2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
35 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
39 * External virtual filesystem routines
43 #include "opt_inet6.h"
45 #include <sys/param.h>
46 #include <sys/systm.h>
49 #include <sys/dirent.h>
50 #include <sys/eventhandler.h>
51 #include <sys/fcntl.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/malloc.h>
57 #include <sys/mount.h>
60 #include <sys/reboot.h>
61 #include <sys/socket.h>
63 #include <sys/sysctl.h>
64 #include <sys/syslog.h>
65 #include <sys/unistd.h>
66 #include <sys/vmmeter.h>
67 #include <sys/vnode.h>
69 #include <machine/limits.h>
72 #include <vm/vm_object.h>
73 #include <vm/vm_extern.h>
74 #include <vm/vm_kern.h>
76 #include <vm/vm_map.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_pager.h>
79 #include <vm/vnode_pager.h>
80 #include <vm/vm_zone.h>
83 #include <sys/thread2.h>
84 #include <sys/sysref2.h>
85 #include <sys/mplock2.h>
87 #include <netinet/in.h>
89 static MALLOC_DEFINE(M_NETADDR
, "Export Host", "Export host address structure");
92 SYSCTL_INT(_debug
, OID_AUTO
, numvnodes
, CTLFLAG_RD
, &numvnodes
, 0,
93 "Number of vnodes allocated");
95 SYSCTL_INT(_debug
, OID_AUTO
, verbose_reclaims
, CTLFLAG_RD
, &verbose_reclaims
, 0,
96 "Output filename of reclaimed vnode(s)");
98 enum vtype iftovt_tab
[16] = {
99 VNON
, VFIFO
, VCHR
, VNON
, VDIR
, VNON
, VBLK
, VNON
,
100 VREG
, VNON
, VLNK
, VNON
, VSOCK
, VNON
, VNON
, VBAD
,
102 int vttoif_tab
[9] = {
103 0, S_IFREG
, S_IFDIR
, S_IFBLK
, S_IFCHR
, S_IFLNK
,
104 S_IFSOCK
, S_IFIFO
, S_IFMT
,
107 static int reassignbufcalls
;
108 SYSCTL_INT(_vfs
, OID_AUTO
, reassignbufcalls
, CTLFLAG_RW
, &reassignbufcalls
,
109 0, "Number of times buffers have been reassigned to the proper list");
111 static int check_buf_overlap
= 2; /* invasive check */
112 SYSCTL_INT(_vfs
, OID_AUTO
, check_buf_overlap
, CTLFLAG_RW
, &check_buf_overlap
,
113 0, "Enable overlapping buffer checks");
115 int nfs_mount_type
= -1;
116 static struct lwkt_token spechash_token
;
117 struct nfs_public nfs_pub
; /* publicly exported FS */
120 SYSCTL_INT(_kern
, KERN_MAXVNODES
, maxvnodes
, CTLFLAG_RW
,
121 &desiredvnodes
, 0, "Maximum number of vnodes");
123 static struct radix_node_head
*vfs_create_addrlist_af(int af
,
124 struct netexport
*nep
);
125 static void vfs_free_addrlist (struct netexport
*nep
);
126 static int vfs_free_netcred (struct radix_node
*rn
, void *w
);
127 static void vfs_free_addrlist_af (struct radix_node_head
**prnh
);
128 static int vfs_hang_addrlist (struct mount
*mp
, struct netexport
*nep
,
129 const struct export_args
*argp
);
131 int prtactive
= 0; /* 1 => print out reclaim of active vnodes */
134 * Red black tree functions
136 static int rb_buf_compare(struct buf
*b1
, struct buf
*b2
);
137 RB_GENERATE2(buf_rb_tree
, buf
, b_rbnode
, rb_buf_compare
, off_t
, b_loffset
);
138 RB_GENERATE2(buf_rb_hash
, buf
, b_rbhash
, rb_buf_compare
, off_t
, b_loffset
);
141 rb_buf_compare(struct buf
*b1
, struct buf
*b2
)
143 if (b1
->b_loffset
< b2
->b_loffset
)
145 if (b1
->b_loffset
> b2
->b_loffset
)
151 * Initialize the vnode management data structures.
153 * Called from vfsinit()
162 * Desiredvnodes is kern.maxvnodes. We want to scale it
163 * according to available system memory but we may also have
164 * to limit it based on available KVM, which is capped on 32 bit
165 * systems, to ~80K vnodes or so.
167 * WARNING! For machines with 64-256M of ram we have to be sure
168 * that the default limit scales down well due to HAMMER
169 * taking up significantly more memory per-vnode vs UFS.
170 * We want around ~5800 on a 128M machine.
172 factor1
= 20 * (sizeof(struct vm_object
) + sizeof(struct vnode
));
173 factor2
= 25 * (sizeof(struct vm_object
) + sizeof(struct vnode
));
175 imin((int64_t)vmstats
.v_page_count
* PAGE_SIZE
/ factor1
,
177 desiredvnodes
= imax(desiredvnodes
, maxproc
* 8);
179 lwkt_token_init(&spechash_token
, "spechash");
183 * Knob to control the precision of file timestamps:
185 * 0 = seconds only; nanoseconds zeroed.
186 * 1 = seconds and nanoseconds, accurate within 1/HZ.
187 * 2 = seconds and nanoseconds, truncated to microseconds.
188 * >=3 = seconds and nanoseconds, maximum precision.
190 enum { TSP_SEC
, TSP_HZ
, TSP_USEC
, TSP_NSEC
};
192 static int timestamp_precision
= TSP_SEC
;
193 SYSCTL_INT(_vfs
, OID_AUTO
, timestamp_precision
, CTLFLAG_RW
,
194 ×tamp_precision
, 0, "Precision of file timestamps");
197 * Get a current timestamp.
202 vfs_timestamp(struct timespec
*tsp
)
206 switch (timestamp_precision
) {
208 tsp
->tv_sec
= time_second
;
216 TIMEVAL_TO_TIMESPEC(&tv
, tsp
);
226 * Set vnode attributes to VNOVAL
229 vattr_null(struct vattr
*vap
)
232 vap
->va_size
= VNOVAL
;
233 vap
->va_bytes
= VNOVAL
;
234 vap
->va_mode
= VNOVAL
;
235 vap
->va_nlink
= VNOVAL
;
236 vap
->va_uid
= VNOVAL
;
237 vap
->va_gid
= VNOVAL
;
238 vap
->va_fsid
= VNOVAL
;
239 vap
->va_fileid
= VNOVAL
;
240 vap
->va_blocksize
= VNOVAL
;
241 vap
->va_rmajor
= VNOVAL
;
242 vap
->va_rminor
= VNOVAL
;
243 vap
->va_atime
.tv_sec
= VNOVAL
;
244 vap
->va_atime
.tv_nsec
= VNOVAL
;
245 vap
->va_mtime
.tv_sec
= VNOVAL
;
246 vap
->va_mtime
.tv_nsec
= VNOVAL
;
247 vap
->va_ctime
.tv_sec
= VNOVAL
;
248 vap
->va_ctime
.tv_nsec
= VNOVAL
;
249 vap
->va_flags
= VNOVAL
;
250 vap
->va_gen
= VNOVAL
;
252 /* va_*_uuid fields are only valid if related flags are set */
256 * Flush out and invalidate all buffers associated with a vnode.
260 static int vinvalbuf_bp(struct buf
*bp
, void *data
);
262 struct vinvalbuf_bp_info
{
271 vinvalbuf(struct vnode
*vp
, int flags
, int slpflag
, int slptimeo
)
273 struct vinvalbuf_bp_info info
;
277 lwkt_gettoken(&vp
->v_token
);
280 * If we are being asked to save, call fsync to ensure that the inode
283 if (flags
& V_SAVE
) {
284 error
= bio_track_wait(&vp
->v_track_write
, slpflag
, slptimeo
);
287 if (!RB_EMPTY(&vp
->v_rbdirty_tree
)) {
288 if ((error
= VOP_FSYNC(vp
, MNT_WAIT
, 0)) != 0)
292 * Dirty bufs may be left or generated via races
293 * in circumstances where vinvalbuf() is called on
294 * a vnode not undergoing reclamation. Only
295 * panic if we are trying to reclaim the vnode.
297 if ((vp
->v_flag
& VRECLAIMED
) &&
298 (bio_track_active(&vp
->v_track_write
) ||
299 !RB_EMPTY(&vp
->v_rbdirty_tree
))) {
300 panic("vinvalbuf: dirty bufs");
305 info
.slptimeo
= slptimeo
;
306 info
.lkflags
= LK_EXCLUSIVE
| LK_SLEEPFAIL
;
307 if (slpflag
& PCATCH
)
308 info
.lkflags
|= LK_PCATCH
;
313 * Flush the buffer cache until nothing is left, wait for all I/O
314 * to complete. At least one pass is required. We might block
315 * in the pip code so we have to re-check. Order is important.
321 if (!RB_EMPTY(&vp
->v_rbclean_tree
)) {
323 error
= RB_SCAN(buf_rb_tree
, &vp
->v_rbclean_tree
,
324 NULL
, vinvalbuf_bp
, &info
);
326 if (!RB_EMPTY(&vp
->v_rbdirty_tree
)) {
328 error
= RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
,
329 NULL
, vinvalbuf_bp
, &info
);
333 * Wait for I/O completion.
335 bio_track_wait(&vp
->v_track_write
, 0, 0);
336 if ((object
= vp
->v_object
) != NULL
)
337 refcount_wait(&object
->paging_in_progress
, "vnvlbx");
338 } while (bio_track_active(&vp
->v_track_write
) ||
339 !RB_EMPTY(&vp
->v_rbclean_tree
) ||
340 !RB_EMPTY(&vp
->v_rbdirty_tree
));
343 * Destroy the copy in the VM cache, too.
345 if ((object
= vp
->v_object
) != NULL
) {
346 vm_object_page_remove(object
, 0, 0,
347 (flags
& V_SAVE
) ? TRUE
: FALSE
);
350 if (!RB_EMPTY(&vp
->v_rbdirty_tree
) || !RB_EMPTY(&vp
->v_rbclean_tree
))
351 panic("vinvalbuf: flush failed");
352 if (!RB_EMPTY(&vp
->v_rbhash_tree
))
353 panic("vinvalbuf: flush failed, buffers still present");
356 lwkt_reltoken(&vp
->v_token
);
361 vinvalbuf_bp(struct buf
*bp
, void *data
)
363 struct vinvalbuf_bp_info
*info
= data
;
366 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
)) {
367 atomic_add_int(&bp
->b_refs
, 1);
368 error
= BUF_TIMELOCK(bp
, info
->lkflags
,
369 "vinvalbuf", info
->slptimeo
);
370 atomic_subtract_int(&bp
->b_refs
, 1);
379 KKASSERT(bp
->b_vp
== info
->vp
);
382 * Must check clean/dirty status after successfully locking as
385 if ((info
->clean
&& (bp
->b_flags
& B_DELWRI
)) ||
386 (info
->clean
== 0 && (bp
->b_flags
& B_DELWRI
) == 0)) {
392 * NOTE: NO B_LOCKED CHECK. Also no buf_checkwrite()
393 * check. This code will write out the buffer, period.
396 if (((bp
->b_flags
& (B_DELWRI
| B_INVAL
)) == B_DELWRI
) &&
397 (info
->flags
& V_SAVE
)) {
399 } else if (info
->flags
& V_SAVE
) {
401 * Cannot set B_NOCACHE on a clean buffer as this will
402 * destroy the VM backing store which might actually
403 * be dirty (and unsynchronized).
405 bp
->b_flags
|= (B_INVAL
| B_RELBUF
);
408 bp
->b_flags
|= (B_INVAL
| B_NOCACHE
| B_RELBUF
);
415 * Truncate a file's buffer and pages to a specified length. This
416 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
419 * The vnode must be locked.
421 static int vtruncbuf_bp_trunc_cmp(struct buf
*bp
, void *data
);
422 static int vtruncbuf_bp_trunc(struct buf
*bp
, void *data
);
423 static int vtruncbuf_bp_metasync_cmp(struct buf
*bp
, void *data
);
424 static int vtruncbuf_bp_metasync(struct buf
*bp
, void *data
);
426 struct vtruncbuf_info
{
433 vtruncbuf(struct vnode
*vp
, off_t length
, int blksize
)
435 struct vtruncbuf_info info
;
436 const char *filename
;
440 * Round up to the *next* block, then destroy the buffers in question.
441 * Since we are only removing some of the buffers we must rely on the
442 * scan count to determine whether a loop is necessary.
444 if ((count
= (int)(length
% blksize
)) != 0)
445 info
.truncloffset
= length
+ (blksize
- count
);
447 info
.truncloffset
= length
;
450 lwkt_gettoken(&vp
->v_token
);
453 count
= RB_SCAN(buf_rb_tree
, &vp
->v_rbclean_tree
,
454 vtruncbuf_bp_trunc_cmp
,
455 vtruncbuf_bp_trunc
, &info
);
457 count
+= RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
,
458 vtruncbuf_bp_trunc_cmp
,
459 vtruncbuf_bp_trunc
, &info
);
463 * For safety, fsync any remaining metadata if the file is not being
464 * truncated to 0. Since the metadata does not represent the entire
465 * dirty list we have to rely on the hit count to ensure that we get
470 count
= RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
,
471 vtruncbuf_bp_metasync_cmp
,
472 vtruncbuf_bp_metasync
, &info
);
477 * Clean out any left over VM backing store.
479 * It is possible to have in-progress I/O from buffers that were
480 * not part of the truncation. This should not happen if we
481 * are truncating to 0-length.
483 vnode_pager_setsize(vp
, length
);
484 bio_track_wait(&vp
->v_track_write
, 0, 0);
489 spin_lock(&vp
->v_spin
);
490 filename
= TAILQ_FIRST(&vp
->v_namecache
) ?
491 TAILQ_FIRST(&vp
->v_namecache
)->nc_name
: "?";
492 spin_unlock(&vp
->v_spin
);
495 * Make sure no buffers were instantiated while we were trying
496 * to clean out the remaining VM pages. This could occur due
497 * to busy dirty VM pages being flushed out to disk.
501 count
= RB_SCAN(buf_rb_tree
, &vp
->v_rbclean_tree
,
502 vtruncbuf_bp_trunc_cmp
,
503 vtruncbuf_bp_trunc
, &info
);
505 count
+= RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
,
506 vtruncbuf_bp_trunc_cmp
,
507 vtruncbuf_bp_trunc
, &info
);
509 kprintf("Warning: vtruncbuf(): Had to re-clean %d "
510 "left over buffers in %s\n", count
, filename
);
514 lwkt_reltoken(&vp
->v_token
);
520 * The callback buffer is beyond the new file EOF and must be destroyed.
521 * Note that the compare function must conform to the RB_SCAN's requirements.
525 vtruncbuf_bp_trunc_cmp(struct buf
*bp
, void *data
)
527 struct vtruncbuf_info
*info
= data
;
529 if (bp
->b_loffset
>= info
->truncloffset
)
536 vtruncbuf_bp_trunc(struct buf
*bp
, void *data
)
538 struct vtruncbuf_info
*info
= data
;
541 * Do not try to use a buffer we cannot immediately lock, but sleep
542 * anyway to prevent a livelock. The code will loop until all buffers
545 * We must always revalidate the buffer after locking it to deal
548 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
)) {
549 atomic_add_int(&bp
->b_refs
, 1);
550 if (BUF_LOCK(bp
, LK_EXCLUSIVE
|LK_SLEEPFAIL
) == 0)
552 atomic_subtract_int(&bp
->b_refs
, 1);
553 } else if ((info
->clean
&& (bp
->b_flags
& B_DELWRI
)) ||
554 (info
->clean
== 0 && (bp
->b_flags
& B_DELWRI
) == 0) ||
555 bp
->b_vp
!= info
->vp
||
556 vtruncbuf_bp_trunc_cmp(bp
, data
)) {
560 bp
->b_flags
|= (B_INVAL
| B_RELBUF
| B_NOCACHE
);
567 * Fsync all meta-data after truncating a file to be non-zero. Only metadata
568 * blocks (with a negative loffset) are scanned.
569 * Note that the compare function must conform to the RB_SCAN's requirements.
572 vtruncbuf_bp_metasync_cmp(struct buf
*bp
, void *data __unused
)
574 if (bp
->b_loffset
< 0)
580 vtruncbuf_bp_metasync(struct buf
*bp
, void *data
)
582 struct vtruncbuf_info
*info
= data
;
584 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
)) {
585 atomic_add_int(&bp
->b_refs
, 1);
586 if (BUF_LOCK(bp
, LK_EXCLUSIVE
|LK_SLEEPFAIL
) == 0)
588 atomic_subtract_int(&bp
->b_refs
, 1);
589 } else if ((bp
->b_flags
& B_DELWRI
) == 0 ||
590 bp
->b_vp
!= info
->vp
||
591 vtruncbuf_bp_metasync_cmp(bp
, data
)) {
595 if (bp
->b_vp
== info
->vp
)
604 * vfsync - implements a multipass fsync on a file which understands
605 * dependancies and meta-data. The passed vnode must be locked. The
606 * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
608 * When fsyncing data asynchronously just do one consolidated pass starting
609 * with the most negative block number. This may not get all the data due
612 * When fsyncing data synchronously do a data pass, then a metadata pass,
613 * then do additional data+metadata passes to try to get all the data out.
615 * Caller must ref the vnode but does not have to lock it.
617 static int vfsync_wait_output(struct vnode
*vp
,
618 int (*waitoutput
)(struct vnode
*, struct thread
*));
619 static int vfsync_dummy_cmp(struct buf
*bp __unused
, void *data __unused
);
620 static int vfsync_data_only_cmp(struct buf
*bp
, void *data
);
621 static int vfsync_meta_only_cmp(struct buf
*bp
, void *data
);
622 static int vfsync_lazy_range_cmp(struct buf
*bp
, void *data
);
623 static int vfsync_bp(struct buf
*bp
, void *data
);
633 int (*checkdef
)(struct buf
*);
634 int (*cmpfunc
)(struct buf
*, void *);
638 vfsync(struct vnode
*vp
, int waitfor
, int passes
,
639 int (*checkdef
)(struct buf
*),
640 int (*waitoutput
)(struct vnode
*, struct thread
*))
642 struct vfsync_info info
;
645 bzero(&info
, sizeof(info
));
647 if ((info
.checkdef
= checkdef
) == NULL
)
650 lwkt_gettoken(&vp
->v_token
);
653 case MNT_LAZY
| MNT_NOWAIT
:
656 * Lazy (filesystem syncer typ) Asynchronous plus limit the
657 * number of data (not meta) pages we try to flush to 1MB.
658 * A non-zero return means that lazy limit was reached.
660 info
.lazylimit
= 1024 * 1024;
662 info
.cmpfunc
= vfsync_lazy_range_cmp
;
663 error
= RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
,
664 vfsync_lazy_range_cmp
, vfsync_bp
, &info
);
665 info
.cmpfunc
= vfsync_meta_only_cmp
;
666 RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
,
667 vfsync_meta_only_cmp
, vfsync_bp
, &info
);
670 else if (!RB_EMPTY(&vp
->v_rbdirty_tree
))
671 vn_syncer_add(vp
, 1);
676 * Asynchronous. Do a data-only pass and a meta-only pass.
679 info
.cmpfunc
= vfsync_data_only_cmp
;
680 RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
, vfsync_data_only_cmp
,
682 info
.cmpfunc
= vfsync_meta_only_cmp
;
683 RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
, vfsync_meta_only_cmp
,
689 * Synchronous. Do a data-only pass, then a meta-data+data
690 * pass, then additional integrated passes to try to get
691 * all the dependancies flushed.
693 info
.cmpfunc
= vfsync_data_only_cmp
;
695 RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
, vfsync_data_only_cmp
,
698 error
= vfsync_wait_output(vp
, waitoutput
);
700 info
.skippedbufs
= 0;
701 info
.cmpfunc
= vfsync_dummy_cmp
;
702 RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
, NULL
,
704 error
= vfsync_wait_output(vp
, waitoutput
);
705 if (info
.skippedbufs
) {
706 kprintf("Warning: vfsync skipped %d dirty "
709 ((info
.skippedbufs
> 1) ? "s" : ""));
712 while (error
== 0 && passes
> 0 &&
713 !RB_EMPTY(&vp
->v_rbdirty_tree
)
715 info
.skippedbufs
= 0;
717 info
.synchronous
= 1;
720 info
.cmpfunc
= vfsync_dummy_cmp
;
721 error
= RB_SCAN(buf_rb_tree
, &vp
->v_rbdirty_tree
, NULL
,
727 error
= vfsync_wait_output(vp
, waitoutput
);
728 if (info
.skippedbufs
&& passes
== 0) {
729 kprintf("Warning: vfsync skipped %d dirty "
730 "buf%s in final pass!\n",
732 ((info
.skippedbufs
> 1) ? "s" : ""));
735 if (!RB_EMPTY(&vp
->v_rbdirty_tree
))
736 kprintf("dirty bufs left after final pass\n");
739 lwkt_reltoken(&vp
->v_token
);
745 vfsync_wait_output(struct vnode
*vp
,
746 int (*waitoutput
)(struct vnode
*, struct thread
*))
750 error
= bio_track_wait(&vp
->v_track_write
, 0, 0);
752 error
= waitoutput(vp
, curthread
);
757 vfsync_dummy_cmp(struct buf
*bp __unused
, void *data __unused
)
763 vfsync_data_only_cmp(struct buf
*bp
, void *data
)
765 if (bp
->b_loffset
< 0)
771 vfsync_meta_only_cmp(struct buf
*bp
, void *data
)
773 if (bp
->b_loffset
< 0)
779 vfsync_lazy_range_cmp(struct buf
*bp
, void *data
)
781 struct vfsync_info
*info
= data
;
783 if (bp
->b_loffset
< info
->vp
->v_lazyw
)
789 vfsync_bp(struct buf
*bp
, void *data
)
791 struct vfsync_info
*info
= data
;
792 struct vnode
*vp
= info
->vp
;
795 if (info
->fastpass
) {
797 * Ignore buffers that we cannot immediately lock.
799 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
)) {
800 if (BUF_TIMELOCK(bp
, LK_EXCLUSIVE
, "bflst1", 1)) {
805 } else if (info
->synchronous
== 0) {
807 * Normal pass, give the buffer a little time to become
810 if (BUF_TIMELOCK(bp
, LK_EXCLUSIVE
, "bflst2", hz
/ 10)) {
816 * Synchronous pass, give the buffer a lot of time before
819 if (BUF_TIMELOCK(bp
, LK_EXCLUSIVE
, "bflst3", hz
* 10)) {
826 * We must revalidate the buffer after locking.
828 if ((bp
->b_flags
& B_DELWRI
) == 0 ||
829 bp
->b_vp
!= info
->vp
||
830 info
->cmpfunc(bp
, data
)) {
836 * If syncdeps is not set we do not try to write buffers which have
839 if (!info
->synchronous
&& info
->syncdeps
== 0 && info
->checkdef(bp
)) {
845 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
846 * has been written but an additional handshake with the device
847 * is required before we can dispose of the buffer. We have no idea
848 * how to do this so we have to skip these buffers.
850 if (bp
->b_flags
& B_NEEDCOMMIT
) {
856 * Ask bioops if it is ok to sync. If not the VFS may have
857 * set B_LOCKED so we have to cycle the buffer.
859 if (LIST_FIRST(&bp
->b_dep
) != NULL
&& buf_checkwrite(bp
)) {
865 if (info
->synchronous
) {
867 * Synchronous flushing. An error may be returned.
873 * Asynchronous flushing. A negative return value simply
874 * stops the scan and is not considered an error. We use
875 * this to support limited MNT_LAZY flushes.
877 vp
->v_lazyw
= bp
->b_loffset
;
879 info
->lazycount
+= cluster_awrite(bp
);
880 waitrunningbufspace();
882 if (info
->lazylimit
&& info
->lazycount
>= info
->lazylimit
)
891 * Associate a buffer with a vnode.
896 bgetvp(struct vnode
*vp
, struct buf
*bp
, int testsize
)
898 KASSERT(bp
->b_vp
== NULL
, ("bgetvp: not free"));
899 KKASSERT((bp
->b_flags
& (B_HASHED
|B_DELWRI
|B_VNCLEAN
|B_VNDIRTY
)) == 0);
902 * Insert onto list for new vnode.
904 lwkt_gettoken(&vp
->v_token
);
906 if (buf_rb_hash_RB_INSERT(&vp
->v_rbhash_tree
, bp
)) {
907 lwkt_reltoken(&vp
->v_token
);
912 * Diagnostics (mainly for HAMMER debugging). Check for
913 * overlapping buffers.
915 if (check_buf_overlap
) {
917 bx
= buf_rb_hash_RB_PREV(bp
);
919 if (bx
->b_loffset
+ bx
->b_bufsize
> bp
->b_loffset
) {
920 kprintf("bgetvp: overlapl %016jx/%d %016jx "
922 (intmax_t)bx
->b_loffset
,
924 (intmax_t)bp
->b_loffset
,
926 if (check_buf_overlap
> 1)
927 panic("bgetvp - overlapping buffer");
930 bx
= buf_rb_hash_RB_NEXT(bp
);
932 if (bp
->b_loffset
+ testsize
> bx
->b_loffset
) {
933 kprintf("bgetvp: overlapr %016jx/%d %016jx "
935 (intmax_t)bp
->b_loffset
,
937 (intmax_t)bx
->b_loffset
,
939 if (check_buf_overlap
> 1)
940 panic("bgetvp - overlapping buffer");
945 bp
->b_flags
|= B_HASHED
;
946 bp
->b_flags
|= B_VNCLEAN
;
947 if (buf_rb_tree_RB_INSERT(&vp
->v_rbclean_tree
, bp
))
948 panic("reassignbuf: dup lblk/clean vp %p bp %p", vp
, bp
);
950 lwkt_reltoken(&vp
->v_token
);
955 * Disassociate a buffer from a vnode.
960 brelvp(struct buf
*bp
)
964 KASSERT(bp
->b_vp
!= NULL
, ("brelvp: NULL"));
967 * Delete from old vnode list, if on one.
970 lwkt_gettoken(&vp
->v_token
);
971 if (bp
->b_flags
& (B_VNDIRTY
| B_VNCLEAN
)) {
972 if (bp
->b_flags
& B_VNDIRTY
)
973 buf_rb_tree_RB_REMOVE(&vp
->v_rbdirty_tree
, bp
);
975 buf_rb_tree_RB_REMOVE(&vp
->v_rbclean_tree
, bp
);
976 bp
->b_flags
&= ~(B_VNDIRTY
| B_VNCLEAN
);
978 if (bp
->b_flags
& B_HASHED
) {
979 buf_rb_hash_RB_REMOVE(&vp
->v_rbhash_tree
, bp
);
980 bp
->b_flags
&= ~B_HASHED
;
984 * Only remove from synclist when no dirty buffers are left AND
985 * the VFS has not flagged the vnode's inode as being dirty.
987 if ((vp
->v_flag
& (VONWORKLST
| VISDIRTY
| VOBJDIRTY
)) == VONWORKLST
&&
988 RB_EMPTY(&vp
->v_rbdirty_tree
)) {
989 vn_syncer_remove(vp
);
993 lwkt_reltoken(&vp
->v_token
);
999 * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
1000 * This routine is called when the state of the B_DELWRI bit is changed.
1002 * Must be called with vp->v_token held.
1006 reassignbuf(struct buf
*bp
)
1008 struct vnode
*vp
= bp
->b_vp
;
1011 ASSERT_LWKT_TOKEN_HELD(&vp
->v_token
);
1015 * B_PAGING flagged buffers cannot be reassigned because their vp
1016 * is not fully linked in.
1018 if (bp
->b_flags
& B_PAGING
)
1019 panic("cannot reassign paging buffer");
1021 if (bp
->b_flags
& B_DELWRI
) {
1023 * Move to the dirty list, add the vnode to the worklist
1025 if (bp
->b_flags
& B_VNCLEAN
) {
1026 buf_rb_tree_RB_REMOVE(&vp
->v_rbclean_tree
, bp
);
1027 bp
->b_flags
&= ~B_VNCLEAN
;
1029 if ((bp
->b_flags
& B_VNDIRTY
) == 0) {
1030 if (buf_rb_tree_RB_INSERT(&vp
->v_rbdirty_tree
, bp
)) {
1031 panic("reassignbuf: dup lblk vp %p bp %p",
1034 bp
->b_flags
|= B_VNDIRTY
;
1036 if ((vp
->v_flag
& VONWORKLST
) == 0) {
1037 switch (vp
->v_type
) {
1044 vp
->v_rdev
->si_mountpoint
!= NULL
) {
1052 vn_syncer_add(vp
, delay
);
1056 * Move to the clean list, remove the vnode from the worklist
1057 * if no dirty blocks remain.
1059 if (bp
->b_flags
& B_VNDIRTY
) {
1060 buf_rb_tree_RB_REMOVE(&vp
->v_rbdirty_tree
, bp
);
1061 bp
->b_flags
&= ~B_VNDIRTY
;
1063 if ((bp
->b_flags
& B_VNCLEAN
) == 0) {
1064 if (buf_rb_tree_RB_INSERT(&vp
->v_rbclean_tree
, bp
)) {
1065 panic("reassignbuf: dup lblk vp %p bp %p",
1068 bp
->b_flags
|= B_VNCLEAN
;
1072 * Only remove from synclist when no dirty buffers are left
1073 * AND the VFS has not flagged the vnode's inode as being
1076 if ((vp
->v_flag
& (VONWORKLST
| VISDIRTY
| VOBJDIRTY
)) ==
1078 RB_EMPTY(&vp
->v_rbdirty_tree
)) {
1079 vn_syncer_remove(vp
);
1085 * Create a vnode for a block device. Used for mounting the root file
1088 * A vref()'d vnode is returned.
1090 extern struct vop_ops
*devfs_vnode_dev_vops_p
;
1092 bdevvp(cdev_t dev
, struct vnode
**vpp
)
1102 error
= getspecialvnode(VT_NON
, NULL
, &devfs_vnode_dev_vops_p
,
1113 v_associate_rdev(vp
, dev
);
1114 vp
->v_umajor
= dev
->si_umajor
;
1115 vp
->v_uminor
= dev
->si_uminor
;
1122 v_associate_rdev(struct vnode
*vp
, cdev_t dev
)
1126 if (dev_is_good(dev
) == 0)
1128 KKASSERT(vp
->v_rdev
== NULL
);
1129 vp
->v_rdev
= reference_dev(dev
);
1130 lwkt_gettoken(&spechash_token
);
1131 SLIST_INSERT_HEAD(&dev
->si_hlist
, vp
, v_cdevnext
);
1132 lwkt_reltoken(&spechash_token
);
1137 v_release_rdev(struct vnode
*vp
)
1141 if ((dev
= vp
->v_rdev
) != NULL
) {
1142 lwkt_gettoken(&spechash_token
);
1143 SLIST_REMOVE(&dev
->si_hlist
, vp
, vnode
, v_cdevnext
);
1146 lwkt_reltoken(&spechash_token
);
1151 * Add a vnode to the alias list hung off the cdev_t. We only associate
1152 * the device number with the vnode. The actual device is not associated
1153 * until the vnode is opened (usually in spec_open()), and will be
1154 * disassociated on last close.
1157 addaliasu(struct vnode
*nvp
, int x
, int y
)
1159 if (nvp
->v_type
!= VBLK
&& nvp
->v_type
!= VCHR
)
1160 panic("addaliasu on non-special vnode");
1166 * Simple call that a filesystem can make to try to get rid of a
1167 * vnode. It will fail if anyone is referencing the vnode (including
1170 * The filesystem can check whether its in-memory inode structure still
1171 * references the vp on return.
1173 * May only be called if the vnode is in a known state (i.e. being prevented
1174 * from being deallocated by some other condition such as a vfs inode hold).
1177 vclean_unlocked(struct vnode
*vp
)
1180 if (VREFCNT(vp
) <= 1)
1186 * Disassociate a vnode from its underlying filesystem.
1188 * The vnode must be VX locked and referenced. In all normal situations
1189 * there are no active references. If vclean_vxlocked() is called while
1190 * there are active references, the vnode is being ripped out and we have
1191 * to call VOP_CLOSE() as appropriate before we can reclaim it.
1194 vclean_vxlocked(struct vnode
*vp
, int flags
)
1199 struct namecache
*ncp
;
1202 * If the vnode has already been reclaimed we have nothing to do.
1204 if (vp
->v_flag
& VRECLAIMED
)
1208 * Set flag to interlock operation, flag finalization to ensure
1209 * that the vnode winds up on the inactive list, and set v_act to 0.
1211 vsetflags(vp
, VRECLAIMED
);
1212 atomic_set_int(&vp
->v_refcnt
, VREF_FINALIZE
);
1215 if (verbose_reclaims
) {
1216 if ((ncp
= TAILQ_FIRST(&vp
->v_namecache
)) != NULL
)
1217 kprintf("Debug: reclaim %p %s\n", vp
, ncp
->nc_name
);
1221 * Scrap the vfs cache
1223 while (cache_inval_vp(vp
, 0) != 0) {
1224 kprintf("Warning: vnode %p clean/cache_resolution "
1225 "race detected\n", vp
);
1226 tsleep(vp
, 0, "vclninv", 2);
1230 * Check to see if the vnode is in use. If so we have to reference it
1231 * before we clean it out so that its count cannot fall to zero and
1232 * generate a race against ourselves to recycle it.
1234 active
= (VREFCNT(vp
) > 0);
1237 * Clean out any buffers associated with the vnode and destroy its
1238 * object, if it has one.
1240 vinvalbuf(vp
, V_SAVE
, 0, 0);
1241 KKASSERT(lockcountnb(&vp
->v_lock
) == 1);
1244 * If purging an active vnode (typically during a forced unmount
1245 * or reboot), it must be closed and deactivated before being
1246 * reclaimed. This isn't really all that safe, but what can
1249 * Note that neither of these routines unlocks the vnode.
1251 if (active
&& (flags
& DOCLOSE
)) {
1252 while ((n
= vp
->v_opencount
) != 0) {
1253 if (vp
->v_writecount
)
1254 VOP_CLOSE(vp
, FWRITE
|FNONBLOCK
, NULL
);
1256 VOP_CLOSE(vp
, FNONBLOCK
, NULL
);
1257 if (vp
->v_opencount
== n
) {
1258 kprintf("Warning: unable to force-close"
1266 * If the vnode has not been deactivated, deactivated it. Deactivation
1267 * can create new buffers and VM pages so we have to call vinvalbuf()
1268 * again to make sure they all get flushed.
1270 * This can occur if a file with a link count of 0 needs to be
1273 * If the vnode is already dead don't try to deactivate it.
1275 if ((vp
->v_flag
& VINACTIVE
) == 0) {
1276 vsetflags(vp
, VINACTIVE
);
1279 vinvalbuf(vp
, V_SAVE
, 0, 0);
1281 KKASSERT(lockcountnb(&vp
->v_lock
) == 1);
1284 * If the vnode has an object, destroy it.
1286 while ((object
= vp
->v_object
) != NULL
) {
1287 vm_object_hold(object
);
1288 if (object
== vp
->v_object
)
1290 vm_object_drop(object
);
1293 if (object
!= NULL
) {
1294 if (object
->ref_count
== 0) {
1295 if ((object
->flags
& OBJ_DEAD
) == 0)
1296 vm_object_terminate(object
);
1297 vm_object_drop(object
);
1298 vclrflags(vp
, VOBJBUF
);
1300 vm_pager_deallocate(object
);
1301 vclrflags(vp
, VOBJBUF
);
1302 vm_object_drop(object
);
1305 KKASSERT((vp
->v_flag
& VOBJBUF
) == 0);
1308 * Reclaim the vnode if not already dead.
1310 if (vp
->v_mount
&& VOP_RECLAIM(vp
))
1311 panic("vclean: cannot reclaim");
1314 * Done with purge, notify sleepers of the grim news.
1316 vp
->v_ops
= &dead_vnode_vops_p
;
1321 * If we are destroying an active vnode, reactivate it now that
1322 * we have reassociated it with deadfs. This prevents the system
1323 * from crashing on the vnode due to it being unexpectedly marked
1324 * as inactive or reclaimed.
1326 if (active
&& (flags
& DOCLOSE
)) {
1327 vclrflags(vp
, VINACTIVE
| VRECLAIMED
);
1332 * Eliminate all activity associated with the requested vnode
1333 * and with all vnodes aliased to the requested vnode.
1335 * The vnode must be referenced but should not be locked.
1338 vrevoke(struct vnode
*vp
, struct ucred
*cred
)
1346 * If the vnode has a device association, scrap all vnodes associated
1347 * with the device. Don't let the device disappear on us while we
1348 * are scrapping the vnodes.
1350 * The passed vp will probably show up in the list, do not VX lock
1353 * Releasing the vnode's rdev here can mess up specfs's call to
1354 * device close, so don't do it. The vnode has been disassociated
1355 * and the device will be closed after the last ref on the related
1356 * fp goes away (if not still open by e.g. the kernel).
1358 if (vp
->v_type
!= VCHR
) {
1359 error
= fdrevoke(vp
, DTYPE_VNODE
, cred
);
1362 if ((dev
= vp
->v_rdev
) == NULL
) {
1366 lwkt_gettoken(&spechash_token
);
1369 vqn
= SLIST_FIRST(&dev
->si_hlist
);
1372 while ((vq
= vqn
) != NULL
) {
1373 if (VREFCNT(vq
) > 0) {
1375 fdrevoke(vq
, DTYPE_VNODE
, cred
);
1376 /*v_release_rdev(vq);*/
1378 if (vq
->v_rdev
!= dev
) {
1383 vqn
= SLIST_NEXT(vq
, v_cdevnext
);
1388 lwkt_reltoken(&spechash_token
);
1395 * This is called when the object underlying a vnode is being destroyed,
1396 * such as in a remove(). Try to recycle the vnode immediately if the
1397 * only active reference is our reference.
1399 * Directory vnodes in the namecache with children cannot be immediately
1400 * recycled because numerous VOP_N*() ops require them to be stable.
1402 * To avoid recursive recycling from VOP_INACTIVE implemenetations this
1403 * function is a NOP if VRECLAIMED is already set.
1406 vrecycle(struct vnode
*vp
)
1408 if (VREFCNT(vp
) <= 1 && (vp
->v_flag
& VRECLAIMED
) == 0) {
1409 if (cache_inval_vp_nonblock(vp
))
1418 * Return the maximum I/O size allowed for strategy calls on VP.
1420 * If vp is VCHR or VBLK we dive the device, otherwise we use
1421 * the vp's mount info.
1423 * The returned value is clamped at MAXPHYS as most callers cannot use
1424 * buffers larger than that size.
1427 vmaxiosize(struct vnode
*vp
)
1431 if (vp
->v_type
== VBLK
|| vp
->v_type
== VCHR
)
1432 maxiosize
= vp
->v_rdev
->si_iosize_max
;
1434 maxiosize
= vp
->v_mount
->mnt_iosize_max
;
1436 if (maxiosize
> MAXPHYS
)
1437 maxiosize
= MAXPHYS
;
1442 * Eliminate all activity associated with a vnode in preparation for
1445 * The vnode must be VX locked and refd and will remain VX locked and refd
1446 * on return. This routine may be called with the vnode in any state, as
1447 * long as it is VX locked. The vnode will be cleaned out and marked
1448 * VRECLAIMED but will not actually be reused until all existing refs and
1451 * NOTE: This routine may be called on a vnode which has not yet been
1452 * already been deactivated (VOP_INACTIVE), or on a vnode which has
1453 * already been reclaimed.
1455 * This routine is not responsible for placing us back on the freelist.
1456 * Instead, it happens automatically when the caller releases the VX lock
1457 * (assuming there aren't any other references).
1460 vgone_vxlocked(struct vnode
*vp
)
1463 * assert that the VX lock is held. This is an absolute requirement
1464 * now for vgone_vxlocked() to be called.
1466 KKASSERT(lockcountnb(&vp
->v_lock
) == 1);
1469 * Clean out the filesystem specific data and set the VRECLAIMED
1470 * bit. Also deactivate the vnode if necessary.
1472 * The vnode should have automatically been removed from the syncer
1473 * list as syncer/dirty flags cleared during the cleaning.
1475 vclean_vxlocked(vp
, DOCLOSE
);
1476 KKASSERT((vp
->v_flag
& VONWORKLST
) == 0);
1479 * Delete from old mount point vnode list, if on one.
1481 if (vp
->v_mount
!= NULL
) {
1482 KKASSERT(vp
->v_data
== NULL
);
1483 insmntque(vp
, NULL
);
1487 * If special device, remove it from special device alias list
1488 * if it is on one. This should normally only occur if a vnode is
1489 * being revoked as the device should otherwise have been released
1492 if ((vp
->v_type
== VBLK
|| vp
->v_type
== VCHR
) && vp
->v_rdev
!= NULL
) {
1503 * Lookup a vnode by device number.
1505 * Returns non-zero and *vpp set to a vref'd vnode on success.
1506 * Returns zero on failure.
1509 vfinddev(cdev_t dev
, enum vtype type
, struct vnode
**vpp
)
1513 lwkt_gettoken(&spechash_token
);
1514 SLIST_FOREACH(vp
, &dev
->si_hlist
, v_cdevnext
) {
1515 if (type
== vp
->v_type
) {
1518 lwkt_reltoken(&spechash_token
);
1522 lwkt_reltoken(&spechash_token
);
1527 * Calculate the total number of references to a special device. This
1528 * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1529 * an overloaded field. Since udev2dev can now return NULL, we have
1530 * to check for a NULL v_rdev.
1533 count_dev(cdev_t dev
)
1538 if (SLIST_FIRST(&dev
->si_hlist
)) {
1539 lwkt_gettoken(&spechash_token
);
1540 SLIST_FOREACH(vp
, &dev
->si_hlist
, v_cdevnext
) {
1541 count
+= vp
->v_opencount
;
1543 lwkt_reltoken(&spechash_token
);
1549 vcount(struct vnode
*vp
)
1551 if (vp
->v_rdev
== NULL
)
1553 return(count_dev(vp
->v_rdev
));
1557 * Initialize VMIO for a vnode. This routine MUST be called before a
1558 * VFS can issue buffer cache ops on a vnode. It is typically called
1559 * when a vnode is initialized from its inode.
1562 vinitvmio(struct vnode
*vp
, off_t filesize
, int blksize
, int boff
)
1567 object
= vp
->v_object
;
1569 vm_object_hold(object
);
1570 KKASSERT(vp
->v_object
== object
);
1573 if (object
== NULL
) {
1574 object
= vnode_pager_alloc(vp
, filesize
, 0, 0, blksize
, boff
);
1577 * Dereference the reference we just created. This assumes
1578 * that the object is associated with the vp. Allow it to
1579 * have zero refs. It cannot be destroyed as long as it
1580 * is associated with the vnode.
1582 vm_object_hold(object
);
1583 atomic_add_int(&object
->ref_count
, -1);
1586 KKASSERT((object
->flags
& OBJ_DEAD
) == 0);
1588 KASSERT(vp
->v_object
!= NULL
, ("vinitvmio: NULL object"));
1589 vsetflags(vp
, VOBJBUF
);
1590 vm_object_drop(object
);
1597 * Print out a description of a vnode.
1599 static char *typename
[] =
1600 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1603 vprint(char *label
, struct vnode
*vp
)
1608 kprintf("%s: %p: ", label
, (void *)vp
);
1610 kprintf("%p: ", (void *)vp
);
1611 kprintf("type %s, refcnt %08x, writecount %d, holdcnt %d,",
1612 typename
[vp
->v_type
],
1613 vp
->v_refcnt
, vp
->v_writecount
, vp
->v_auxrefs
);
1615 if (vp
->v_flag
& VROOT
)
1616 strcat(buf
, "|VROOT");
1617 if (vp
->v_flag
& VPFSROOT
)
1618 strcat(buf
, "|VPFSROOT");
1619 if (vp
->v_flag
& VTEXT
)
1620 strcat(buf
, "|VTEXT");
1621 if (vp
->v_flag
& VSYSTEM
)
1622 strcat(buf
, "|VSYSTEM");
1623 if (vp
->v_flag
& VOBJBUF
)
1624 strcat(buf
, "|VOBJBUF");
1626 kprintf(" flags (%s)", &buf
[1]);
1627 if (vp
->v_data
== NULL
) {
1636 * Do the usual access checking.
1637 * file_mode, uid and gid are from the vnode in question,
1638 * while acc_mode and cred are from the VOP_ACCESS parameter list
1641 vaccess(enum vtype type
, mode_t file_mode
, uid_t uid
, gid_t gid
,
1642 mode_t acc_mode
, struct ucred
*cred
)
1648 * Super-user always gets read/write access, but execute access depends
1649 * on at least one execute bit being set.
1651 if (priv_check_cred(cred
, PRIV_ROOT
, 0) == 0) {
1652 if ((acc_mode
& VEXEC
) && type
!= VDIR
&&
1653 (file_mode
& (S_IXUSR
|S_IXGRP
|S_IXOTH
)) == 0)
1660 /* Otherwise, check the owner. */
1661 if (cred
->cr_uid
== uid
) {
1662 if (acc_mode
& VEXEC
)
1664 if (acc_mode
& VREAD
)
1666 if (acc_mode
& VWRITE
)
1668 return ((file_mode
& mask
) == mask
? 0 : EACCES
);
1671 /* Otherwise, check the groups. */
1672 ismember
= groupmember(gid
, cred
);
1673 if (cred
->cr_svgid
== gid
|| ismember
) {
1674 if (acc_mode
& VEXEC
)
1676 if (acc_mode
& VREAD
)
1678 if (acc_mode
& VWRITE
)
1680 return ((file_mode
& mask
) == mask
? 0 : EACCES
);
1683 /* Otherwise, check everyone else. */
1684 if (acc_mode
& VEXEC
)
1686 if (acc_mode
& VREAD
)
1688 if (acc_mode
& VWRITE
)
1690 return ((file_mode
& mask
) == mask
? 0 : EACCES
);
1694 #include <ddb/ddb.h>
1696 static int db_show_locked_vnodes(struct mount
*mp
, void *data
);
1699 * List all of the locked vnodes in the system.
1700 * Called when debugging the kernel.
1702 DB_SHOW_COMMAND(lockedvnodes
, lockedvnodes
)
1704 kprintf("Locked vnodes\n");
1705 mountlist_scan(db_show_locked_vnodes
, NULL
,
1706 MNTSCAN_FORWARD
|MNTSCAN_NOBUSY
);
1710 db_show_locked_vnodes(struct mount
*mp
, void *data __unused
)
1714 TAILQ_FOREACH(vp
, &mp
->mnt_nvnodelist
, v_nmntvnodes
) {
1715 if (vn_islocked(vp
))
1723 * Top level filesystem related information gathering.
1725 static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS
);
1728 vfs_sysctl(SYSCTL_HANDLER_ARGS
)
1730 int *name
= (int *)arg1
- 1; /* XXX */
1731 u_int namelen
= arg2
+ 1; /* XXX */
1732 struct vfsconf
*vfsp
;
1735 #if 1 || defined(COMPAT_PRELITE2)
1736 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1738 return (sysctl_ovfs_conf(oidp
, arg1
, arg2
, req
));
1742 /* all sysctl names at this level are at least name and field */
1744 return (ENOTDIR
); /* overloaded */
1745 if (name
[0] != VFS_GENERIC
) {
1746 vfsp
= vfsconf_find_by_typenum(name
[0]);
1748 return (EOPNOTSUPP
);
1749 return ((*vfsp
->vfc_vfsops
->vfs_sysctl
)(&name
[1], namelen
- 1,
1750 oldp
, oldlenp
, newp
, newlen
, p
));
1754 case VFS_MAXTYPENUM
:
1757 maxtypenum
= vfsconf_get_maxtypenum();
1758 return (SYSCTL_OUT(req
, &maxtypenum
, sizeof(maxtypenum
)));
1761 return (ENOTDIR
); /* overloaded */
1762 vfsp
= vfsconf_find_by_typenum(name
[2]);
1764 return (EOPNOTSUPP
);
1765 return (SYSCTL_OUT(req
, vfsp
, sizeof *vfsp
));
1767 return (EOPNOTSUPP
);
1770 SYSCTL_NODE(_vfs
, VFS_GENERIC
, generic
, CTLFLAG_RD
, vfs_sysctl
,
1771 "Generic filesystem");
1773 #if 1 || defined(COMPAT_PRELITE2)
1776 sysctl_ovfs_conf_iter(struct vfsconf
*vfsp
, void *data
)
1779 struct ovfsconf ovfs
;
1780 struct sysctl_req
*req
= (struct sysctl_req
*) data
;
1782 bzero(&ovfs
, sizeof(ovfs
));
1783 ovfs
.vfc_vfsops
= vfsp
->vfc_vfsops
; /* XXX used as flag */
1784 strcpy(ovfs
.vfc_name
, vfsp
->vfc_name
);
1785 ovfs
.vfc_index
= vfsp
->vfc_typenum
;
1786 ovfs
.vfc_refcount
= vfsp
->vfc_refcount
;
1787 ovfs
.vfc_flags
= vfsp
->vfc_flags
;
1788 error
= SYSCTL_OUT(req
, &ovfs
, sizeof ovfs
);
1790 return error
; /* abort iteration with error code */
1792 return 0; /* continue iterating with next element */
1796 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS
)
1798 return vfsconf_each(sysctl_ovfs_conf_iter
, (void*)req
);
1801 #endif /* 1 || COMPAT_PRELITE2 */
1804 * Check to see if a filesystem is mounted on a block device.
1807 vfs_mountedon(struct vnode
*vp
)
1811 if ((dev
= vp
->v_rdev
) == NULL
) {
1812 /* if (vp->v_type != VBLK)
1813 dev = get_dev(vp->v_uminor, vp->v_umajor); */
1815 if (dev
!= NULL
&& dev
->si_mountpoint
)
1821 * Unmount all filesystems. The list is traversed in reverse order
1822 * of mounting to avoid dependencies.
1825 static int vfs_umountall_callback(struct mount
*mp
, void *data
);
1828 vfs_unmountall(void)
1833 count
= mountlist_scan(vfs_umountall_callback
,
1834 NULL
, MNTSCAN_REVERSE
|MNTSCAN_NOBUSY
);
1840 vfs_umountall_callback(struct mount
*mp
, void *data
)
1844 error
= dounmount(mp
, MNT_FORCE
);
1846 mountlist_remove(mp
);
1847 kprintf("unmount of filesystem mounted from %s failed (",
1848 mp
->mnt_stat
.f_mntfromname
);
1852 kprintf("%d)\n", error
);
1858 * Checks the mount flags for parameter mp and put the names comma-separated
1859 * into a string buffer buf with a size limit specified by len.
1861 * It returns the number of bytes written into buf, and (*errorp) will be
1862 * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1863 * not large enough). The buffer will be 0-terminated if len was not 0.
1866 vfs_flagstostr(int flags
, const struct mountctl_opt
*optp
,
1867 char *buf
, size_t len
, int *errorp
)
1869 static const struct mountctl_opt optnames
[] = {
1870 { MNT_RDONLY
, "read-only" },
1871 { MNT_SYNCHRONOUS
, "synchronous" },
1872 { MNT_NOEXEC
, "noexec" },
1873 { MNT_NOSUID
, "nosuid" },
1874 { MNT_NODEV
, "nodev" },
1875 { MNT_AUTOMOUNTED
, "automounted" },
1876 { MNT_ASYNC
, "asynchronous" },
1877 { MNT_SUIDDIR
, "suiddir" },
1878 { MNT_SOFTDEP
, "soft-updates" },
1879 { MNT_NOSYMFOLLOW
, "nosymfollow" },
1880 { MNT_TRIM
, "trim" },
1881 { MNT_NOATIME
, "noatime" },
1882 { MNT_NOCLUSTERR
, "noclusterr" },
1883 { MNT_NOCLUSTERW
, "noclusterw" },
1884 { MNT_EXRDONLY
, "NFS read-only" },
1885 { MNT_EXPORTED
, "NFS exported" },
1886 /* Remaining NFS flags could come here */
1887 { MNT_LOCAL
, "local" },
1888 { MNT_QUOTA
, "with-quotas" },
1889 /* { MNT_ROOTFS, "rootfs" }, */
1890 /* { MNT_IGNORE, "ignore" }, */
1900 bleft
= len
- 1; /* leave room for trailing \0 */
1903 * Checks the size of the string. If it contains
1904 * any data, then we will append the new flags to
1907 actsize
= strlen(buf
);
1911 /* Default flags if no flags passed */
1915 if (bleft
< 0) { /* degenerate case, 0-length buffer */
1920 for (; flags
&& optp
->o_opt
; ++optp
) {
1921 if ((flags
& optp
->o_opt
) == 0)
1923 optlen
= strlen(optp
->o_name
);
1924 if (bwritten
|| actsize
> 0) {
1929 buf
[bwritten
++] = ',';
1930 buf
[bwritten
++] = ' ';
1933 if (bleft
< optlen
) {
1937 bcopy(optp
->o_name
, buf
+ bwritten
, optlen
);
1940 flags
&= ~optp
->o_opt
;
1944 * Space already reserved for trailing \0
1951 * Build hash lists of net addresses and hang them off the mount point.
1952 * Called by ufs_mount() to set up the lists of export addresses.
1955 vfs_hang_addrlist(struct mount
*mp
, struct netexport
*nep
,
1956 const struct export_args
*argp
)
1959 struct radix_node_head
*rnh
;
1961 struct radix_node
*rn
;
1962 struct sockaddr
*saddr
, *smask
= NULL
;
1965 if (argp
->ex_addrlen
== 0) {
1966 if (mp
->mnt_flag
& MNT_DEFEXPORTED
)
1968 np
= &nep
->ne_defexported
;
1969 np
->netc_exflags
= argp
->ex_flags
;
1970 np
->netc_anon
= argp
->ex_anon
;
1971 np
->netc_anon
.cr_ref
= 1;
1972 mp
->mnt_flag
|= MNT_DEFEXPORTED
;
1976 if (argp
->ex_addrlen
< 0 || argp
->ex_addrlen
> MLEN
)
1978 if (argp
->ex_masklen
< 0 || argp
->ex_masklen
> MLEN
)
1981 i
= sizeof(struct netcred
) + argp
->ex_addrlen
+ argp
->ex_masklen
;
1982 np
= (struct netcred
*) kmalloc(i
, M_NETADDR
, M_WAITOK
| M_ZERO
);
1983 saddr
= (struct sockaddr
*) (np
+ 1);
1984 if ((error
= copyin(argp
->ex_addr
, (caddr_t
) saddr
, argp
->ex_addrlen
)))
1986 if (saddr
->sa_len
> argp
->ex_addrlen
)
1987 saddr
->sa_len
= argp
->ex_addrlen
;
1988 if (argp
->ex_masklen
) {
1989 smask
= (struct sockaddr
*)((caddr_t
)saddr
+ argp
->ex_addrlen
);
1990 error
= copyin(argp
->ex_mask
, (caddr_t
)smask
, argp
->ex_masklen
);
1993 if (smask
->sa_len
> argp
->ex_masklen
)
1994 smask
->sa_len
= argp
->ex_masklen
;
1997 if (nep
->ne_maskhead
== NULL
) {
1998 if (!rn_inithead((void **)&nep
->ne_maskhead
, NULL
, 0)) {
2003 if((rnh
= vfs_create_addrlist_af(saddr
->sa_family
, nep
)) == NULL
) {
2007 rn
= (*rnh
->rnh_addaddr
) ((char *) saddr
, (char *) smask
, rnh
,
2010 if (rn
== NULL
|| np
!= (struct netcred
*) rn
) { /* already exists */
2014 np
->netc_exflags
= argp
->ex_flags
;
2015 np
->netc_anon
= argp
->ex_anon
;
2016 np
->netc_anon
.cr_ref
= 1;
2019 kfree(np
, M_NETADDR
);
2025 vfs_free_netcred(struct radix_node
*rn
, void *w
)
2027 struct radix_node_head
*rnh
= (struct radix_node_head
*) w
;
2029 (*rnh
->rnh_deladdr
) (rn
->rn_key
, rn
->rn_mask
, rnh
);
2030 kfree((caddr_t
) rn
, M_NETADDR
);
2034 static struct radix_node_head
*
2035 vfs_create_addrlist_af(int af
, struct netexport
*nep
)
2037 struct radix_node_head
*rnh
= NULL
;
2038 #if defined(INET) || defined(INET6)
2039 struct radix_node_head
*maskhead
= nep
->ne_maskhead
;
2043 NE_ASSERT_LOCKED(nep
);
2044 KKASSERT(maskhead
!= NULL
);
2048 if ((rnh
= nep
->ne_inethead
) == NULL
) {
2049 off
= offsetof(struct sockaddr_in
, sin_addr
) << 3;
2050 if (!rn_inithead((void **)&rnh
, maskhead
, off
))
2052 nep
->ne_inethead
= rnh
;
2058 if ((rnh
= nep
->ne_inet6head
) == NULL
) {
2059 off
= offsetof(struct sockaddr_in6
, sin6_addr
) << 3;
2060 if (!rn_inithead((void **)&rnh
, maskhead
, off
))
2062 nep
->ne_inet6head
= rnh
;
2071 vfs_free_addrlist_af(struct radix_node_head
**prnh
)
2073 struct radix_node_head
*rnh
= *prnh
;
2075 (*rnh
->rnh_walktree
) (rnh
, vfs_free_netcred
, rnh
);
2076 kfree(rnh
, M_RTABLE
);
2081 * Free the net address hash lists that are hanging off the mount points.
2084 vfs_free_addrlist(struct netexport
*nep
)
2087 if (nep
->ne_inethead
!= NULL
)
2088 vfs_free_addrlist_af(&nep
->ne_inethead
);
2089 if (nep
->ne_inet6head
!= NULL
)
2090 vfs_free_addrlist_af(&nep
->ne_inet6head
);
2091 if (nep
->ne_maskhead
)
2092 vfs_free_addrlist_af(&nep
->ne_maskhead
);
2097 vfs_export(struct mount
*mp
, struct netexport
*nep
,
2098 const struct export_args
*argp
)
2102 if (argp
->ex_flags
& MNT_DELEXPORT
) {
2103 if (mp
->mnt_flag
& MNT_EXPUBLIC
) {
2104 vfs_setpublicfs(NULL
, NULL
, NULL
);
2105 mp
->mnt_flag
&= ~MNT_EXPUBLIC
;
2107 vfs_free_addrlist(nep
);
2108 mp
->mnt_flag
&= ~(MNT_EXPORTED
| MNT_DEFEXPORTED
);
2110 if (argp
->ex_flags
& MNT_EXPORTED
) {
2111 if (argp
->ex_flags
& MNT_EXPUBLIC
) {
2112 if ((error
= vfs_setpublicfs(mp
, nep
, argp
)) != 0)
2114 mp
->mnt_flag
|= MNT_EXPUBLIC
;
2116 if ((error
= vfs_hang_addrlist(mp
, nep
, argp
)))
2118 mp
->mnt_flag
|= MNT_EXPORTED
;
2125 * Set the publicly exported filesystem (WebNFS). Currently, only
2126 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2129 vfs_setpublicfs(struct mount
*mp
, struct netexport
*nep
,
2130 const struct export_args
*argp
)
2137 * mp == NULL -> invalidate the current info, the FS is
2138 * no longer exported. May be called from either vfs_export
2139 * or unmount, so check if it hasn't already been done.
2142 if (nfs_pub
.np_valid
) {
2143 nfs_pub
.np_valid
= 0;
2144 if (nfs_pub
.np_index
!= NULL
) {
2145 kfree(nfs_pub
.np_index
, M_TEMP
);
2146 nfs_pub
.np_index
= NULL
;
2153 * Only one allowed at a time.
2155 if (nfs_pub
.np_valid
!= 0 && mp
!= nfs_pub
.np_mount
)
2159 * Get real filehandle for root of exported FS.
2161 bzero((caddr_t
)&nfs_pub
.np_handle
, sizeof(nfs_pub
.np_handle
));
2162 nfs_pub
.np_handle
.fh_fsid
= mp
->mnt_stat
.f_fsid
;
2164 if ((error
= VFS_ROOT(mp
, &rvp
)))
2167 if ((error
= VFS_VPTOFH(rvp
, &nfs_pub
.np_handle
.fh_fid
)))
2173 * If an indexfile was specified, pull it in.
2175 if (argp
->ex_indexfile
!= NULL
) {
2178 error
= vn_get_namelen(rvp
, &namelen
);
2181 nfs_pub
.np_index
= kmalloc(namelen
, M_TEMP
, M_WAITOK
);
2182 error
= copyinstr(argp
->ex_indexfile
, nfs_pub
.np_index
,
2186 * Check for illegal filenames.
2188 for (cp
= nfs_pub
.np_index
; *cp
; cp
++) {
2196 kfree(nfs_pub
.np_index
, M_TEMP
);
2201 nfs_pub
.np_mount
= mp
;
2202 nfs_pub
.np_valid
= 1;
2207 vfs_export_lookup(struct mount
*mp
, struct netexport
*nep
,
2208 struct sockaddr
*nam
)
2211 struct radix_node_head
*rnh
;
2212 struct sockaddr
*saddr
;
2215 if (mp
->mnt_flag
& MNT_EXPORTED
) {
2217 * Lookup in the export list first.
2222 switch (saddr
->sa_family
) {
2225 rnh
= nep
->ne_inethead
;
2230 rnh
= nep
->ne_inet6head
;
2237 np
= (struct netcred
*)
2238 (*rnh
->rnh_matchaddr
)((char *)saddr
,
2240 if (np
&& np
->netc_rnodes
->rn_flags
& RNF_ROOT
)
2246 * If no address match, use the default if it exists.
2248 if (np
== NULL
&& mp
->mnt_flag
& MNT_DEFEXPORTED
)
2249 np
= &nep
->ne_defexported
;
2255 * perform msync on all vnodes under a mount point. The mount point must
2256 * be locked. This code is also responsible for lazy-freeing unreferenced
2257 * vnodes whos VM objects no longer contain pages.
2259 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2261 * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
2262 * but vnode_pager_putpages() doesn't lock the vnode. We have to do it
2263 * way up in this high level function.
2265 static int vfs_msync_scan1(struct mount
*mp
, struct vnode
*vp
, void *data
);
2266 static int vfs_msync_scan2(struct mount
*mp
, struct vnode
*vp
, void *data
);
2269 vfs_msync(struct mount
*mp
, int flags
)
2274 * tmpfs sets this flag to prevent msync(), sync, and the
2275 * filesystem periodic syncer from trying to flush VM pages
2276 * to swap. Only pure memory pressure flushes tmpfs VM pages
2279 if (mp
->mnt_kern_flag
& MNTK_NOMSYNC
)
2283 * Ok, scan the vnodes for work. If the filesystem is using the
2284 * syncer thread feature we can use vsyncscan() instead of
2285 * vmntvnodescan(), which is much faster.
2287 vmsc_flags
= VMSC_GETVP
;
2288 if (flags
!= MNT_WAIT
)
2289 vmsc_flags
|= VMSC_NOWAIT
;
2291 if (mp
->mnt_kern_flag
& MNTK_THR_SYNC
) {
2292 vsyncscan(mp
, vmsc_flags
, vfs_msync_scan2
,
2293 (void *)(intptr_t)flags
);
2295 vmntvnodescan(mp
, vmsc_flags
,
2296 vfs_msync_scan1
, vfs_msync_scan2
,
2297 (void *)(intptr_t)flags
);
2302 * scan1 is a fast pre-check. There could be hundreds of thousands of
2303 * vnodes, we cannot afford to do anything heavy weight until we have a
2304 * fairly good indication that there is work to do.
2308 vfs_msync_scan1(struct mount
*mp
, struct vnode
*vp
, void *data
)
2310 int flags
= (int)(intptr_t)data
;
2312 if ((vp
->v_flag
& VRECLAIMED
) == 0) {
2313 if (vp
->v_auxrefs
== 0 && VREFCNT(vp
) <= 0 &&
2315 return(0); /* call scan2 */
2317 if ((mp
->mnt_flag
& MNT_RDONLY
) == 0 &&
2318 (vp
->v_flag
& VOBJDIRTY
) &&
2319 (flags
== MNT_WAIT
|| vn_islocked(vp
) == 0)) {
2320 return(0); /* call scan2 */
2325 * do not call scan2, continue the loop
2331 * This callback is handed a locked vnode.
2335 vfs_msync_scan2(struct mount
*mp
, struct vnode
*vp
, void *data
)
2338 int flags
= (int)(intptr_t)data
;
2340 if (vp
->v_flag
& VRECLAIMED
)
2343 if ((mp
->mnt_flag
& MNT_RDONLY
) == 0 && (vp
->v_flag
& VOBJDIRTY
)) {
2344 if ((obj
= vp
->v_object
) != NULL
) {
2345 vm_object_page_clean(obj
, 0, 0,
2346 flags
== MNT_WAIT
? OBJPC_SYNC
: OBJPC_NOSYNC
);
2353 * Wake up anyone interested in vp because it is being revoked.
2356 vn_gone(struct vnode
*vp
)
2358 lwkt_gettoken(&vp
->v_token
);
2359 KNOTE(&vp
->v_pollinfo
.vpi_kqinfo
.ki_note
, NOTE_REVOKE
);
2360 lwkt_reltoken(&vp
->v_token
);
2364 * extract the cdev_t from a VBLK or VCHR. The vnode must have been opened
2365 * (or v_rdev might be NULL).
2368 vn_todev(struct vnode
*vp
)
2370 if (vp
->v_type
!= VBLK
&& vp
->v_type
!= VCHR
)
2372 KKASSERT(vp
->v_rdev
!= NULL
);
2373 return (vp
->v_rdev
);
2377 * Check if vnode represents a disk device. The vnode does not need to be
2383 vn_isdisk(struct vnode
*vp
, int *errp
)
2387 if (vp
->v_type
!= VCHR
) {
2400 if (dev_is_good(dev
) == 0) {
2405 if ((dev_dflags(dev
) & D_DISK
) == 0) {
2416 vn_get_namelen(struct vnode
*vp
, int *namelen
)
2419 register_t retval
[2];
2421 error
= VOP_PATHCONF(vp
, _PC_NAME_MAX
, retval
);
2424 *namelen
= (int)retval
[0];
2429 vop_write_dirent(int *error
, struct uio
*uio
, ino_t d_ino
, uint8_t d_type
,
2430 uint16_t d_namlen
, const char *d_name
)
2435 len
= _DIRENT_RECLEN(d_namlen
);
2436 if (len
> uio
->uio_resid
)
2439 dp
= kmalloc(len
, M_TEMP
, M_WAITOK
| M_ZERO
);
2442 dp
->d_namlen
= d_namlen
;
2443 dp
->d_type
= d_type
;
2444 bcopy(d_name
, dp
->d_name
, d_namlen
);
2446 *error
= uiomove((caddr_t
)dp
, len
, uio
);
2454 vn_mark_atime(struct vnode
*vp
, struct thread
*td
)
2456 struct proc
*p
= td
->td_proc
;
2457 struct ucred
*cred
= p
? p
->p_ucred
: proc0
.p_ucred
;
2459 if ((vp
->v_mount
->mnt_flag
& (MNT_NOATIME
| MNT_RDONLY
)) == 0) {
2460 VOP_MARKATIME(vp
, cred
);