kernel - Improve physio performance
[dragonfly.git] / sys / kern / vfs_subr.c
blob09019658f658dc41ae3ea419961f8542371f34b5
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
35 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
39 * External virtual filesystem routines
41 #include "opt_ddb.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/buf.h>
48 #include <sys/conf.h>
49 #include <sys/dirent.h>
50 #include <sys/eventhandler.h>
51 #include <sys/fcntl.h>
52 #include <sys/file.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/mount.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/reboot.h>
61 #include <sys/socket.h>
62 #include <sys/stat.h>
63 #include <sys/sysctl.h>
64 #include <sys/syslog.h>
65 #include <sys/unistd.h>
66 #include <sys/vmmeter.h>
67 #include <sys/vnode.h>
69 #include <machine/limits.h>
71 #include <vm/vm.h>
72 #include <vm/vm_object.h>
73 #include <vm/vm_extern.h>
74 #include <vm/vm_kern.h>
75 #include <vm/pmap.h>
76 #include <vm/vm_map.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_pager.h>
79 #include <vm/vnode_pager.h>
80 #include <vm/vm_zone.h>
82 #include <sys/buf2.h>
83 #include <sys/thread2.h>
84 #include <sys/sysref2.h>
85 #include <sys/mplock2.h>
87 #include <netinet/in.h>
89 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
91 int numvnodes;
92 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
93 "Number of vnodes allocated");
94 int verbose_reclaims;
95 SYSCTL_INT(_debug, OID_AUTO, verbose_reclaims, CTLFLAG_RD, &verbose_reclaims, 0,
96 "Output filename of reclaimed vnode(s)");
98 enum vtype iftovt_tab[16] = {
99 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
100 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
102 int vttoif_tab[9] = {
103 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
104 S_IFSOCK, S_IFIFO, S_IFMT,
107 static int reassignbufcalls;
108 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls,
109 0, "Number of times buffers have been reassigned to the proper list");
111 static int check_buf_overlap = 2; /* invasive check */
112 SYSCTL_INT(_vfs, OID_AUTO, check_buf_overlap, CTLFLAG_RW, &check_buf_overlap,
113 0, "Enable overlapping buffer checks");
115 int nfs_mount_type = -1;
116 static struct lwkt_token spechash_token;
117 struct nfs_public nfs_pub; /* publicly exported FS */
119 int desiredvnodes;
120 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
121 &desiredvnodes, 0, "Maximum number of vnodes");
123 static struct radix_node_head *vfs_create_addrlist_af(int af,
124 struct netexport *nep);
125 static void vfs_free_addrlist (struct netexport *nep);
126 static int vfs_free_netcred (struct radix_node *rn, void *w);
127 static void vfs_free_addrlist_af (struct radix_node_head **prnh);
128 static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
129 const struct export_args *argp);
131 int prtactive = 0; /* 1 => print out reclaim of active vnodes */
134 * Red black tree functions
136 static int rb_buf_compare(struct buf *b1, struct buf *b2);
137 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
138 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
140 static int
141 rb_buf_compare(struct buf *b1, struct buf *b2)
143 if (b1->b_loffset < b2->b_loffset)
144 return(-1);
145 if (b1->b_loffset > b2->b_loffset)
146 return(1);
147 return(0);
151 * Initialize the vnode management data structures.
153 * Called from vfsinit()
155 void
156 vfs_subr_init(void)
158 int factor1;
159 int factor2;
162 * Desiredvnodes is kern.maxvnodes. We want to scale it
163 * according to available system memory but we may also have
164 * to limit it based on available KVM, which is capped on 32 bit
165 * systems, to ~80K vnodes or so.
167 * WARNING! For machines with 64-256M of ram we have to be sure
168 * that the default limit scales down well due to HAMMER
169 * taking up significantly more memory per-vnode vs UFS.
170 * We want around ~5800 on a 128M machine.
172 factor1 = 20 * (sizeof(struct vm_object) + sizeof(struct vnode));
173 factor2 = 25 * (sizeof(struct vm_object) + sizeof(struct vnode));
174 desiredvnodes =
175 imin((int64_t)vmstats.v_page_count * PAGE_SIZE / factor1,
176 KvaSize / factor2);
177 desiredvnodes = imax(desiredvnodes, maxproc * 8);
179 lwkt_token_init(&spechash_token, "spechash");
183 * Knob to control the precision of file timestamps:
185 * 0 = seconds only; nanoseconds zeroed.
186 * 1 = seconds and nanoseconds, accurate within 1/HZ.
187 * 2 = seconds and nanoseconds, truncated to microseconds.
188 * >=3 = seconds and nanoseconds, maximum precision.
190 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
192 static int timestamp_precision = TSP_SEC;
193 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
194 &timestamp_precision, 0, "Precision of file timestamps");
197 * Get a current timestamp.
199 * MPSAFE
201 void
202 vfs_timestamp(struct timespec *tsp)
204 struct timeval tv;
206 switch (timestamp_precision) {
207 case TSP_SEC:
208 tsp->tv_sec = time_second;
209 tsp->tv_nsec = 0;
210 break;
211 case TSP_HZ:
212 getnanotime(tsp);
213 break;
214 case TSP_USEC:
215 microtime(&tv);
216 TIMEVAL_TO_TIMESPEC(&tv, tsp);
217 break;
218 case TSP_NSEC:
219 default:
220 nanotime(tsp);
221 break;
226 * Set vnode attributes to VNOVAL
228 void
229 vattr_null(struct vattr *vap)
231 vap->va_type = VNON;
232 vap->va_size = VNOVAL;
233 vap->va_bytes = VNOVAL;
234 vap->va_mode = VNOVAL;
235 vap->va_nlink = VNOVAL;
236 vap->va_uid = VNOVAL;
237 vap->va_gid = VNOVAL;
238 vap->va_fsid = VNOVAL;
239 vap->va_fileid = VNOVAL;
240 vap->va_blocksize = VNOVAL;
241 vap->va_rmajor = VNOVAL;
242 vap->va_rminor = VNOVAL;
243 vap->va_atime.tv_sec = VNOVAL;
244 vap->va_atime.tv_nsec = VNOVAL;
245 vap->va_mtime.tv_sec = VNOVAL;
246 vap->va_mtime.tv_nsec = VNOVAL;
247 vap->va_ctime.tv_sec = VNOVAL;
248 vap->va_ctime.tv_nsec = VNOVAL;
249 vap->va_flags = VNOVAL;
250 vap->va_gen = VNOVAL;
251 vap->va_vaflags = 0;
252 /* va_*_uuid fields are only valid if related flags are set */
256 * Flush out and invalidate all buffers associated with a vnode.
258 * vp must be locked.
260 static int vinvalbuf_bp(struct buf *bp, void *data);
262 struct vinvalbuf_bp_info {
263 struct vnode *vp;
264 int slptimeo;
265 int lkflags;
266 int flags;
267 int clean;
271 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
273 struct vinvalbuf_bp_info info;
274 vm_object_t object;
275 int error;
277 lwkt_gettoken(&vp->v_token);
280 * If we are being asked to save, call fsync to ensure that the inode
281 * is updated.
283 if (flags & V_SAVE) {
284 error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo);
285 if (error)
286 goto done;
287 if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
288 if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0)
289 goto done;
290 #if 0
292 * Dirty bufs may be left or generated via races
293 * in circumstances where vinvalbuf() is called on
294 * a vnode not undergoing reclamation. Only
295 * panic if we are trying to reclaim the vnode.
297 if ((vp->v_flag & VRECLAIMED) &&
298 (bio_track_active(&vp->v_track_write) ||
299 !RB_EMPTY(&vp->v_rbdirty_tree))) {
300 panic("vinvalbuf: dirty bufs");
302 #endif
305 info.slptimeo = slptimeo;
306 info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
307 if (slpflag & PCATCH)
308 info.lkflags |= LK_PCATCH;
309 info.flags = flags;
310 info.vp = vp;
313 * Flush the buffer cache until nothing is left, wait for all I/O
314 * to complete. At least one pass is required. We might block
315 * in the pip code so we have to re-check. Order is important.
317 do {
319 * Flush buffer cache
321 if (!RB_EMPTY(&vp->v_rbclean_tree)) {
322 info.clean = 1;
323 error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
324 NULL, vinvalbuf_bp, &info);
326 if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
327 info.clean = 0;
328 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
329 NULL, vinvalbuf_bp, &info);
333 * Wait for I/O completion.
335 bio_track_wait(&vp->v_track_write, 0, 0);
336 if ((object = vp->v_object) != NULL)
337 refcount_wait(&object->paging_in_progress, "vnvlbx");
338 } while (bio_track_active(&vp->v_track_write) ||
339 !RB_EMPTY(&vp->v_rbclean_tree) ||
340 !RB_EMPTY(&vp->v_rbdirty_tree));
343 * Destroy the copy in the VM cache, too.
345 if ((object = vp->v_object) != NULL) {
346 vm_object_page_remove(object, 0, 0,
347 (flags & V_SAVE) ? TRUE : FALSE);
350 if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
351 panic("vinvalbuf: flush failed");
352 if (!RB_EMPTY(&vp->v_rbhash_tree))
353 panic("vinvalbuf: flush failed, buffers still present");
354 error = 0;
355 done:
356 lwkt_reltoken(&vp->v_token);
357 return (error);
360 static int
361 vinvalbuf_bp(struct buf *bp, void *data)
363 struct vinvalbuf_bp_info *info = data;
364 int error;
366 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
367 atomic_add_int(&bp->b_refs, 1);
368 error = BUF_TIMELOCK(bp, info->lkflags,
369 "vinvalbuf", info->slptimeo);
370 atomic_subtract_int(&bp->b_refs, 1);
371 if (error == 0) {
372 BUF_UNLOCK(bp);
373 error = ENOLCK;
375 if (error == ENOLCK)
376 return(0);
377 return (-error);
379 KKASSERT(bp->b_vp == info->vp);
382 * Must check clean/dirty status after successfully locking as
383 * it may race.
385 if ((info->clean && (bp->b_flags & B_DELWRI)) ||
386 (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0)) {
387 BUF_UNLOCK(bp);
388 return(0);
392 * NOTE: NO B_LOCKED CHECK. Also no buf_checkwrite()
393 * check. This code will write out the buffer, period.
395 bremfree(bp);
396 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
397 (info->flags & V_SAVE)) {
398 cluster_awrite(bp);
399 } else if (info->flags & V_SAVE) {
401 * Cannot set B_NOCACHE on a clean buffer as this will
402 * destroy the VM backing store which might actually
403 * be dirty (and unsynchronized).
405 bp->b_flags |= (B_INVAL | B_RELBUF);
406 brelse(bp);
407 } else {
408 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
409 brelse(bp);
411 return(0);
415 * Truncate a file's buffer and pages to a specified length. This
416 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
417 * sync activity.
419 * The vnode must be locked.
421 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
422 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
423 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
424 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
426 struct vtruncbuf_info {
427 struct vnode *vp;
428 off_t truncloffset;
429 int clean;
433 vtruncbuf(struct vnode *vp, off_t length, int blksize)
435 struct vtruncbuf_info info;
436 const char *filename;
437 int count;
440 * Round up to the *next* block, then destroy the buffers in question.
441 * Since we are only removing some of the buffers we must rely on the
442 * scan count to determine whether a loop is necessary.
444 if ((count = (int)(length % blksize)) != 0)
445 info.truncloffset = length + (blksize - count);
446 else
447 info.truncloffset = length;
448 info.vp = vp;
450 lwkt_gettoken(&vp->v_token);
451 do {
452 info.clean = 1;
453 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
454 vtruncbuf_bp_trunc_cmp,
455 vtruncbuf_bp_trunc, &info);
456 info.clean = 0;
457 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
458 vtruncbuf_bp_trunc_cmp,
459 vtruncbuf_bp_trunc, &info);
460 } while(count);
463 * For safety, fsync any remaining metadata if the file is not being
464 * truncated to 0. Since the metadata does not represent the entire
465 * dirty list we have to rely on the hit count to ensure that we get
466 * all of it.
468 if (length > 0) {
469 do {
470 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
471 vtruncbuf_bp_metasync_cmp,
472 vtruncbuf_bp_metasync, &info);
473 } while (count);
477 * Clean out any left over VM backing store.
479 * It is possible to have in-progress I/O from buffers that were
480 * not part of the truncation. This should not happen if we
481 * are truncating to 0-length.
483 vnode_pager_setsize(vp, length);
484 bio_track_wait(&vp->v_track_write, 0, 0);
487 * Debugging only
489 spin_lock(&vp->v_spin);
490 filename = TAILQ_FIRST(&vp->v_namecache) ?
491 TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
492 spin_unlock(&vp->v_spin);
495 * Make sure no buffers were instantiated while we were trying
496 * to clean out the remaining VM pages. This could occur due
497 * to busy dirty VM pages being flushed out to disk.
499 do {
500 info.clean = 1;
501 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
502 vtruncbuf_bp_trunc_cmp,
503 vtruncbuf_bp_trunc, &info);
504 info.clean = 0;
505 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
506 vtruncbuf_bp_trunc_cmp,
507 vtruncbuf_bp_trunc, &info);
508 if (count) {
509 kprintf("Warning: vtruncbuf(): Had to re-clean %d "
510 "left over buffers in %s\n", count, filename);
512 } while(count);
514 lwkt_reltoken(&vp->v_token);
516 return (0);
520 * The callback buffer is beyond the new file EOF and must be destroyed.
521 * Note that the compare function must conform to the RB_SCAN's requirements.
523 static
525 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
527 struct vtruncbuf_info *info = data;
529 if (bp->b_loffset >= info->truncloffset)
530 return(0);
531 return(-1);
534 static
535 int
536 vtruncbuf_bp_trunc(struct buf *bp, void *data)
538 struct vtruncbuf_info *info = data;
541 * Do not try to use a buffer we cannot immediately lock, but sleep
542 * anyway to prevent a livelock. The code will loop until all buffers
543 * can be acted upon.
545 * We must always revalidate the buffer after locking it to deal
546 * with MP races.
548 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
549 atomic_add_int(&bp->b_refs, 1);
550 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
551 BUF_UNLOCK(bp);
552 atomic_subtract_int(&bp->b_refs, 1);
553 } else if ((info->clean && (bp->b_flags & B_DELWRI)) ||
554 (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0) ||
555 bp->b_vp != info->vp ||
556 vtruncbuf_bp_trunc_cmp(bp, data)) {
557 BUF_UNLOCK(bp);
558 } else {
559 bremfree(bp);
560 bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
561 brelse(bp);
563 return(1);
567 * Fsync all meta-data after truncating a file to be non-zero. Only metadata
568 * blocks (with a negative loffset) are scanned.
569 * Note that the compare function must conform to the RB_SCAN's requirements.
571 static int
572 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data __unused)
574 if (bp->b_loffset < 0)
575 return(0);
576 return(1);
579 static int
580 vtruncbuf_bp_metasync(struct buf *bp, void *data)
582 struct vtruncbuf_info *info = data;
584 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
585 atomic_add_int(&bp->b_refs, 1);
586 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
587 BUF_UNLOCK(bp);
588 atomic_subtract_int(&bp->b_refs, 1);
589 } else if ((bp->b_flags & B_DELWRI) == 0 ||
590 bp->b_vp != info->vp ||
591 vtruncbuf_bp_metasync_cmp(bp, data)) {
592 BUF_UNLOCK(bp);
593 } else {
594 bremfree(bp);
595 if (bp->b_vp == info->vp)
596 bawrite(bp);
597 else
598 bwrite(bp);
600 return(1);
604 * vfsync - implements a multipass fsync on a file which understands
605 * dependancies and meta-data. The passed vnode must be locked. The
606 * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
608 * When fsyncing data asynchronously just do one consolidated pass starting
609 * with the most negative block number. This may not get all the data due
610 * to dependancies.
612 * When fsyncing data synchronously do a data pass, then a metadata pass,
613 * then do additional data+metadata passes to try to get all the data out.
615 * Caller must ref the vnode but does not have to lock it.
617 static int vfsync_wait_output(struct vnode *vp,
618 int (*waitoutput)(struct vnode *, struct thread *));
619 static int vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused);
620 static int vfsync_data_only_cmp(struct buf *bp, void *data);
621 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
622 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
623 static int vfsync_bp(struct buf *bp, void *data);
625 struct vfsync_info {
626 struct vnode *vp;
627 int fastpass;
628 int synchronous;
629 int syncdeps;
630 int lazycount;
631 int lazylimit;
632 int skippedbufs;
633 int (*checkdef)(struct buf *);
634 int (*cmpfunc)(struct buf *, void *);
638 vfsync(struct vnode *vp, int waitfor, int passes,
639 int (*checkdef)(struct buf *),
640 int (*waitoutput)(struct vnode *, struct thread *))
642 struct vfsync_info info;
643 int error;
645 bzero(&info, sizeof(info));
646 info.vp = vp;
647 if ((info.checkdef = checkdef) == NULL)
648 info.syncdeps = 1;
650 lwkt_gettoken(&vp->v_token);
652 switch(waitfor) {
653 case MNT_LAZY | MNT_NOWAIT:
654 case MNT_LAZY:
656 * Lazy (filesystem syncer typ) Asynchronous plus limit the
657 * number of data (not meta) pages we try to flush to 1MB.
658 * A non-zero return means that lazy limit was reached.
660 info.lazylimit = 1024 * 1024;
661 info.syncdeps = 1;
662 info.cmpfunc = vfsync_lazy_range_cmp;
663 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
664 vfsync_lazy_range_cmp, vfsync_bp, &info);
665 info.cmpfunc = vfsync_meta_only_cmp;
666 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
667 vfsync_meta_only_cmp, vfsync_bp, &info);
668 if (error == 0)
669 vp->v_lazyw = 0;
670 else if (!RB_EMPTY(&vp->v_rbdirty_tree))
671 vn_syncer_add(vp, 1);
672 error = 0;
673 break;
674 case MNT_NOWAIT:
676 * Asynchronous. Do a data-only pass and a meta-only pass.
678 info.syncdeps = 1;
679 info.cmpfunc = vfsync_data_only_cmp;
680 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
681 vfsync_bp, &info);
682 info.cmpfunc = vfsync_meta_only_cmp;
683 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
684 vfsync_bp, &info);
685 error = 0;
686 break;
687 default:
689 * Synchronous. Do a data-only pass, then a meta-data+data
690 * pass, then additional integrated passes to try to get
691 * all the dependancies flushed.
693 info.cmpfunc = vfsync_data_only_cmp;
694 info.fastpass = 1;
695 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
696 vfsync_bp, &info);
697 info.fastpass = 0;
698 error = vfsync_wait_output(vp, waitoutput);
699 if (error == 0) {
700 info.skippedbufs = 0;
701 info.cmpfunc = vfsync_dummy_cmp;
702 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
703 vfsync_bp, &info);
704 error = vfsync_wait_output(vp, waitoutput);
705 if (info.skippedbufs) {
706 kprintf("Warning: vfsync skipped %d dirty "
707 "buf%s in pass2!\n",
708 info.skippedbufs,
709 ((info.skippedbufs > 1) ? "s" : ""));
712 while (error == 0 && passes > 0 &&
713 !RB_EMPTY(&vp->v_rbdirty_tree)
715 info.skippedbufs = 0;
716 if (--passes == 0) {
717 info.synchronous = 1;
718 info.syncdeps = 1;
720 info.cmpfunc = vfsync_dummy_cmp;
721 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
722 vfsync_bp, &info);
723 if (error < 0)
724 error = -error;
725 info.syncdeps = 1;
726 if (error == 0)
727 error = vfsync_wait_output(vp, waitoutput);
728 if (info.skippedbufs && passes == 0) {
729 kprintf("Warning: vfsync skipped %d dirty "
730 "buf%s in final pass!\n",
731 info.skippedbufs,
732 ((info.skippedbufs > 1) ? "s" : ""));
735 if (!RB_EMPTY(&vp->v_rbdirty_tree))
736 kprintf("dirty bufs left after final pass\n");
737 break;
739 lwkt_reltoken(&vp->v_token);
741 return(error);
744 static int
745 vfsync_wait_output(struct vnode *vp,
746 int (*waitoutput)(struct vnode *, struct thread *))
748 int error;
750 error = bio_track_wait(&vp->v_track_write, 0, 0);
751 if (waitoutput)
752 error = waitoutput(vp, curthread);
753 return(error);
756 static int
757 vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused)
759 return(0);
762 static int
763 vfsync_data_only_cmp(struct buf *bp, void *data)
765 if (bp->b_loffset < 0)
766 return(-1);
767 return(0);
770 static int
771 vfsync_meta_only_cmp(struct buf *bp, void *data)
773 if (bp->b_loffset < 0)
774 return(0);
775 return(1);
778 static int
779 vfsync_lazy_range_cmp(struct buf *bp, void *data)
781 struct vfsync_info *info = data;
783 if (bp->b_loffset < info->vp->v_lazyw)
784 return(-1);
785 return(0);
788 static int
789 vfsync_bp(struct buf *bp, void *data)
791 struct vfsync_info *info = data;
792 struct vnode *vp = info->vp;
793 int error;
795 if (info->fastpass) {
797 * Ignore buffers that we cannot immediately lock.
799 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
800 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst1", 1)) {
801 ++info->skippedbufs;
802 return(0);
805 } else if (info->synchronous == 0) {
807 * Normal pass, give the buffer a little time to become
808 * available to us.
810 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst2", hz / 10)) {
811 ++info->skippedbufs;
812 return(0);
814 } else {
816 * Synchronous pass, give the buffer a lot of time before
817 * giving up.
819 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst3", hz * 10)) {
820 ++info->skippedbufs;
821 return(0);
826 * We must revalidate the buffer after locking.
828 if ((bp->b_flags & B_DELWRI) == 0 ||
829 bp->b_vp != info->vp ||
830 info->cmpfunc(bp, data)) {
831 BUF_UNLOCK(bp);
832 return(0);
836 * If syncdeps is not set we do not try to write buffers which have
837 * dependancies.
839 if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp)) {
840 BUF_UNLOCK(bp);
841 return(0);
845 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
846 * has been written but an additional handshake with the device
847 * is required before we can dispose of the buffer. We have no idea
848 * how to do this so we have to skip these buffers.
850 if (bp->b_flags & B_NEEDCOMMIT) {
851 BUF_UNLOCK(bp);
852 return(0);
856 * Ask bioops if it is ok to sync. If not the VFS may have
857 * set B_LOCKED so we have to cycle the buffer.
859 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
860 bremfree(bp);
861 brelse(bp);
862 return(0);
865 if (info->synchronous) {
867 * Synchronous flushing. An error may be returned.
869 bremfree(bp);
870 error = bwrite(bp);
871 } else {
873 * Asynchronous flushing. A negative return value simply
874 * stops the scan and is not considered an error. We use
875 * this to support limited MNT_LAZY flushes.
877 vp->v_lazyw = bp->b_loffset;
878 bremfree(bp);
879 info->lazycount += cluster_awrite(bp);
880 waitrunningbufspace();
881 vm_wait_nominal();
882 if (info->lazylimit && info->lazycount >= info->lazylimit)
883 error = 1;
884 else
885 error = 0;
887 return(-error);
891 * Associate a buffer with a vnode.
893 * MPSAFE
896 bgetvp(struct vnode *vp, struct buf *bp, int testsize)
898 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
899 KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
902 * Insert onto list for new vnode.
904 lwkt_gettoken(&vp->v_token);
906 if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) {
907 lwkt_reltoken(&vp->v_token);
908 return (EEXIST);
912 * Diagnostics (mainly for HAMMER debugging). Check for
913 * overlapping buffers.
915 if (check_buf_overlap) {
916 struct buf *bx;
917 bx = buf_rb_hash_RB_PREV(bp);
918 if (bx) {
919 if (bx->b_loffset + bx->b_bufsize > bp->b_loffset) {
920 kprintf("bgetvp: overlapl %016jx/%d %016jx "
921 "bx %p bp %p\n",
922 (intmax_t)bx->b_loffset,
923 bx->b_bufsize,
924 (intmax_t)bp->b_loffset,
925 bx, bp);
926 if (check_buf_overlap > 1)
927 panic("bgetvp - overlapping buffer");
930 bx = buf_rb_hash_RB_NEXT(bp);
931 if (bx) {
932 if (bp->b_loffset + testsize > bx->b_loffset) {
933 kprintf("bgetvp: overlapr %016jx/%d %016jx "
934 "bp %p bx %p\n",
935 (intmax_t)bp->b_loffset,
936 testsize,
937 (intmax_t)bx->b_loffset,
938 bp, bx);
939 if (check_buf_overlap > 1)
940 panic("bgetvp - overlapping buffer");
944 bp->b_vp = vp;
945 bp->b_flags |= B_HASHED;
946 bp->b_flags |= B_VNCLEAN;
947 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
948 panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
949 /*vhold(vp);*/
950 lwkt_reltoken(&vp->v_token);
951 return(0);
955 * Disassociate a buffer from a vnode.
957 * MPSAFE
959 void
960 brelvp(struct buf *bp)
962 struct vnode *vp;
964 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
967 * Delete from old vnode list, if on one.
969 vp = bp->b_vp;
970 lwkt_gettoken(&vp->v_token);
971 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
972 if (bp->b_flags & B_VNDIRTY)
973 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
974 else
975 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
976 bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
978 if (bp->b_flags & B_HASHED) {
979 buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
980 bp->b_flags &= ~B_HASHED;
984 * Only remove from synclist when no dirty buffers are left AND
985 * the VFS has not flagged the vnode's inode as being dirty.
987 if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) == VONWORKLST &&
988 RB_EMPTY(&vp->v_rbdirty_tree)) {
989 vn_syncer_remove(vp);
991 bp->b_vp = NULL;
993 lwkt_reltoken(&vp->v_token);
995 /*vdrop(vp);*/
999 * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
1000 * This routine is called when the state of the B_DELWRI bit is changed.
1002 * Must be called with vp->v_token held.
1003 * MPSAFE
1005 void
1006 reassignbuf(struct buf *bp)
1008 struct vnode *vp = bp->b_vp;
1009 int delay;
1011 ASSERT_LWKT_TOKEN_HELD(&vp->v_token);
1012 ++reassignbufcalls;
1015 * B_PAGING flagged buffers cannot be reassigned because their vp
1016 * is not fully linked in.
1018 if (bp->b_flags & B_PAGING)
1019 panic("cannot reassign paging buffer");
1021 if (bp->b_flags & B_DELWRI) {
1023 * Move to the dirty list, add the vnode to the worklist
1025 if (bp->b_flags & B_VNCLEAN) {
1026 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
1027 bp->b_flags &= ~B_VNCLEAN;
1029 if ((bp->b_flags & B_VNDIRTY) == 0) {
1030 if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
1031 panic("reassignbuf: dup lblk vp %p bp %p",
1032 vp, bp);
1034 bp->b_flags |= B_VNDIRTY;
1036 if ((vp->v_flag & VONWORKLST) == 0) {
1037 switch (vp->v_type) {
1038 case VDIR:
1039 delay = dirdelay;
1040 break;
1041 case VCHR:
1042 case VBLK:
1043 if (vp->v_rdev &&
1044 vp->v_rdev->si_mountpoint != NULL) {
1045 delay = metadelay;
1046 break;
1048 /* fall through */
1049 default:
1050 delay = filedelay;
1052 vn_syncer_add(vp, delay);
1054 } else {
1056 * Move to the clean list, remove the vnode from the worklist
1057 * if no dirty blocks remain.
1059 if (bp->b_flags & B_VNDIRTY) {
1060 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1061 bp->b_flags &= ~B_VNDIRTY;
1063 if ((bp->b_flags & B_VNCLEAN) == 0) {
1064 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
1065 panic("reassignbuf: dup lblk vp %p bp %p",
1066 vp, bp);
1068 bp->b_flags |= B_VNCLEAN;
1072 * Only remove from synclist when no dirty buffers are left
1073 * AND the VFS has not flagged the vnode's inode as being
1074 * dirty.
1076 if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) ==
1077 VONWORKLST &&
1078 RB_EMPTY(&vp->v_rbdirty_tree)) {
1079 vn_syncer_remove(vp);
1085 * Create a vnode for a block device. Used for mounting the root file
1086 * system.
1088 * A vref()'d vnode is returned.
1090 extern struct vop_ops *devfs_vnode_dev_vops_p;
1092 bdevvp(cdev_t dev, struct vnode **vpp)
1094 struct vnode *vp;
1095 struct vnode *nvp;
1096 int error;
1098 if (dev == NULL) {
1099 *vpp = NULLVP;
1100 return (ENXIO);
1102 error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p,
1103 &nvp, 0, 0);
1104 if (error) {
1105 *vpp = NULLVP;
1106 return (error);
1108 vp = nvp;
1109 vp->v_type = VCHR;
1110 #if 0
1111 vp->v_rdev = dev;
1112 #endif
1113 v_associate_rdev(vp, dev);
1114 vp->v_umajor = dev->si_umajor;
1115 vp->v_uminor = dev->si_uminor;
1116 vx_unlock(vp);
1117 *vpp = vp;
1118 return (0);
1122 v_associate_rdev(struct vnode *vp, cdev_t dev)
1124 if (dev == NULL)
1125 return(ENXIO);
1126 if (dev_is_good(dev) == 0)
1127 return(ENXIO);
1128 KKASSERT(vp->v_rdev == NULL);
1129 vp->v_rdev = reference_dev(dev);
1130 lwkt_gettoken(&spechash_token);
1131 SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1132 lwkt_reltoken(&spechash_token);
1133 return(0);
1136 void
1137 v_release_rdev(struct vnode *vp)
1139 cdev_t dev;
1141 if ((dev = vp->v_rdev) != NULL) {
1142 lwkt_gettoken(&spechash_token);
1143 SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1144 vp->v_rdev = NULL;
1145 release_dev(dev);
1146 lwkt_reltoken(&spechash_token);
1151 * Add a vnode to the alias list hung off the cdev_t. We only associate
1152 * the device number with the vnode. The actual device is not associated
1153 * until the vnode is opened (usually in spec_open()), and will be
1154 * disassociated on last close.
1156 void
1157 addaliasu(struct vnode *nvp, int x, int y)
1159 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1160 panic("addaliasu on non-special vnode");
1161 nvp->v_umajor = x;
1162 nvp->v_uminor = y;
1166 * Simple call that a filesystem can make to try to get rid of a
1167 * vnode. It will fail if anyone is referencing the vnode (including
1168 * the caller).
1170 * The filesystem can check whether its in-memory inode structure still
1171 * references the vp on return.
1173 * May only be called if the vnode is in a known state (i.e. being prevented
1174 * from being deallocated by some other condition such as a vfs inode hold).
1176 void
1177 vclean_unlocked(struct vnode *vp)
1179 vx_get(vp);
1180 if (VREFCNT(vp) <= 1)
1181 vgone_vxlocked(vp);
1182 vx_put(vp);
1186 * Disassociate a vnode from its underlying filesystem.
1188 * The vnode must be VX locked and referenced. In all normal situations
1189 * there are no active references. If vclean_vxlocked() is called while
1190 * there are active references, the vnode is being ripped out and we have
1191 * to call VOP_CLOSE() as appropriate before we can reclaim it.
1193 void
1194 vclean_vxlocked(struct vnode *vp, int flags)
1196 int active;
1197 int n;
1198 vm_object_t object;
1199 struct namecache *ncp;
1202 * If the vnode has already been reclaimed we have nothing to do.
1204 if (vp->v_flag & VRECLAIMED)
1205 return;
1208 * Set flag to interlock operation, flag finalization to ensure
1209 * that the vnode winds up on the inactive list, and set v_act to 0.
1211 vsetflags(vp, VRECLAIMED);
1212 atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1213 vp->v_act = 0;
1215 if (verbose_reclaims) {
1216 if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL)
1217 kprintf("Debug: reclaim %p %s\n", vp, ncp->nc_name);
1221 * Scrap the vfs cache
1223 while (cache_inval_vp(vp, 0) != 0) {
1224 kprintf("Warning: vnode %p clean/cache_resolution "
1225 "race detected\n", vp);
1226 tsleep(vp, 0, "vclninv", 2);
1230 * Check to see if the vnode is in use. If so we have to reference it
1231 * before we clean it out so that its count cannot fall to zero and
1232 * generate a race against ourselves to recycle it.
1234 active = (VREFCNT(vp) > 0);
1237 * Clean out any buffers associated with the vnode and destroy its
1238 * object, if it has one.
1240 vinvalbuf(vp, V_SAVE, 0, 0);
1241 KKASSERT(lockcountnb(&vp->v_lock) == 1);
1244 * If purging an active vnode (typically during a forced unmount
1245 * or reboot), it must be closed and deactivated before being
1246 * reclaimed. This isn't really all that safe, but what can
1247 * we do? XXX.
1249 * Note that neither of these routines unlocks the vnode.
1251 if (active && (flags & DOCLOSE)) {
1252 while ((n = vp->v_opencount) != 0) {
1253 if (vp->v_writecount)
1254 VOP_CLOSE(vp, FWRITE|FNONBLOCK, NULL);
1255 else
1256 VOP_CLOSE(vp, FNONBLOCK, NULL);
1257 if (vp->v_opencount == n) {
1258 kprintf("Warning: unable to force-close"
1259 " vnode %p\n", vp);
1260 break;
1266 * If the vnode has not been deactivated, deactivated it. Deactivation
1267 * can create new buffers and VM pages so we have to call vinvalbuf()
1268 * again to make sure they all get flushed.
1270 * This can occur if a file with a link count of 0 needs to be
1271 * truncated.
1273 * If the vnode is already dead don't try to deactivate it.
1275 if ((vp->v_flag & VINACTIVE) == 0) {
1276 vsetflags(vp, VINACTIVE);
1277 if (vp->v_mount)
1278 VOP_INACTIVE(vp);
1279 vinvalbuf(vp, V_SAVE, 0, 0);
1281 KKASSERT(lockcountnb(&vp->v_lock) == 1);
1284 * If the vnode has an object, destroy it.
1286 while ((object = vp->v_object) != NULL) {
1287 vm_object_hold(object);
1288 if (object == vp->v_object)
1289 break;
1290 vm_object_drop(object);
1293 if (object != NULL) {
1294 if (object->ref_count == 0) {
1295 if ((object->flags & OBJ_DEAD) == 0)
1296 vm_object_terminate(object);
1297 vm_object_drop(object);
1298 vclrflags(vp, VOBJBUF);
1299 } else {
1300 vm_pager_deallocate(object);
1301 vclrflags(vp, VOBJBUF);
1302 vm_object_drop(object);
1305 KKASSERT((vp->v_flag & VOBJBUF) == 0);
1308 * Reclaim the vnode if not already dead.
1310 if (vp->v_mount && VOP_RECLAIM(vp))
1311 panic("vclean: cannot reclaim");
1314 * Done with purge, notify sleepers of the grim news.
1316 vp->v_ops = &dead_vnode_vops_p;
1317 vn_gone(vp);
1318 vp->v_tag = VT_NON;
1321 * If we are destroying an active vnode, reactivate it now that
1322 * we have reassociated it with deadfs. This prevents the system
1323 * from crashing on the vnode due to it being unexpectedly marked
1324 * as inactive or reclaimed.
1326 if (active && (flags & DOCLOSE)) {
1327 vclrflags(vp, VINACTIVE | VRECLAIMED);
1332 * Eliminate all activity associated with the requested vnode
1333 * and with all vnodes aliased to the requested vnode.
1335 * The vnode must be referenced but should not be locked.
1338 vrevoke(struct vnode *vp, struct ucred *cred)
1340 struct vnode *vq;
1341 struct vnode *vqn;
1342 cdev_t dev;
1343 int error;
1346 * If the vnode has a device association, scrap all vnodes associated
1347 * with the device. Don't let the device disappear on us while we
1348 * are scrapping the vnodes.
1350 * The passed vp will probably show up in the list, do not VX lock
1351 * it twice!
1353 * Releasing the vnode's rdev here can mess up specfs's call to
1354 * device close, so don't do it. The vnode has been disassociated
1355 * and the device will be closed after the last ref on the related
1356 * fp goes away (if not still open by e.g. the kernel).
1358 if (vp->v_type != VCHR) {
1359 error = fdrevoke(vp, DTYPE_VNODE, cred);
1360 return (error);
1362 if ((dev = vp->v_rdev) == NULL) {
1363 return(0);
1365 reference_dev(dev);
1366 lwkt_gettoken(&spechash_token);
1368 restart:
1369 vqn = SLIST_FIRST(&dev->si_hlist);
1370 if (vqn)
1371 vhold(vqn);
1372 while ((vq = vqn) != NULL) {
1373 if (VREFCNT(vq) > 0) {
1374 vref(vq);
1375 fdrevoke(vq, DTYPE_VNODE, cred);
1376 /*v_release_rdev(vq);*/
1377 vrele(vq);
1378 if (vq->v_rdev != dev) {
1379 vdrop(vq);
1380 goto restart;
1383 vqn = SLIST_NEXT(vq, v_cdevnext);
1384 if (vqn)
1385 vhold(vqn);
1386 vdrop(vq);
1388 lwkt_reltoken(&spechash_token);
1389 dev_drevoke(dev);
1390 release_dev(dev);
1391 return (0);
1395 * This is called when the object underlying a vnode is being destroyed,
1396 * such as in a remove(). Try to recycle the vnode immediately if the
1397 * only active reference is our reference.
1399 * Directory vnodes in the namecache with children cannot be immediately
1400 * recycled because numerous VOP_N*() ops require them to be stable.
1402 * To avoid recursive recycling from VOP_INACTIVE implemenetations this
1403 * function is a NOP if VRECLAIMED is already set.
1406 vrecycle(struct vnode *vp)
1408 if (VREFCNT(vp) <= 1 && (vp->v_flag & VRECLAIMED) == 0) {
1409 if (cache_inval_vp_nonblock(vp))
1410 return(0);
1411 vgone_vxlocked(vp);
1412 return (1);
1414 return (0);
1418 * Return the maximum I/O size allowed for strategy calls on VP.
1420 * If vp is VCHR or VBLK we dive the device, otherwise we use
1421 * the vp's mount info.
1423 * The returned value is clamped at MAXPHYS as most callers cannot use
1424 * buffers larger than that size.
1427 vmaxiosize(struct vnode *vp)
1429 int maxiosize;
1431 if (vp->v_type == VBLK || vp->v_type == VCHR)
1432 maxiosize = vp->v_rdev->si_iosize_max;
1433 else
1434 maxiosize = vp->v_mount->mnt_iosize_max;
1436 if (maxiosize > MAXPHYS)
1437 maxiosize = MAXPHYS;
1438 return (maxiosize);
1442 * Eliminate all activity associated with a vnode in preparation for
1443 * destruction.
1445 * The vnode must be VX locked and refd and will remain VX locked and refd
1446 * on return. This routine may be called with the vnode in any state, as
1447 * long as it is VX locked. The vnode will be cleaned out and marked
1448 * VRECLAIMED but will not actually be reused until all existing refs and
1449 * holds go away.
1451 * NOTE: This routine may be called on a vnode which has not yet been
1452 * already been deactivated (VOP_INACTIVE), or on a vnode which has
1453 * already been reclaimed.
1455 * This routine is not responsible for placing us back on the freelist.
1456 * Instead, it happens automatically when the caller releases the VX lock
1457 * (assuming there aren't any other references).
1459 void
1460 vgone_vxlocked(struct vnode *vp)
1463 * assert that the VX lock is held. This is an absolute requirement
1464 * now for vgone_vxlocked() to be called.
1466 KKASSERT(lockcountnb(&vp->v_lock) == 1);
1469 * Clean out the filesystem specific data and set the VRECLAIMED
1470 * bit. Also deactivate the vnode if necessary.
1472 * The vnode should have automatically been removed from the syncer
1473 * list as syncer/dirty flags cleared during the cleaning.
1475 vclean_vxlocked(vp, DOCLOSE);
1476 KKASSERT((vp->v_flag & VONWORKLST) == 0);
1479 * Delete from old mount point vnode list, if on one.
1481 if (vp->v_mount != NULL) {
1482 KKASSERT(vp->v_data == NULL);
1483 insmntque(vp, NULL);
1487 * If special device, remove it from special device alias list
1488 * if it is on one. This should normally only occur if a vnode is
1489 * being revoked as the device should otherwise have been released
1490 * naturally.
1492 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1493 v_release_rdev(vp);
1497 * Set us to VBAD
1499 vp->v_type = VBAD;
1503 * Lookup a vnode by device number.
1505 * Returns non-zero and *vpp set to a vref'd vnode on success.
1506 * Returns zero on failure.
1509 vfinddev(cdev_t dev, enum vtype type, struct vnode **vpp)
1511 struct vnode *vp;
1513 lwkt_gettoken(&spechash_token);
1514 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1515 if (type == vp->v_type) {
1516 *vpp = vp;
1517 vref(vp);
1518 lwkt_reltoken(&spechash_token);
1519 return (1);
1522 lwkt_reltoken(&spechash_token);
1523 return (0);
1527 * Calculate the total number of references to a special device. This
1528 * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1529 * an overloaded field. Since udev2dev can now return NULL, we have
1530 * to check for a NULL v_rdev.
1533 count_dev(cdev_t dev)
1535 struct vnode *vp;
1536 int count = 0;
1538 if (SLIST_FIRST(&dev->si_hlist)) {
1539 lwkt_gettoken(&spechash_token);
1540 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1541 count += vp->v_opencount;
1543 lwkt_reltoken(&spechash_token);
1545 return(count);
1549 vcount(struct vnode *vp)
1551 if (vp->v_rdev == NULL)
1552 return(0);
1553 return(count_dev(vp->v_rdev));
1557 * Initialize VMIO for a vnode. This routine MUST be called before a
1558 * VFS can issue buffer cache ops on a vnode. It is typically called
1559 * when a vnode is initialized from its inode.
1562 vinitvmio(struct vnode *vp, off_t filesize, int blksize, int boff)
1564 vm_object_t object;
1565 int error = 0;
1567 object = vp->v_object;
1568 if (object) {
1569 vm_object_hold(object);
1570 KKASSERT(vp->v_object == object);
1573 if (object == NULL) {
1574 object = vnode_pager_alloc(vp, filesize, 0, 0, blksize, boff);
1577 * Dereference the reference we just created. This assumes
1578 * that the object is associated with the vp. Allow it to
1579 * have zero refs. It cannot be destroyed as long as it
1580 * is associated with the vnode.
1582 vm_object_hold(object);
1583 atomic_add_int(&object->ref_count, -1);
1584 vrele(vp);
1585 } else {
1586 KKASSERT((object->flags & OBJ_DEAD) == 0);
1588 KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1589 vsetflags(vp, VOBJBUF);
1590 vm_object_drop(object);
1592 return (error);
1597 * Print out a description of a vnode.
1599 static char *typename[] =
1600 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1602 void
1603 vprint(char *label, struct vnode *vp)
1605 char buf[96];
1607 if (label != NULL)
1608 kprintf("%s: %p: ", label, (void *)vp);
1609 else
1610 kprintf("%p: ", (void *)vp);
1611 kprintf("type %s, refcnt %08x, writecount %d, holdcnt %d,",
1612 typename[vp->v_type],
1613 vp->v_refcnt, vp->v_writecount, vp->v_auxrefs);
1614 buf[0] = '\0';
1615 if (vp->v_flag & VROOT)
1616 strcat(buf, "|VROOT");
1617 if (vp->v_flag & VPFSROOT)
1618 strcat(buf, "|VPFSROOT");
1619 if (vp->v_flag & VTEXT)
1620 strcat(buf, "|VTEXT");
1621 if (vp->v_flag & VSYSTEM)
1622 strcat(buf, "|VSYSTEM");
1623 if (vp->v_flag & VOBJBUF)
1624 strcat(buf, "|VOBJBUF");
1625 if (buf[0] != '\0')
1626 kprintf(" flags (%s)", &buf[1]);
1627 if (vp->v_data == NULL) {
1628 kprintf("\n");
1629 } else {
1630 kprintf("\n\t");
1631 VOP_PRINT(vp);
1636 * Do the usual access checking.
1637 * file_mode, uid and gid are from the vnode in question,
1638 * while acc_mode and cred are from the VOP_ACCESS parameter list
1641 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
1642 mode_t acc_mode, struct ucred *cred)
1644 mode_t mask;
1645 int ismember;
1648 * Super-user always gets read/write access, but execute access depends
1649 * on at least one execute bit being set.
1651 if (priv_check_cred(cred, PRIV_ROOT, 0) == 0) {
1652 if ((acc_mode & VEXEC) && type != VDIR &&
1653 (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
1654 return (EACCES);
1655 return (0);
1658 mask = 0;
1660 /* Otherwise, check the owner. */
1661 if (cred->cr_uid == uid) {
1662 if (acc_mode & VEXEC)
1663 mask |= S_IXUSR;
1664 if (acc_mode & VREAD)
1665 mask |= S_IRUSR;
1666 if (acc_mode & VWRITE)
1667 mask |= S_IWUSR;
1668 return ((file_mode & mask) == mask ? 0 : EACCES);
1671 /* Otherwise, check the groups. */
1672 ismember = groupmember(gid, cred);
1673 if (cred->cr_svgid == gid || ismember) {
1674 if (acc_mode & VEXEC)
1675 mask |= S_IXGRP;
1676 if (acc_mode & VREAD)
1677 mask |= S_IRGRP;
1678 if (acc_mode & VWRITE)
1679 mask |= S_IWGRP;
1680 return ((file_mode & mask) == mask ? 0 : EACCES);
1683 /* Otherwise, check everyone else. */
1684 if (acc_mode & VEXEC)
1685 mask |= S_IXOTH;
1686 if (acc_mode & VREAD)
1687 mask |= S_IROTH;
1688 if (acc_mode & VWRITE)
1689 mask |= S_IWOTH;
1690 return ((file_mode & mask) == mask ? 0 : EACCES);
1693 #ifdef DDB
1694 #include <ddb/ddb.h>
1696 static int db_show_locked_vnodes(struct mount *mp, void *data);
1699 * List all of the locked vnodes in the system.
1700 * Called when debugging the kernel.
1702 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1704 kprintf("Locked vnodes\n");
1705 mountlist_scan(db_show_locked_vnodes, NULL,
1706 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1709 static int
1710 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1712 struct vnode *vp;
1714 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1715 if (vn_islocked(vp))
1716 vprint(NULL, vp);
1718 return(0);
1720 #endif
1723 * Top level filesystem related information gathering.
1725 static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1727 static int
1728 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1730 int *name = (int *)arg1 - 1; /* XXX */
1731 u_int namelen = arg2 + 1; /* XXX */
1732 struct vfsconf *vfsp;
1733 int maxtypenum;
1735 #if 1 || defined(COMPAT_PRELITE2)
1736 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1737 if (namelen == 1)
1738 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1739 #endif
1741 #ifdef notyet
1742 /* all sysctl names at this level are at least name and field */
1743 if (namelen < 2)
1744 return (ENOTDIR); /* overloaded */
1745 if (name[0] != VFS_GENERIC) {
1746 vfsp = vfsconf_find_by_typenum(name[0]);
1747 if (vfsp == NULL)
1748 return (EOPNOTSUPP);
1749 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1750 oldp, oldlenp, newp, newlen, p));
1752 #endif
1753 switch (name[1]) {
1754 case VFS_MAXTYPENUM:
1755 if (namelen != 2)
1756 return (ENOTDIR);
1757 maxtypenum = vfsconf_get_maxtypenum();
1758 return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
1759 case VFS_CONF:
1760 if (namelen != 3)
1761 return (ENOTDIR); /* overloaded */
1762 vfsp = vfsconf_find_by_typenum(name[2]);
1763 if (vfsp == NULL)
1764 return (EOPNOTSUPP);
1765 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1767 return (EOPNOTSUPP);
1770 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1771 "Generic filesystem");
1773 #if 1 || defined(COMPAT_PRELITE2)
1775 static int
1776 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
1778 int error;
1779 struct ovfsconf ovfs;
1780 struct sysctl_req *req = (struct sysctl_req*) data;
1782 bzero(&ovfs, sizeof(ovfs));
1783 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
1784 strcpy(ovfs.vfc_name, vfsp->vfc_name);
1785 ovfs.vfc_index = vfsp->vfc_typenum;
1786 ovfs.vfc_refcount = vfsp->vfc_refcount;
1787 ovfs.vfc_flags = vfsp->vfc_flags;
1788 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1789 if (error)
1790 return error; /* abort iteration with error code */
1791 else
1792 return 0; /* continue iterating with next element */
1795 static int
1796 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1798 return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
1801 #endif /* 1 || COMPAT_PRELITE2 */
1804 * Check to see if a filesystem is mounted on a block device.
1807 vfs_mountedon(struct vnode *vp)
1809 cdev_t dev;
1811 if ((dev = vp->v_rdev) == NULL) {
1812 /* if (vp->v_type != VBLK)
1813 dev = get_dev(vp->v_uminor, vp->v_umajor); */
1815 if (dev != NULL && dev->si_mountpoint)
1816 return (EBUSY);
1817 return (0);
1821 * Unmount all filesystems. The list is traversed in reverse order
1822 * of mounting to avoid dependencies.
1825 static int vfs_umountall_callback(struct mount *mp, void *data);
1827 void
1828 vfs_unmountall(void)
1830 int count;
1832 do {
1833 count = mountlist_scan(vfs_umountall_callback,
1834 NULL, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1835 } while (count);
1838 static
1840 vfs_umountall_callback(struct mount *mp, void *data)
1842 int error;
1844 error = dounmount(mp, MNT_FORCE);
1845 if (error) {
1846 mountlist_remove(mp);
1847 kprintf("unmount of filesystem mounted from %s failed (",
1848 mp->mnt_stat.f_mntfromname);
1849 if (error == EBUSY)
1850 kprintf("BUSY)\n");
1851 else
1852 kprintf("%d)\n", error);
1854 return(1);
1858 * Checks the mount flags for parameter mp and put the names comma-separated
1859 * into a string buffer buf with a size limit specified by len.
1861 * It returns the number of bytes written into buf, and (*errorp) will be
1862 * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1863 * not large enough). The buffer will be 0-terminated if len was not 0.
1865 size_t
1866 vfs_flagstostr(int flags, const struct mountctl_opt *optp,
1867 char *buf, size_t len, int *errorp)
1869 static const struct mountctl_opt optnames[] = {
1870 { MNT_RDONLY, "read-only" },
1871 { MNT_SYNCHRONOUS, "synchronous" },
1872 { MNT_NOEXEC, "noexec" },
1873 { MNT_NOSUID, "nosuid" },
1874 { MNT_NODEV, "nodev" },
1875 { MNT_AUTOMOUNTED, "automounted" },
1876 { MNT_ASYNC, "asynchronous" },
1877 { MNT_SUIDDIR, "suiddir" },
1878 { MNT_SOFTDEP, "soft-updates" },
1879 { MNT_NOSYMFOLLOW, "nosymfollow" },
1880 { MNT_TRIM, "trim" },
1881 { MNT_NOATIME, "noatime" },
1882 { MNT_NOCLUSTERR, "noclusterr" },
1883 { MNT_NOCLUSTERW, "noclusterw" },
1884 { MNT_EXRDONLY, "NFS read-only" },
1885 { MNT_EXPORTED, "NFS exported" },
1886 /* Remaining NFS flags could come here */
1887 { MNT_LOCAL, "local" },
1888 { MNT_QUOTA, "with-quotas" },
1889 /* { MNT_ROOTFS, "rootfs" }, */
1890 /* { MNT_IGNORE, "ignore" }, */
1891 { 0, NULL}
1893 int bwritten;
1894 int bleft;
1895 int optlen;
1896 int actsize;
1898 *errorp = 0;
1899 bwritten = 0;
1900 bleft = len - 1; /* leave room for trailing \0 */
1903 * Checks the size of the string. If it contains
1904 * any data, then we will append the new flags to
1905 * it.
1907 actsize = strlen(buf);
1908 if (actsize > 0)
1909 buf += actsize;
1911 /* Default flags if no flags passed */
1912 if (optp == NULL)
1913 optp = optnames;
1915 if (bleft < 0) { /* degenerate case, 0-length buffer */
1916 *errorp = EINVAL;
1917 return(0);
1920 for (; flags && optp->o_opt; ++optp) {
1921 if ((flags & optp->o_opt) == 0)
1922 continue;
1923 optlen = strlen(optp->o_name);
1924 if (bwritten || actsize > 0) {
1925 if (bleft < 2) {
1926 *errorp = ENOSPC;
1927 break;
1929 buf[bwritten++] = ',';
1930 buf[bwritten++] = ' ';
1931 bleft -= 2;
1933 if (bleft < optlen) {
1934 *errorp = ENOSPC;
1935 break;
1937 bcopy(optp->o_name, buf + bwritten, optlen);
1938 bwritten += optlen;
1939 bleft -= optlen;
1940 flags &= ~optp->o_opt;
1944 * Space already reserved for trailing \0
1946 buf[bwritten] = 0;
1947 return (bwritten);
1951 * Build hash lists of net addresses and hang them off the mount point.
1952 * Called by ufs_mount() to set up the lists of export addresses.
1954 static int
1955 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1956 const struct export_args *argp)
1958 struct netcred *np;
1959 struct radix_node_head *rnh;
1960 int i;
1961 struct radix_node *rn;
1962 struct sockaddr *saddr, *smask = NULL;
1963 int error;
1965 if (argp->ex_addrlen == 0) {
1966 if (mp->mnt_flag & MNT_DEFEXPORTED)
1967 return (EPERM);
1968 np = &nep->ne_defexported;
1969 np->netc_exflags = argp->ex_flags;
1970 np->netc_anon = argp->ex_anon;
1971 np->netc_anon.cr_ref = 1;
1972 mp->mnt_flag |= MNT_DEFEXPORTED;
1973 return (0);
1976 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1977 return (EINVAL);
1978 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1979 return (EINVAL);
1981 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1982 np = (struct netcred *) kmalloc(i, M_NETADDR, M_WAITOK | M_ZERO);
1983 saddr = (struct sockaddr *) (np + 1);
1984 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1985 goto out;
1986 if (saddr->sa_len > argp->ex_addrlen)
1987 saddr->sa_len = argp->ex_addrlen;
1988 if (argp->ex_masklen) {
1989 smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1990 error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1991 if (error)
1992 goto out;
1993 if (smask->sa_len > argp->ex_masklen)
1994 smask->sa_len = argp->ex_masklen;
1996 NE_LOCK(nep);
1997 if (nep->ne_maskhead == NULL) {
1998 if (!rn_inithead((void **)&nep->ne_maskhead, NULL, 0)) {
1999 error = ENOBUFS;
2000 goto out;
2003 if((rnh = vfs_create_addrlist_af(saddr->sa_family, nep)) == NULL) {
2004 error = ENOBUFS;
2005 goto out;
2007 rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
2008 np->netc_rnodes);
2009 NE_UNLOCK(nep);
2010 if (rn == NULL || np != (struct netcred *) rn) { /* already exists */
2011 error = EPERM;
2012 goto out;
2014 np->netc_exflags = argp->ex_flags;
2015 np->netc_anon = argp->ex_anon;
2016 np->netc_anon.cr_ref = 1;
2017 return (0);
2018 out:
2019 kfree(np, M_NETADDR);
2020 return (error);
2023 /* ARGSUSED */
2024 static int
2025 vfs_free_netcred(struct radix_node *rn, void *w)
2027 struct radix_node_head *rnh = (struct radix_node_head *) w;
2029 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2030 kfree((caddr_t) rn, M_NETADDR);
2031 return (0);
2034 static struct radix_node_head *
2035 vfs_create_addrlist_af(int af, struct netexport *nep)
2037 struct radix_node_head *rnh = NULL;
2038 #if defined(INET) || defined(INET6)
2039 struct radix_node_head *maskhead = nep->ne_maskhead;
2040 int off;
2041 #endif
2043 NE_ASSERT_LOCKED(nep);
2044 KKASSERT(maskhead != NULL);
2045 switch (af) {
2046 #ifdef INET
2047 case AF_INET:
2048 if ((rnh = nep->ne_inethead) == NULL) {
2049 off = offsetof(struct sockaddr_in, sin_addr) << 3;
2050 if (!rn_inithead((void **)&rnh, maskhead, off))
2051 return (NULL);
2052 nep->ne_inethead = rnh;
2054 break;
2055 #endif
2056 #ifdef INET6
2057 case AF_INET6:
2058 if ((rnh = nep->ne_inet6head) == NULL) {
2059 off = offsetof(struct sockaddr_in6, sin6_addr) << 3;
2060 if (!rn_inithead((void **)&rnh, maskhead, off))
2061 return (NULL);
2062 nep->ne_inet6head = rnh;
2064 break;
2065 #endif
2067 return (rnh);
2070 static void
2071 vfs_free_addrlist_af(struct radix_node_head **prnh)
2073 struct radix_node_head *rnh = *prnh;
2075 (*rnh->rnh_walktree) (rnh, vfs_free_netcred, rnh);
2076 kfree(rnh, M_RTABLE);
2077 *prnh = NULL;
2081 * Free the net address hash lists that are hanging off the mount points.
2083 static void
2084 vfs_free_addrlist(struct netexport *nep)
2086 NE_LOCK(nep);
2087 if (nep->ne_inethead != NULL)
2088 vfs_free_addrlist_af(&nep->ne_inethead);
2089 if (nep->ne_inet6head != NULL)
2090 vfs_free_addrlist_af(&nep->ne_inet6head);
2091 if (nep->ne_maskhead)
2092 vfs_free_addrlist_af(&nep->ne_maskhead);
2093 NE_UNLOCK(nep);
2097 vfs_export(struct mount *mp, struct netexport *nep,
2098 const struct export_args *argp)
2100 int error;
2102 if (argp->ex_flags & MNT_DELEXPORT) {
2103 if (mp->mnt_flag & MNT_EXPUBLIC) {
2104 vfs_setpublicfs(NULL, NULL, NULL);
2105 mp->mnt_flag &= ~MNT_EXPUBLIC;
2107 vfs_free_addrlist(nep);
2108 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2110 if (argp->ex_flags & MNT_EXPORTED) {
2111 if (argp->ex_flags & MNT_EXPUBLIC) {
2112 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2113 return (error);
2114 mp->mnt_flag |= MNT_EXPUBLIC;
2116 if ((error = vfs_hang_addrlist(mp, nep, argp)))
2117 return (error);
2118 mp->mnt_flag |= MNT_EXPORTED;
2120 return (0);
2125 * Set the publicly exported filesystem (WebNFS). Currently, only
2126 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2129 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
2130 const struct export_args *argp)
2132 int error;
2133 struct vnode *rvp;
2134 char *cp;
2137 * mp == NULL -> invalidate the current info, the FS is
2138 * no longer exported. May be called from either vfs_export
2139 * or unmount, so check if it hasn't already been done.
2141 if (mp == NULL) {
2142 if (nfs_pub.np_valid) {
2143 nfs_pub.np_valid = 0;
2144 if (nfs_pub.np_index != NULL) {
2145 kfree(nfs_pub.np_index, M_TEMP);
2146 nfs_pub.np_index = NULL;
2149 return (0);
2153 * Only one allowed at a time.
2155 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2156 return (EBUSY);
2159 * Get real filehandle for root of exported FS.
2161 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2162 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2164 if ((error = VFS_ROOT(mp, &rvp)))
2165 return (error);
2167 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2168 return (error);
2170 vput(rvp);
2173 * If an indexfile was specified, pull it in.
2175 if (argp->ex_indexfile != NULL) {
2176 int namelen;
2178 error = vn_get_namelen(rvp, &namelen);
2179 if (error)
2180 return (error);
2181 nfs_pub.np_index = kmalloc(namelen, M_TEMP, M_WAITOK);
2182 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2183 namelen, NULL);
2184 if (!error) {
2186 * Check for illegal filenames.
2188 for (cp = nfs_pub.np_index; *cp; cp++) {
2189 if (*cp == '/') {
2190 error = EINVAL;
2191 break;
2195 if (error) {
2196 kfree(nfs_pub.np_index, M_TEMP);
2197 return (error);
2201 nfs_pub.np_mount = mp;
2202 nfs_pub.np_valid = 1;
2203 return (0);
2206 struct netcred *
2207 vfs_export_lookup(struct mount *mp, struct netexport *nep,
2208 struct sockaddr *nam)
2210 struct netcred *np;
2211 struct radix_node_head *rnh;
2212 struct sockaddr *saddr;
2214 np = NULL;
2215 if (mp->mnt_flag & MNT_EXPORTED) {
2217 * Lookup in the export list first.
2219 NE_LOCK(nep);
2220 if (nam != NULL) {
2221 saddr = nam;
2222 switch (saddr->sa_family) {
2223 #ifdef INET
2224 case AF_INET:
2225 rnh = nep->ne_inethead;
2226 break;
2227 #endif
2228 #ifdef INET6
2229 case AF_INET6:
2230 rnh = nep->ne_inet6head;
2231 break;
2232 #endif
2233 default:
2234 rnh = NULL;
2236 if (rnh != NULL) {
2237 np = (struct netcred *)
2238 (*rnh->rnh_matchaddr)((char *)saddr,
2239 rnh);
2240 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2241 np = NULL;
2244 NE_UNLOCK(nep);
2246 * If no address match, use the default if it exists.
2248 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2249 np = &nep->ne_defexported;
2251 return (np);
2255 * perform msync on all vnodes under a mount point. The mount point must
2256 * be locked. This code is also responsible for lazy-freeing unreferenced
2257 * vnodes whos VM objects no longer contain pages.
2259 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2261 * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
2262 * but vnode_pager_putpages() doesn't lock the vnode. We have to do it
2263 * way up in this high level function.
2265 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2266 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
2268 void
2269 vfs_msync(struct mount *mp, int flags)
2271 int vmsc_flags;
2274 * tmpfs sets this flag to prevent msync(), sync, and the
2275 * filesystem periodic syncer from trying to flush VM pages
2276 * to swap. Only pure memory pressure flushes tmpfs VM pages
2277 * to swap.
2279 if (mp->mnt_kern_flag & MNTK_NOMSYNC)
2280 return;
2283 * Ok, scan the vnodes for work. If the filesystem is using the
2284 * syncer thread feature we can use vsyncscan() instead of
2285 * vmntvnodescan(), which is much faster.
2287 vmsc_flags = VMSC_GETVP;
2288 if (flags != MNT_WAIT)
2289 vmsc_flags |= VMSC_NOWAIT;
2291 if (mp->mnt_kern_flag & MNTK_THR_SYNC) {
2292 vsyncscan(mp, vmsc_flags, vfs_msync_scan2,
2293 (void *)(intptr_t)flags);
2294 } else {
2295 vmntvnodescan(mp, vmsc_flags,
2296 vfs_msync_scan1, vfs_msync_scan2,
2297 (void *)(intptr_t)flags);
2302 * scan1 is a fast pre-check. There could be hundreds of thousands of
2303 * vnodes, we cannot afford to do anything heavy weight until we have a
2304 * fairly good indication that there is work to do.
2306 static
2308 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2310 int flags = (int)(intptr_t)data;
2312 if ((vp->v_flag & VRECLAIMED) == 0) {
2313 if (vp->v_auxrefs == 0 && VREFCNT(vp) <= 0 &&
2314 vp->v_object) {
2315 return(0); /* call scan2 */
2317 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2318 (vp->v_flag & VOBJDIRTY) &&
2319 (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
2320 return(0); /* call scan2 */
2325 * do not call scan2, continue the loop
2327 return(-1);
2331 * This callback is handed a locked vnode.
2333 static
2335 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
2337 vm_object_t obj;
2338 int flags = (int)(intptr_t)data;
2340 if (vp->v_flag & VRECLAIMED)
2341 return(0);
2343 if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
2344 if ((obj = vp->v_object) != NULL) {
2345 vm_object_page_clean(obj, 0, 0,
2346 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2349 return(0);
2353 * Wake up anyone interested in vp because it is being revoked.
2355 void
2356 vn_gone(struct vnode *vp)
2358 lwkt_gettoken(&vp->v_token);
2359 KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, NOTE_REVOKE);
2360 lwkt_reltoken(&vp->v_token);
2364 * extract the cdev_t from a VBLK or VCHR. The vnode must have been opened
2365 * (or v_rdev might be NULL).
2367 cdev_t
2368 vn_todev(struct vnode *vp)
2370 if (vp->v_type != VBLK && vp->v_type != VCHR)
2371 return (NULL);
2372 KKASSERT(vp->v_rdev != NULL);
2373 return (vp->v_rdev);
2377 * Check if vnode represents a disk device. The vnode does not need to be
2378 * opened.
2380 * MPALMOSTSAFE
2383 vn_isdisk(struct vnode *vp, int *errp)
2385 cdev_t dev;
2387 if (vp->v_type != VCHR) {
2388 if (errp != NULL)
2389 *errp = ENOTBLK;
2390 return (0);
2393 dev = vp->v_rdev;
2395 if (dev == NULL) {
2396 if (errp != NULL)
2397 *errp = ENXIO;
2398 return (0);
2400 if (dev_is_good(dev) == 0) {
2401 if (errp != NULL)
2402 *errp = ENXIO;
2403 return (0);
2405 if ((dev_dflags(dev) & D_DISK) == 0) {
2406 if (errp != NULL)
2407 *errp = ENOTBLK;
2408 return (0);
2410 if (errp != NULL)
2411 *errp = 0;
2412 return (1);
2416 vn_get_namelen(struct vnode *vp, int *namelen)
2418 int error;
2419 register_t retval[2];
2421 error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2422 if (error)
2423 return (error);
2424 *namelen = (int)retval[0];
2425 return (0);
2429 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2430 uint16_t d_namlen, const char *d_name)
2432 struct dirent *dp;
2433 size_t len;
2435 len = _DIRENT_RECLEN(d_namlen);
2436 if (len > uio->uio_resid)
2437 return(1);
2439 dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2441 dp->d_ino = d_ino;
2442 dp->d_namlen = d_namlen;
2443 dp->d_type = d_type;
2444 bcopy(d_name, dp->d_name, d_namlen);
2446 *error = uiomove((caddr_t)dp, len, uio);
2448 kfree(dp, M_TEMP);
2450 return(0);
2453 void
2454 vn_mark_atime(struct vnode *vp, struct thread *td)
2456 struct proc *p = td->td_proc;
2457 struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2459 if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2460 VOP_MARKATIME(vp, cred);