence();
2043 if (*(volatile int *)ptr != 0x0)
2044 page_bad = TRUE;
2046 * Restore original value.
2048 *ptr = tmp;
2051 * Adjust array of valid/good pages.
2053 if (page_bad == TRUE)
2054 continue;
2056 * If this good page is a continuation of the
2057 * previous set of good pages, then just increase
2058 * the end pointer. Otherwise start a new chunk.
2059 * Note that "end" points one higher than end,
2060 * making the range >= start and < end.
2061 * If we're also doing a speculative memory
2062 * test and we at or past the end, bump up Maxmem
2063 * so that we keep going. The first bad page
2064 * will terminate the loop.
2066 if (phys_avail[pa_indx] == pa) {
2067 phys_avail[pa_indx] += PHYSMAP_ALIGN;
2068 } else {
2069 pa_indx++;
2070 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2071 kprintf(
2072 "Too many holes in the physical address space, giving up\n");
2073 pa_indx--;
2074 full = TRUE;
2075 goto do_dump_avail;
2077 phys_avail[pa_indx++] = pa;
2078 phys_avail[pa_indx] = pa + PHYSMAP_ALIGN;
2080 physmem += PHYSMAP_ALIGN / PAGE_SIZE;
2081 do_dump_avail:
2082 if (dump_avail[da_indx] == pa) {
2083 dump_avail[da_indx] += PHYSMAP_ALIGN;
2084 } else {
2085 da_indx++;
2086 if (da_indx == DUMP_AVAIL_ARRAY_END) {
2087 da_indx--;
2088 goto do_next;
2090 dump_avail[da_indx++] = pa;
2091 dump_avail[da_indx] = pa + PHYSMAP_ALIGN;
2093 do_next:
2094 if (full)
2095 break;
2098 *pte = 0;
2099 cpu_invltlb();
2102 * The last chunk must contain at least one page plus the message
2103 * buffer to avoid complicating other code (message buffer address
2104 * calculation, etc.).
2106 msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2108 while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
2109 msgbuf_size >= phys_avail[pa_indx]) {
2110 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2111 phys_avail[pa_indx--] = 0;
2112 phys_avail[pa_indx--] = 0;
2115 Maxmem = atop(phys_avail[pa_indx]);
2117 /* Trim off space for the message buffer. */
2118 phys_avail[pa_indx] -= msgbuf_size;
2120 avail_end = phys_avail[pa_indx];
2122 /* Map the message buffer. */
2123 for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
2124 pmap_kenter((vm_offset_t)msgbufp + off,
2125 phys_avail[pa_indx] + off);
2127 /* Try to get EFI framebuffer working as early as possible */
2128 if (have_efi_framebuffer)
2129 efi_fb_init_vaddr(1);
2132 struct machintr_abi MachIntrABI;
2135 * IDT VECTORS:
2136 * 0 Divide by zero
2137 * 1 Debug
2138 * 2 NMI
2139 * 3 BreakPoint
2140 * 4 OverFlow
2141 * 5 Bound-Range
2142 * 6 Invalid OpCode
2143 * 7 Device Not Available (x87)
2144 * 8 Double-Fault
2145 * 9 Coprocessor Segment overrun (unsupported, reserved)
2146 * 10 Invalid-TSS
2147 * 11 Segment not present
2148 * 12 Stack
2149 * 13 General Protection
2150 * 14 Page Fault
2151 * 15 Reserved
2152 * 16 x87 FP Exception pending
2153 * 17 Alignment Check
2154 * 18 Machine Check
2155 * 19 SIMD floating point
2156 * 20-31 reserved
2157 * 32-255 INTn/external sources
2159 u_int64_t
2160 hammer_time(u_int64_t modulep, u_int64_t physfree)
2162 caddr_t kmdp;
2163 int gsel_tss, x, cpu;
2164 #if 0 /* JG */
2165 int metadata_missing, off;
2166 #endif
2167 struct mdglobaldata *gd;
2168 u_int64_t msr;
2171 * Prevent lowering of the ipl if we call tsleep() early.
2173 gd = &CPU_prvspace[0]->mdglobaldata;
2174 bzero(gd, sizeof(*gd));
2177 * Note: on both UP and SMP curthread must be set non-NULL
2178 * early in the boot sequence because the system assumes
2179 * that 'curthread' is never NULL.
2182 gd->mi.gd_curthread = &thread0;
2183 thread0.td_gd = &gd->mi;
2185 atdevbase = ISA_HOLE_START + PTOV_OFFSET;
2187 #if 0 /* JG */
2188 metadata_missing = 0;
2189 if (bootinfo.bi_modulep) {
2190 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2191 preload_bootstrap_relocate(KERNBASE);
2192 } else {
2193 metadata_missing = 1;
2195 if (bootinfo.bi_envp)
2196 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2197 #endif
2199 preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
2200 preload_bootstrap_relocate(PTOV_OFFSET);
2201 kmdp = preload_search_by_type("elf kernel");
2202 if (kmdp == NULL)
2203 kmdp = preload_search_by_type("elf64 kernel");
2204 boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
2205 kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
2206 #ifdef DDB
2207 ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
2208 ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
2209 #endif
2211 if (boothowto & RB_VERBOSE)
2212 bootverbose++;
2215 * Default MachIntrABI to ICU
2217 MachIntrABI = MachIntrABI_ICU;
2220 * start with one cpu. Note: with one cpu, ncpus2_shift, ncpus2_mask,
2221 * and ncpus_fit_mask remain 0.
2223 ncpus = 1;
2224 ncpus2 = 1;
2225 ncpus_fit = 1;
2226 /* Init basic tunables, hz etc */
2227 init_param1();
2230 * make gdt memory segments
2232 gdt_segs[GPROC0_SEL].ssd_base =
2233 (uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
2235 gd->mi.gd_prvspace = CPU_prvspace[0];
2237 for (x = 0; x < NGDT; x++) {
2238 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2239 ssdtosd(&gdt_segs[x], &gdt[x]);
2241 ssdtosyssd(&gdt_segs[GPROC0_SEL],
2242 (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2244 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2245 r_gdt.rd_base = (long) gdt;
2246 lgdt(&r_gdt);
2248 wrmsr(MSR_FSBASE, 0); /* User value */
2249 wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2250 wrmsr(MSR_KGSBASE, 0); /* User value while in the kernel */
2252 mi_gdinit(&gd->mi, 0);
2253 cpu_gdinit(gd, 0);
2254 proc0paddr = proc0paddr_buff;
2255 mi_proc0init(&gd->mi, proc0paddr);
2256 safepri = TDPRI_MAX;
2258 /* spinlocks and the BGL */
2259 init_locks();
2261 /* exceptions */
2262 for (x = 0; x < NIDT; x++)
2263 setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2264 setidt_global(IDT_DE, &IDTVEC(div), SDT_SYSIGT, SEL_KPL, 0);
2265 setidt_global(IDT_DB, &IDTVEC(dbg), SDT_SYSIGT, SEL_KPL, 0);
2266 setidt_global(IDT_NMI, &IDTVEC(nmi), SDT_SYSIGT, SEL_KPL, 1);
2267 setidt_global(IDT_BP, &IDTVEC(bpt), SDT_SYSIGT, SEL_UPL, 0);
2268 setidt_global(IDT_OF, &IDTVEC(ofl), SDT_SYSIGT, SEL_KPL, 0);
2269 setidt_global(IDT_BR, &IDTVEC(bnd), SDT_SYSIGT, SEL_KPL, 0);
2270 setidt_global(IDT_UD, &IDTVEC(ill), SDT_SYSIGT, SEL_KPL, 0);
2271 setidt_global(IDT_NM, &IDTVEC(dna), SDT_SYSIGT, SEL_KPL, 0);
2272 setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2273 setidt_global(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYSIGT, SEL_KPL, 0);
2274 setidt_global(IDT_TS, &IDTVEC(tss), SDT_SYSIGT, SEL_KPL, 0);
2275 setidt_global(IDT_NP, &IDTVEC(missing), SDT_SYSIGT, SEL_KPL, 0);
2276 setidt_global(IDT_SS, &IDTVEC(stk), SDT_SYSIGT, SEL_KPL, 0);
2277 setidt_global(IDT_GP, &IDTVEC(prot), SDT_SYSIGT, SEL_KPL, 0);
2278 setidt_global(IDT_PF, &IDTVEC(page), SDT_SYSIGT, SEL_KPL, 0);
2279 setidt_global(IDT_MF, &IDTVEC(fpu), SDT_SYSIGT, SEL_KPL, 0);
2280 setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2281 setidt_global(IDT_MC, &IDTVEC(mchk), SDT_SYSIGT, SEL_KPL, 0);
2282 setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2284 for (cpu = 0; cpu < MAXCPU; ++cpu) {
2285 r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2286 r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2289 lidt(&r_idt_arr[0]);
2292 * Initialize the console before we print anything out.
2294 cninit();
2296 #if 0 /* JG */
2297 if (metadata_missing)
2298 kprintf("WARNING: loader(8) metadata is missing!\n");
2299 #endif
2301 #if NISA >0
2302 elcr_probe();
2303 isa_defaultirq();
2304 #endif
2305 rand_initialize();
2308 * Initialize IRQ mapping
2310 * NOTE:
2311 * SHOULD be after elcr_probe()
2313 MachIntrABI_ICU.initmap();
2314 MachIntrABI_IOAPIC.initmap();
2316 #ifdef DDB
2317 kdb_init();
2318 if (boothowto & RB_KDB)
2319 Debugger("Boot flags requested debugger");
2320 #endif
2322 #if 0 /* JG */
2323 finishidentcpu(); /* Final stage of CPU initialization */
2324 setidt(6, &IDTVEC(ill), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2325 setidt(13, &IDTVEC(prot), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2326 #endif
2327 identify_cpu(); /* Final stage of CPU initialization */
2328 initializecpu(0); /* Initialize CPU registers */
2331 * On modern intel cpus, haswell or later, cpu_idle_hlt=1 is better
2332 * because the cpu does significant power management in MWAIT
2333 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2335 * On modern amd cpus cpu_idle_hlt=3 is better, because the cpu does
2336 * significant power management in HLT or ACPI (but cpu_idle_hlt=1
2337 * would try to use MWAIT).
2339 * On older amd or intel cpus, cpu_idle_hlt=2 is better because ACPI
2340 * is needed to reduce power consumption, but wakeup times are often
2341 * longer.
2343 if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2344 CPUID_TO_MODEL(cpu_id) >= 0x3C) { /* Haswell or later */
2345 cpu_idle_hlt = 1;
2347 if (cpu_vendor_id == CPU_VENDOR_AMD &&
2348 CPUID_TO_FAMILY(cpu_id) >= 0x14) { /* Bobcat or later */
2349 cpu_idle_hlt = 3;
2352 TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2353 TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2354 TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2355 TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2358 * Some of the virtual machines do not work w/ I/O APIC
2359 * enabled. If the user does not explicitly enable or
2360 * disable the I/O APIC (ioapic_enable < 0), then we
2361 * disable I/O APIC on all virtual machines.
2363 * NOTE:
2364 * This must be done after identify_cpu(), which sets
2365 * 'cpu_feature2'
2367 if (ioapic_enable < 0) {
2368 if (cpu_feature2 & CPUID2_VMM)
2369 ioapic_enable = 0;
2370 else
2371 ioapic_enable = 1;
2374 /* make an initial tss so cpu can get interrupt stack on syscall! */
2375 gd->gd_common_tss.tss_rsp0 =
2376 (register_t)(thread0.td_kstack +
2377 KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2378 /* Ensure the stack is aligned to 16 bytes */
2379 gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2381 /* double fault stack */
2382 gd->gd_common_tss.tss_ist1 =
2383 (long)&gd->mi.gd_prvspace->idlestack[
2384 sizeof(gd->mi.gd_prvspace->idlestack)];
2386 /* Set the IO permission bitmap (empty due to tss seg limit) */
2387 gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2389 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2390 gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2391 gd->gd_common_tssd = *gd->gd_tss_gdt;
2392 ltr(gsel_tss);
2394 /* Set up the fast syscall stuff */
2395 msr = rdmsr(MSR_EFER) | EFER_SCE;
2396 wrmsr(MSR_EFER, msr);
2397 wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2398 wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2399 msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2400 ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2401 wrmsr(MSR_STAR, msr);
2402 wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2404 getmemsize(kmdp, physfree);
2405 init_param2(physmem);
2407 /* now running on new page tables, configured,and u/iom is accessible */
2409 /* Map the message buffer. */
2410 #if 0 /* JG */
2411 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2412 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2413 #endif
2415 msgbufinit(msgbufp, MSGBUF_SIZE);
2418 /* transfer to user mode */
2420 _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2421 _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2422 _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2424 load_ds(_udatasel);
2425 load_es(_udatasel);
2426 load_fs(_udatasel);
2428 /* setup proc 0's pcb */
2429 thread0.td_pcb->pcb_flags = 0;
2430 thread0.td_pcb->pcb_cr3 = KPML4phys;
2431 thread0.td_pcb->pcb_ext = NULL;
2432 lwp0.lwp_md.md_regs = &proc0_tf; /* XXX needed? */
2434 /* Location of kernel stack for locore */
2435 return ((u_int64_t)thread0.td_pcb);
2439 * Initialize machine-dependant portions of the global data structure.
2440 * Note that the global data area and cpu0's idlestack in the private
2441 * data space were allocated in locore.
2443 * Note: the idlethread's cpl is 0
2445 * WARNING! Called from early boot, 'mycpu' may not work yet.
2447 void
2448 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2450 if (cpu)
2451 gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2453 lwkt_init_thread(&gd->mi.gd_idlethread,
2454 gd->mi.gd_prvspace->idlestack,
2455 sizeof(gd->mi.gd_prvspace->idlestack),
2456 0, &gd->mi);
2457 lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2458 gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2459 gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2460 *(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2464 * We only have to check for DMAP bounds, the globaldata space is
2465 * actually part of the kernel_map so we don't have to waste time
2466 * checking CPU_prvspace[*].
2469 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2471 #if 0
2472 if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2473 eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2474 return (TRUE);
2476 #endif
2477 if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2478 return (TRUE);
2479 return (FALSE);
2482 struct globaldata *
2483 globaldata_find(int cpu)
2485 KKASSERT(cpu >= 0 && cpu < ncpus);
2486 return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2490 * This path should be safe from the SYSRET issue because only stopped threads
2491 * can have their %rip adjusted this way (and all heavy weight thread switches
2492 * clear QUICKREF and thus do not use SYSRET). However, the code path is
2493 * convoluted so add a safety by forcing %rip to be cannonical.
2496 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2498 if (addr & 0x0000800000000000LLU)
2499 lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2500 else
2501 lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2502 return (0);
2506 ptrace_single_step(struct lwp *lp)
2508 lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2509 return (0);
2513 fill_regs(struct lwp *lp, struct reg *regs)
2515 struct trapframe *tp;
2517 if ((tp = lp->lwp_md.md_regs) == NULL)
2518 return EINVAL;
2519 bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2520 return (0);
2524 set_regs(struct lwp *lp, struct reg *regs)
2526 struct trapframe *tp;
2528 tp = lp->lwp_md.md_regs;
2529 if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2530 !CS_SECURE(regs->r_cs))
2531 return (EINVAL);
2532 bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2533 clear_quickret();
2534 return (0);
2537 static void
2538 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2540 struct env87 *penv_87 = &sv_87->sv_env;
2541 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2542 int i;
2544 /* FPU control/status */
2545 penv_87->en_cw = penv_xmm->en_cw;
2546 penv_87->en_sw = penv_xmm->en_sw;
2547 penv_87->en_tw = penv_xmm->en_tw;
2548 penv_87->en_fip = penv_xmm->en_fip;
2549 penv_87->en_fcs = penv_xmm->en_fcs;
2550 penv_87->en_opcode = penv_xmm->en_opcode;
2551 penv_87->en_foo = penv_xmm->en_foo;
2552 penv_87->en_fos = penv_xmm->en_fos;
2554 /* FPU registers */
2555 for (i = 0; i < 8; ++i)
2556 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2559 static void
2560 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2562 struct env87 *penv_87 = &sv_87->sv_env;
2563 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2564 int i;
2566 /* FPU control/status */
2567 penv_xmm->en_cw = penv_87->en_cw;
2568 penv_xmm->en_sw = penv_87->en_sw;
2569 penv_xmm->en_tw = penv_87->en_tw;
2570 penv_xmm->en_fip = penv_87->en_fip;
2571 penv_xmm->en_fcs = penv_87->en_fcs;
2572 penv_xmm->en_opcode = penv_87->en_opcode;
2573 penv_xmm->en_foo = penv_87->en_foo;
2574 penv_xmm->en_fos = penv_87->en_fos;
2576 /* FPU registers */
2577 for (i = 0; i < 8; ++i)
2578 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2582 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2584 if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2585 return EINVAL;
2586 if (cpu_fxsr) {
2587 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2588 (struct save87 *)fpregs);
2589 return (0);
2591 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2592 return (0);
2596 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2598 if (cpu_fxsr) {
2599 set_fpregs_xmm((struct save87 *)fpregs,
2600 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2601 return (0);
2603 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2604 return (0);
2608 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2610 struct pcb *pcb;
2612 if (lp == NULL) {
2613 dbregs->dr[0] = rdr0();
2614 dbregs->dr[1] = rdr1();
2615 dbregs->dr[2] = rdr2();
2616 dbregs->dr[3] = rdr3();
2617 dbregs->dr[4] = rdr4();
2618 dbregs->dr[5] = rdr5();
2619 dbregs->dr[6] = rdr6();
2620 dbregs->dr[7] = rdr7();
2621 return (0);
2623 if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2624 return EINVAL;
2625 dbregs->dr[0] = pcb->pcb_dr0;
2626 dbregs->dr[1] = pcb->pcb_dr1;
2627 dbregs->dr[2] = pcb->pcb_dr2;
2628 dbregs->dr[3] = pcb->pcb_dr3;
2629 dbregs->dr[4] = 0;
2630 dbregs->dr[5] = 0;
2631 dbregs->dr[6] = pcb->pcb_dr6;
2632 dbregs->dr[7] = pcb->pcb_dr7;
2633 return (0);
2637 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2639 if (lp == NULL) {
2640 load_dr0(dbregs->dr[0]);
2641 load_dr1(dbregs->dr[1]);
2642 load_dr2(dbregs->dr[2]);
2643 load_dr3(dbregs->dr[3]);
2644 load_dr4(dbregs->dr[4]);
2645 load_dr5(dbregs->dr[5]);
2646 load_dr6(dbregs->dr[6]);
2647 load_dr7(dbregs->dr[7]);
2648 } else {
2649 struct pcb *pcb;
2650 struct ucred *ucred;
2651 int i;
2652 uint64_t mask1, mask2;
2655 * Don't let an illegal value for dr7 get set. Specifically,
2656 * check for undefined settings. Setting these bit patterns
2657 * result in undefined behaviour and can lead to an unexpected
2658 * TRCTRAP.
2660 /* JG this loop looks unreadable */
2661 /* Check 4 2-bit fields for invalid patterns.
2662 * These fields are R/Wi, for i = 0..3
2664 /* Is 10 in LENi allowed when running in compatibility mode? */
2665 /* Pattern 10 in R/Wi might be used to indicate
2666 * breakpoint on I/O. Further analysis should be
2667 * carried to decide if it is safe and useful to
2668 * provide access to that capability
2670 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2671 i++, mask1 <<= 4, mask2 <<= 4)
2672 if ((dbregs->dr[7] & mask1) == mask2)
2673 return (EINVAL);
2675 pcb = lp->lwp_thread->td_pcb;
2676 ucred = lp->lwp_proc->p_ucred;
2679 * Don't let a process set a breakpoint that is not within the
2680 * process's address space. If a process could do this, it
2681 * could halt the system by setting a breakpoint in the kernel
2682 * (if ddb was enabled). Thus, we need to check to make sure
2683 * that no breakpoints are being enabled for addresses outside
2684 * process's address space, unless, perhaps, we were called by
2685 * uid 0.
2687 * XXX - what about when the watched area of the user's
2688 * address space is written into from within the kernel
2689 * ... wouldn't that still cause a breakpoint to be generated
2690 * from within kernel mode?
2693 if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2694 if (dbregs->dr[7] & 0x3) {
2695 /* dr0 is enabled */
2696 if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2697 return (EINVAL);
2700 if (dbregs->dr[7] & (0x3<<2)) {
2701 /* dr1 is enabled */
2702 if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2703 return (EINVAL);
2706 if (dbregs->dr[7] & (0x3<<4)) {
2707 /* dr2 is enabled */
2708 if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2709 return (EINVAL);
2712 if (dbregs->dr[7] & (0x3<<6)) {
2713 /* dr3 is enabled */
2714 if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2715 return (EINVAL);
2719 pcb->pcb_dr0 = dbregs->dr[0];
2720 pcb->pcb_dr1 = dbregs->dr[1];
2721 pcb->pcb_dr2 = dbregs->dr[2];
2722 pcb->pcb_dr3 = dbregs->dr[3];
2723 pcb->pcb_dr6 = dbregs->dr[6];
2724 pcb->pcb_dr7 = dbregs->dr[7];
2726 pcb->pcb_flags |= PCB_DBREGS;
2729 return (0);
2733 * Return > 0 if a hardware breakpoint has been hit, and the
2734 * breakpoint was in user space. Return 0, otherwise.
2737 user_dbreg_trap(void)
2739 u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2740 u_int64_t bp; /* breakpoint bits extracted from dr6 */
2741 int nbp; /* number of breakpoints that triggered */
2742 caddr_t addr[4]; /* breakpoint addresses */
2743 int i;
2745 dr7 = rdr7();
2746 if ((dr7 & 0xff) == 0) {
2748 * all GE and LE bits in the dr7 register are zero,
2749 * thus the trap couldn't have been caused by the
2750 * hardware debug registers
2752 return 0;
2755 nbp = 0;
2756 dr6 = rdr6();
2757 bp = dr6 & 0xf;
2759 if (bp == 0) {
2761 * None of the breakpoint bits are set meaning this
2762 * trap was not caused by any of the debug registers
2764 return 0;
2768 * at least one of the breakpoints were hit, check to see
2769 * which ones and if any of them are user space addresses
2772 if (bp & 0x01) {
2773 addr[nbp++] = (caddr_t)rdr0();
2775 if (bp & 0x02) {
2776 addr[nbp++] = (caddr_t)rdr1();
2778 if (bp & 0x04) {
2779 addr[nbp++] = (caddr_t)rdr2();
2781 if (bp & 0x08) {
2782 addr[nbp++] = (caddr_t)rdr3();
2785 for (i=0; i<nbp; i++) {
2786 if (addr[i] <
2787 (caddr_t)VM_MAX_USER_ADDRESS) {
2789 * addr[i] is in user space
2791 return nbp;
2796 * None of the breakpoints are in user space.
2798 return 0;
2802 #ifndef DDB
2803 void
2804 Debugger(const char *msg)
2806 kprintf("Debugger(\"%s\") called.\n", msg);
2808 #endif /* no DDB */
2810 #ifdef DDB
2813 * Provide inb() and outb() as functions. They are normally only
2814 * available as macros calling inlined functions, thus cannot be
2815 * called inside DDB.
2817 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2820 #undef inb
2821 #undef outb
2823 /* silence compiler warnings */
2824 u_char inb(u_int);
2825 void outb(u_int, u_char);
2827 u_char
2828 inb(u_int port)
2830 u_char data;
2832 * We use %%dx and not %1 here because i/o is done at %dx and not at
2833 * %edx, while gcc generates inferior code (movw instead of movl)
2834 * if we tell it to load (u_short) port.
2836 __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2837 return (data);
2840 void
2841 outb(u_int port, u_char data)
2843 u_char al;
2845 * Use an unnecessary assignment to help gcc's register allocator.
2846 * This make a large difference for gcc-1.40 and a tiny difference
2847 * for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
2848 * best results. gcc-2.6.0 can't handle this.
2850 al = data;
2851 __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2854 #endif /* DDB */
2859 * initialize all the SMP locks
2862 /* critical region when masking or unmasking interupts */
2863 struct spinlock_deprecated imen_spinlock;
2865 /* lock region used by kernel profiling */
2866 struct spinlock_deprecated mcount_spinlock;
2868 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2869 struct spinlock_deprecated com_spinlock;
2871 /* lock regions around the clock hardware */
2872 struct spinlock_deprecated clock_spinlock;
2874 static void
2875 init_locks(void)
2878 * Get the initial mplock with a count of 1 for the BSP.
2879 * This uses a LOGICAL cpu ID, ie BSP == 0.
2881 cpu_get_initial_mplock();
2882 /* DEPRECATED */
2883 spin_init_deprecated(&mcount_spinlock);
2884 spin_init_deprecated(&imen_spinlock);
2885 spin_init_deprecated(&com_spinlock);
2886 spin_init_deprecated(&clock_spinlock);
2888 /* our token pool needs to work early */
2889 lwkt_token_pool_init();
2892 boolean_t
2893 cpu_mwait_hint_valid(uint32_t hint)
2895 int cx_idx, sub;
2897 cx_idx = MWAIT_EAX_TO_CX(hint);
2898 if (cx_idx >= CPU_MWAIT_CX_MAX)
2899 return FALSE;
2901 sub = MWAIT_EAX_TO_CX_SUB(hint);
2902 if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2903 return FALSE;
2905 return TRUE;
2908 void
2909 cpu_mwait_cx_no_bmsts(void)
2911 atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
2914 void
2915 cpu_mwait_cx_no_bmarb(void)
2917 atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
2920 static int
2921 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
2923 int old_cx_idx, sub = 0;
2925 if (hint >= 0) {
2926 old_cx_idx = MWAIT_EAX_TO_CX(hint);
2927 sub = MWAIT_EAX_TO_CX_SUB(hint);
2928 } else if (hint == CPU_MWAIT_HINT_AUTO) {
2929 old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
2930 } else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
2931 old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
2932 } else {
2933 old_cx_idx = CPU_MWAIT_CX_MAX;
2936 if (!CPU_MWAIT_HAS_CX)
2937 strlcpy(name, "NONE", namelen);
2938 else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
2939 strlcpy(name, "AUTO", namelen);
2940 else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
2941 strlcpy(name, "AUTODEEP", namelen);
2942 else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
2943 sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
2944 strlcpy(name, "INVALID", namelen);
2945 else
2946 ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
2948 return old_cx_idx;
2951 static int
2952 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
2954 int cx_idx, sub, hint;
2955 char *ptr, *start;
2957 if (allow_auto && strcmp(name, "AUTO") == 0) {
2958 hint = CPU_MWAIT_HINT_AUTO;
2959 cx_idx = CPU_MWAIT_C2;
2960 goto done;
2962 if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
2963 hint = CPU_MWAIT_HINT_AUTODEEP;
2964 cx_idx = CPU_MWAIT_C3;
2965 goto done;
2968 if (strlen(name) < 4 || toupper(name[0]) != 'C')
2969 return -1;
2970 start = &name[1];
2971 ptr = NULL;
2973 cx_idx = strtol(start, &ptr, 10);
2974 if (ptr == start || *ptr != '/')
2975 return -1;
2976 if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
2977 return -1;
2979 start = ptr + 1;
2980 ptr = NULL;
2982 sub = strtol(start, &ptr, 10);
2983 if (*ptr != '\0')
2984 return -1;
2985 if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2986 return -1;
2988 hint = MWAIT_EAX_HINT(cx_idx, sub);
2989 done:
2990 *hint0 = hint;
2991 return cx_idx;
2994 static int
2995 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
2997 if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
2998 return EOPNOTSUPP;
2999 if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
3000 int error;
3002 error = cputimer_intr_powersave_addreq();
3003 if (error)
3004 return error;
3005 } else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
3006 cputimer_intr_powersave_remreq();
3008 return 0;
3011 static int
3012 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
3013 boolean_t allow_auto)
3015 int error, cx_idx, old_cx_idx, hint;
3016 char name[CPU_MWAIT_CX_NAMELEN];
3018 hint = *hint0;
3019 old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
3020 allow_auto);
3022 error = sysctl_handle_string(oidp, name, sizeof(name), req);
3023 if (error != 0 || req->newptr == NULL)
3024 return error;
3026 if (!CPU_MWAIT_HAS_CX)
3027 return EOPNOTSUPP;
3029 cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
3030 if (cx_idx < 0)
3031 return EINVAL;
3033 error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3034 if (error)
3035 return error;
3037 *hint0 = hint;
3038 return 0;
3041 static int
3042 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
3044 int error, cx_idx, old_cx_idx, hint;
3045 char name[CPU_MWAIT_CX_NAMELEN];
3047 KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
3049 hint = stat->hint;
3050 old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3052 strlcpy(name, cx_name, sizeof(name));
3053 cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3054 if (cx_idx < 0)
3055 return EINVAL;
3057 error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3058 if (error)
3059 return error;
3061 stat->hint = hint;
3062 return 0;
3065 static int
3066 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
3068 int hint = cpu_mwait_halt_global;
3069 int error, cx_idx, cpu;
3070 char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
3072 cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3074 error = sysctl_handle_string(oidp, name, sizeof(name), req);
3075 if (error != 0 || req->newptr == NULL)
3076 return error;
3078 if (!CPU_MWAIT_HAS_CX)
3079 return EOPNOTSUPP;
3081 /* Save name for later per-cpu CX configuration */
3082 strlcpy(cx_name, name, sizeof(cx_name));
3084 cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3085 if (cx_idx < 0)
3086 return EINVAL;
3088 /* Change per-cpu CX configuration */
3089 for (cpu = 0; cpu < ncpus; ++cpu) {
3090 error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
3091 if (error)
3092 return error;
3095 cpu_mwait_halt_global = hint;
3096 return 0;
3099 static int
3100 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
3102 struct cpu_idle_stat *stat = arg1;
3103 int error;
3105 error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3106 &stat->hint, TRUE);
3107 return error;
3110 static int
3111 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
3113 int error;
3115 error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3116 &cpu_mwait_spin, FALSE);
3117 return error;
3121 * This manual debugging code is called unconditionally from Xtimer
3122 * (the per-cpu timer interrupt) whether the current thread is in a
3123 * critical section or not) and can be useful in tracking down lockups.
3125 * NOTE: MANUAL DEBUG CODE
3127 #if 0
3128 static int saveticks[SMP_MAXCPU];
3129 static int savecounts[SMP_MAXCPU];
3130 #endif
3132 void
3133 pcpu_timer_always(struct intrframe *frame)
3135 #if 0
3136 globaldata_t gd = mycpu;
3137 int cpu = gd->gd_cpuid;
3138 char buf[64];
3139 short *gptr;
3140 int i;
3142 if (cpu <= 20) {
3143 gptr = (short *)0xFFFFFFFF800b8000 + 80 * cpu;
3144 *gptr = ((*gptr + 1) & 0x00FF) | 0x0700;
3145 ++gptr;
3147 ksnprintf(buf, sizeof(buf), " %p %16s %d %16s ",
3148 (void *)frame->if_rip, gd->gd_curthread->td_comm, ticks,
3149 gd->gd_infomsg);
3150 for (i = 0; buf[i]; ++i) {
3151 gptr[i] = 0x0700 | (unsigned char)buf[i];
3154 #if 0
3155 if (saveticks[gd->gd_cpuid] != ticks) {
3156 saveticks[gd->gd_cpuid] = ticks;
3157 savecounts[gd->gd_cpuid] = 0;
3159 ++savecounts[gd->gd_cpuid];
3160 if (savecounts[gd->gd_cpuid] > 2000 && panicstr == NULL) {
3161 panic("cpud %d panicing on ticks failure",
3162 gd->gd_cpuid);
3164 for (i = 0; i < ncpus; ++i) {
3165 int delta;
3166 if (saveticks[i] && panicstr == NULL) {
3167 delta = saveticks[i] - ticks;
3168 if (delta < -10 || delta > 10) {
3169 panic("cpu %d panicing on cpu %d watchdog",
3170 gd->gd_cpuid, i);
3174 #endif
3175 #endif