Fix multiple bugs in CAM related devices which go away unexpectedly. This
[dragonfly.git] / sys / bus / cam / cam_xpt.c
blobef0b77a1f97341f3efd050936bba96025b438be8
1 /*
2 * Implementation of the Common Access Method Transport (XPT) layer.
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30 * $DragonFly: src/sys/bus/cam/cam_xpt.c,v 1.67 2008/07/18 00:07:21 dillon Exp $
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/time.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 #include <sys/fcntl.h>
41 #include <sys/md5.h>
42 #include <sys/devicestat.h>
43 #include <sys/interrupt.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 #include <sys/bus.h>
47 #include <sys/thread.h>
48 #include <sys/lock.h>
49 #include <sys/spinlock.h>
50 #include <sys/thread2.h>
51 #include <sys/spinlock2.h>
53 #include <machine/clock.h>
54 #include <machine/stdarg.h>
56 #include "cam.h"
57 #include "cam_ccb.h"
58 #include "cam_periph.h"
59 #include "cam_sim.h"
60 #include "cam_xpt.h"
61 #include "cam_xpt_sim.h"
62 #include "cam_xpt_periph.h"
63 #include "cam_debug.h"
65 #include "scsi/scsi_all.h"
66 #include "scsi/scsi_message.h"
67 #include "scsi/scsi_pass.h"
68 #include <sys/kthread.h>
69 #include "opt_cam.h"
71 /* Datastructures internal to the xpt layer */
72 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
74 /* Object for defering XPT actions to a taskqueue */
75 struct xpt_task {
76 struct task task;
77 void *data1;
78 uintptr_t data2;
82 * Definition of an async handler callback block. These are used to add
83 * SIMs and peripherals to the async callback lists.
85 struct async_node {
86 SLIST_ENTRY(async_node) links;
87 u_int32_t event_enable; /* Async Event enables */
88 void (*callback)(void *arg, u_int32_t code,
89 struct cam_path *path, void *args);
90 void *callback_arg;
93 SLIST_HEAD(async_list, async_node);
94 SLIST_HEAD(periph_list, cam_periph);
97 * This is the maximum number of high powered commands (e.g. start unit)
98 * that can be outstanding at a particular time.
100 #ifndef CAM_MAX_HIGHPOWER
101 #define CAM_MAX_HIGHPOWER 4
102 #endif
105 * Structure for queueing a device in a run queue.
106 * There is one run queue for allocating new ccbs,
107 * and another for sending ccbs to the controller.
109 struct cam_ed_qinfo {
110 cam_pinfo pinfo;
111 struct cam_ed *device;
115 * The CAM EDT (Existing Device Table) contains the device information for
116 * all devices for all busses in the system. The table contains a
117 * cam_ed structure for each device on the bus.
119 struct cam_ed {
120 TAILQ_ENTRY(cam_ed) links;
121 struct cam_ed_qinfo alloc_ccb_entry;
122 struct cam_ed_qinfo send_ccb_entry;
123 struct cam_et *target;
124 struct cam_sim *sim;
125 lun_id_t lun_id;
126 struct camq drvq; /*
127 * Queue of type drivers wanting to do
128 * work on this device.
130 struct cam_ccbq ccbq; /* Queue of pending ccbs */
131 struct async_list asyncs; /* Async callback info for this B/T/L */
132 struct periph_list periphs; /* All attached devices */
133 u_int generation; /* Generation number */
134 struct cam_periph *owner; /* Peripheral driver's ownership tag */
135 struct xpt_quirk_entry *quirk; /* Oddities about this device */
136 /* Storage for the inquiry data */
137 cam_proto protocol;
138 u_int protocol_version;
139 cam_xport transport;
140 u_int transport_version;
141 struct scsi_inquiry_data inq_data;
142 u_int8_t inq_flags; /*
143 * Current settings for inquiry flags.
144 * This allows us to override settings
145 * like disconnection and tagged
146 * queuing for a device.
148 u_int8_t queue_flags; /* Queue flags from the control page */
149 u_int8_t serial_num_len;
150 u_int8_t *serial_num;
151 u_int32_t qfrozen_cnt;
152 u_int32_t flags;
153 #define CAM_DEV_UNCONFIGURED 0x01
154 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02
155 #define CAM_DEV_REL_ON_COMPLETE 0x04
156 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08
157 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10
158 #define CAM_DEV_TAG_AFTER_COUNT 0x20
159 #define CAM_DEV_INQUIRY_DATA_VALID 0x40
160 #define CAM_DEV_IN_DV 0x80
161 #define CAM_DEV_DV_HIT_BOTTOM 0x100
162 u_int32_t tag_delay_count;
163 #define CAM_TAG_DELAY_COUNT 5
164 u_int32_t tag_saved_openings;
165 u_int32_t refcount;
166 struct callout callout;
170 * Each target is represented by an ET (Existing Target). These
171 * entries are created when a target is successfully probed with an
172 * identify, and removed when a device fails to respond after a number
173 * of retries, or a bus rescan finds the device missing.
175 struct cam_et {
176 TAILQ_HEAD(, cam_ed) ed_entries;
177 TAILQ_ENTRY(cam_et) links;
178 struct cam_eb *bus;
179 target_id_t target_id;
180 u_int32_t refcount;
181 u_int generation;
182 struct timeval last_reset; /* uptime of last reset */
186 * Each bus is represented by an EB (Existing Bus). These entries
187 * are created by calls to xpt_bus_register and deleted by calls to
188 * xpt_bus_deregister.
190 struct cam_eb {
191 TAILQ_HEAD(, cam_et) et_entries;
192 TAILQ_ENTRY(cam_eb) links;
193 path_id_t path_id;
194 struct cam_sim *sim;
195 struct timeval last_reset; /* uptime of last reset */
196 u_int32_t flags;
197 #define CAM_EB_RUNQ_SCHEDULED 0x01
198 u_int32_t refcount;
199 u_int generation;
202 struct cam_path {
203 struct cam_periph *periph;
204 struct cam_eb *bus;
205 struct cam_et *target;
206 struct cam_ed *device;
209 struct xpt_quirk_entry {
210 struct scsi_inquiry_pattern inq_pat;
211 u_int8_t quirks;
212 #define CAM_QUIRK_NOLUNS 0x01
213 #define CAM_QUIRK_NOSERIAL 0x02
214 #define CAM_QUIRK_HILUNS 0x04
215 #define CAM_QUIRK_NOHILUNS 0x08
216 u_int mintags;
217 u_int maxtags;
220 static int cam_srch_hi = 0;
221 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
222 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
223 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
224 sysctl_cam_search_luns, "I",
225 "allow search above LUN 7 for SCSI3 and greater devices");
227 #define CAM_SCSI2_MAXLUN 8
229 * If we're not quirked to search <= the first 8 luns
230 * and we are either quirked to search above lun 8,
231 * or we're > SCSI-2 and we've enabled hilun searching,
232 * or we're > SCSI-2 and the last lun was a success,
233 * we can look for luns above lun 8.
235 #define CAN_SRCH_HI_SPARSE(dv) \
236 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \
237 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \
238 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
240 #define CAN_SRCH_HI_DENSE(dv) \
241 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \
242 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \
243 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
245 typedef enum {
246 XPT_FLAG_OPEN = 0x01
247 } xpt_flags;
249 struct xpt_softc {
250 xpt_flags flags;
251 u_int32_t xpt_generation;
253 /* number of high powered commands that can go through right now */
254 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
255 int num_highpower;
257 /* queue for handling async rescan requests. */
258 TAILQ_HEAD(, ccb_hdr) ccb_scanq;
260 /* Registered busses */
261 TAILQ_HEAD(,cam_eb) xpt_busses;
262 u_int bus_generation;
264 struct intr_config_hook *xpt_config_hook;
266 struct lock xpt_topo_lock;
267 struct lock xpt_lock;
270 static const char quantum[] = "QUANTUM";
271 static const char sony[] = "SONY";
272 static const char west_digital[] = "WDIGTL";
273 static const char samsung[] = "SAMSUNG";
274 static const char seagate[] = "SEAGATE";
275 static const char microp[] = "MICROP";
277 static struct xpt_quirk_entry xpt_quirk_table[] =
280 /* Reports QUEUE FULL for temporary resource shortages */
281 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
282 /*quirks*/0, /*mintags*/24, /*maxtags*/32
285 /* Reports QUEUE FULL for temporary resource shortages */
286 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
287 /*quirks*/0, /*mintags*/24, /*maxtags*/32
290 /* Reports QUEUE FULL for temporary resource shortages */
291 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
292 /*quirks*/0, /*mintags*/24, /*maxtags*/32
295 /* Broken tagged queuing drive */
296 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
297 /*quirks*/0, /*mintags*/0, /*maxtags*/0
300 /* Broken tagged queuing drive */
301 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
302 /*quirks*/0, /*mintags*/0, /*maxtags*/0
305 /* Broken tagged queuing drive */
306 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
307 /*quirks*/0, /*mintags*/0, /*maxtags*/0
311 * Unfortunately, the Quantum Atlas III has the same
312 * problem as the Atlas II drives above.
313 * Reported by: "Johan Granlund" <johan@granlund.nu>
315 * For future reference, the drive with the problem was:
316 * QUANTUM QM39100TD-SW N1B0
318 * It's possible that Quantum will fix the problem in later
319 * firmware revisions. If that happens, the quirk entry
320 * will need to be made specific to the firmware revisions
321 * with the problem.
324 /* Reports QUEUE FULL for temporary resource shortages */
325 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
326 /*quirks*/0, /*mintags*/24, /*maxtags*/32
330 * 18 Gig Atlas III, same problem as the 9G version.
331 * Reported by: Andre Albsmeier
332 * <andre.albsmeier@mchp.siemens.de>
334 * For future reference, the drive with the problem was:
335 * QUANTUM QM318000TD-S N491
337 /* Reports QUEUE FULL for temporary resource shortages */
338 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
339 /*quirks*/0, /*mintags*/24, /*maxtags*/32
343 * Broken tagged queuing drive
344 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
345 * and: Martin Renters <martin@tdc.on.ca>
347 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
348 /*quirks*/0, /*mintags*/0, /*maxtags*/0
351 * The Seagate Medalist Pro drives have very poor write
352 * performance with anything more than 2 tags.
354 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl>
355 * Drive: <SEAGATE ST36530N 1444>
357 * Reported by: Jeremy Lea <reg@shale.csir.co.za>
358 * Drive: <SEAGATE ST34520W 1281>
360 * No one has actually reported that the 9G version
361 * (ST39140*) of the Medalist Pro has the same problem, but
362 * we're assuming that it does because the 4G and 6.5G
363 * versions of the drive are broken.
366 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
367 /*quirks*/0, /*mintags*/2, /*maxtags*/2
370 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
371 /*quirks*/0, /*mintags*/2, /*maxtags*/2
374 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
375 /*quirks*/0, /*mintags*/2, /*maxtags*/2
379 * Slow when tagged queueing is enabled. Write performance
380 * steadily drops off with more and more concurrent
381 * transactions. Best sequential write performance with
382 * tagged queueing turned off and write caching turned on.
384 * PR: kern/10398
385 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp>
386 * Drive: DCAS-34330 w/ "S65A" firmware.
388 * The drive with the problem had the "S65A" firmware
389 * revision, and has also been reported (by Stephen J.
390 * Roznowski <sjr@home.net>) for a drive with the "S61A"
391 * firmware revision.
393 * Although no one has reported problems with the 2 gig
394 * version of the DCAS drive, the assumption is that it
395 * has the same problems as the 4 gig version. Therefore
396 * this quirk entries disables tagged queueing for all
397 * DCAS drives.
399 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
400 /*quirks*/0, /*mintags*/0, /*maxtags*/0
403 /* Broken tagged queuing drive */
404 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
405 /*quirks*/0, /*mintags*/0, /*maxtags*/0
408 /* Broken tagged queuing drive */
409 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
410 /*quirks*/0, /*mintags*/0, /*maxtags*/0
413 /* This does not support other than LUN 0 */
414 { T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
415 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
419 * Broken tagged queuing drive.
420 * Submitted by:
421 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
422 * in PR kern/9535
424 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
425 /*quirks*/0, /*mintags*/0, /*maxtags*/0
429 * Slow when tagged queueing is enabled. (1.5MB/sec versus
430 * 8MB/sec.)
431 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
432 * Best performance with these drives is achieved with
433 * tagged queueing turned off, and write caching turned on.
435 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
436 /*quirks*/0, /*mintags*/0, /*maxtags*/0
440 * Slow when tagged queueing is enabled. (1.5MB/sec versus
441 * 8MB/sec.)
442 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
443 * Best performance with these drives is achieved with
444 * tagged queueing turned off, and write caching turned on.
446 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
447 /*quirks*/0, /*mintags*/0, /*maxtags*/0
451 * Doesn't handle queue full condition correctly,
452 * so we need to limit maxtags to what the device
453 * can handle instead of determining this automatically.
455 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
456 /*quirks*/0, /*mintags*/2, /*maxtags*/32
459 /* Really only one LUN */
460 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
461 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
464 /* I can't believe we need a quirk for DPT volumes. */
465 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
466 CAM_QUIRK_NOLUNS,
467 /*mintags*/0, /*maxtags*/255
471 * Many Sony CDROM drives don't like multi-LUN probing.
473 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
474 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
478 * This drive doesn't like multiple LUN probing.
479 * Submitted by: Parag Patel <parag@cgt.com>
481 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" },
482 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
485 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
486 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
490 * The 8200 doesn't like multi-lun probing, and probably
491 * don't like serial number requests either.
494 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
495 "EXB-8200*", "*"
497 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
501 * Let's try the same as above, but for a drive that says
502 * it's an IPL-6860 but is actually an EXB 8200.
505 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
506 "IPL-6860*", "*"
508 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
512 * These Hitachi drives don't like multi-lun probing.
513 * The PR submitter has a DK319H, but says that the Linux
514 * kernel has a similar work-around for the DK312 and DK314,
515 * so all DK31* drives are quirked here.
516 * PR: misc/18793
517 * Submitted by: Paul Haddad <paul@pth.com>
519 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
520 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
524 * The Hitachi CJ series with J8A8 firmware apparantly has
525 * problems with tagged commands.
526 * PR: 23536
527 * Reported by: amagai@nue.org
529 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
530 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
534 * These are the large storage arrays.
535 * Submitted by: William Carrel <william.carrel@infospace.com>
537 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
538 CAM_QUIRK_HILUNS, 2, 1024
542 * This old revision of the TDC3600 is also SCSI-1, and
543 * hangs upon serial number probing.
546 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
547 " TDC 3600", "U07:"
549 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
553 * Would repond to all LUNs if asked for.
556 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
557 "CP150", "*"
559 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
563 * Would repond to all LUNs if asked for.
566 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
567 "96X2*", "*"
569 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
572 /* Submitted by: Matthew Dodd <winter@jurai.net> */
573 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
574 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
577 /* Submitted by: Matthew Dodd <winter@jurai.net> */
578 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
579 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
582 /* TeraSolutions special settings for TRC-22 RAID */
583 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
584 /*quirks*/0, /*mintags*/55, /*maxtags*/255
587 /* Veritas Storage Appliance */
588 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
589 CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
593 * Would respond to all LUNs. Device type and removable
594 * flag are jumper-selectable.
596 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
597 "Tahiti 1", "*"
599 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
602 /* EasyRAID E5A aka. areca ARC-6010 */
603 { T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
604 CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
607 { T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
608 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
611 /* Default tagged queuing parameters for all devices */
613 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
614 /*vendor*/"*", /*product*/"*", /*revision*/"*"
616 /*quirks*/0, /*mintags*/2, /*maxtags*/255
620 static const int xpt_quirk_table_size =
621 sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
623 typedef enum {
624 DM_RET_COPY = 0x01,
625 DM_RET_FLAG_MASK = 0x0f,
626 DM_RET_NONE = 0x00,
627 DM_RET_STOP = 0x10,
628 DM_RET_DESCEND = 0x20,
629 DM_RET_ERROR = 0x30,
630 DM_RET_ACTION_MASK = 0xf0
631 } dev_match_ret;
633 typedef enum {
634 XPT_DEPTH_BUS,
635 XPT_DEPTH_TARGET,
636 XPT_DEPTH_DEVICE,
637 XPT_DEPTH_PERIPH
638 } xpt_traverse_depth;
640 struct xpt_traverse_config {
641 xpt_traverse_depth depth;
642 void *tr_func;
643 void *tr_arg;
646 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
647 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
648 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
649 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
650 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
652 /* Transport layer configuration information */
653 static struct xpt_softc xsoftc;
655 /* Queues for our software interrupt handler */
656 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
657 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
658 static cam_simq_t cam_simq;
659 static struct spinlock cam_simq_spin;
661 struct cam_periph *xpt_periph;
663 static periph_init_t xpt_periph_init;
665 static periph_init_t probe_periph_init;
667 static struct periph_driver xpt_driver =
669 xpt_periph_init, "xpt",
670 TAILQ_HEAD_INITIALIZER(xpt_driver.units)
673 static struct periph_driver probe_driver =
675 probe_periph_init, "probe",
676 TAILQ_HEAD_INITIALIZER(probe_driver.units)
679 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
680 PERIPHDRIVER_DECLARE(probe, probe_driver);
682 #define XPT_CDEV_MAJOR 104
684 static d_open_t xptopen;
685 static d_close_t xptclose;
686 static d_ioctl_t xptioctl;
688 static struct dev_ops xpt_ops = {
689 { "xpt", XPT_CDEV_MAJOR, 0 },
690 .d_open = xptopen,
691 .d_close = xptclose,
692 .d_ioctl = xptioctl
695 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
696 static void dead_sim_poll(struct cam_sim *sim);
698 /* Dummy SIM that is used when the real one has gone. */
699 static struct cam_sim cam_dead_sim;
700 static struct lock cam_dead_lock;
702 /* Storage for debugging datastructures */
703 #ifdef CAMDEBUG
704 struct cam_path *cam_dpath;
705 u_int32_t cam_dflags;
706 u_int32_t cam_debug_delay;
707 #endif
709 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
710 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
711 #endif
714 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
715 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS,
716 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
718 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
719 || defined(CAM_DEBUG_LUN)
720 #ifdef CAMDEBUG
721 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
722 || !defined(CAM_DEBUG_LUN)
723 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
724 and CAM_DEBUG_LUN"
725 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
726 #else /* !CAMDEBUG */
727 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
728 #endif /* CAMDEBUG */
729 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
731 /* Our boot-time initialization hook */
732 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
734 static moduledata_t cam_moduledata = {
735 "cam",
736 cam_module_event_handler,
737 NULL
740 static int xpt_init(void *);
742 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
743 MODULE_VERSION(cam, 1);
746 static cam_status xpt_compile_path(struct cam_path *new_path,
747 struct cam_periph *perph,
748 path_id_t path_id,
749 target_id_t target_id,
750 lun_id_t lun_id);
752 static void xpt_release_path(struct cam_path *path);
754 static void xpt_async_bcast(struct async_list *async_head,
755 u_int32_t async_code,
756 struct cam_path *path,
757 void *async_arg);
758 static void xpt_dev_async(u_int32_t async_code,
759 struct cam_eb *bus,
760 struct cam_et *target,
761 struct cam_ed *device,
762 void *async_arg);
763 static path_id_t xptnextfreepathid(void);
764 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
765 static union ccb *xpt_get_ccb(struct cam_ed *device);
766 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
767 u_int32_t new_priority);
768 static void xpt_run_dev_allocq(struct cam_eb *bus);
769 static void xpt_run_dev_sendq(struct cam_eb *bus);
770 static timeout_t xpt_release_devq_timeout;
771 static void xpt_release_bus(struct cam_eb *bus);
772 static void xpt_release_devq_device(struct cam_ed *dev, u_int count,
773 int run_queue);
774 static struct cam_et*
775 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
776 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target);
777 static struct cam_ed*
778 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
779 lun_id_t lun_id);
780 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target,
781 struct cam_ed *device);
782 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
783 static struct cam_eb*
784 xpt_find_bus(path_id_t path_id);
785 static struct cam_et*
786 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
787 static struct cam_ed*
788 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
789 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
790 static void xpt_scan_lun(struct cam_periph *periph,
791 struct cam_path *path, cam_flags flags,
792 union ccb *ccb);
793 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb);
794 static xpt_busfunc_t xptconfigbuscountfunc;
795 static xpt_busfunc_t xptconfigfunc;
796 static void xpt_config(void *arg);
797 static xpt_devicefunc_t xptpassannouncefunc;
798 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
799 static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
800 static void xptpoll(struct cam_sim *sim);
801 static inthand2_t swi_cambio;
802 static void camisr(void *);
803 static void camisr_runqueue(struct cam_sim *);
804 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
805 u_int num_patterns, struct cam_eb *bus);
806 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
807 u_int num_patterns,
808 struct cam_ed *device);
809 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
810 u_int num_patterns,
811 struct cam_periph *periph);
812 static xpt_busfunc_t xptedtbusfunc;
813 static xpt_targetfunc_t xptedttargetfunc;
814 static xpt_devicefunc_t xptedtdevicefunc;
815 static xpt_periphfunc_t xptedtperiphfunc;
816 static xpt_pdrvfunc_t xptplistpdrvfunc;
817 static xpt_periphfunc_t xptplistperiphfunc;
818 static int xptedtmatch(struct ccb_dev_match *cdm);
819 static int xptperiphlistmatch(struct ccb_dev_match *cdm);
820 static int xptbustraverse(struct cam_eb *start_bus,
821 xpt_busfunc_t *tr_func, void *arg);
822 static int xpttargettraverse(struct cam_eb *bus,
823 struct cam_et *start_target,
824 xpt_targetfunc_t *tr_func, void *arg);
825 static int xptdevicetraverse(struct cam_et *target,
826 struct cam_ed *start_device,
827 xpt_devicefunc_t *tr_func, void *arg);
828 static int xptperiphtraverse(struct cam_ed *device,
829 struct cam_periph *start_periph,
830 xpt_periphfunc_t *tr_func, void *arg);
831 static int xptpdrvtraverse(struct periph_driver **start_pdrv,
832 xpt_pdrvfunc_t *tr_func, void *arg);
833 static int xptpdperiphtraverse(struct periph_driver **pdrv,
834 struct cam_periph *start_periph,
835 xpt_periphfunc_t *tr_func,
836 void *arg);
837 static xpt_busfunc_t xptdefbusfunc;
838 static xpt_targetfunc_t xptdeftargetfunc;
839 static xpt_devicefunc_t xptdefdevicefunc;
840 static xpt_periphfunc_t xptdefperiphfunc;
841 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
842 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func,
843 void *arg);
844 static xpt_devicefunc_t xptsetasyncfunc;
845 static xpt_busfunc_t xptsetasyncbusfunc;
846 static cam_status xptregister(struct cam_periph *periph,
847 void *arg);
848 static cam_status proberegister(struct cam_periph *periph,
849 void *arg);
850 static void probeschedule(struct cam_periph *probe_periph);
851 static void probestart(struct cam_periph *periph, union ccb *start_ccb);
852 static void proberequestdefaultnegotiation(struct cam_periph *periph);
853 static int proberequestbackoff(struct cam_periph *periph,
854 struct cam_ed *device);
855 static void probedone(struct cam_periph *periph, union ccb *done_ccb);
856 static void probecleanup(struct cam_periph *periph);
857 static void xpt_find_quirk(struct cam_ed *device);
858 static void xpt_devise_transport(struct cam_path *path);
859 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts,
860 struct cam_ed *device,
861 int async_update);
862 static void xpt_toggle_tags(struct cam_path *path);
863 static void xpt_start_tags(struct cam_path *path);
864 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
865 struct cam_ed *dev);
866 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
867 struct cam_ed *dev);
868 static __inline int periph_is_queued(struct cam_periph *periph);
869 static __inline int device_is_alloc_queued(struct cam_ed *device);
870 static __inline int device_is_send_queued(struct cam_ed *device);
871 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
873 static __inline int
874 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
876 int retval;
878 if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
879 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
880 cam_ccbq_resize(&dev->ccbq,
881 dev->ccbq.dev_openings
882 + dev->ccbq.dev_active);
883 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
886 * The priority of a device waiting for CCB resources
887 * is that of the the highest priority peripheral driver
888 * enqueued.
890 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
891 &dev->alloc_ccb_entry.pinfo,
892 CAMQ_GET_HEAD(&dev->drvq)->priority);
893 } else {
894 retval = 0;
897 return (retval);
900 static __inline int
901 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
903 int retval;
905 if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
907 * The priority of a device waiting for controller
908 * resources is that of the the highest priority CCB
909 * enqueued.
911 retval =
912 xpt_schedule_dev(&bus->sim->devq->send_queue,
913 &dev->send_ccb_entry.pinfo,
914 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
915 } else {
916 retval = 0;
918 return (retval);
921 static __inline int
922 periph_is_queued(struct cam_periph *periph)
924 return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
927 static __inline int
928 device_is_alloc_queued(struct cam_ed *device)
930 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
933 static __inline int
934 device_is_send_queued(struct cam_ed *device)
936 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
939 static __inline int
940 dev_allocq_is_runnable(struct cam_devq *devq)
943 * Have work to do.
944 * Have space to do more work.
945 * Allowed to do work.
947 return ((devq->alloc_queue.qfrozen_cnt == 0)
948 && (devq->alloc_queue.entries > 0)
949 && (devq->alloc_openings > 0));
952 static void
953 xpt_periph_init(void)
955 dev_ops_add(&xpt_ops, 0, 0);
956 make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
959 static void
960 probe_periph_init(void)
965 static void
966 xptdone(struct cam_periph *periph, union ccb *done_ccb)
968 /* Caller will release the CCB */
969 wakeup(&done_ccb->ccb_h.cbfcnp);
972 static int
973 xptopen(struct dev_open_args *ap)
975 cdev_t dev = ap->a_head.a_dev;
978 * Only allow read-write access.
980 if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
981 return(EPERM);
984 * We don't allow nonblocking access.
986 if ((ap->a_oflags & O_NONBLOCK) != 0) {
987 kprintf("%s: can't do nonblocking access\n", devtoname(dev));
988 return(ENODEV);
991 /* Mark ourselves open */
992 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
993 xsoftc.flags |= XPT_FLAG_OPEN;
994 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
996 return(0);
999 static int
1000 xptclose(struct dev_close_args *ap)
1003 /* Mark ourselves closed */
1004 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1005 xsoftc.flags &= ~XPT_FLAG_OPEN;
1006 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1008 return(0);
1012 * Don't automatically grab the xpt softc lock here even though this is going
1013 * through the xpt device. The xpt device is really just a back door for
1014 * accessing other devices and SIMs, so the right thing to do is to grab
1015 * the appropriate SIM lock once the bus/SIM is located.
1017 static int
1018 xptioctl(struct dev_ioctl_args *ap)
1020 int error;
1022 error = 0;
1024 switch(ap->a_cmd) {
1026 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1027 * to accept CCB types that don't quite make sense to send through a
1028 * passthrough driver.
1030 case CAMIOCOMMAND: {
1031 union ccb *ccb;
1032 union ccb *inccb;
1033 struct cam_eb *bus;
1035 inccb = (union ccb *)ap->a_data;
1037 bus = xpt_find_bus(inccb->ccb_h.path_id);
1038 if (bus == NULL) {
1039 error = EINVAL;
1040 break;
1043 switch(inccb->ccb_h.func_code) {
1044 case XPT_SCAN_BUS:
1045 case XPT_RESET_BUS:
1046 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1047 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1048 error = EINVAL;
1049 break;
1051 /* FALLTHROUGH */
1052 case XPT_PATH_INQ:
1053 case XPT_ENG_INQ:
1054 case XPT_SCAN_LUN:
1056 ccb = xpt_alloc_ccb();
1058 CAM_SIM_LOCK(bus->sim);
1061 * Create a path using the bus, target, and lun the
1062 * user passed in.
1064 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1065 inccb->ccb_h.path_id,
1066 inccb->ccb_h.target_id,
1067 inccb->ccb_h.target_lun) !=
1068 CAM_REQ_CMP){
1069 error = EINVAL;
1070 CAM_SIM_UNLOCK(bus->sim);
1071 xpt_free_ccb(ccb);
1072 break;
1074 /* Ensure all of our fields are correct */
1075 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1076 inccb->ccb_h.pinfo.priority);
1077 xpt_merge_ccb(ccb, inccb);
1078 ccb->ccb_h.cbfcnp = xptdone;
1079 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1080 bcopy(ccb, inccb, sizeof(union ccb));
1081 xpt_free_path(ccb->ccb_h.path);
1082 xpt_free_ccb(ccb);
1083 CAM_SIM_UNLOCK(bus->sim);
1084 break;
1086 case XPT_DEBUG: {
1087 union ccb ccb;
1090 * This is an immediate CCB, so it's okay to
1091 * allocate it on the stack.
1094 CAM_SIM_LOCK(bus->sim);
1097 * Create a path using the bus, target, and lun the
1098 * user passed in.
1100 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1101 inccb->ccb_h.path_id,
1102 inccb->ccb_h.target_id,
1103 inccb->ccb_h.target_lun) !=
1104 CAM_REQ_CMP){
1105 error = EINVAL;
1106 CAM_SIM_UNLOCK(bus->sim);
1107 break;
1109 /* Ensure all of our fields are correct */
1110 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1111 inccb->ccb_h.pinfo.priority);
1112 xpt_merge_ccb(&ccb, inccb);
1113 ccb.ccb_h.cbfcnp = xptdone;
1114 xpt_action(&ccb);
1115 CAM_SIM_UNLOCK(bus->sim);
1116 bcopy(&ccb, inccb, sizeof(union ccb));
1117 xpt_free_path(ccb.ccb_h.path);
1118 break;
1121 case XPT_DEV_MATCH: {
1122 struct cam_periph_map_info mapinfo;
1123 struct cam_path *old_path;
1126 * We can't deal with physical addresses for this
1127 * type of transaction.
1129 if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1130 error = EINVAL;
1131 break;
1135 * Save this in case the caller had it set to
1136 * something in particular.
1138 old_path = inccb->ccb_h.path;
1141 * We really don't need a path for the matching
1142 * code. The path is needed because of the
1143 * debugging statements in xpt_action(). They
1144 * assume that the CCB has a valid path.
1146 inccb->ccb_h.path = xpt_periph->path;
1148 bzero(&mapinfo, sizeof(mapinfo));
1151 * Map the pattern and match buffers into kernel
1152 * virtual address space.
1154 error = cam_periph_mapmem(inccb, &mapinfo);
1156 if (error) {
1157 inccb->ccb_h.path = old_path;
1158 break;
1162 * This is an immediate CCB, we can send it on directly.
1164 xpt_action(inccb);
1167 * Map the buffers back into user space.
1169 cam_periph_unmapmem(inccb, &mapinfo);
1171 inccb->ccb_h.path = old_path;
1173 error = 0;
1174 break;
1176 default:
1177 error = ENOTSUP;
1178 break;
1180 xpt_release_bus(bus);
1181 break;
1184 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1185 * with the periphal driver name and unit name filled in. The other
1186 * fields don't really matter as input. The passthrough driver name
1187 * ("pass"), and unit number are passed back in the ccb. The current
1188 * device generation number, and the index into the device peripheral
1189 * driver list, and the status are also passed back. Note that
1190 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1191 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
1192 * (or rather should be) impossible for the device peripheral driver
1193 * list to change since we look at the whole thing in one pass, and
1194 * we do it with lock protection.
1197 case CAMGETPASSTHRU: {
1198 union ccb *ccb;
1199 struct cam_periph *periph;
1200 struct periph_driver **p_drv;
1201 char *name;
1202 u_int unit;
1203 u_int cur_generation;
1204 int base_periph_found;
1205 int splbreaknum;
1207 ccb = (union ccb *)ap->a_data;
1208 unit = ccb->cgdl.unit_number;
1209 name = ccb->cgdl.periph_name;
1211 * Every 100 devices, we want to drop our lock protection to
1212 * give the software interrupt handler a chance to run.
1213 * Most systems won't run into this check, but this should
1214 * avoid starvation in the software interrupt handler in
1215 * large systems.
1217 splbreaknum = 100;
1219 ccb = (union ccb *)ap->a_data;
1221 base_periph_found = 0;
1224 * Sanity check -- make sure we don't get a null peripheral
1225 * driver name.
1227 if (*ccb->cgdl.periph_name == '\0') {
1228 error = EINVAL;
1229 break;
1232 /* Keep the list from changing while we traverse it */
1233 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1234 ptstartover:
1235 cur_generation = xsoftc.xpt_generation;
1237 /* first find our driver in the list of drivers */
1238 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1239 if (strcmp((*p_drv)->driver_name, name) == 0)
1240 break;
1243 if (*p_drv == NULL) {
1244 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1245 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1246 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1247 *ccb->cgdl.periph_name = '\0';
1248 ccb->cgdl.unit_number = 0;
1249 error = ENOENT;
1250 break;
1254 * Run through every peripheral instance of this driver
1255 * and check to see whether it matches the unit passed
1256 * in by the user. If it does, get out of the loops and
1257 * find the passthrough driver associated with that
1258 * peripheral driver.
1260 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1262 if (periph->unit_number == unit) {
1263 break;
1264 } else if (--splbreaknum == 0) {
1265 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1266 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1267 splbreaknum = 100;
1268 if (cur_generation != xsoftc.xpt_generation)
1269 goto ptstartover;
1273 * If we found the peripheral driver that the user passed
1274 * in, go through all of the peripheral drivers for that
1275 * particular device and look for a passthrough driver.
1277 if (periph != NULL) {
1278 struct cam_ed *device;
1279 int i;
1281 base_periph_found = 1;
1282 device = periph->path->device;
1283 for (i = 0, periph = SLIST_FIRST(&device->periphs);
1284 periph != NULL;
1285 periph = SLIST_NEXT(periph, periph_links), i++) {
1287 * Check to see whether we have a
1288 * passthrough device or not.
1290 if (strcmp(periph->periph_name, "pass") == 0) {
1292 * Fill in the getdevlist fields.
1294 strcpy(ccb->cgdl.periph_name,
1295 periph->periph_name);
1296 ccb->cgdl.unit_number =
1297 periph->unit_number;
1298 if (SLIST_NEXT(periph, periph_links))
1299 ccb->cgdl.status =
1300 CAM_GDEVLIST_MORE_DEVS;
1301 else
1302 ccb->cgdl.status =
1303 CAM_GDEVLIST_LAST_DEVICE;
1304 ccb->cgdl.generation =
1305 device->generation;
1306 ccb->cgdl.index = i;
1308 * Fill in some CCB header fields
1309 * that the user may want.
1311 ccb->ccb_h.path_id =
1312 periph->path->bus->path_id;
1313 ccb->ccb_h.target_id =
1314 periph->path->target->target_id;
1315 ccb->ccb_h.target_lun =
1316 periph->path->device->lun_id;
1317 ccb->ccb_h.status = CAM_REQ_CMP;
1318 break;
1324 * If the periph is null here, one of two things has
1325 * happened. The first possibility is that we couldn't
1326 * find the unit number of the particular peripheral driver
1327 * that the user is asking about. e.g. the user asks for
1328 * the passthrough driver for "da11". We find the list of
1329 * "da" peripherals all right, but there is no unit 11.
1330 * The other possibility is that we went through the list
1331 * of peripheral drivers attached to the device structure,
1332 * but didn't find one with the name "pass". Either way,
1333 * we return ENOENT, since we couldn't find something.
1335 if (periph == NULL) {
1336 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1337 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1338 *ccb->cgdl.periph_name = '\0';
1339 ccb->cgdl.unit_number = 0;
1340 error = ENOENT;
1342 * It is unfortunate that this is even necessary,
1343 * but there are many, many clueless users out there.
1344 * If this is true, the user is looking for the
1345 * passthrough driver, but doesn't have one in his
1346 * kernel.
1348 if (base_periph_found == 1) {
1349 kprintf("xptioctl: pass driver is not in the "
1350 "kernel\n");
1351 kprintf("xptioctl: put \"device pass\" in "
1352 "your kernel config file\n");
1355 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1356 break;
1358 default:
1359 error = ENOTTY;
1360 break;
1363 return(error);
1366 static int
1367 cam_module_event_handler(module_t mod, int what, void *arg)
1369 int error;
1371 switch (what) {
1372 case MOD_LOAD:
1373 if ((error = xpt_init(NULL)) != 0)
1374 return (error);
1375 break;
1376 case MOD_UNLOAD:
1377 return EBUSY;
1378 default:
1379 return EOPNOTSUPP;
1382 return 0;
1385 /* thread to handle bus rescans */
1386 static void
1387 xpt_scanner_thread(void *dummy)
1389 cam_isrq_t queue;
1390 union ccb *ccb;
1391 struct cam_sim *sim;
1393 for (;;) {
1395 * Wait for a rescan request to come in. When it does, splice
1396 * it onto a queue from local storage so that the xpt lock
1397 * doesn't need to be held while the requests are being
1398 * processed.
1400 crit_enter();
1401 tsleep_interlock(&xsoftc.ccb_scanq);
1402 xpt_unlock_buses();
1403 tsleep(&xsoftc.ccb_scanq, 0, "ccb_scanq", 0);
1404 xpt_lock_buses();
1405 crit_exit();
1406 TAILQ_INIT(&queue);
1407 TAILQ_CONCAT(&queue, &xsoftc.ccb_scanq, sim_links.tqe);
1408 xpt_unlock_buses();
1410 while ((ccb = (union ccb *)TAILQ_FIRST(&queue)) != NULL) {
1411 TAILQ_REMOVE(&queue, &ccb->ccb_h, sim_links.tqe);
1413 sim = ccb->ccb_h.path->bus->sim;
1414 CAM_SIM_LOCK(sim);
1416 ccb->ccb_h.func_code = XPT_SCAN_BUS;
1417 ccb->ccb_h.cbfcnp = xptdone;
1418 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 5);
1419 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1420 xpt_free_path(ccb->ccb_h.path);
1421 xpt_free_ccb(ccb);
1422 CAM_SIM_UNLOCK(sim);
1427 void
1428 xpt_rescan(union ccb *ccb)
1430 struct ccb_hdr *hdr;
1433 * Don't make duplicate entries for the same paths.
1435 xpt_lock_buses();
1436 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
1437 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
1438 xpt_unlock_buses();
1439 xpt_print(ccb->ccb_h.path, "rescan already queued\n");
1440 xpt_free_path(ccb->ccb_h.path);
1441 xpt_free_ccb(ccb);
1442 return;
1445 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1446 wakeup(&xsoftc.ccb_scanq);
1447 xpt_unlock_buses();
1451 /* Functions accessed by the peripheral drivers */
1452 static int
1453 xpt_init(void *dummy)
1455 struct cam_sim *xpt_sim;
1456 struct cam_path *path;
1457 struct cam_devq *devq;
1458 cam_status status;
1460 TAILQ_INIT(&xsoftc.xpt_busses);
1461 TAILQ_INIT(&cam_simq);
1462 TAILQ_INIT(&xsoftc.ccb_scanq);
1463 STAILQ_INIT(&xsoftc.highpowerq);
1464 xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1466 spin_init(&cam_simq_spin);
1467 lockinit(&xsoftc.xpt_lock, "XPT lock", 0, LK_CANRECURSE);
1468 lockinit(&xsoftc.xpt_topo_lock, "XPT topology lock", 0, LK_CANRECURSE);
1470 SLIST_INIT(&cam_dead_sim.ccb_freeq);
1471 TAILQ_INIT(&cam_dead_sim.sim_doneq);
1472 spin_init(&cam_dead_sim.sim_spin);
1473 cam_dead_sim.sim_action = dead_sim_action;
1474 cam_dead_sim.sim_poll = dead_sim_poll;
1475 cam_dead_sim.sim_name = "dead_sim";
1476 cam_dead_sim.lock = &cam_dead_lock;
1477 lockinit(&cam_dead_lock, "XPT dead_sim lock", 0, LK_CANRECURSE);
1478 cam_dead_sim.flags |= CAM_SIM_DEREGISTERED;
1481 * The xpt layer is, itself, the equivelent of a SIM.
1482 * Allow 16 ccbs in the ccb pool for it. This should
1483 * give decent parallelism when we probe busses and
1484 * perform other XPT functions.
1486 devq = cam_simq_alloc(16);
1487 xpt_sim = cam_sim_alloc(xptaction,
1488 xptpoll,
1489 "xpt",
1490 /*softc*/NULL,
1491 /*unit*/0,
1492 /*lock*/&xsoftc.xpt_lock,
1493 /*max_dev_transactions*/0,
1494 /*max_tagged_dev_transactions*/0,
1495 devq);
1496 cam_simq_release(devq);
1497 if (xpt_sim == NULL)
1498 return (ENOMEM);
1500 xpt_sim->max_ccbs = 16;
1502 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1503 if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) {
1504 kprintf("xpt_init: xpt_bus_register failed with status %#x,"
1505 " failing attach\n", status);
1506 return (EINVAL);
1510 * Looking at the XPT from the SIM layer, the XPT is
1511 * the equivelent of a peripheral driver. Allocate
1512 * a peripheral driver entry for us.
1514 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1515 CAM_TARGET_WILDCARD,
1516 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1517 kprintf("xpt_init: xpt_create_path failed with status %#x,"
1518 " failing attach\n", status);
1519 return (EINVAL);
1522 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1523 path, NULL, 0, xpt_sim);
1524 xpt_free_path(path);
1526 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1529 * Register a callback for when interrupts are enabled.
1531 xsoftc.xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1532 M_CAMXPT, M_INTWAIT | M_ZERO);
1533 xsoftc.xpt_config_hook->ich_func = xpt_config;
1534 xsoftc.xpt_config_hook->ich_desc = "xpt";
1535 xsoftc.xpt_config_hook->ich_order = 1000;
1536 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1537 kfree (xsoftc.xpt_config_hook, M_CAMXPT);
1538 kprintf("xpt_init: config_intrhook_establish failed "
1539 "- failing attach\n");
1542 /* fire up rescan thread */
1543 if (kthread_create(xpt_scanner_thread, NULL, NULL, "xpt_thrd")) {
1544 kprintf("xpt_init: failed to create rescan thread\n");
1546 /* Install our software interrupt handlers */
1547 register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL);
1549 return (0);
1552 static cam_status
1553 xptregister(struct cam_periph *periph, void *arg)
1555 struct cam_sim *xpt_sim;
1557 if (periph == NULL) {
1558 kprintf("xptregister: periph was NULL!!\n");
1559 return(CAM_REQ_CMP_ERR);
1562 xpt_sim = (struct cam_sim *)arg;
1563 xpt_sim->softc = periph;
1564 xpt_periph = periph;
1565 periph->softc = NULL;
1567 return(CAM_REQ_CMP);
1570 int32_t
1571 xpt_add_periph(struct cam_periph *periph)
1573 struct cam_ed *device;
1574 int32_t status;
1575 struct periph_list *periph_head;
1577 sim_lock_assert_owned(periph->sim->lock);
1579 device = periph->path->device;
1581 periph_head = &device->periphs;
1583 status = CAM_REQ_CMP;
1585 if (device != NULL) {
1587 * Make room for this peripheral
1588 * so it will fit in the queue
1589 * when it's scheduled to run
1591 status = camq_resize(&device->drvq,
1592 device->drvq.array_size + 1);
1594 device->generation++;
1596 SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1599 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1600 xsoftc.xpt_generation++;
1601 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1603 return (status);
1606 void
1607 xpt_remove_periph(struct cam_periph *periph)
1609 struct cam_ed *device;
1611 sim_lock_assert_owned(periph->sim->lock);
1613 device = periph->path->device;
1615 if (device != NULL) {
1616 struct periph_list *periph_head;
1618 periph_head = &device->periphs;
1620 /* Release the slot for this peripheral */
1621 camq_resize(&device->drvq, device->drvq.array_size - 1);
1623 device->generation++;
1625 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1628 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1629 xsoftc.xpt_generation++;
1630 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1633 void
1634 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1636 struct ccb_pathinq cpi;
1637 struct ccb_trans_settings cts;
1638 struct cam_path *path;
1639 u_int speed;
1640 u_int freq;
1641 u_int mb;
1643 sim_lock_assert_owned(periph->sim->lock);
1645 path = periph->path;
1647 * To ensure that this is printed in one piece,
1648 * mask out CAM interrupts.
1650 kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1651 periph->periph_name, periph->unit_number,
1652 path->bus->sim->sim_name,
1653 path->bus->sim->unit_number,
1654 path->bus->sim->bus_id,
1655 path->target->target_id,
1656 path->device->lun_id);
1657 kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1658 scsi_print_inquiry(&path->device->inq_data);
1659 if (bootverbose && path->device->serial_num_len > 0) {
1660 /* Don't wrap the screen - print only the first 60 chars */
1661 kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1662 periph->unit_number, path->device->serial_num);
1664 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1665 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1666 cts.type = CTS_TYPE_CURRENT_SETTINGS;
1667 xpt_action((union ccb*)&cts);
1668 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1669 return;
1672 /* Ask the SIM for its base transfer speed */
1673 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1674 cpi.ccb_h.func_code = XPT_PATH_INQ;
1675 xpt_action((union ccb *)&cpi);
1677 speed = cpi.base_transfer_speed;
1678 freq = 0;
1679 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1680 struct ccb_trans_settings_spi *spi;
1682 spi = &cts.xport_specific.spi;
1683 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1684 && spi->sync_offset != 0) {
1685 freq = scsi_calc_syncsrate(spi->sync_period);
1686 speed = freq;
1689 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1690 speed *= (0x01 << spi->bus_width);
1692 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1693 struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1694 if (fc->valid & CTS_FC_VALID_SPEED) {
1695 speed = fc->bitrate;
1699 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1700 struct ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1701 if (sas->valid & CTS_SAS_VALID_SPEED) {
1702 speed = sas->bitrate;
1706 mb = speed / 1000;
1707 if (mb > 0)
1708 kprintf("%s%d: %d.%03dMB/s transfers",
1709 periph->periph_name, periph->unit_number,
1710 mb, speed % 1000);
1711 else
1712 kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1713 periph->unit_number, speed);
1714 /* Report additional information about SPI connections */
1715 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1716 struct ccb_trans_settings_spi *spi;
1718 spi = &cts.xport_specific.spi;
1719 if (freq != 0) {
1720 kprintf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1721 freq % 1000,
1722 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1723 ? " DT" : "",
1724 spi->sync_offset);
1726 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1727 && spi->bus_width > 0) {
1728 if (freq != 0) {
1729 kprintf(", ");
1730 } else {
1731 kprintf(" (");
1733 kprintf("%dbit)", 8 * (0x01 << spi->bus_width));
1734 } else if (freq != 0) {
1735 kprintf(")");
1738 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1739 struct ccb_trans_settings_fc *fc;
1741 fc = &cts.xport_specific.fc;
1742 if (fc->valid & CTS_FC_VALID_WWNN)
1743 kprintf(" WWNN 0x%llx", (long long) fc->wwnn);
1744 if (fc->valid & CTS_FC_VALID_WWPN)
1745 kprintf(" WWPN 0x%llx", (long long) fc->wwpn);
1746 if (fc->valid & CTS_FC_VALID_PORT)
1747 kprintf(" PortID 0x%x", fc->port);
1750 if (path->device->inq_flags & SID_CmdQue
1751 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1752 kprintf("\n%s%d: Command Queueing Enabled",
1753 periph->periph_name, periph->unit_number);
1755 kprintf("\n");
1758 * We only want to print the caller's announce string if they've
1759 * passed one in..
1761 if (announce_string != NULL)
1762 kprintf("%s%d: %s\n", periph->periph_name,
1763 periph->unit_number, announce_string);
1766 static dev_match_ret
1767 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1768 struct cam_eb *bus)
1770 dev_match_ret retval;
1771 int i;
1773 retval = DM_RET_NONE;
1776 * If we aren't given something to match against, that's an error.
1778 if (bus == NULL)
1779 return(DM_RET_ERROR);
1782 * If there are no match entries, then this bus matches no
1783 * matter what.
1785 if ((patterns == NULL) || (num_patterns == 0))
1786 return(DM_RET_DESCEND | DM_RET_COPY);
1788 for (i = 0; i < num_patterns; i++) {
1789 struct bus_match_pattern *cur_pattern;
1792 * If the pattern in question isn't for a bus node, we
1793 * aren't interested. However, we do indicate to the
1794 * calling routine that we should continue descending the
1795 * tree, since the user wants to match against lower-level
1796 * EDT elements.
1798 if (patterns[i].type != DEV_MATCH_BUS) {
1799 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1800 retval |= DM_RET_DESCEND;
1801 continue;
1804 cur_pattern = &patterns[i].pattern.bus_pattern;
1807 * If they want to match any bus node, we give them any
1808 * device node.
1810 if (cur_pattern->flags == BUS_MATCH_ANY) {
1811 /* set the copy flag */
1812 retval |= DM_RET_COPY;
1815 * If we've already decided on an action, go ahead
1816 * and return.
1818 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1819 return(retval);
1823 * Not sure why someone would do this...
1825 if (cur_pattern->flags == BUS_MATCH_NONE)
1826 continue;
1828 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1829 && (cur_pattern->path_id != bus->path_id))
1830 continue;
1832 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1833 && (cur_pattern->bus_id != bus->sim->bus_id))
1834 continue;
1836 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1837 && (cur_pattern->unit_number != bus->sim->unit_number))
1838 continue;
1840 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1841 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1842 DEV_IDLEN) != 0))
1843 continue;
1846 * If we get to this point, the user definitely wants
1847 * information on this bus. So tell the caller to copy the
1848 * data out.
1850 retval |= DM_RET_COPY;
1853 * If the return action has been set to descend, then we
1854 * know that we've already seen a non-bus matching
1855 * expression, therefore we need to further descend the tree.
1856 * This won't change by continuing around the loop, so we
1857 * go ahead and return. If we haven't seen a non-bus
1858 * matching expression, we keep going around the loop until
1859 * we exhaust the matching expressions. We'll set the stop
1860 * flag once we fall out of the loop.
1862 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1863 return(retval);
1867 * If the return action hasn't been set to descend yet, that means
1868 * we haven't seen anything other than bus matching patterns. So
1869 * tell the caller to stop descending the tree -- the user doesn't
1870 * want to match against lower level tree elements.
1872 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1873 retval |= DM_RET_STOP;
1875 return(retval);
1878 static dev_match_ret
1879 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1880 struct cam_ed *device)
1882 dev_match_ret retval;
1883 int i;
1885 retval = DM_RET_NONE;
1888 * If we aren't given something to match against, that's an error.
1890 if (device == NULL)
1891 return(DM_RET_ERROR);
1894 * If there are no match entries, then this device matches no
1895 * matter what.
1897 if ((patterns == NULL) || (num_patterns == 0))
1898 return(DM_RET_DESCEND | DM_RET_COPY);
1900 for (i = 0; i < num_patterns; i++) {
1901 struct device_match_pattern *cur_pattern;
1904 * If the pattern in question isn't for a device node, we
1905 * aren't interested.
1907 if (patterns[i].type != DEV_MATCH_DEVICE) {
1908 if ((patterns[i].type == DEV_MATCH_PERIPH)
1909 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1910 retval |= DM_RET_DESCEND;
1911 continue;
1914 cur_pattern = &patterns[i].pattern.device_pattern;
1917 * If they want to match any device node, we give them any
1918 * device node.
1920 if (cur_pattern->flags == DEV_MATCH_ANY) {
1921 /* set the copy flag */
1922 retval |= DM_RET_COPY;
1926 * If we've already decided on an action, go ahead
1927 * and return.
1929 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1930 return(retval);
1934 * Not sure why someone would do this...
1936 if (cur_pattern->flags == DEV_MATCH_NONE)
1937 continue;
1939 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1940 && (cur_pattern->path_id != device->target->bus->path_id))
1941 continue;
1943 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1944 && (cur_pattern->target_id != device->target->target_id))
1945 continue;
1947 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1948 && (cur_pattern->target_lun != device->lun_id))
1949 continue;
1951 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1952 && (cam_quirkmatch((caddr_t)&device->inq_data,
1953 (caddr_t)&cur_pattern->inq_pat,
1954 1, sizeof(cur_pattern->inq_pat),
1955 scsi_static_inquiry_match) == NULL))
1956 continue;
1959 * If we get to this point, the user definitely wants
1960 * information on this device. So tell the caller to copy
1961 * the data out.
1963 retval |= DM_RET_COPY;
1966 * If the return action has been set to descend, then we
1967 * know that we've already seen a peripheral matching
1968 * expression, therefore we need to further descend the tree.
1969 * This won't change by continuing around the loop, so we
1970 * go ahead and return. If we haven't seen a peripheral
1971 * matching expression, we keep going around the loop until
1972 * we exhaust the matching expressions. We'll set the stop
1973 * flag once we fall out of the loop.
1975 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1976 return(retval);
1980 * If the return action hasn't been set to descend yet, that means
1981 * we haven't seen any peripheral matching patterns. So tell the
1982 * caller to stop descending the tree -- the user doesn't want to
1983 * match against lower level tree elements.
1985 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1986 retval |= DM_RET_STOP;
1988 return(retval);
1992 * Match a single peripheral against any number of match patterns.
1994 static dev_match_ret
1995 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1996 struct cam_periph *periph)
1998 dev_match_ret retval;
1999 int i;
2002 * If we aren't given something to match against, that's an error.
2004 if (periph == NULL)
2005 return(DM_RET_ERROR);
2008 * If there are no match entries, then this peripheral matches no
2009 * matter what.
2011 if ((patterns == NULL) || (num_patterns == 0))
2012 return(DM_RET_STOP | DM_RET_COPY);
2015 * There aren't any nodes below a peripheral node, so there's no
2016 * reason to descend the tree any further.
2018 retval = DM_RET_STOP;
2020 for (i = 0; i < num_patterns; i++) {
2021 struct periph_match_pattern *cur_pattern;
2024 * If the pattern in question isn't for a peripheral, we
2025 * aren't interested.
2027 if (patterns[i].type != DEV_MATCH_PERIPH)
2028 continue;
2030 cur_pattern = &patterns[i].pattern.periph_pattern;
2033 * If they want to match on anything, then we will do so.
2035 if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2036 /* set the copy flag */
2037 retval |= DM_RET_COPY;
2040 * We've already set the return action to stop,
2041 * since there are no nodes below peripherals in
2042 * the tree.
2044 return(retval);
2048 * Not sure why someone would do this...
2050 if (cur_pattern->flags == PERIPH_MATCH_NONE)
2051 continue;
2053 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2054 && (cur_pattern->path_id != periph->path->bus->path_id))
2055 continue;
2058 * For the target and lun id's, we have to make sure the
2059 * target and lun pointers aren't NULL. The xpt peripheral
2060 * has a wildcard target and device.
2062 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2063 && ((periph->path->target == NULL)
2064 ||(cur_pattern->target_id != periph->path->target->target_id)))
2065 continue;
2067 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2068 && ((periph->path->device == NULL)
2069 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2070 continue;
2072 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2073 && (cur_pattern->unit_number != periph->unit_number))
2074 continue;
2076 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2077 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2078 DEV_IDLEN) != 0))
2079 continue;
2082 * If we get to this point, the user definitely wants
2083 * information on this peripheral. So tell the caller to
2084 * copy the data out.
2086 retval |= DM_RET_COPY;
2089 * The return action has already been set to stop, since
2090 * peripherals don't have any nodes below them in the EDT.
2092 return(retval);
2096 * If we get to this point, the peripheral that was passed in
2097 * doesn't match any of the patterns.
2099 return(retval);
2102 static int
2103 xptedtbusfunc(struct cam_eb *bus, void *arg)
2105 struct ccb_dev_match *cdm;
2106 dev_match_ret retval;
2108 cdm = (struct ccb_dev_match *)arg;
2111 * If our position is for something deeper in the tree, that means
2112 * that we've already seen this node. So, we keep going down.
2114 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2115 && (cdm->pos.cookie.bus == bus)
2116 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2117 && (cdm->pos.cookie.target != NULL))
2118 retval = DM_RET_DESCEND;
2119 else
2120 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2123 * If we got an error, bail out of the search.
2125 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2126 cdm->status = CAM_DEV_MATCH_ERROR;
2127 return(0);
2131 * If the copy flag is set, copy this bus out.
2133 if (retval & DM_RET_COPY) {
2134 int spaceleft, j;
2136 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2137 sizeof(struct dev_match_result));
2140 * If we don't have enough space to put in another
2141 * match result, save our position and tell the
2142 * user there are more devices to check.
2144 if (spaceleft < sizeof(struct dev_match_result)) {
2145 bzero(&cdm->pos, sizeof(cdm->pos));
2146 cdm->pos.position_type =
2147 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2149 cdm->pos.cookie.bus = bus;
2150 cdm->pos.generations[CAM_BUS_GENERATION]=
2151 xsoftc.bus_generation;
2152 cdm->status = CAM_DEV_MATCH_MORE;
2153 return(0);
2155 j = cdm->num_matches;
2156 cdm->num_matches++;
2157 cdm->matches[j].type = DEV_MATCH_BUS;
2158 cdm->matches[j].result.bus_result.path_id = bus->path_id;
2159 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2160 cdm->matches[j].result.bus_result.unit_number =
2161 bus->sim->unit_number;
2162 strncpy(cdm->matches[j].result.bus_result.dev_name,
2163 bus->sim->sim_name, DEV_IDLEN);
2167 * If the user is only interested in busses, there's no
2168 * reason to descend to the next level in the tree.
2170 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2171 return(1);
2174 * If there is a target generation recorded, check it to
2175 * make sure the target list hasn't changed.
2177 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2178 && (bus == cdm->pos.cookie.bus)
2179 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2180 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2181 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2182 bus->generation)) {
2183 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2184 return(0);
2187 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2188 && (cdm->pos.cookie.bus == bus)
2189 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2190 && (cdm->pos.cookie.target != NULL))
2191 return(xpttargettraverse(bus,
2192 (struct cam_et *)cdm->pos.cookie.target,
2193 xptedttargetfunc, arg));
2194 else
2195 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2198 static int
2199 xptedttargetfunc(struct cam_et *target, void *arg)
2201 struct ccb_dev_match *cdm;
2203 cdm = (struct ccb_dev_match *)arg;
2206 * If there is a device list generation recorded, check it to
2207 * make sure the device list hasn't changed.
2209 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2210 && (cdm->pos.cookie.bus == target->bus)
2211 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2212 && (cdm->pos.cookie.target == target)
2213 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2214 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2215 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2216 target->generation)) {
2217 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2218 return(0);
2221 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2222 && (cdm->pos.cookie.bus == target->bus)
2223 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2224 && (cdm->pos.cookie.target == target)
2225 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2226 && (cdm->pos.cookie.device != NULL))
2227 return(xptdevicetraverse(target,
2228 (struct cam_ed *)cdm->pos.cookie.device,
2229 xptedtdevicefunc, arg));
2230 else
2231 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2234 static int
2235 xptedtdevicefunc(struct cam_ed *device, void *arg)
2238 struct ccb_dev_match *cdm;
2239 dev_match_ret retval;
2241 cdm = (struct ccb_dev_match *)arg;
2244 * If our position is for something deeper in the tree, that means
2245 * that we've already seen this node. So, we keep going down.
2247 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2248 && (cdm->pos.cookie.device == device)
2249 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2250 && (cdm->pos.cookie.periph != NULL))
2251 retval = DM_RET_DESCEND;
2252 else
2253 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2254 device);
2256 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2257 cdm->status = CAM_DEV_MATCH_ERROR;
2258 return(0);
2262 * If the copy flag is set, copy this device out.
2264 if (retval & DM_RET_COPY) {
2265 int spaceleft, j;
2267 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2268 sizeof(struct dev_match_result));
2271 * If we don't have enough space to put in another
2272 * match result, save our position and tell the
2273 * user there are more devices to check.
2275 if (spaceleft < sizeof(struct dev_match_result)) {
2276 bzero(&cdm->pos, sizeof(cdm->pos));
2277 cdm->pos.position_type =
2278 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2279 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2281 cdm->pos.cookie.bus = device->target->bus;
2282 cdm->pos.generations[CAM_BUS_GENERATION]=
2283 xsoftc.bus_generation;
2284 cdm->pos.cookie.target = device->target;
2285 cdm->pos.generations[CAM_TARGET_GENERATION] =
2286 device->target->bus->generation;
2287 cdm->pos.cookie.device = device;
2288 cdm->pos.generations[CAM_DEV_GENERATION] =
2289 device->target->generation;
2290 cdm->status = CAM_DEV_MATCH_MORE;
2291 return(0);
2293 j = cdm->num_matches;
2294 cdm->num_matches++;
2295 cdm->matches[j].type = DEV_MATCH_DEVICE;
2296 cdm->matches[j].result.device_result.path_id =
2297 device->target->bus->path_id;
2298 cdm->matches[j].result.device_result.target_id =
2299 device->target->target_id;
2300 cdm->matches[j].result.device_result.target_lun =
2301 device->lun_id;
2302 bcopy(&device->inq_data,
2303 &cdm->matches[j].result.device_result.inq_data,
2304 sizeof(struct scsi_inquiry_data));
2306 /* Let the user know whether this device is unconfigured */
2307 if (device->flags & CAM_DEV_UNCONFIGURED)
2308 cdm->matches[j].result.device_result.flags =
2309 DEV_RESULT_UNCONFIGURED;
2310 else
2311 cdm->matches[j].result.device_result.flags =
2312 DEV_RESULT_NOFLAG;
2316 * If the user isn't interested in peripherals, don't descend
2317 * the tree any further.
2319 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2320 return(1);
2323 * If there is a peripheral list generation recorded, make sure
2324 * it hasn't changed.
2326 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2327 && (device->target->bus == cdm->pos.cookie.bus)
2328 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2329 && (device->target == cdm->pos.cookie.target)
2330 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2331 && (device == cdm->pos.cookie.device)
2332 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2333 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2334 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2335 device->generation)){
2336 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2337 return(0);
2340 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2341 && (cdm->pos.cookie.bus == device->target->bus)
2342 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2343 && (cdm->pos.cookie.target == device->target)
2344 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2345 && (cdm->pos.cookie.device == device)
2346 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2347 && (cdm->pos.cookie.periph != NULL))
2348 return(xptperiphtraverse(device,
2349 (struct cam_periph *)cdm->pos.cookie.periph,
2350 xptedtperiphfunc, arg));
2351 else
2352 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2355 static int
2356 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2358 struct ccb_dev_match *cdm;
2359 dev_match_ret retval;
2361 cdm = (struct ccb_dev_match *)arg;
2363 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2365 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2366 cdm->status = CAM_DEV_MATCH_ERROR;
2367 return(0);
2371 * If the copy flag is set, copy this peripheral out.
2373 if (retval & DM_RET_COPY) {
2374 int spaceleft, j;
2376 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2377 sizeof(struct dev_match_result));
2380 * If we don't have enough space to put in another
2381 * match result, save our position and tell the
2382 * user there are more devices to check.
2384 if (spaceleft < sizeof(struct dev_match_result)) {
2385 bzero(&cdm->pos, sizeof(cdm->pos));
2386 cdm->pos.position_type =
2387 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2388 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2389 CAM_DEV_POS_PERIPH;
2391 cdm->pos.cookie.bus = periph->path->bus;
2392 cdm->pos.generations[CAM_BUS_GENERATION]=
2393 xsoftc.bus_generation;
2394 cdm->pos.cookie.target = periph->path->target;
2395 cdm->pos.generations[CAM_TARGET_GENERATION] =
2396 periph->path->bus->generation;
2397 cdm->pos.cookie.device = periph->path->device;
2398 cdm->pos.generations[CAM_DEV_GENERATION] =
2399 periph->path->target->generation;
2400 cdm->pos.cookie.periph = periph;
2401 cdm->pos.generations[CAM_PERIPH_GENERATION] =
2402 periph->path->device->generation;
2403 cdm->status = CAM_DEV_MATCH_MORE;
2404 return(0);
2407 j = cdm->num_matches;
2408 cdm->num_matches++;
2409 cdm->matches[j].type = DEV_MATCH_PERIPH;
2410 cdm->matches[j].result.periph_result.path_id =
2411 periph->path->bus->path_id;
2412 cdm->matches[j].result.periph_result.target_id =
2413 periph->path->target->target_id;
2414 cdm->matches[j].result.periph_result.target_lun =
2415 periph->path->device->lun_id;
2416 cdm->matches[j].result.periph_result.unit_number =
2417 periph->unit_number;
2418 strncpy(cdm->matches[j].result.periph_result.periph_name,
2419 periph->periph_name, DEV_IDLEN);
2422 return(1);
2425 static int
2426 xptedtmatch(struct ccb_dev_match *cdm)
2428 int ret;
2430 cdm->num_matches = 0;
2433 * Check the bus list generation. If it has changed, the user
2434 * needs to reset everything and start over.
2436 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2437 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2438 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2439 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2440 return(0);
2443 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2444 && (cdm->pos.cookie.bus != NULL))
2445 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2446 xptedtbusfunc, cdm);
2447 else
2448 ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2451 * If we get back 0, that means that we had to stop before fully
2452 * traversing the EDT. It also means that one of the subroutines
2453 * has set the status field to the proper value. If we get back 1,
2454 * we've fully traversed the EDT and copied out any matching entries.
2456 if (ret == 1)
2457 cdm->status = CAM_DEV_MATCH_LAST;
2459 return(ret);
2462 static int
2463 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2465 struct ccb_dev_match *cdm;
2467 cdm = (struct ccb_dev_match *)arg;
2469 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2470 && (cdm->pos.cookie.pdrv == pdrv)
2471 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2472 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2473 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2474 (*pdrv)->generation)) {
2475 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2476 return(0);
2479 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2480 && (cdm->pos.cookie.pdrv == pdrv)
2481 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2482 && (cdm->pos.cookie.periph != NULL))
2483 return(xptpdperiphtraverse(pdrv,
2484 (struct cam_periph *)cdm->pos.cookie.periph,
2485 xptplistperiphfunc, arg));
2486 else
2487 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2490 static int
2491 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2493 struct ccb_dev_match *cdm;
2494 dev_match_ret retval;
2496 cdm = (struct ccb_dev_match *)arg;
2498 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2500 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2501 cdm->status = CAM_DEV_MATCH_ERROR;
2502 return(0);
2506 * If the copy flag is set, copy this peripheral out.
2508 if (retval & DM_RET_COPY) {
2509 int spaceleft, j;
2511 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2512 sizeof(struct dev_match_result));
2515 * If we don't have enough space to put in another
2516 * match result, save our position and tell the
2517 * user there are more devices to check.
2519 if (spaceleft < sizeof(struct dev_match_result)) {
2520 struct periph_driver **pdrv;
2522 pdrv = NULL;
2523 bzero(&cdm->pos, sizeof(cdm->pos));
2524 cdm->pos.position_type =
2525 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2526 CAM_DEV_POS_PERIPH;
2529 * This may look a bit non-sensical, but it is
2530 * actually quite logical. There are very few
2531 * peripheral drivers, and bloating every peripheral
2532 * structure with a pointer back to its parent
2533 * peripheral driver linker set entry would cost
2534 * more in the long run than doing this quick lookup.
2536 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2537 if (strcmp((*pdrv)->driver_name,
2538 periph->periph_name) == 0)
2539 break;
2542 if (*pdrv == NULL) {
2543 cdm->status = CAM_DEV_MATCH_ERROR;
2544 return(0);
2547 cdm->pos.cookie.pdrv = pdrv;
2549 * The periph generation slot does double duty, as
2550 * does the periph pointer slot. They are used for
2551 * both edt and pdrv lookups and positioning.
2553 cdm->pos.cookie.periph = periph;
2554 cdm->pos.generations[CAM_PERIPH_GENERATION] =
2555 (*pdrv)->generation;
2556 cdm->status = CAM_DEV_MATCH_MORE;
2557 return(0);
2560 j = cdm->num_matches;
2561 cdm->num_matches++;
2562 cdm->matches[j].type = DEV_MATCH_PERIPH;
2563 cdm->matches[j].result.periph_result.path_id =
2564 periph->path->bus->path_id;
2567 * The transport layer peripheral doesn't have a target or
2568 * lun.
2570 if (periph->path->target)
2571 cdm->matches[j].result.periph_result.target_id =
2572 periph->path->target->target_id;
2573 else
2574 cdm->matches[j].result.periph_result.target_id = -1;
2576 if (periph->path->device)
2577 cdm->matches[j].result.periph_result.target_lun =
2578 periph->path->device->lun_id;
2579 else
2580 cdm->matches[j].result.periph_result.target_lun = -1;
2582 cdm->matches[j].result.periph_result.unit_number =
2583 periph->unit_number;
2584 strncpy(cdm->matches[j].result.periph_result.periph_name,
2585 periph->periph_name, DEV_IDLEN);
2588 return(1);
2591 static int
2592 xptperiphlistmatch(struct ccb_dev_match *cdm)
2594 int ret;
2596 cdm->num_matches = 0;
2599 * At this point in the edt traversal function, we check the bus
2600 * list generation to make sure that no busses have been added or
2601 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2602 * For the peripheral driver list traversal function, however, we
2603 * don't have to worry about new peripheral driver types coming or
2604 * going; they're in a linker set, and therefore can't change
2605 * without a recompile.
2608 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2609 && (cdm->pos.cookie.pdrv != NULL))
2610 ret = xptpdrvtraverse(
2611 (struct periph_driver **)cdm->pos.cookie.pdrv,
2612 xptplistpdrvfunc, cdm);
2613 else
2614 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2617 * If we get back 0, that means that we had to stop before fully
2618 * traversing the peripheral driver tree. It also means that one of
2619 * the subroutines has set the status field to the proper value. If
2620 * we get back 1, we've fully traversed the EDT and copied out any
2621 * matching entries.
2623 if (ret == 1)
2624 cdm->status = CAM_DEV_MATCH_LAST;
2626 return(ret);
2629 static int
2630 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2632 struct cam_eb *bus, *next_bus;
2633 int retval;
2635 retval = 1;
2637 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2638 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2639 bus != NULL;
2640 bus = next_bus) {
2641 next_bus = TAILQ_NEXT(bus, links);
2643 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2644 CAM_SIM_LOCK(bus->sim);
2645 retval = tr_func(bus, arg);
2646 CAM_SIM_UNLOCK(bus->sim);
2647 if (retval == 0)
2648 return(retval);
2649 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2651 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2653 return(retval);
2656 static int
2657 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2658 xpt_targetfunc_t *tr_func, void *arg)
2660 struct cam_et *target, *next_target;
2661 int retval;
2663 retval = 1;
2664 for (target = (start_target ? start_target :
2665 TAILQ_FIRST(&bus->et_entries));
2666 target != NULL; target = next_target) {
2668 next_target = TAILQ_NEXT(target, links);
2670 retval = tr_func(target, arg);
2672 if (retval == 0)
2673 return(retval);
2676 return(retval);
2679 static int
2680 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2681 xpt_devicefunc_t *tr_func, void *arg)
2683 struct cam_ed *device, *next_device;
2684 int retval;
2686 retval = 1;
2687 for (device = (start_device ? start_device :
2688 TAILQ_FIRST(&target->ed_entries));
2689 device != NULL;
2690 device = next_device) {
2692 next_device = TAILQ_NEXT(device, links);
2694 retval = tr_func(device, arg);
2696 if (retval == 0)
2697 return(retval);
2700 return(retval);
2703 static int
2704 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2705 xpt_periphfunc_t *tr_func, void *arg)
2707 struct cam_periph *periph, *next_periph;
2708 int retval;
2710 retval = 1;
2712 for (periph = (start_periph ? start_periph :
2713 SLIST_FIRST(&device->periphs));
2714 periph != NULL;
2715 periph = next_periph) {
2717 next_periph = SLIST_NEXT(periph, periph_links);
2719 retval = tr_func(periph, arg);
2720 if (retval == 0)
2721 return(retval);
2724 return(retval);
2727 static int
2728 xptpdrvtraverse(struct periph_driver **start_pdrv,
2729 xpt_pdrvfunc_t *tr_func, void *arg)
2731 struct periph_driver **pdrv;
2732 int retval;
2734 retval = 1;
2737 * We don't traverse the peripheral driver list like we do the
2738 * other lists, because it is a linker set, and therefore cannot be
2739 * changed during runtime. If the peripheral driver list is ever
2740 * re-done to be something other than a linker set (i.e. it can
2741 * change while the system is running), the list traversal should
2742 * be modified to work like the other traversal functions.
2744 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2745 *pdrv != NULL; pdrv++) {
2746 retval = tr_func(pdrv, arg);
2748 if (retval == 0)
2749 return(retval);
2752 return(retval);
2755 static int
2756 xptpdperiphtraverse(struct periph_driver **pdrv,
2757 struct cam_periph *start_periph,
2758 xpt_periphfunc_t *tr_func, void *arg)
2760 struct cam_periph *periph, *next_periph;
2761 int retval;
2763 retval = 1;
2765 for (periph = (start_periph ? start_periph :
2766 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2767 periph = next_periph) {
2769 next_periph = TAILQ_NEXT(periph, unit_links);
2771 retval = tr_func(periph, arg);
2772 if (retval == 0)
2773 return(retval);
2775 return(retval);
2778 static int
2779 xptdefbusfunc(struct cam_eb *bus, void *arg)
2781 struct xpt_traverse_config *tr_config;
2783 tr_config = (struct xpt_traverse_config *)arg;
2785 if (tr_config->depth == XPT_DEPTH_BUS) {
2786 xpt_busfunc_t *tr_func;
2788 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2790 return(tr_func(bus, tr_config->tr_arg));
2791 } else
2792 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2795 static int
2796 xptdeftargetfunc(struct cam_et *target, void *arg)
2798 struct xpt_traverse_config *tr_config;
2800 tr_config = (struct xpt_traverse_config *)arg;
2802 if (tr_config->depth == XPT_DEPTH_TARGET) {
2803 xpt_targetfunc_t *tr_func;
2805 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2807 return(tr_func(target, tr_config->tr_arg));
2808 } else
2809 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2812 static int
2813 xptdefdevicefunc(struct cam_ed *device, void *arg)
2815 struct xpt_traverse_config *tr_config;
2817 tr_config = (struct xpt_traverse_config *)arg;
2819 if (tr_config->depth == XPT_DEPTH_DEVICE) {
2820 xpt_devicefunc_t *tr_func;
2822 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2824 return(tr_func(device, tr_config->tr_arg));
2825 } else
2826 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2829 static int
2830 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2832 struct xpt_traverse_config *tr_config;
2833 xpt_periphfunc_t *tr_func;
2835 tr_config = (struct xpt_traverse_config *)arg;
2837 tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2840 * Unlike the other default functions, we don't check for depth
2841 * here. The peripheral driver level is the last level in the EDT,
2842 * so if we're here, we should execute the function in question.
2844 return(tr_func(periph, tr_config->tr_arg));
2848 * Execute the given function for every bus in the EDT.
2850 static int
2851 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2853 struct xpt_traverse_config tr_config;
2855 tr_config.depth = XPT_DEPTH_BUS;
2856 tr_config.tr_func = tr_func;
2857 tr_config.tr_arg = arg;
2859 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2863 * Execute the given function for every device in the EDT.
2865 static int
2866 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2868 struct xpt_traverse_config tr_config;
2870 tr_config.depth = XPT_DEPTH_DEVICE;
2871 tr_config.tr_func = tr_func;
2872 tr_config.tr_arg = arg;
2874 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2877 static int
2878 xptsetasyncfunc(struct cam_ed *device, void *arg)
2880 struct cam_path path;
2881 struct ccb_getdev cgd;
2882 struct async_node *cur_entry;
2884 cur_entry = (struct async_node *)arg;
2887 * Don't report unconfigured devices (Wildcard devs,
2888 * devices only for target mode, device instances
2889 * that have been invalidated but are waiting for
2890 * their last reference count to be released).
2892 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2893 return (1);
2895 xpt_compile_path(&path,
2896 NULL,
2897 device->target->bus->path_id,
2898 device->target->target_id,
2899 device->lun_id);
2900 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2901 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2902 xpt_action((union ccb *)&cgd);
2903 cur_entry->callback(cur_entry->callback_arg,
2904 AC_FOUND_DEVICE,
2905 &path, &cgd);
2906 xpt_release_path(&path);
2908 return(1);
2911 static int
2912 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2914 struct cam_path path;
2915 struct ccb_pathinq cpi;
2916 struct async_node *cur_entry;
2918 cur_entry = (struct async_node *)arg;
2920 xpt_compile_path(&path, /*periph*/NULL,
2921 bus->sim->path_id,
2922 CAM_TARGET_WILDCARD,
2923 CAM_LUN_WILDCARD);
2924 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2925 cpi.ccb_h.func_code = XPT_PATH_INQ;
2926 xpt_action((union ccb *)&cpi);
2927 cur_entry->callback(cur_entry->callback_arg,
2928 AC_PATH_REGISTERED,
2929 &path, &cpi);
2930 xpt_release_path(&path);
2932 return(1);
2935 static void
2936 xpt_action_sasync_cb(void *context, int pending)
2938 struct async_node *cur_entry;
2939 struct xpt_task *task;
2940 uint32_t added;
2942 task = (struct xpt_task *)context;
2943 cur_entry = (struct async_node *)task->data1;
2944 added = task->data2;
2946 if ((added & AC_FOUND_DEVICE) != 0) {
2948 * Get this peripheral up to date with all
2949 * the currently existing devices.
2951 xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2953 if ((added & AC_PATH_REGISTERED) != 0) {
2955 * Get this peripheral up to date with all
2956 * the currently existing busses.
2958 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2961 kfree(task, M_CAMXPT);
2964 void
2965 xpt_action(union ccb *start_ccb)
2967 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2969 start_ccb->ccb_h.status = CAM_REQ_INPROG;
2971 switch (start_ccb->ccb_h.func_code) {
2972 case XPT_SCSI_IO:
2974 struct cam_ed *device;
2975 #ifdef CAMDEBUG
2976 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2977 struct cam_path *path;
2979 path = start_ccb->ccb_h.path;
2980 #endif
2983 * For the sake of compatibility with SCSI-1
2984 * devices that may not understand the identify
2985 * message, we include lun information in the
2986 * second byte of all commands. SCSI-1 specifies
2987 * that luns are a 3 bit value and reserves only 3
2988 * bits for lun information in the CDB. Later
2989 * revisions of the SCSI spec allow for more than 8
2990 * luns, but have deprecated lun information in the
2991 * CDB. So, if the lun won't fit, we must omit.
2993 * Also be aware that during initial probing for devices,
2994 * the inquiry information is unknown but initialized to 0.
2995 * This means that this code will be exercised while probing
2996 * devices with an ANSI revision greater than 2.
2998 device = start_ccb->ccb_h.path->device;
2999 if (device->protocol_version <= SCSI_REV_2
3000 && start_ccb->ccb_h.target_lun < 8
3001 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
3003 start_ccb->csio.cdb_io.cdb_bytes[1] |=
3004 start_ccb->ccb_h.target_lun << 5;
3006 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
3007 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3008 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3009 &path->device->inq_data),
3010 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3011 cdb_str, sizeof(cdb_str))));
3012 /* FALLTHROUGH */
3014 case XPT_TARGET_IO:
3015 case XPT_CONT_TARGET_IO:
3016 start_ccb->csio.sense_resid = 0;
3017 start_ccb->csio.resid = 0;
3018 /* FALLTHROUGH */
3019 case XPT_RESET_DEV:
3020 case XPT_ENG_EXEC:
3022 struct cam_path *path;
3023 struct cam_sim *sim;
3024 int runq;
3026 path = start_ccb->ccb_h.path;
3028 sim = path->bus->sim;
3029 if (sim == &cam_dead_sim) {
3030 /* The SIM has gone; just execute the CCB directly. */
3031 cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3032 (*(sim->sim_action))(sim, start_ccb);
3033 break;
3036 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3037 if (path->device->qfrozen_cnt == 0)
3038 runq = xpt_schedule_dev_sendq(path->bus, path->device);
3039 else
3040 runq = 0;
3041 if (runq != 0)
3042 xpt_run_dev_sendq(path->bus);
3043 break;
3045 case XPT_SET_TRAN_SETTINGS:
3047 xpt_set_transfer_settings(&start_ccb->cts,
3048 start_ccb->ccb_h.path->device,
3049 /*async_update*/FALSE);
3050 break;
3052 case XPT_CALC_GEOMETRY:
3054 struct cam_sim *sim;
3056 /* Filter out garbage */
3057 if (start_ccb->ccg.block_size == 0
3058 || start_ccb->ccg.volume_size == 0) {
3059 start_ccb->ccg.cylinders = 0;
3060 start_ccb->ccg.heads = 0;
3061 start_ccb->ccg.secs_per_track = 0;
3062 start_ccb->ccb_h.status = CAM_REQ_CMP;
3063 break;
3065 sim = start_ccb->ccb_h.path->bus->sim;
3066 (*(sim->sim_action))(sim, start_ccb);
3067 break;
3069 case XPT_ABORT:
3071 union ccb* abort_ccb;
3073 abort_ccb = start_ccb->cab.abort_ccb;
3074 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3076 if (abort_ccb->ccb_h.pinfo.index >= 0) {
3077 struct cam_ccbq *ccbq;
3079 ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3080 cam_ccbq_remove_ccb(ccbq, abort_ccb);
3081 abort_ccb->ccb_h.status =
3082 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3083 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3084 xpt_done(abort_ccb);
3085 start_ccb->ccb_h.status = CAM_REQ_CMP;
3086 break;
3088 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3089 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3091 * We've caught this ccb en route to
3092 * the SIM. Flag it for abort and the
3093 * SIM will do so just before starting
3094 * real work on the CCB.
3096 abort_ccb->ccb_h.status =
3097 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3098 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3099 start_ccb->ccb_h.status = CAM_REQ_CMP;
3100 break;
3103 if (XPT_FC_IS_QUEUED(abort_ccb)
3104 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3106 * It's already completed but waiting
3107 * for our SWI to get to it.
3109 start_ccb->ccb_h.status = CAM_UA_ABORT;
3110 break;
3113 * If we weren't able to take care of the abort request
3114 * in the XPT, pass the request down to the SIM for processing.
3116 /* FALLTHROUGH */
3118 case XPT_ACCEPT_TARGET_IO:
3119 case XPT_EN_LUN:
3120 case XPT_IMMED_NOTIFY:
3121 case XPT_NOTIFY_ACK:
3122 case XPT_GET_TRAN_SETTINGS:
3123 case XPT_RESET_BUS:
3125 struct cam_sim *sim;
3127 sim = start_ccb->ccb_h.path->bus->sim;
3128 (*(sim->sim_action))(sim, start_ccb);
3129 break;
3131 case XPT_PATH_INQ:
3133 struct cam_sim *sim;
3135 sim = start_ccb->ccb_h.path->bus->sim;
3136 (*(sim->sim_action))(sim, start_ccb);
3137 break;
3139 case XPT_PATH_STATS:
3140 start_ccb->cpis.last_reset =
3141 start_ccb->ccb_h.path->bus->last_reset;
3142 start_ccb->ccb_h.status = CAM_REQ_CMP;
3143 break;
3144 case XPT_GDEV_TYPE:
3146 struct cam_ed *dev;
3148 dev = start_ccb->ccb_h.path->device;
3149 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3150 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3151 } else {
3152 struct ccb_getdev *cgd;
3153 struct cam_eb *bus;
3154 struct cam_et *tar;
3156 cgd = &start_ccb->cgd;
3157 bus = cgd->ccb_h.path->bus;
3158 tar = cgd->ccb_h.path->target;
3159 cgd->inq_data = dev->inq_data;
3160 cgd->ccb_h.status = CAM_REQ_CMP;
3161 cgd->serial_num_len = dev->serial_num_len;
3162 if ((dev->serial_num_len > 0)
3163 && (dev->serial_num != NULL))
3164 bcopy(dev->serial_num, cgd->serial_num,
3165 dev->serial_num_len);
3167 break;
3169 case XPT_GDEV_STATS:
3171 struct cam_ed *dev;
3173 dev = start_ccb->ccb_h.path->device;
3174 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3175 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3176 } else {
3177 struct ccb_getdevstats *cgds;
3178 struct cam_eb *bus;
3179 struct cam_et *tar;
3181 cgds = &start_ccb->cgds;
3182 bus = cgds->ccb_h.path->bus;
3183 tar = cgds->ccb_h.path->target;
3184 cgds->dev_openings = dev->ccbq.dev_openings;
3185 cgds->dev_active = dev->ccbq.dev_active;
3186 cgds->devq_openings = dev->ccbq.devq_openings;
3187 cgds->devq_queued = dev->ccbq.queue.entries;
3188 cgds->held = dev->ccbq.held;
3189 cgds->last_reset = tar->last_reset;
3190 cgds->maxtags = dev->quirk->maxtags;
3191 cgds->mintags = dev->quirk->mintags;
3192 if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3193 cgds->last_reset = bus->last_reset;
3194 cgds->ccb_h.status = CAM_REQ_CMP;
3196 break;
3198 case XPT_GDEVLIST:
3200 struct cam_periph *nperiph;
3201 struct periph_list *periph_head;
3202 struct ccb_getdevlist *cgdl;
3203 u_int i;
3204 struct cam_ed *device;
3205 int found;
3208 found = 0;
3211 * Don't want anyone mucking with our data.
3213 device = start_ccb->ccb_h.path->device;
3214 periph_head = &device->periphs;
3215 cgdl = &start_ccb->cgdl;
3218 * Check and see if the list has changed since the user
3219 * last requested a list member. If so, tell them that the
3220 * list has changed, and therefore they need to start over
3221 * from the beginning.
3223 if ((cgdl->index != 0) &&
3224 (cgdl->generation != device->generation)) {
3225 cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3226 break;
3230 * Traverse the list of peripherals and attempt to find
3231 * the requested peripheral.
3233 for (nperiph = SLIST_FIRST(periph_head), i = 0;
3234 (nperiph != NULL) && (i <= cgdl->index);
3235 nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3236 if (i == cgdl->index) {
3237 strncpy(cgdl->periph_name,
3238 nperiph->periph_name,
3239 DEV_IDLEN);
3240 cgdl->unit_number = nperiph->unit_number;
3241 found = 1;
3244 if (found == 0) {
3245 cgdl->status = CAM_GDEVLIST_ERROR;
3246 break;
3249 if (nperiph == NULL)
3250 cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3251 else
3252 cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3254 cgdl->index++;
3255 cgdl->generation = device->generation;
3257 cgdl->ccb_h.status = CAM_REQ_CMP;
3258 break;
3260 case XPT_DEV_MATCH:
3262 dev_pos_type position_type;
3263 struct ccb_dev_match *cdm;
3264 int ret;
3266 cdm = &start_ccb->cdm;
3269 * There are two ways of getting at information in the EDT.
3270 * The first way is via the primary EDT tree. It starts
3271 * with a list of busses, then a list of targets on a bus,
3272 * then devices/luns on a target, and then peripherals on a
3273 * device/lun. The "other" way is by the peripheral driver
3274 * lists. The peripheral driver lists are organized by
3275 * peripheral driver. (obviously) So it makes sense to
3276 * use the peripheral driver list if the user is looking
3277 * for something like "da1", or all "da" devices. If the
3278 * user is looking for something on a particular bus/target
3279 * or lun, it's generally better to go through the EDT tree.
3282 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3283 position_type = cdm->pos.position_type;
3284 else {
3285 u_int i;
3287 position_type = CAM_DEV_POS_NONE;
3289 for (i = 0; i < cdm->num_patterns; i++) {
3290 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3291 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3292 position_type = CAM_DEV_POS_EDT;
3293 break;
3297 if (cdm->num_patterns == 0)
3298 position_type = CAM_DEV_POS_EDT;
3299 else if (position_type == CAM_DEV_POS_NONE)
3300 position_type = CAM_DEV_POS_PDRV;
3303 switch(position_type & CAM_DEV_POS_TYPEMASK) {
3304 case CAM_DEV_POS_EDT:
3305 ret = xptedtmatch(cdm);
3306 break;
3307 case CAM_DEV_POS_PDRV:
3308 ret = xptperiphlistmatch(cdm);
3309 break;
3310 default:
3311 cdm->status = CAM_DEV_MATCH_ERROR;
3312 break;
3315 if (cdm->status == CAM_DEV_MATCH_ERROR)
3316 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3317 else
3318 start_ccb->ccb_h.status = CAM_REQ_CMP;
3320 break;
3322 case XPT_SASYNC_CB:
3324 struct ccb_setasync *csa;
3325 struct async_node *cur_entry;
3326 struct async_list *async_head;
3327 u_int32_t added;
3329 csa = &start_ccb->csa;
3330 added = csa->event_enable;
3331 async_head = &csa->ccb_h.path->device->asyncs;
3334 * If there is already an entry for us, simply
3335 * update it.
3337 cur_entry = SLIST_FIRST(async_head);
3338 while (cur_entry != NULL) {
3339 if ((cur_entry->callback_arg == csa->callback_arg)
3340 && (cur_entry->callback == csa->callback))
3341 break;
3342 cur_entry = SLIST_NEXT(cur_entry, links);
3345 if (cur_entry != NULL) {
3347 * If the request has no flags set,
3348 * remove the entry.
3350 added &= ~cur_entry->event_enable;
3351 if (csa->event_enable == 0) {
3352 SLIST_REMOVE(async_head, cur_entry,
3353 async_node, links);
3354 csa->ccb_h.path->device->refcount--;
3355 kfree(cur_entry, M_CAMXPT);
3356 } else {
3357 cur_entry->event_enable = csa->event_enable;
3359 } else {
3360 cur_entry = kmalloc(sizeof(*cur_entry), M_CAMXPT,
3361 M_INTWAIT);
3362 cur_entry->event_enable = csa->event_enable;
3363 cur_entry->callback_arg = csa->callback_arg;
3364 cur_entry->callback = csa->callback;
3365 SLIST_INSERT_HEAD(async_head, cur_entry, links);
3366 csa->ccb_h.path->device->refcount++;
3370 * Need to decouple this operation via a taskqueue so that
3371 * the locking doesn't become a mess.
3373 if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3374 struct xpt_task *task;
3376 task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
3377 M_INTWAIT);
3379 TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3380 task->data1 = cur_entry;
3381 task->data2 = added;
3382 taskqueue_enqueue(taskqueue_thread[mycpuid],
3383 &task->task);
3386 start_ccb->ccb_h.status = CAM_REQ_CMP;
3387 break;
3389 case XPT_REL_SIMQ:
3391 struct ccb_relsim *crs;
3392 struct cam_ed *dev;
3394 crs = &start_ccb->crs;
3395 dev = crs->ccb_h.path->device;
3396 if (dev == NULL) {
3398 crs->ccb_h.status = CAM_DEV_NOT_THERE;
3399 break;
3402 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3404 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3405 /* Don't ever go below one opening */
3406 if (crs->openings > 0) {
3407 xpt_dev_ccbq_resize(crs->ccb_h.path,
3408 crs->openings);
3410 if (bootverbose) {
3411 xpt_print(crs->ccb_h.path,
3412 "tagged openings now %d\n",
3413 crs->openings);
3419 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3421 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3424 * Just extend the old timeout and decrement
3425 * the freeze count so that a single timeout
3426 * is sufficient for releasing the queue.
3428 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3429 callout_stop(&dev->callout);
3430 } else {
3432 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3435 callout_reset(&dev->callout,
3436 (crs->release_timeout * hz) / 1000,
3437 xpt_release_devq_timeout, dev);
3439 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3443 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3445 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3447 * Decrement the freeze count so that a single
3448 * completion is still sufficient to unfreeze
3449 * the queue.
3451 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3452 } else {
3454 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3455 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3459 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3461 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3462 || (dev->ccbq.dev_active == 0)) {
3464 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3465 } else {
3467 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3468 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3472 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3474 xpt_release_devq(crs->ccb_h.path, /*count*/1,
3475 /*run_queue*/TRUE);
3477 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3478 start_ccb->ccb_h.status = CAM_REQ_CMP;
3479 break;
3481 case XPT_SCAN_BUS:
3482 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3483 break;
3484 case XPT_SCAN_LUN:
3485 xpt_scan_lun(start_ccb->ccb_h.path->periph,
3486 start_ccb->ccb_h.path, start_ccb->crcn.flags,
3487 start_ccb);
3488 break;
3489 case XPT_DEBUG: {
3490 #ifdef CAMDEBUG
3491 #ifdef CAM_DEBUG_DELAY
3492 cam_debug_delay = CAM_DEBUG_DELAY;
3493 #endif
3494 cam_dflags = start_ccb->cdbg.flags;
3495 if (cam_dpath != NULL) {
3496 xpt_free_path(cam_dpath);
3497 cam_dpath = NULL;
3500 if (cam_dflags != CAM_DEBUG_NONE) {
3501 if (xpt_create_path(&cam_dpath, xpt_periph,
3502 start_ccb->ccb_h.path_id,
3503 start_ccb->ccb_h.target_id,
3504 start_ccb->ccb_h.target_lun) !=
3505 CAM_REQ_CMP) {
3506 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3507 cam_dflags = CAM_DEBUG_NONE;
3508 } else {
3509 start_ccb->ccb_h.status = CAM_REQ_CMP;
3510 xpt_print(cam_dpath, "debugging flags now %x\n",
3511 cam_dflags);
3513 } else {
3514 cam_dpath = NULL;
3515 start_ccb->ccb_h.status = CAM_REQ_CMP;
3517 #else /* !CAMDEBUG */
3518 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3519 #endif /* CAMDEBUG */
3520 break;
3522 case XPT_NOOP:
3523 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3524 xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3525 start_ccb->ccb_h.status = CAM_REQ_CMP;
3526 break;
3527 default:
3528 case XPT_SDEV_TYPE:
3529 case XPT_TERM_IO:
3530 case XPT_ENG_INQ:
3531 /* XXX Implement */
3532 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3533 break;
3537 void
3538 xpt_polled_action(union ccb *start_ccb)
3540 u_int32_t timeout;
3541 struct cam_sim *sim;
3542 struct cam_devq *devq;
3543 struct cam_ed *dev;
3545 timeout = start_ccb->ccb_h.timeout;
3546 sim = start_ccb->ccb_h.path->bus->sim;
3547 devq = sim->devq;
3548 dev = start_ccb->ccb_h.path->device;
3550 sim_lock_assert_owned(sim->lock);
3553 * Steal an opening so that no other queued requests
3554 * can get it before us while we simulate interrupts.
3556 dev->ccbq.devq_openings--;
3557 dev->ccbq.dev_openings--;
3559 while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3560 && (--timeout > 0)) {
3561 DELAY(1000);
3562 (*(sim->sim_poll))(sim);
3563 camisr_runqueue(sim);
3566 dev->ccbq.devq_openings++;
3567 dev->ccbq.dev_openings++;
3569 if (timeout != 0) {
3570 xpt_action(start_ccb);
3571 while(--timeout > 0) {
3572 (*(sim->sim_poll))(sim);
3573 camisr_runqueue(sim);
3574 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3575 != CAM_REQ_INPROG)
3576 break;
3577 DELAY(1000);
3579 if (timeout == 0) {
3581 * XXX Is it worth adding a sim_timeout entry
3582 * point so we can attempt recovery? If
3583 * this is only used for dumps, I don't think
3584 * it is.
3586 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3588 } else {
3589 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3594 * Schedule a peripheral driver to receive a ccb when it's
3595 * target device has space for more transactions.
3597 void
3598 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3600 struct cam_ed *device;
3601 union ccb *work_ccb;
3602 int runq;
3604 sim_lock_assert_owned(perph->sim->lock);
3606 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3607 device = perph->path->device;
3608 if (periph_is_queued(perph)) {
3609 /* Simply reorder based on new priority */
3610 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3611 (" change priority to %d\n", new_priority));
3612 if (new_priority < perph->pinfo.priority) {
3613 camq_change_priority(&device->drvq,
3614 perph->pinfo.index,
3615 new_priority);
3617 runq = 0;
3618 } else if (perph->path->bus->sim == &cam_dead_sim) {
3619 /* The SIM is gone so just call periph_start directly. */
3620 work_ccb = xpt_get_ccb(perph->path->device);
3621 if (work_ccb == NULL)
3622 return; /* XXX */
3623 xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3624 perph->pinfo.priority = new_priority;
3625 perph->periph_start(perph, work_ccb);
3626 return;
3627 } else {
3628 /* New entry on the queue */
3629 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3630 (" added periph to queue\n"));
3631 perph->pinfo.priority = new_priority;
3632 perph->pinfo.generation = ++device->drvq.generation;
3633 camq_insert(&device->drvq, &perph->pinfo);
3634 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3636 if (runq != 0) {
3637 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3638 (" calling xpt_run_devq\n"));
3639 xpt_run_dev_allocq(perph->path->bus);
3645 * Schedule a device to run on a given queue.
3646 * If the device was inserted as a new entry on the queue,
3647 * return 1 meaning the device queue should be run. If we
3648 * were already queued, implying someone else has already
3649 * started the queue, return 0 so the caller doesn't attempt
3650 * to run the queue.
3652 static int
3653 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3654 u_int32_t new_priority)
3656 int retval;
3657 u_int32_t old_priority;
3659 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3661 old_priority = pinfo->priority;
3664 * Are we already queued?
3666 if (pinfo->index != CAM_UNQUEUED_INDEX) {
3667 /* Simply reorder based on new priority */
3668 if (new_priority < old_priority) {
3669 camq_change_priority(queue, pinfo->index,
3670 new_priority);
3671 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3672 ("changed priority to %d\n",
3673 new_priority));
3675 retval = 0;
3676 } else {
3677 /* New entry on the queue */
3678 if (new_priority < old_priority)
3679 pinfo->priority = new_priority;
3681 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3682 ("Inserting onto queue\n"));
3683 pinfo->generation = ++queue->generation;
3684 camq_insert(queue, pinfo);
3685 retval = 1;
3687 return (retval);
3690 static void
3691 xpt_run_dev_allocq(struct cam_eb *bus)
3693 struct cam_devq *devq;
3695 if ((devq = bus->sim->devq) == NULL) {
3696 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3697 return;
3699 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3701 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3702 (" qfrozen_cnt == 0x%x, entries == %d, "
3703 "openings == %d, active == %d\n",
3704 devq->alloc_queue.qfrozen_cnt,
3705 devq->alloc_queue.entries,
3706 devq->alloc_openings,
3707 devq->alloc_active));
3709 devq->alloc_queue.qfrozen_cnt++;
3710 while ((devq->alloc_queue.entries > 0)
3711 && (devq->alloc_openings > 0)
3712 && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3713 struct cam_ed_qinfo *qinfo;
3714 struct cam_ed *device;
3715 union ccb *work_ccb;
3716 struct cam_periph *drv;
3717 struct camq *drvq;
3719 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3720 CAMQ_HEAD);
3721 device = qinfo->device;
3723 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3724 ("running device %p\n", device));
3726 drvq = &device->drvq;
3728 #ifdef CAMDEBUG
3729 if (drvq->entries <= 0) {
3730 panic("xpt_run_dev_allocq: "
3731 "Device on queue without any work to do");
3733 #endif
3734 if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3735 devq->alloc_openings--;
3736 devq->alloc_active++;
3737 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3738 xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3739 drv->pinfo.priority);
3740 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3741 ("calling periph start\n"));
3742 drv->periph_start(drv, work_ccb);
3743 } else {
3745 * Malloc failure in alloc_ccb
3748 * XXX add us to a list to be run from free_ccb
3749 * if we don't have any ccbs active on this
3750 * device queue otherwise we may never get run
3751 * again.
3753 break;
3756 if (drvq->entries > 0) {
3757 /* We have more work. Attempt to reschedule */
3758 xpt_schedule_dev_allocq(bus, device);
3761 devq->alloc_queue.qfrozen_cnt--;
3764 static void
3765 xpt_run_dev_sendq(struct cam_eb *bus)
3767 struct cam_devq *devq;
3769 if ((devq = bus->sim->devq) == NULL) {
3770 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3771 return;
3773 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3775 devq->send_queue.qfrozen_cnt++;
3776 while ((devq->send_queue.entries > 0)
3777 && (devq->send_openings > 0)) {
3778 struct cam_ed_qinfo *qinfo;
3779 struct cam_ed *device;
3780 union ccb *work_ccb;
3781 struct cam_sim *sim;
3783 if (devq->send_queue.qfrozen_cnt > 1) {
3784 break;
3787 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3788 CAMQ_HEAD);
3789 device = qinfo->device;
3792 * If the device has been "frozen", don't attempt
3793 * to run it.
3795 if (device->qfrozen_cnt > 0) {
3796 continue;
3799 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3800 ("running device %p\n", device));
3802 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3803 if (work_ccb == NULL) {
3804 kprintf("device on run queue with no ccbs???\n");
3805 continue;
3808 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3810 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
3811 if (xsoftc.num_highpower <= 0) {
3813 * We got a high power command, but we
3814 * don't have any available slots. Freeze
3815 * the device queue until we have a slot
3816 * available.
3818 device->qfrozen_cnt++;
3819 STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3820 &work_ccb->ccb_h,
3821 xpt_links.stqe);
3823 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3824 continue;
3825 } else {
3827 * Consume a high power slot while
3828 * this ccb runs.
3830 xsoftc.num_highpower--;
3832 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3834 devq->active_dev = device;
3835 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3837 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3839 devq->send_openings--;
3840 devq->send_active++;
3842 if (device->ccbq.queue.entries > 0)
3843 xpt_schedule_dev_sendq(bus, device);
3845 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3847 * The client wants to freeze the queue
3848 * after this CCB is sent.
3850 device->qfrozen_cnt++;
3853 /* In Target mode, the peripheral driver knows best... */
3854 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3855 if ((device->inq_flags & SID_CmdQue) != 0
3856 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3857 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3858 else
3860 * Clear this in case of a retried CCB that
3861 * failed due to a rejected tag.
3863 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3867 * Device queues can be shared among multiple sim instances
3868 * that reside on different busses. Use the SIM in the queue
3869 * CCB's path, rather than the one in the bus that was passed
3870 * into this function.
3872 sim = work_ccb->ccb_h.path->bus->sim;
3873 (*(sim->sim_action))(sim, work_ccb);
3875 devq->active_dev = NULL;
3877 devq->send_queue.qfrozen_cnt--;
3881 * This function merges stuff from the slave ccb into the master ccb, while
3882 * keeping important fields in the master ccb constant.
3884 void
3885 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3888 * Pull fields that are valid for peripheral drivers to set
3889 * into the master CCB along with the CCB "payload".
3891 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3892 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3893 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3894 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3895 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3896 sizeof(union ccb) - sizeof(struct ccb_hdr));
3899 void
3900 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3902 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3903 callout_init(&ccb_h->timeout_ch);
3904 ccb_h->pinfo.priority = priority;
3905 ccb_h->path = path;
3906 ccb_h->path_id = path->bus->path_id;
3907 if (path->target)
3908 ccb_h->target_id = path->target->target_id;
3909 else
3910 ccb_h->target_id = CAM_TARGET_WILDCARD;
3911 if (path->device) {
3912 ccb_h->target_lun = path->device->lun_id;
3913 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3914 } else {
3915 ccb_h->target_lun = CAM_TARGET_WILDCARD;
3917 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3918 ccb_h->flags = 0;
3921 /* Path manipulation functions */
3922 cam_status
3923 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3924 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3926 struct cam_path *path;
3927 cam_status status;
3929 path = kmalloc(sizeof(*path), M_CAMXPT, M_INTWAIT);
3930 status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3931 if (status != CAM_REQ_CMP) {
3932 kfree(path, M_CAMXPT);
3933 path = NULL;
3935 *new_path_ptr = path;
3936 return (status);
3939 cam_status
3940 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3941 struct cam_periph *periph, path_id_t path_id,
3942 target_id_t target_id, lun_id_t lun_id)
3944 struct cam_path *path;
3945 struct cam_eb *bus = NULL;
3946 cam_status status;
3947 int need_unlock = 0;
3949 path = (struct cam_path *)kmalloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3951 if (path_id != CAM_BUS_WILDCARD) {
3952 bus = xpt_find_bus(path_id);
3953 if (bus != NULL) {
3954 need_unlock = 1;
3955 CAM_SIM_LOCK(bus->sim);
3958 status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3959 if (need_unlock)
3960 CAM_SIM_UNLOCK(bus->sim);
3961 if (status != CAM_REQ_CMP) {
3962 kfree(path, M_CAMXPT);
3963 path = NULL;
3965 *new_path_ptr = path;
3966 return (status);
3969 static cam_status
3970 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3971 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3973 struct cam_eb *bus;
3974 struct cam_et *target;
3975 struct cam_ed *device;
3976 cam_status status;
3978 status = CAM_REQ_CMP; /* Completed without error */
3979 target = NULL; /* Wildcarded */
3980 device = NULL; /* Wildcarded */
3983 * We will potentially modify the EDT, so block interrupts
3984 * that may attempt to create cam paths.
3986 bus = xpt_find_bus(path_id);
3987 if (bus == NULL) {
3988 status = CAM_PATH_INVALID;
3989 } else {
3990 target = xpt_find_target(bus, target_id);
3991 if (target == NULL) {
3992 /* Create one */
3993 struct cam_et *new_target;
3995 new_target = xpt_alloc_target(bus, target_id);
3996 if (new_target == NULL) {
3997 status = CAM_RESRC_UNAVAIL;
3998 } else {
3999 target = new_target;
4002 if (target != NULL) {
4003 device = xpt_find_device(target, lun_id);
4004 if (device == NULL) {
4005 /* Create one */
4006 struct cam_ed *new_device;
4008 new_device = xpt_alloc_device(bus,
4009 target,
4010 lun_id);
4011 if (new_device == NULL) {
4012 status = CAM_RESRC_UNAVAIL;
4013 } else {
4014 device = new_device;
4021 * Only touch the user's data if we are successful.
4023 if (status == CAM_REQ_CMP) {
4024 new_path->periph = perph;
4025 new_path->bus = bus;
4026 new_path->target = target;
4027 new_path->device = device;
4028 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4029 } else {
4030 if (device != NULL)
4031 xpt_release_device(bus, target, device);
4032 if (target != NULL)
4033 xpt_release_target(bus, target);
4034 if (bus != NULL)
4035 xpt_release_bus(bus);
4037 return (status);
4040 static void
4041 xpt_release_path(struct cam_path *path)
4043 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4044 if (path->device != NULL) {
4045 xpt_release_device(path->bus, path->target, path->device);
4046 path->device = NULL;
4048 if (path->target != NULL) {
4049 xpt_release_target(path->bus, path->target);
4050 path->target = NULL;
4052 if (path->bus != NULL) {
4053 xpt_release_bus(path->bus);
4054 path->bus = NULL;
4058 void
4059 xpt_free_path(struct cam_path *path)
4061 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4062 xpt_release_path(path);
4063 kfree(path, M_CAMXPT);
4068 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4069 * in path1, 2 for match with wildcards in path2.
4072 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4074 int retval = 0;
4076 if (path1->bus != path2->bus) {
4077 if (path1->bus->path_id == CAM_BUS_WILDCARD)
4078 retval = 1;
4079 else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4080 retval = 2;
4081 else
4082 return (-1);
4084 if (path1->target != path2->target) {
4085 if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4086 if (retval == 0)
4087 retval = 1;
4088 } else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4089 retval = 2;
4090 else
4091 return (-1);
4093 if (path1->device != path2->device) {
4094 if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4095 if (retval == 0)
4096 retval = 1;
4097 } else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4098 retval = 2;
4099 else
4100 return (-1);
4102 return (retval);
4105 void
4106 xpt_print_path(struct cam_path *path)
4109 if (path == NULL)
4110 kprintf("(nopath): ");
4111 else {
4112 if (path->periph != NULL)
4113 kprintf("(%s%d:", path->periph->periph_name,
4114 path->periph->unit_number);
4115 else
4116 kprintf("(noperiph:");
4118 if (path->bus != NULL)
4119 kprintf("%s%d:%d:", path->bus->sim->sim_name,
4120 path->bus->sim->unit_number,
4121 path->bus->sim->bus_id);
4122 else
4123 kprintf("nobus:");
4125 if (path->target != NULL)
4126 kprintf("%d:", path->target->target_id);
4127 else
4128 kprintf("X:");
4130 if (path->device != NULL)
4131 kprintf("%d): ", path->device->lun_id);
4132 else
4133 kprintf("X): ");
4137 void
4138 xpt_print(struct cam_path *path, const char *fmt, ...)
4140 __va_list ap;
4141 xpt_print_path(path);
4142 __va_start(ap, fmt);
4143 kvprintf(fmt, ap);
4144 __va_end(ap);
4148 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4150 struct sbuf sb;
4152 sim_lock_assert_owned(path->bus->sim->lock);
4154 sbuf_new(&sb, str, str_len, 0);
4156 if (path == NULL)
4157 sbuf_printf(&sb, "(nopath): ");
4158 else {
4159 if (path->periph != NULL)
4160 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4161 path->periph->unit_number);
4162 else
4163 sbuf_printf(&sb, "(noperiph:");
4165 if (path->bus != NULL)
4166 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4167 path->bus->sim->unit_number,
4168 path->bus->sim->bus_id);
4169 else
4170 sbuf_printf(&sb, "nobus:");
4172 if (path->target != NULL)
4173 sbuf_printf(&sb, "%d:", path->target->target_id);
4174 else
4175 sbuf_printf(&sb, "X:");
4177 if (path->device != NULL)
4178 sbuf_printf(&sb, "%d): ", path->device->lun_id);
4179 else
4180 sbuf_printf(&sb, "X): ");
4182 sbuf_finish(&sb);
4184 return(sbuf_len(&sb));
4187 path_id_t
4188 xpt_path_path_id(struct cam_path *path)
4190 sim_lock_assert_owned(path->bus->sim->lock);
4192 return(path->bus->path_id);
4195 target_id_t
4196 xpt_path_target_id(struct cam_path *path)
4198 sim_lock_assert_owned(path->bus->sim->lock);
4200 if (path->target != NULL)
4201 return (path->target->target_id);
4202 else
4203 return (CAM_TARGET_WILDCARD);
4206 lun_id_t
4207 xpt_path_lun_id(struct cam_path *path)
4209 sim_lock_assert_owned(path->bus->sim->lock);
4211 if (path->device != NULL)
4212 return (path->device->lun_id);
4213 else
4214 return (CAM_LUN_WILDCARD);
4217 struct cam_sim *
4218 xpt_path_sim(struct cam_path *path)
4220 return (path->bus->sim);
4223 struct cam_periph*
4224 xpt_path_periph(struct cam_path *path)
4226 sim_lock_assert_owned(path->bus->sim->lock);
4228 return (path->periph);
4232 * Release a CAM control block for the caller. Remit the cost of the structure
4233 * to the device referenced by the path. If the this device had no 'credits'
4234 * and peripheral drivers have registered async callbacks for this notification
4235 * call them now.
4237 void
4238 xpt_release_ccb(union ccb *free_ccb)
4240 struct cam_path *path;
4241 struct cam_ed *device;
4242 struct cam_eb *bus;
4243 struct cam_sim *sim;
4245 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4246 path = free_ccb->ccb_h.path;
4247 device = path->device;
4248 bus = path->bus;
4249 sim = bus->sim;
4251 sim_lock_assert_owned(sim->lock);
4253 cam_ccbq_release_opening(&device->ccbq);
4254 if (sim->ccb_count > sim->max_ccbs) {
4255 xpt_free_ccb(free_ccb);
4256 sim->ccb_count--;
4257 } else if (sim == &cam_dead_sim) {
4258 xpt_free_ccb(free_ccb);
4259 } else {
4260 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
4261 xpt_links.sle);
4263 if (sim->devq == NULL) {
4264 return;
4266 sim->devq->alloc_openings++;
4267 sim->devq->alloc_active--;
4268 /* XXX Turn this into an inline function - xpt_run_device?? */
4269 if ((device_is_alloc_queued(device) == 0)
4270 && (device->drvq.entries > 0)) {
4271 xpt_schedule_dev_allocq(bus, device);
4273 if (dev_allocq_is_runnable(sim->devq))
4274 xpt_run_dev_allocq(bus);
4277 /* Functions accessed by SIM drivers */
4280 * A sim structure, listing the SIM entry points and instance
4281 * identification info is passed to xpt_bus_register to hook the SIM
4282 * into the CAM framework. xpt_bus_register creates a cam_eb entry
4283 * for this new bus and places it in the array of busses and assigns
4284 * it a path_id. The path_id may be influenced by "hard wiring"
4285 * information specified by the user. Once interrupt services are
4286 * availible, the bus will be probed.
4288 int32_t
4289 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4291 struct cam_eb *new_bus;
4292 struct cam_eb *old_bus;
4293 struct ccb_pathinq cpi;
4295 sim_lock_assert_owned(sim->lock);
4297 sim->bus_id = bus;
4298 new_bus = kmalloc(sizeof(*new_bus), M_CAMXPT, M_INTWAIT);
4300 if (strcmp(sim->sim_name, "xpt") != 0) {
4301 sim->path_id =
4302 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4305 TAILQ_INIT(&new_bus->et_entries);
4306 new_bus->path_id = sim->path_id;
4307 new_bus->sim = sim;
4308 ++sim->refcount;
4309 timevalclear(&new_bus->last_reset);
4310 new_bus->flags = 0;
4311 new_bus->refcount = 1; /* Held until a bus_deregister event */
4312 new_bus->generation = 0;
4313 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4314 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4315 while (old_bus != NULL
4316 && old_bus->path_id < new_bus->path_id)
4317 old_bus = TAILQ_NEXT(old_bus, links);
4318 if (old_bus != NULL)
4319 TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4320 else
4321 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4322 xsoftc.bus_generation++;
4323 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4325 /* Notify interested parties */
4326 if (sim->path_id != CAM_XPT_PATH_ID) {
4327 struct cam_path path;
4329 xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4330 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4331 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4332 cpi.ccb_h.func_code = XPT_PATH_INQ;
4333 xpt_action((union ccb *)&cpi);
4334 xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4335 xpt_release_path(&path);
4337 return (CAM_SUCCESS);
4341 * Deregister a bus. We must clean out all transactions pending on the bus.
4342 * This routine is typically called prior to cam_sim_free() (e.g. see
4343 * dev/usbmisc/umass/umass.c)
4345 int32_t
4346 xpt_bus_deregister(path_id_t pathid)
4348 struct cam_path bus_path;
4349 struct cam_et *target;
4350 struct cam_ed *device;
4351 struct cam_ed_qinfo *qinfo;
4352 struct cam_devq *devq;
4353 struct cam_periph *periph;
4354 struct cam_sim *ccbsim;
4355 union ccb *work_ccb;
4356 cam_status status;
4357 int retries = 0;
4359 status = xpt_compile_path(&bus_path, NULL, pathid,
4360 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4361 if (status != CAM_REQ_CMP)
4362 return (status);
4365 * This should clear out all pending requests and timeouts, but
4366 * the ccb's may be queued to a software interrupt.
4368 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4369 * and it really ought to.
4371 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4372 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4375 * Mark the SIM as having been deregistered. This prevents
4376 * certain operations from re-queueing to it, stops new devices
4377 * from being added, etc.
4379 devq = bus_path.bus->sim->devq;
4380 ccbsim = bus_path.bus->sim;
4381 ccbsim->flags |= CAM_SIM_DEREGISTERED;
4383 again:
4385 * Execute any pending operations now.
4387 while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
4388 CAMQ_HEAD)) != NULL ||
4389 (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
4390 CAMQ_HEAD)) != NULL) {
4391 do {
4392 device = qinfo->device;
4393 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
4394 if (work_ccb != NULL) {
4395 devq->active_dev = device;
4396 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
4397 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
4398 (*(ccbsim->sim_action))(ccbsim, work_ccb);
4401 periph = (struct cam_periph *)camq_remove(&device->drvq,
4402 CAMQ_HEAD);
4403 if (periph != NULL)
4404 xpt_schedule(periph, periph->pinfo.priority);
4405 } while (work_ccb != NULL || periph != NULL);
4409 * Make sure all completed CCBs are processed.
4411 while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) {
4412 camisr_runqueue(ccbsim);
4416 * Check for requeues, reissues asyncs if necessary
4418 if (CAMQ_GET_HEAD(&devq->send_queue))
4419 kprintf("camq: devq send_queue still in use\n");
4420 if (CAMQ_GET_HEAD(&devq->alloc_queue))
4421 kprintf("camq: devq alloc_queue still in use\n");
4422 if (CAMQ_GET_HEAD(&devq->send_queue) ||
4423 CAMQ_GET_HEAD(&devq->alloc_queue)) {
4424 if (++retries < 5) {
4425 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4426 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4427 goto again;
4432 * Retarget the bus and all cached sim pointers to dead_sim.
4434 * Various CAM subsystems may be holding on to targets, devices,
4435 * and/or peripherals and may attempt to use the sim pointer cached
4436 * in some of these structures during close.
4438 bus_path.bus->sim = &cam_dead_sim;
4439 TAILQ_FOREACH(target, &bus_path.bus->et_entries, links) {
4440 TAILQ_FOREACH(device, &target->ed_entries, links) {
4441 device->sim = &cam_dead_sim;
4442 SLIST_FOREACH(periph, &device->periphs, periph_links) {
4443 periph->sim = &cam_dead_sim;
4449 * Repeat the async's for the benefit of any new devices, such as
4450 * might be created from completed probes. Any new device
4451 * ops will run on dead_sim.
4453 * XXX There are probably races :-(
4455 CAM_SIM_LOCK(&cam_dead_sim);
4456 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4457 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4458 CAM_SIM_UNLOCK(&cam_dead_sim);
4460 /* Release the reference count held while registered. */
4461 xpt_release_bus(bus_path.bus);
4462 xpt_release_path(&bus_path);
4464 return (CAM_REQ_CMP);
4467 static path_id_t
4468 xptnextfreepathid(void)
4470 struct cam_eb *bus;
4471 path_id_t pathid;
4472 char *strval;
4474 pathid = 0;
4475 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4476 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4477 retry:
4478 /* Find an unoccupied pathid */
4479 while (bus != NULL && bus->path_id <= pathid) {
4480 if (bus->path_id == pathid)
4481 pathid++;
4482 bus = TAILQ_NEXT(bus, links);
4484 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4487 * Ensure that this pathid is not reserved for
4488 * a bus that may be registered in the future.
4490 if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4491 ++pathid;
4492 /* Start the search over */
4493 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4494 goto retry;
4496 return (pathid);
4499 static path_id_t
4500 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4502 path_id_t pathid;
4503 int i, dunit, val;
4504 char buf[32];
4506 pathid = CAM_XPT_PATH_ID;
4507 ksnprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4508 i = -1;
4509 while ((i = resource_query_string(i, "at", buf)) != -1) {
4510 if (strcmp(resource_query_name(i), "scbus")) {
4511 /* Avoid a bit of foot shooting. */
4512 continue;
4514 dunit = resource_query_unit(i);
4515 if (dunit < 0) /* unwired?! */
4516 continue;
4517 if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4518 if (sim_bus == val) {
4519 pathid = dunit;
4520 break;
4522 } else if (sim_bus == 0) {
4523 /* Unspecified matches bus 0 */
4524 pathid = dunit;
4525 break;
4526 } else {
4527 kprintf("Ambiguous scbus configuration for %s%d "
4528 "bus %d, cannot wire down. The kernel "
4529 "config entry for scbus%d should "
4530 "specify a controller bus.\n"
4531 "Scbus will be assigned dynamically.\n",
4532 sim_name, sim_unit, sim_bus, dunit);
4533 break;
4537 if (pathid == CAM_XPT_PATH_ID)
4538 pathid = xptnextfreepathid();
4539 return (pathid);
4542 void
4543 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4545 struct cam_eb *bus;
4546 struct cam_et *target, *next_target;
4547 struct cam_ed *device, *next_device;
4549 sim_lock_assert_owned(path->bus->sim->lock);
4551 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4554 * Most async events come from a CAM interrupt context. In
4555 * a few cases, the error recovery code at the peripheral layer,
4556 * which may run from our SWI or a process context, may signal
4557 * deferred events with a call to xpt_async.
4560 bus = path->bus;
4562 if (async_code == AC_BUS_RESET) {
4563 /* Update our notion of when the last reset occurred */
4564 microuptime(&bus->last_reset);
4567 for (target = TAILQ_FIRST(&bus->et_entries);
4568 target != NULL;
4569 target = next_target) {
4571 next_target = TAILQ_NEXT(target, links);
4573 if (path->target != target
4574 && path->target->target_id != CAM_TARGET_WILDCARD
4575 && target->target_id != CAM_TARGET_WILDCARD)
4576 continue;
4578 if (async_code == AC_SENT_BDR) {
4579 /* Update our notion of when the last reset occurred */
4580 microuptime(&path->target->last_reset);
4583 for (device = TAILQ_FIRST(&target->ed_entries);
4584 device != NULL;
4585 device = next_device) {
4587 next_device = TAILQ_NEXT(device, links);
4589 if (path->device != device
4590 && path->device->lun_id != CAM_LUN_WILDCARD
4591 && device->lun_id != CAM_LUN_WILDCARD)
4592 continue;
4594 xpt_dev_async(async_code, bus, target,
4595 device, async_arg);
4597 xpt_async_bcast(&device->asyncs, async_code,
4598 path, async_arg);
4603 * If this wasn't a fully wildcarded async, tell all
4604 * clients that want all async events.
4606 if (bus != xpt_periph->path->bus)
4607 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4608 path, async_arg);
4611 static void
4612 xpt_async_bcast(struct async_list *async_head,
4613 u_int32_t async_code,
4614 struct cam_path *path, void *async_arg)
4616 struct async_node *cur_entry;
4618 cur_entry = SLIST_FIRST(async_head);
4619 while (cur_entry != NULL) {
4620 struct async_node *next_entry;
4622 * Grab the next list entry before we call the current
4623 * entry's callback. This is because the callback function
4624 * can delete its async callback entry.
4626 next_entry = SLIST_NEXT(cur_entry, links);
4627 if ((cur_entry->event_enable & async_code) != 0)
4628 cur_entry->callback(cur_entry->callback_arg,
4629 async_code, path,
4630 async_arg);
4631 cur_entry = next_entry;
4636 * Handle any per-device event notifications that require action by the XPT.
4638 static void
4639 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4640 struct cam_ed *device, void *async_arg)
4642 cam_status status;
4643 struct cam_path newpath;
4646 * We only need to handle events for real devices.
4648 if (target->target_id == CAM_TARGET_WILDCARD
4649 || device->lun_id == CAM_LUN_WILDCARD)
4650 return;
4653 * We need our own path with wildcards expanded to
4654 * handle certain types of events.
4656 if ((async_code == AC_SENT_BDR)
4657 || (async_code == AC_BUS_RESET)
4658 || (async_code == AC_INQ_CHANGED))
4659 status = xpt_compile_path(&newpath, NULL,
4660 bus->path_id,
4661 target->target_id,
4662 device->lun_id);
4663 else
4664 status = CAM_REQ_CMP_ERR;
4666 if (status == CAM_REQ_CMP) {
4669 * Allow transfer negotiation to occur in a
4670 * tag free environment.
4672 if (async_code == AC_SENT_BDR
4673 || async_code == AC_BUS_RESET)
4674 xpt_toggle_tags(&newpath);
4676 if (async_code == AC_INQ_CHANGED) {
4678 * We've sent a start unit command, or
4679 * something similar to a device that
4680 * may have caused its inquiry data to
4681 * change. So we re-scan the device to
4682 * refresh the inquiry data for it.
4684 xpt_scan_lun(newpath.periph, &newpath,
4685 CAM_EXPECT_INQ_CHANGE, NULL);
4687 xpt_release_path(&newpath);
4688 } else if (async_code == AC_LOST_DEVICE) {
4690 * When we lose a device the device may be about to detach
4691 * the sim, we have to clear out all pending timeouts and
4692 * requests before that happens. XXX it would be nice if
4693 * we could abort the requests pertaining to the device.
4695 xpt_release_devq_timeout(device);
4696 if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
4697 device->flags |= CAM_DEV_UNCONFIGURED;
4698 xpt_release_device(bus, target, device);
4700 } else if (async_code == AC_TRANSFER_NEG) {
4701 struct ccb_trans_settings *settings;
4703 settings = (struct ccb_trans_settings *)async_arg;
4704 xpt_set_transfer_settings(settings, device,
4705 /*async_update*/TRUE);
4709 u_int32_t
4710 xpt_freeze_devq(struct cam_path *path, u_int count)
4712 struct ccb_hdr *ccbh;
4714 sim_lock_assert_owned(path->bus->sim->lock);
4716 path->device->qfrozen_cnt += count;
4719 * Mark the last CCB in the queue as needing
4720 * to be requeued if the driver hasn't
4721 * changed it's state yet. This fixes a race
4722 * where a ccb is just about to be queued to
4723 * a controller driver when it's interrupt routine
4724 * freezes the queue. To completly close the
4725 * hole, controller drives must check to see
4726 * if a ccb's status is still CAM_REQ_INPROG
4727 * just before they queue
4728 * the CCB. See ahc_action/ahc_freeze_devq for
4729 * an example.
4731 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4732 if (ccbh && ccbh->status == CAM_REQ_INPROG)
4733 ccbh->status = CAM_REQUEUE_REQ;
4734 return (path->device->qfrozen_cnt);
4737 u_int32_t
4738 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4740 sim_lock_assert_owned(sim->lock);
4742 if (sim->devq == NULL)
4743 return(count);
4744 sim->devq->send_queue.qfrozen_cnt += count;
4745 if (sim->devq->active_dev != NULL) {
4746 struct ccb_hdr *ccbh;
4748 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4749 ccb_hdr_tailq);
4750 if (ccbh && ccbh->status == CAM_REQ_INPROG)
4751 ccbh->status = CAM_REQUEUE_REQ;
4753 return (sim->devq->send_queue.qfrozen_cnt);
4757 * WARNING: most devices, especially USB/UMASS, may detach their sim early.
4758 * We ref-count the sim (and the bus only NULLs it out when the bus has been
4759 * freed, which is not the case here), but the device queue is also freed XXX
4760 * and we have to check that here.
4762 * XXX fixme: could we simply not null-out the device queue via
4763 * cam_sim_free()?
4765 static void
4766 xpt_release_devq_timeout(void *arg)
4768 struct cam_ed *device;
4770 device = (struct cam_ed *)arg;
4772 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4775 void
4776 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4778 sim_lock_assert_owned(path->bus->sim->lock);
4780 xpt_release_devq_device(path->device, count, run_queue);
4783 static void
4784 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4786 int rundevq;
4788 rundevq = 0;
4790 if (dev->qfrozen_cnt > 0) {
4792 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4793 dev->qfrozen_cnt -= count;
4794 if (dev->qfrozen_cnt == 0) {
4797 * No longer need to wait for a successful
4798 * command completion.
4800 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4803 * Remove any timeouts that might be scheduled
4804 * to release this queue.
4806 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4807 callout_stop(&dev->callout);
4808 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4812 * Now that we are unfrozen schedule the
4813 * device so any pending transactions are
4814 * run.
4816 if ((dev->ccbq.queue.entries > 0)
4817 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4818 && (run_queue != 0)) {
4819 rundevq = 1;
4823 if (rundevq != 0)
4824 xpt_run_dev_sendq(dev->target->bus);
4827 void
4828 xpt_release_simq(struct cam_sim *sim, int run_queue)
4830 struct camq *sendq;
4832 sim_lock_assert_owned(sim->lock);
4834 if (sim->devq == NULL)
4835 return;
4837 sendq = &(sim->devq->send_queue);
4838 if (sendq->qfrozen_cnt > 0) {
4839 sendq->qfrozen_cnt--;
4840 if (sendq->qfrozen_cnt == 0) {
4841 struct cam_eb *bus;
4844 * If there is a timeout scheduled to release this
4845 * sim queue, remove it. The queue frozen count is
4846 * already at 0.
4848 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4849 callout_stop(&sim->callout);
4850 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4852 bus = xpt_find_bus(sim->path_id);
4854 if (run_queue) {
4856 * Now that we are unfrozen run the send queue.
4858 xpt_run_dev_sendq(bus);
4860 xpt_release_bus(bus);
4865 void
4866 xpt_done(union ccb *done_ccb)
4868 struct cam_sim *sim;
4870 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4871 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4873 * Queue up the request for handling by our SWI handler
4874 * any of the "non-immediate" type of ccbs.
4876 sim = done_ccb->ccb_h.path->bus->sim;
4877 switch (done_ccb->ccb_h.path->periph->type) {
4878 case CAM_PERIPH_BIO:
4879 spin_lock_wr(&sim->sim_spin);
4880 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4881 sim_links.tqe);
4882 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4883 spin_unlock_wr(&sim->sim_spin);
4884 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4885 spin_lock_wr(&cam_simq_spin);
4886 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4887 TAILQ_INSERT_TAIL(&cam_simq, sim,
4888 links);
4889 sim->flags |= CAM_SIM_ON_DONEQ;
4891 spin_unlock_wr(&cam_simq_spin);
4893 if ((done_ccb->ccb_h.path->periph->flags &
4894 CAM_PERIPH_POLLED) == 0)
4895 setsoftcambio();
4896 break;
4897 default:
4898 panic("unknown periph type %d",
4899 done_ccb->ccb_h.path->periph->type);
4904 union ccb *
4905 xpt_alloc_ccb(void)
4907 union ccb *new_ccb;
4909 new_ccb = kmalloc(sizeof(*new_ccb), M_CAMXPT, M_INTWAIT | M_ZERO);
4910 return (new_ccb);
4913 void
4914 xpt_free_ccb(union ccb *free_ccb)
4916 kfree(free_ccb, M_CAMXPT);
4921 /* Private XPT functions */
4924 * Get a CAM control block for the caller. Charge the structure to the device
4925 * referenced by the path. If the this device has no 'credits' then the
4926 * device already has the maximum number of outstanding operations under way
4927 * and we return NULL. If we don't have sufficient resources to allocate more
4928 * ccbs, we also return NULL.
4930 static union ccb *
4931 xpt_get_ccb(struct cam_ed *device)
4933 union ccb *new_ccb;
4934 struct cam_sim *sim;
4936 sim = device->sim;
4937 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4938 new_ccb = xpt_alloc_ccb();
4939 if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4940 callout_init(&new_ccb->ccb_h.timeout_ch);
4941 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4942 xpt_links.sle);
4943 sim->ccb_count++;
4945 cam_ccbq_take_opening(&device->ccbq);
4946 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4947 return (new_ccb);
4950 static void
4951 xpt_release_bus(struct cam_eb *bus)
4954 if ((--bus->refcount == 0)
4955 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4956 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4957 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4958 xsoftc.bus_generation++;
4959 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4960 kfree(bus, M_CAMXPT);
4964 static struct cam_et *
4965 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4967 struct cam_et *target;
4968 struct cam_et *cur_target;
4970 target = kmalloc(sizeof(*target), M_CAMXPT, M_INTWAIT);
4972 TAILQ_INIT(&target->ed_entries);
4973 target->bus = bus;
4974 target->target_id = target_id;
4975 target->refcount = 1;
4976 target->generation = 0;
4977 timevalclear(&target->last_reset);
4979 * Hold a reference to our parent bus so it
4980 * will not go away before we do.
4982 bus->refcount++;
4984 /* Insertion sort into our bus's target list */
4985 cur_target = TAILQ_FIRST(&bus->et_entries);
4986 while (cur_target != NULL && cur_target->target_id < target_id)
4987 cur_target = TAILQ_NEXT(cur_target, links);
4989 if (cur_target != NULL) {
4990 TAILQ_INSERT_BEFORE(cur_target, target, links);
4991 } else {
4992 TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4994 bus->generation++;
4995 return (target);
4998 static void
4999 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
5001 if (target->refcount == 1) {
5002 KKASSERT(TAILQ_FIRST(&target->ed_entries) == NULL);
5003 TAILQ_REMOVE(&bus->et_entries, target, links);
5004 bus->generation++;
5005 xpt_release_bus(bus);
5006 KKASSERT(target->refcount == 1);
5007 kfree(target, M_CAMXPT);
5008 } else {
5009 --target->refcount;
5013 static struct cam_ed *
5014 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
5016 struct cam_path path;
5017 struct cam_ed *device;
5018 struct cam_devq *devq;
5019 cam_status status;
5022 * Disallow new devices while trying to deregister a sim
5024 if (bus->sim->flags & CAM_SIM_DEREGISTERED)
5025 return (NULL);
5028 * Make space for us in the device queue on our bus
5030 devq = bus->sim->devq;
5031 if (devq == NULL)
5032 return(NULL);
5033 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
5035 if (status != CAM_REQ_CMP) {
5036 device = NULL;
5037 } else {
5038 device = kmalloc(sizeof(*device), M_CAMXPT, M_INTWAIT);
5041 if (device != NULL) {
5042 struct cam_ed *cur_device;
5044 cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
5045 device->alloc_ccb_entry.device = device;
5046 cam_init_pinfo(&device->send_ccb_entry.pinfo);
5047 device->send_ccb_entry.device = device;
5048 device->target = target;
5049 device->lun_id = lun_id;
5050 device->sim = bus->sim;
5051 /* Initialize our queues */
5052 if (camq_init(&device->drvq, 0) != 0) {
5053 kfree(device, M_CAMXPT);
5054 return (NULL);
5056 if (cam_ccbq_init(&device->ccbq,
5057 bus->sim->max_dev_openings) != 0) {
5058 camq_fini(&device->drvq);
5059 kfree(device, M_CAMXPT);
5060 return (NULL);
5062 SLIST_INIT(&device->asyncs);
5063 SLIST_INIT(&device->periphs);
5064 device->generation = 0;
5065 device->owner = NULL;
5067 * Take the default quirk entry until we have inquiry
5068 * data and can determine a better quirk to use.
5070 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
5071 bzero(&device->inq_data, sizeof(device->inq_data));
5072 device->inq_flags = 0;
5073 device->queue_flags = 0;
5074 device->serial_num = NULL;
5075 device->serial_num_len = 0;
5076 device->qfrozen_cnt = 0;
5077 device->flags = CAM_DEV_UNCONFIGURED;
5078 device->tag_delay_count = 0;
5079 device->tag_saved_openings = 0;
5080 device->refcount = 1;
5081 callout_init(&device->callout);
5084 * Hold a reference to our parent target so it
5085 * will not go away before we do.
5087 target->refcount++;
5090 * XXX should be limited by number of CCBs this bus can
5091 * do.
5093 bus->sim->max_ccbs += device->ccbq.devq_openings;
5094 /* Insertion sort into our target's device list */
5095 cur_device = TAILQ_FIRST(&target->ed_entries);
5096 while (cur_device != NULL && cur_device->lun_id < lun_id)
5097 cur_device = TAILQ_NEXT(cur_device, links);
5098 if (cur_device != NULL) {
5099 TAILQ_INSERT_BEFORE(cur_device, device, links);
5100 } else {
5101 TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
5103 target->generation++;
5104 if (lun_id != CAM_LUN_WILDCARD) {
5105 xpt_compile_path(&path,
5106 NULL,
5107 bus->path_id,
5108 target->target_id,
5109 lun_id);
5110 xpt_devise_transport(&path);
5111 xpt_release_path(&path);
5114 return (device);
5117 static void
5118 xpt_reference_device(struct cam_ed *device)
5120 ++device->refcount;
5123 static void
5124 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
5125 struct cam_ed *device)
5127 struct cam_devq *devq;
5129 if (device->refcount == 1) {
5130 KKASSERT(device->flags & CAM_DEV_UNCONFIGURED);
5132 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
5133 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
5134 panic("Removing device while still queued for ccbs");
5136 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
5137 device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
5138 callout_stop(&device->callout);
5141 TAILQ_REMOVE(&target->ed_entries, device,links);
5142 target->generation++;
5143 bus->sim->max_ccbs -= device->ccbq.devq_openings;
5144 if ((devq = bus->sim->devq) != NULL) {
5145 /* Release our slot in the devq */
5146 cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
5148 camq_fini(&device->drvq);
5149 camq_fini(&device->ccbq.queue);
5150 xpt_release_target(bus, target);
5151 KKASSERT(device->refcount == 1);
5152 kfree(device, M_CAMXPT);
5153 } else {
5154 --device->refcount;
5158 static u_int32_t
5159 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5161 int diff;
5162 int result;
5163 struct cam_ed *dev;
5165 dev = path->device;
5167 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5168 result = cam_ccbq_resize(&dev->ccbq, newopenings);
5169 if (result == CAM_REQ_CMP && (diff < 0)) {
5170 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5172 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5173 || (dev->inq_flags & SID_CmdQue) != 0)
5174 dev->tag_saved_openings = newopenings;
5175 /* Adjust the global limit */
5176 dev->sim->max_ccbs += diff;
5177 return (result);
5180 static struct cam_eb *
5181 xpt_find_bus(path_id_t path_id)
5183 struct cam_eb *bus;
5185 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5186 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
5187 if (bus->path_id == path_id) {
5188 bus->refcount++;
5189 break;
5192 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5193 return (bus);
5196 static struct cam_et *
5197 xpt_find_target(struct cam_eb *bus, target_id_t target_id)
5199 struct cam_et *target;
5201 TAILQ_FOREACH(target, &bus->et_entries, links) {
5202 if (target->target_id == target_id) {
5203 target->refcount++;
5204 break;
5207 return (target);
5210 static struct cam_ed *
5211 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5213 struct cam_ed *device;
5215 TAILQ_FOREACH(device, &target->ed_entries, links) {
5216 if (device->lun_id == lun_id) {
5217 device->refcount++;
5218 break;
5221 return (device);
5224 typedef struct {
5225 union ccb *request_ccb;
5226 struct ccb_pathinq *cpi;
5227 int counter;
5228 } xpt_scan_bus_info;
5231 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5232 * As the scan progresses, xpt_scan_bus is used as the
5233 * callback on completion function.
5235 static void
5236 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5238 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5239 ("xpt_scan_bus\n"));
5240 switch (request_ccb->ccb_h.func_code) {
5241 case XPT_SCAN_BUS:
5243 xpt_scan_bus_info *scan_info;
5244 union ccb *work_ccb;
5245 struct cam_path *path;
5246 u_int i;
5247 u_int max_target;
5248 u_int initiator_id;
5250 /* Find out the characteristics of the bus */
5251 work_ccb = xpt_alloc_ccb();
5252 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5253 request_ccb->ccb_h.pinfo.priority);
5254 work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5255 xpt_action(work_ccb);
5256 if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5257 request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5258 xpt_free_ccb(work_ccb);
5259 xpt_done(request_ccb);
5260 return;
5263 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5265 * Can't scan the bus on an adapter that
5266 * cannot perform the initiator role.
5268 request_ccb->ccb_h.status = CAM_REQ_CMP;
5269 xpt_free_ccb(work_ccb);
5270 xpt_done(request_ccb);
5271 return;
5274 /* Save some state for use while we probe for devices */
5275 scan_info = (xpt_scan_bus_info *)
5276 kmalloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_INTWAIT);
5277 scan_info->request_ccb = request_ccb;
5278 scan_info->cpi = &work_ccb->cpi;
5280 /* Cache on our stack so we can work asynchronously */
5281 max_target = scan_info->cpi->max_target;
5282 initiator_id = scan_info->cpi->initiator_id;
5286 * We can scan all targets in parallel, or do it sequentially.
5288 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5289 max_target = 0;
5290 scan_info->counter = 0;
5291 } else {
5292 scan_info->counter = scan_info->cpi->max_target + 1;
5293 if (scan_info->cpi->initiator_id < scan_info->counter) {
5294 scan_info->counter--;
5298 for (i = 0; i <= max_target; i++) {
5299 cam_status status;
5300 if (i == initiator_id)
5301 continue;
5303 status = xpt_create_path(&path, xpt_periph,
5304 request_ccb->ccb_h.path_id,
5305 i, 0);
5306 if (status != CAM_REQ_CMP) {
5307 kprintf("xpt_scan_bus: xpt_create_path failed"
5308 " with status %#x, bus scan halted\n",
5309 status);
5310 kfree(scan_info, M_CAMXPT);
5311 request_ccb->ccb_h.status = status;
5312 xpt_free_ccb(work_ccb);
5313 xpt_done(request_ccb);
5314 break;
5316 work_ccb = xpt_alloc_ccb();
5317 xpt_setup_ccb(&work_ccb->ccb_h, path,
5318 request_ccb->ccb_h.pinfo.priority);
5319 work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5320 work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5321 work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5322 work_ccb->crcn.flags = request_ccb->crcn.flags;
5323 xpt_action(work_ccb);
5325 break;
5327 case XPT_SCAN_LUN:
5329 cam_status status;
5330 struct cam_path *path;
5331 xpt_scan_bus_info *scan_info;
5332 path_id_t path_id;
5333 target_id_t target_id;
5334 lun_id_t lun_id;
5336 /* Reuse the same CCB to query if a device was really found */
5337 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5338 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5339 request_ccb->ccb_h.pinfo.priority);
5340 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5342 path_id = request_ccb->ccb_h.path_id;
5343 target_id = request_ccb->ccb_h.target_id;
5344 lun_id = request_ccb->ccb_h.target_lun;
5345 xpt_action(request_ccb);
5347 if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5348 struct cam_ed *device;
5349 struct cam_et *target;
5350 int phl;
5353 * If we already probed lun 0 successfully, or
5354 * we have additional configured luns on this
5355 * target that might have "gone away", go onto
5356 * the next lun.
5358 target = request_ccb->ccb_h.path->target;
5360 * We may touch devices that we don't
5361 * hold references too, so ensure they
5362 * don't disappear out from under us.
5363 * The target above is referenced by the
5364 * path in the request ccb.
5366 phl = 0;
5367 device = TAILQ_FIRST(&target->ed_entries);
5368 if (device != NULL) {
5369 phl = CAN_SRCH_HI_SPARSE(device);
5370 if (device->lun_id == 0)
5371 device = TAILQ_NEXT(device, links);
5373 if ((lun_id != 0) || (device != NULL)) {
5374 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5375 lun_id++;
5377 } else {
5378 struct cam_ed *device;
5380 device = request_ccb->ccb_h.path->device;
5382 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5383 /* Try the next lun */
5384 if (lun_id < (CAM_SCSI2_MAXLUN-1)
5385 || CAN_SRCH_HI_DENSE(device))
5386 lun_id++;
5391 * Free the current request path- we're done with it.
5393 xpt_free_path(request_ccb->ccb_h.path);
5396 * Check to see if we scan any further luns.
5398 if (lun_id == request_ccb->ccb_h.target_lun
5399 || lun_id > scan_info->cpi->max_lun) {
5400 int done;
5402 hop_again:
5403 done = 0;
5404 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5405 scan_info->counter++;
5406 if (scan_info->counter ==
5407 scan_info->cpi->initiator_id) {
5408 scan_info->counter++;
5410 if (scan_info->counter >=
5411 scan_info->cpi->max_target+1) {
5412 done = 1;
5414 } else {
5415 scan_info->counter--;
5416 if (scan_info->counter == 0) {
5417 done = 1;
5420 if (done) {
5421 xpt_free_ccb(request_ccb);
5422 xpt_free_ccb((union ccb *)scan_info->cpi);
5423 request_ccb = scan_info->request_ccb;
5424 kfree(scan_info, M_CAMXPT);
5425 request_ccb->ccb_h.status = CAM_REQ_CMP;
5426 xpt_done(request_ccb);
5427 break;
5430 if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) {
5431 break;
5433 status = xpt_create_path(&path, xpt_periph,
5434 scan_info->request_ccb->ccb_h.path_id,
5435 scan_info->counter, 0);
5436 if (status != CAM_REQ_CMP) {
5437 kprintf("xpt_scan_bus: xpt_create_path failed"
5438 " with status %#x, bus scan halted\n",
5439 status);
5440 xpt_free_ccb(request_ccb);
5441 xpt_free_ccb((union ccb *)scan_info->cpi);
5442 request_ccb = scan_info->request_ccb;
5443 kfree(scan_info, M_CAMXPT);
5444 request_ccb->ccb_h.status = status;
5445 xpt_done(request_ccb);
5446 break;
5448 xpt_setup_ccb(&request_ccb->ccb_h, path,
5449 request_ccb->ccb_h.pinfo.priority);
5450 request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5451 request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5452 request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5453 request_ccb->crcn.flags =
5454 scan_info->request_ccb->crcn.flags;
5455 } else {
5456 status = xpt_create_path(&path, xpt_periph,
5457 path_id, target_id, lun_id);
5458 if (status != CAM_REQ_CMP) {
5459 kprintf("xpt_scan_bus: xpt_create_path failed "
5460 "with status %#x, halting LUN scan\n",
5461 status);
5462 goto hop_again;
5464 xpt_setup_ccb(&request_ccb->ccb_h, path,
5465 request_ccb->ccb_h.pinfo.priority);
5466 request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5467 request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5468 request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5469 request_ccb->crcn.flags =
5470 scan_info->request_ccb->crcn.flags;
5472 xpt_action(request_ccb);
5473 break;
5475 default:
5476 break;
5480 typedef enum {
5481 PROBE_TUR,
5482 PROBE_INQUIRY, /* this counts as DV0 for Basic Domain Validation */
5483 PROBE_FULL_INQUIRY,
5484 PROBE_MODE_SENSE,
5485 PROBE_SERIAL_NUM_0,
5486 PROBE_SERIAL_NUM_1,
5487 PROBE_TUR_FOR_NEGOTIATION,
5488 PROBE_INQUIRY_BASIC_DV1,
5489 PROBE_INQUIRY_BASIC_DV2,
5490 PROBE_DV_EXIT
5491 } probe_action;
5493 typedef enum {
5494 PROBE_INQUIRY_CKSUM = 0x01,
5495 PROBE_SERIAL_CKSUM = 0x02,
5496 PROBE_NO_ANNOUNCE = 0x04
5497 } probe_flags;
5499 typedef struct {
5500 TAILQ_HEAD(, ccb_hdr) request_ccbs;
5501 probe_action action;
5502 union ccb saved_ccb;
5503 probe_flags flags;
5504 MD5_CTX context;
5505 u_int8_t digest[16];
5506 } probe_softc;
5508 static void
5509 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5510 cam_flags flags, union ccb *request_ccb)
5512 struct ccb_pathinq cpi;
5513 cam_status status;
5514 struct cam_path *new_path;
5515 struct cam_periph *old_periph;
5517 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5518 ("xpt_scan_lun\n"));
5520 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5521 cpi.ccb_h.func_code = XPT_PATH_INQ;
5522 xpt_action((union ccb *)&cpi);
5524 if (cpi.ccb_h.status != CAM_REQ_CMP) {
5525 if (request_ccb != NULL) {
5526 request_ccb->ccb_h.status = cpi.ccb_h.status;
5527 xpt_done(request_ccb);
5529 return;
5532 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5534 * Can't scan the bus on an adapter that
5535 * cannot perform the initiator role.
5537 if (request_ccb != NULL) {
5538 request_ccb->ccb_h.status = CAM_REQ_CMP;
5539 xpt_done(request_ccb);
5541 return;
5544 if (request_ccb == NULL) {
5545 request_ccb = kmalloc(sizeof(union ccb), M_CAMXPT, M_INTWAIT);
5546 new_path = kmalloc(sizeof(*new_path), M_CAMXPT, M_INTWAIT);
5547 status = xpt_compile_path(new_path, xpt_periph,
5548 path->bus->path_id,
5549 path->target->target_id,
5550 path->device->lun_id);
5552 if (status != CAM_REQ_CMP) {
5553 xpt_print(path, "xpt_scan_lun: can't compile path, "
5554 "can't continue\n");
5555 kfree(request_ccb, M_CAMXPT);
5556 kfree(new_path, M_CAMXPT);
5557 return;
5559 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5560 request_ccb->ccb_h.cbfcnp = xptscandone;
5561 request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5562 request_ccb->crcn.flags = flags;
5565 if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5566 probe_softc *softc;
5568 softc = (probe_softc *)old_periph->softc;
5569 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5570 periph_links.tqe);
5571 } else {
5572 status = cam_periph_alloc(proberegister, NULL, probecleanup,
5573 probestart, "probe",
5574 CAM_PERIPH_BIO,
5575 request_ccb->ccb_h.path, NULL, 0,
5576 request_ccb);
5578 if (status != CAM_REQ_CMP) {
5579 xpt_print(path, "xpt_scan_lun: cam_alloc_periph "
5580 "returned an error, can't continue probe\n");
5581 request_ccb->ccb_h.status = status;
5582 xpt_done(request_ccb);
5587 static void
5588 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5590 xpt_release_path(done_ccb->ccb_h.path);
5591 kfree(done_ccb->ccb_h.path, M_CAMXPT);
5592 kfree(done_ccb, M_CAMXPT);
5595 static cam_status
5596 proberegister(struct cam_periph *periph, void *arg)
5598 union ccb *request_ccb; /* CCB representing the probe request */
5599 cam_status status;
5600 probe_softc *softc;
5602 request_ccb = (union ccb *)arg;
5603 if (periph == NULL) {
5604 kprintf("proberegister: periph was NULL!!\n");
5605 return(CAM_REQ_CMP_ERR);
5608 if (request_ccb == NULL) {
5609 kprintf("proberegister: no probe CCB, "
5610 "can't register device\n");
5611 return(CAM_REQ_CMP_ERR);
5614 softc = kmalloc(sizeof(*softc), M_CAMXPT, M_INTWAIT | M_ZERO);
5615 TAILQ_INIT(&softc->request_ccbs);
5616 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5617 periph_links.tqe);
5618 softc->flags = 0;
5619 periph->softc = softc;
5620 status = cam_periph_acquire(periph);
5621 if (status != CAM_REQ_CMP) {
5622 return (status);
5627 * Ensure we've waited at least a bus settle
5628 * delay before attempting to probe the device.
5629 * For HBAs that don't do bus resets, this won't make a difference.
5631 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5632 scsi_delay);
5633 probeschedule(periph);
5634 return(CAM_REQ_CMP);
5637 static void
5638 probeschedule(struct cam_periph *periph)
5640 struct ccb_pathinq cpi;
5641 union ccb *ccb;
5642 probe_softc *softc;
5644 softc = (probe_softc *)periph->softc;
5645 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5647 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5648 cpi.ccb_h.func_code = XPT_PATH_INQ;
5649 xpt_action((union ccb *)&cpi);
5652 * If a device has gone away and another device, or the same one,
5653 * is back in the same place, it should have a unit attention
5654 * condition pending. It will not report the unit attention in
5655 * response to an inquiry, which may leave invalid transfer
5656 * negotiations in effect. The TUR will reveal the unit attention
5657 * condition. Only send the TUR for lun 0, since some devices
5658 * will get confused by commands other than inquiry to non-existent
5659 * luns. If you think a device has gone away start your scan from
5660 * lun 0. This will insure that any bogus transfer settings are
5661 * invalidated.
5663 * If we haven't seen the device before and the controller supports
5664 * some kind of transfer negotiation, negotiate with the first
5665 * sent command if no bus reset was performed at startup. This
5666 * ensures that the device is not confused by transfer negotiation
5667 * settings left over by loader or BIOS action.
5669 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5670 && (ccb->ccb_h.target_lun == 0)) {
5671 softc->action = PROBE_TUR;
5672 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5673 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5674 proberequestdefaultnegotiation(periph);
5675 softc->action = PROBE_INQUIRY;
5676 } else {
5677 softc->action = PROBE_INQUIRY;
5680 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5681 softc->flags |= PROBE_NO_ANNOUNCE;
5682 else
5683 softc->flags &= ~PROBE_NO_ANNOUNCE;
5685 xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5688 static void
5689 probestart(struct cam_periph *periph, union ccb *start_ccb)
5691 /* Probe the device that our peripheral driver points to */
5692 struct ccb_scsiio *csio;
5693 probe_softc *softc;
5695 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5697 softc = (probe_softc *)periph->softc;
5698 csio = &start_ccb->csio;
5700 switch (softc->action) {
5701 case PROBE_TUR:
5702 case PROBE_TUR_FOR_NEGOTIATION:
5703 case PROBE_DV_EXIT:
5705 scsi_test_unit_ready(csio,
5706 /*retries*/4,
5707 probedone,
5708 MSG_SIMPLE_Q_TAG,
5709 SSD_FULL_SIZE,
5710 /*timeout*/60000);
5711 break;
5713 case PROBE_INQUIRY:
5714 case PROBE_FULL_INQUIRY:
5715 case PROBE_INQUIRY_BASIC_DV1:
5716 case PROBE_INQUIRY_BASIC_DV2:
5718 u_int inquiry_len;
5719 struct scsi_inquiry_data *inq_buf;
5721 inq_buf = &periph->path->device->inq_data;
5724 * If the device is currently configured, we calculate an
5725 * MD5 checksum of the inquiry data, and if the serial number
5726 * length is greater than 0, add the serial number data
5727 * into the checksum as well. Once the inquiry and the
5728 * serial number check finish, we attempt to figure out
5729 * whether we still have the same device.
5731 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5733 MD5Init(&softc->context);
5734 MD5Update(&softc->context, (unsigned char *)inq_buf,
5735 sizeof(struct scsi_inquiry_data));
5736 softc->flags |= PROBE_INQUIRY_CKSUM;
5737 if (periph->path->device->serial_num_len > 0) {
5738 MD5Update(&softc->context,
5739 periph->path->device->serial_num,
5740 periph->path->device->serial_num_len);
5741 softc->flags |= PROBE_SERIAL_CKSUM;
5743 MD5Final(softc->digest, &softc->context);
5746 if (softc->action == PROBE_INQUIRY)
5747 inquiry_len = SHORT_INQUIRY_LENGTH;
5748 else
5749 inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf);
5752 * Some parallel SCSI devices fail to send an
5753 * ignore wide residue message when dealing with
5754 * odd length inquiry requests. Round up to be
5755 * safe.
5757 inquiry_len = roundup2(inquiry_len, 2);
5759 if (softc->action == PROBE_INQUIRY_BASIC_DV1
5760 || softc->action == PROBE_INQUIRY_BASIC_DV2) {
5761 inq_buf = kmalloc(inquiry_len, M_CAMXPT, M_INTWAIT);
5763 scsi_inquiry(csio,
5764 /*retries*/4,
5765 probedone,
5766 MSG_SIMPLE_Q_TAG,
5767 (u_int8_t *)inq_buf,
5768 inquiry_len,
5769 /*evpd*/FALSE,
5770 /*page_code*/0,
5771 SSD_MIN_SIZE,
5772 /*timeout*/60 * 1000);
5773 break;
5775 case PROBE_MODE_SENSE:
5777 void *mode_buf;
5778 int mode_buf_len;
5780 mode_buf_len = sizeof(struct scsi_mode_header_6)
5781 + sizeof(struct scsi_mode_blk_desc)
5782 + sizeof(struct scsi_control_page);
5783 mode_buf = kmalloc(mode_buf_len, M_CAMXPT, M_INTWAIT);
5784 scsi_mode_sense(csio,
5785 /*retries*/4,
5786 probedone,
5787 MSG_SIMPLE_Q_TAG,
5788 /*dbd*/FALSE,
5789 SMS_PAGE_CTRL_CURRENT,
5790 SMS_CONTROL_MODE_PAGE,
5791 mode_buf,
5792 mode_buf_len,
5793 SSD_FULL_SIZE,
5794 /*timeout*/60000);
5795 break;
5797 case PROBE_SERIAL_NUM_0:
5799 struct scsi_vpd_supported_page_list *vpd_list = NULL;
5800 struct cam_ed *device;
5802 device = periph->path->device;
5803 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5804 vpd_list = kmalloc(sizeof(*vpd_list), M_CAMXPT,
5805 M_INTWAIT | M_ZERO);
5808 if (vpd_list != NULL) {
5809 scsi_inquiry(csio,
5810 /*retries*/4,
5811 probedone,
5812 MSG_SIMPLE_Q_TAG,
5813 (u_int8_t *)vpd_list,
5814 sizeof(*vpd_list),
5815 /*evpd*/TRUE,
5816 SVPD_SUPPORTED_PAGE_LIST,
5817 SSD_MIN_SIZE,
5818 /*timeout*/60 * 1000);
5819 break;
5822 * We'll have to do without, let our probedone
5823 * routine finish up for us.
5825 start_ccb->csio.data_ptr = NULL;
5826 probedone(periph, start_ccb);
5827 return;
5829 case PROBE_SERIAL_NUM_1:
5831 struct scsi_vpd_unit_serial_number *serial_buf;
5832 struct cam_ed* device;
5834 serial_buf = NULL;
5835 device = periph->path->device;
5836 device->serial_num = NULL;
5837 device->serial_num_len = 0;
5839 serial_buf = (struct scsi_vpd_unit_serial_number *)
5840 kmalloc(sizeof(*serial_buf), M_CAMXPT,
5841 M_INTWAIT | M_ZERO);
5842 scsi_inquiry(csio,
5843 /*retries*/4,
5844 probedone,
5845 MSG_SIMPLE_Q_TAG,
5846 (u_int8_t *)serial_buf,
5847 sizeof(*serial_buf),
5848 /*evpd*/TRUE,
5849 SVPD_UNIT_SERIAL_NUMBER,
5850 SSD_MIN_SIZE,
5851 /*timeout*/60 * 1000);
5852 break;
5855 xpt_action(start_ccb);
5858 static void
5859 proberequestdefaultnegotiation(struct cam_periph *periph)
5861 struct ccb_trans_settings cts;
5863 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5864 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5865 cts.type = CTS_TYPE_USER_SETTINGS;
5866 xpt_action((union ccb *)&cts);
5867 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5868 return;
5870 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5871 cts.type = CTS_TYPE_CURRENT_SETTINGS;
5872 xpt_action((union ccb *)&cts);
5876 * Backoff Negotiation Code- only pertinent for SPI devices.
5878 static int
5879 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device)
5881 struct ccb_trans_settings cts;
5882 struct ccb_trans_settings_spi *spi;
5884 memset(&cts, 0, sizeof (cts));
5885 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5886 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5887 cts.type = CTS_TYPE_CURRENT_SETTINGS;
5888 xpt_action((union ccb *)&cts);
5889 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5890 if (bootverbose) {
5891 xpt_print(periph->path,
5892 "failed to get current device settings\n");
5894 return (0);
5896 if (cts.transport != XPORT_SPI) {
5897 if (bootverbose) {
5898 xpt_print(periph->path, "not SPI transport\n");
5900 return (0);
5902 spi = &cts.xport_specific.spi;
5905 * We cannot renegotiate sync rate if we don't have one.
5907 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
5908 if (bootverbose) {
5909 xpt_print(periph->path, "no sync rate known\n");
5911 return (0);
5915 * We'll assert that we don't have to touch PPR options- the
5916 * SIM will see what we do with period and offset and adjust
5917 * the PPR options as appropriate.
5921 * A sync rate with unknown or zero offset is nonsensical.
5922 * A sync period of zero means Async.
5924 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0
5925 || spi->sync_offset == 0 || spi->sync_period == 0) {
5926 if (bootverbose) {
5927 xpt_print(periph->path, "no sync rate available\n");
5929 return (0);
5932 if (device->flags & CAM_DEV_DV_HIT_BOTTOM) {
5933 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5934 ("hit async: giving up on DV\n"));
5935 return (0);
5940 * Jump sync_period up by one, but stop at 5MHz and fall back to Async.
5941 * We don't try to remember 'last' settings to see if the SIM actually
5942 * gets into the speed we want to set. We check on the SIM telling
5943 * us that a requested speed is bad, but otherwise don't try and
5944 * check the speed due to the asynchronous and handshake nature
5945 * of speed setting.
5947 spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET;
5948 for (;;) {
5949 spi->sync_period++;
5950 if (spi->sync_period >= 0xf) {
5951 spi->sync_period = 0;
5952 spi->sync_offset = 0;
5953 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5954 ("setting to async for DV\n"));
5956 * Once we hit async, we don't want to try
5957 * any more settings.
5959 device->flags |= CAM_DEV_DV_HIT_BOTTOM;
5960 } else if (bootverbose) {
5961 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5962 ("DV: period 0x%x\n", spi->sync_period));
5963 kprintf("setting period to 0x%x\n", spi->sync_period);
5965 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5966 cts.type = CTS_TYPE_CURRENT_SETTINGS;
5967 xpt_action((union ccb *)&cts);
5968 if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5969 break;
5971 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5972 ("DV: failed to set period 0x%x\n", spi->sync_period));
5973 if (spi->sync_period == 0) {
5974 return (0);
5977 return (1);
5980 static void
5981 probedone(struct cam_periph *periph, union ccb *done_ccb)
5983 probe_softc *softc;
5984 struct cam_path *path;
5985 u_int32_t priority;
5987 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5989 softc = (probe_softc *)periph->softc;
5990 path = done_ccb->ccb_h.path;
5991 priority = done_ccb->ccb_h.pinfo.priority;
5993 switch (softc->action) {
5994 case PROBE_TUR:
5996 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5998 if (cam_periph_error(done_ccb, 0,
5999 SF_NO_PRINT, NULL) == ERESTART)
6000 return;
6001 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
6002 /* Don't wedge the queue */
6003 xpt_release_devq(done_ccb->ccb_h.path,
6004 /*count*/1,
6005 /*run_queue*/TRUE);
6007 softc->action = PROBE_INQUIRY;
6008 xpt_release_ccb(done_ccb);
6009 xpt_schedule(periph, priority);
6010 return;
6012 case PROBE_INQUIRY:
6013 case PROBE_FULL_INQUIRY:
6015 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6016 struct scsi_inquiry_data *inq_buf;
6017 u_int8_t periph_qual;
6019 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
6020 inq_buf = &path->device->inq_data;
6022 periph_qual = SID_QUAL(inq_buf);
6024 switch(periph_qual) {
6025 case SID_QUAL_LU_CONNECTED:
6027 u_int8_t len;
6030 * We conservatively request only
6031 * SHORT_INQUIRY_LEN bytes of inquiry
6032 * information during our first try
6033 * at sending an INQUIRY. If the device
6034 * has more information to give,
6035 * perform a second request specifying
6036 * the amount of information the device
6037 * is willing to give.
6039 len = inq_buf->additional_length
6040 + offsetof(struct scsi_inquiry_data,
6041 additional_length) + 1;
6042 if (softc->action == PROBE_INQUIRY
6043 && len > SHORT_INQUIRY_LENGTH) {
6044 softc->action = PROBE_FULL_INQUIRY;
6045 xpt_release_ccb(done_ccb);
6046 xpt_schedule(periph, priority);
6047 return;
6050 xpt_find_quirk(path->device);
6052 xpt_devise_transport(path);
6053 if (INQ_DATA_TQ_ENABLED(inq_buf))
6054 softc->action = PROBE_MODE_SENSE;
6055 else
6056 softc->action = PROBE_SERIAL_NUM_0;
6058 path->device->flags &= ~CAM_DEV_UNCONFIGURED;
6059 xpt_reference_device(path->device);
6061 xpt_release_ccb(done_ccb);
6062 xpt_schedule(periph, priority);
6063 return;
6065 default:
6066 break;
6068 } else if (cam_periph_error(done_ccb, 0,
6069 done_ccb->ccb_h.target_lun > 0
6070 ? SF_RETRY_UA|SF_QUIET_IR
6071 : SF_RETRY_UA,
6072 &softc->saved_ccb) == ERESTART) {
6073 return;
6074 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6075 /* Don't wedge the queue */
6076 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6077 /*run_queue*/TRUE);
6080 * If we get to this point, we got an error status back
6081 * from the inquiry and the error status doesn't require
6082 * automatically retrying the command. Therefore, the
6083 * inquiry failed. If we had inquiry information before
6084 * for this device, but this latest inquiry command failed,
6085 * the device has probably gone away. If this device isn't
6086 * already marked unconfigured, notify the peripheral
6087 * drivers that this device is no more.
6089 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
6090 /* Send the async notification. */
6091 xpt_async(AC_LOST_DEVICE, path, NULL);
6094 xpt_release_ccb(done_ccb);
6095 break;
6097 case PROBE_MODE_SENSE:
6099 struct ccb_scsiio *csio;
6100 struct scsi_mode_header_6 *mode_hdr;
6102 csio = &done_ccb->csio;
6103 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
6104 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6105 struct scsi_control_page *page;
6106 u_int8_t *offset;
6108 offset = ((u_int8_t *)&mode_hdr[1])
6109 + mode_hdr->blk_desc_len;
6110 page = (struct scsi_control_page *)offset;
6111 path->device->queue_flags = page->queue_flags;
6112 } else if (cam_periph_error(done_ccb, 0,
6113 SF_RETRY_UA|SF_NO_PRINT,
6114 &softc->saved_ccb) == ERESTART) {
6115 return;
6116 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6117 /* Don't wedge the queue */
6118 xpt_release_devq(done_ccb->ccb_h.path,
6119 /*count*/1, /*run_queue*/TRUE);
6121 xpt_release_ccb(done_ccb);
6122 kfree(mode_hdr, M_CAMXPT);
6123 softc->action = PROBE_SERIAL_NUM_0;
6124 xpt_schedule(periph, priority);
6125 return;
6127 case PROBE_SERIAL_NUM_0:
6129 struct ccb_scsiio *csio;
6130 struct scsi_vpd_supported_page_list *page_list;
6131 int length, serialnum_supported, i;
6133 serialnum_supported = 0;
6134 csio = &done_ccb->csio;
6135 page_list =
6136 (struct scsi_vpd_supported_page_list *)csio->data_ptr;
6138 if (page_list == NULL) {
6140 * Don't process the command as it was never sent
6142 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6143 && (page_list->length > 0)) {
6144 length = min(page_list->length,
6145 SVPD_SUPPORTED_PAGES_SIZE);
6146 for (i = 0; i < length; i++) {
6147 if (page_list->list[i] ==
6148 SVPD_UNIT_SERIAL_NUMBER) {
6149 serialnum_supported = 1;
6150 break;
6153 } else if (cam_periph_error(done_ccb, 0,
6154 SF_RETRY_UA|SF_NO_PRINT,
6155 &softc->saved_ccb) == ERESTART) {
6156 return;
6157 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6158 /* Don't wedge the queue */
6159 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6160 /*run_queue*/TRUE);
6163 if (page_list != NULL)
6164 kfree(page_list, M_DEVBUF);
6166 if (serialnum_supported) {
6167 xpt_release_ccb(done_ccb);
6168 softc->action = PROBE_SERIAL_NUM_1;
6169 xpt_schedule(periph, priority);
6170 return;
6172 xpt_release_ccb(done_ccb);
6173 softc->action = PROBE_TUR_FOR_NEGOTIATION;
6174 xpt_schedule(periph, done_ccb->ccb_h.pinfo.priority);
6175 return;
6178 case PROBE_SERIAL_NUM_1:
6180 struct ccb_scsiio *csio;
6181 struct scsi_vpd_unit_serial_number *serial_buf;
6182 u_int32_t priority;
6183 int changed;
6184 int have_serialnum;
6186 changed = 1;
6187 have_serialnum = 0;
6188 csio = &done_ccb->csio;
6189 priority = done_ccb->ccb_h.pinfo.priority;
6190 serial_buf =
6191 (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
6193 /* Clean up from previous instance of this device */
6194 if (path->device->serial_num != NULL) {
6195 kfree(path->device->serial_num, M_CAMXPT);
6196 path->device->serial_num = NULL;
6197 path->device->serial_num_len = 0;
6200 if (serial_buf == NULL) {
6202 * Don't process the command as it was never sent
6204 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6205 && (serial_buf->length > 0)) {
6207 have_serialnum = 1;
6208 path->device->serial_num =
6209 kmalloc((serial_buf->length + 1),
6210 M_CAMXPT, M_INTWAIT);
6211 bcopy(serial_buf->serial_num,
6212 path->device->serial_num,
6213 serial_buf->length);
6214 path->device->serial_num_len = serial_buf->length;
6215 path->device->serial_num[serial_buf->length] = '\0';
6216 } else if (cam_periph_error(done_ccb, 0,
6217 SF_RETRY_UA|SF_NO_PRINT,
6218 &softc->saved_ccb) == ERESTART) {
6219 return;
6220 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6221 /* Don't wedge the queue */
6222 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6223 /*run_queue*/TRUE);
6227 * Let's see if we have seen this device before.
6229 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
6230 MD5_CTX context;
6231 u_int8_t digest[16];
6233 MD5Init(&context);
6235 MD5Update(&context,
6236 (unsigned char *)&path->device->inq_data,
6237 sizeof(struct scsi_inquiry_data));
6239 if (have_serialnum)
6240 MD5Update(&context, serial_buf->serial_num,
6241 serial_buf->length);
6243 MD5Final(digest, &context);
6244 if (bcmp(softc->digest, digest, 16) == 0)
6245 changed = 0;
6248 * XXX Do we need to do a TUR in order to ensure
6249 * that the device really hasn't changed???
6251 if ((changed != 0)
6252 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
6253 xpt_async(AC_LOST_DEVICE, path, NULL);
6255 if (serial_buf != NULL)
6256 kfree(serial_buf, M_CAMXPT);
6258 if (changed != 0) {
6260 * Now that we have all the necessary
6261 * information to safely perform transfer
6262 * negotiations... Controllers don't perform
6263 * any negotiation or tagged queuing until
6264 * after the first XPT_SET_TRAN_SETTINGS ccb is
6265 * received. So, on a new device, just retrieve
6266 * the user settings, and set them as the current
6267 * settings to set the device up.
6269 proberequestdefaultnegotiation(periph);
6270 xpt_release_ccb(done_ccb);
6273 * Perform a TUR to allow the controller to
6274 * perform any necessary transfer negotiation.
6276 softc->action = PROBE_TUR_FOR_NEGOTIATION;
6277 xpt_schedule(periph, priority);
6278 return;
6280 xpt_release_ccb(done_ccb);
6281 break;
6283 case PROBE_TUR_FOR_NEGOTIATION:
6284 case PROBE_DV_EXIT:
6285 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6286 /* Don't wedge the queue */
6287 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6288 /*run_queue*/TRUE);
6291 xpt_reference_device(path->device);
6293 * Do Domain Validation for lun 0 on devices that claim
6294 * to support Synchronous Transfer modes.
6296 if (softc->action == PROBE_TUR_FOR_NEGOTIATION
6297 && done_ccb->ccb_h.target_lun == 0
6298 && (path->device->inq_data.flags & SID_Sync) != 0
6299 && (path->device->flags & CAM_DEV_IN_DV) == 0) {
6300 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6301 ("Begin Domain Validation\n"));
6302 path->device->flags |= CAM_DEV_IN_DV;
6303 xpt_release_ccb(done_ccb);
6304 softc->action = PROBE_INQUIRY_BASIC_DV1;
6305 xpt_schedule(periph, priority);
6306 return;
6308 if (softc->action == PROBE_DV_EXIT) {
6309 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6310 ("Leave Domain Validation\n"));
6312 path->device->flags &=
6313 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6314 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6315 /* Inform the XPT that a new device has been found */
6316 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6317 xpt_action(done_ccb);
6318 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6319 done_ccb);
6321 xpt_release_ccb(done_ccb);
6322 break;
6323 case PROBE_INQUIRY_BASIC_DV1:
6324 case PROBE_INQUIRY_BASIC_DV2:
6326 struct scsi_inquiry_data *nbuf;
6327 struct ccb_scsiio *csio;
6329 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6330 /* Don't wedge the queue */
6331 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6332 /*run_queue*/TRUE);
6334 csio = &done_ccb->csio;
6335 nbuf = (struct scsi_inquiry_data *)csio->data_ptr;
6336 if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) {
6337 xpt_print(path,
6338 "inquiry data fails comparison at DV%d step\n",
6339 softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2);
6340 if (proberequestbackoff(periph, path->device)) {
6341 path->device->flags &= ~CAM_DEV_IN_DV;
6342 softc->action = PROBE_TUR_FOR_NEGOTIATION;
6343 } else {
6344 /* give up */
6345 softc->action = PROBE_DV_EXIT;
6347 kfree(nbuf, M_CAMXPT);
6348 xpt_release_ccb(done_ccb);
6349 xpt_schedule(periph, priority);
6350 return;
6352 kfree(nbuf, M_CAMXPT);
6353 if (softc->action == PROBE_INQUIRY_BASIC_DV1) {
6354 softc->action = PROBE_INQUIRY_BASIC_DV2;
6355 xpt_release_ccb(done_ccb);
6356 xpt_schedule(periph, priority);
6357 return;
6359 if (softc->action == PROBE_DV_EXIT) {
6360 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6361 ("Leave Domain Validation Successfully\n"));
6363 path->device->flags &=
6364 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6365 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6366 /* Inform the XPT that a new device has been found */
6367 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6368 xpt_action(done_ccb);
6369 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6370 done_ccb);
6372 xpt_release_ccb(done_ccb);
6373 break;
6376 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
6377 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
6378 done_ccb->ccb_h.status = CAM_REQ_CMP;
6379 xpt_done(done_ccb);
6380 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
6381 cam_periph_invalidate(periph);
6382 cam_periph_release(periph);
6383 } else {
6384 probeschedule(periph);
6388 static void
6389 probecleanup(struct cam_periph *periph)
6391 kfree(periph->softc, M_CAMXPT);
6394 static void
6395 xpt_find_quirk(struct cam_ed *device)
6397 caddr_t match;
6399 match = cam_quirkmatch((caddr_t)&device->inq_data,
6400 (caddr_t)xpt_quirk_table,
6401 sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
6402 sizeof(*xpt_quirk_table), scsi_inquiry_match);
6404 if (match == NULL)
6405 panic("xpt_find_quirk: device didn't match wildcard entry!!");
6407 device->quirk = (struct xpt_quirk_entry *)match;
6410 static int
6411 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)
6413 int error, bool;
6415 bool = cam_srch_hi;
6416 error = sysctl_handle_int(oidp, &bool, 0, req);
6417 if (error != 0 || req->newptr == NULL)
6418 return (error);
6419 if (bool == 0 || bool == 1) {
6420 cam_srch_hi = bool;
6421 return (0);
6422 } else {
6423 return (EINVAL);
6427 static void
6428 xpt_devise_transport(struct cam_path *path)
6430 struct ccb_pathinq cpi;
6431 struct ccb_trans_settings cts;
6432 struct scsi_inquiry_data *inq_buf;
6434 /* Get transport information from the SIM */
6435 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
6436 cpi.ccb_h.func_code = XPT_PATH_INQ;
6437 xpt_action((union ccb *)&cpi);
6439 inq_buf = NULL;
6440 if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
6441 inq_buf = &path->device->inq_data;
6442 path->device->protocol = PROTO_SCSI;
6443 path->device->protocol_version =
6444 inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
6445 path->device->transport = cpi.transport;
6446 path->device->transport_version = cpi.transport_version;
6449 * Any device not using SPI3 features should
6450 * be considered SPI2 or lower.
6452 if (inq_buf != NULL) {
6453 if (path->device->transport == XPORT_SPI
6454 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6455 && path->device->transport_version > 2)
6456 path->device->transport_version = 2;
6457 } else {
6458 struct cam_ed* otherdev;
6460 for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6461 otherdev != NULL;
6462 otherdev = TAILQ_NEXT(otherdev, links)) {
6463 if (otherdev != path->device)
6464 break;
6467 if (otherdev != NULL) {
6469 * Initially assume the same versioning as
6470 * prior luns for this target.
6472 path->device->protocol_version =
6473 otherdev->protocol_version;
6474 path->device->transport_version =
6475 otherdev->transport_version;
6476 } else {
6477 /* Until we know better, opt for safty */
6478 path->device->protocol_version = 2;
6479 if (path->device->transport == XPORT_SPI)
6480 path->device->transport_version = 2;
6481 else
6482 path->device->transport_version = 0;
6487 * XXX
6488 * For a device compliant with SPC-2 we should be able
6489 * to determine the transport version supported by
6490 * scrutinizing the version descriptors in the
6491 * inquiry buffer.
6494 /* Tell the controller what we think */
6495 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
6496 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6497 cts.type = CTS_TYPE_CURRENT_SETTINGS;
6498 cts.transport = path->device->transport;
6499 cts.transport_version = path->device->transport_version;
6500 cts.protocol = path->device->protocol;
6501 cts.protocol_version = path->device->protocol_version;
6502 cts.proto_specific.valid = 0;
6503 cts.xport_specific.valid = 0;
6504 xpt_action((union ccb *)&cts);
6507 static void
6508 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6509 int async_update)
6511 struct ccb_pathinq cpi;
6512 struct ccb_trans_settings cur_cts;
6513 struct ccb_trans_settings_scsi *scsi;
6514 struct ccb_trans_settings_scsi *cur_scsi;
6515 struct cam_sim *sim;
6516 struct scsi_inquiry_data *inq_data;
6518 if (device == NULL) {
6519 cts->ccb_h.status = CAM_PATH_INVALID;
6520 xpt_done((union ccb *)cts);
6521 return;
6524 if (cts->protocol == PROTO_UNKNOWN
6525 || cts->protocol == PROTO_UNSPECIFIED) {
6526 cts->protocol = device->protocol;
6527 cts->protocol_version = device->protocol_version;
6530 if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6531 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6532 cts->protocol_version = device->protocol_version;
6534 if (cts->protocol != device->protocol) {
6535 xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n",
6536 cts->protocol, device->protocol);
6537 cts->protocol = device->protocol;
6540 if (cts->protocol_version > device->protocol_version) {
6541 if (bootverbose) {
6542 xpt_print(cts->ccb_h.path, "Down reving Protocol "
6543 "Version from %d to %d?\n", cts->protocol_version,
6544 device->protocol_version);
6546 cts->protocol_version = device->protocol_version;
6549 if (cts->transport == XPORT_UNKNOWN
6550 || cts->transport == XPORT_UNSPECIFIED) {
6551 cts->transport = device->transport;
6552 cts->transport_version = device->transport_version;
6555 if (cts->transport_version == XPORT_VERSION_UNKNOWN
6556 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6557 cts->transport_version = device->transport_version;
6559 if (cts->transport != device->transport) {
6560 xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n",
6561 cts->transport, device->transport);
6562 cts->transport = device->transport;
6565 if (cts->transport_version > device->transport_version) {
6566 if (bootverbose) {
6567 xpt_print(cts->ccb_h.path, "Down reving Transport "
6568 "Version from %d to %d?\n", cts->transport_version,
6569 device->transport_version);
6571 cts->transport_version = device->transport_version;
6574 sim = cts->ccb_h.path->bus->sim;
6577 * Nothing more of interest to do unless
6578 * this is a device connected via the
6579 * SCSI protocol.
6581 if (cts->protocol != PROTO_SCSI) {
6582 if (async_update == FALSE)
6583 (*(sim->sim_action))(sim, (union ccb *)cts);
6584 return;
6587 inq_data = &device->inq_data;
6588 scsi = &cts->proto_specific.scsi;
6589 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6590 cpi.ccb_h.func_code = XPT_PATH_INQ;
6591 xpt_action((union ccb *)&cpi);
6593 /* SCSI specific sanity checking */
6594 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6595 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0
6596 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6597 || (device->quirk->mintags == 0)) {
6599 * Can't tag on hardware that doesn't support tags,
6600 * doesn't have it enabled, or has broken tag support.
6602 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6605 if (async_update == FALSE) {
6607 * Perform sanity checking against what the
6608 * controller and device can do.
6610 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6611 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6612 cur_cts.type = cts->type;
6613 xpt_action((union ccb *)&cur_cts);
6614 if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6615 return;
6617 cur_scsi = &cur_cts.proto_specific.scsi;
6618 if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6619 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6620 scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6622 if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6623 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6626 /* SPI specific sanity checking */
6627 if (cts->transport == XPORT_SPI && async_update == FALSE) {
6628 u_int spi3caps;
6629 struct ccb_trans_settings_spi *spi;
6630 struct ccb_trans_settings_spi *cur_spi;
6632 spi = &cts->xport_specific.spi;
6634 cur_spi = &cur_cts.xport_specific.spi;
6636 /* Fill in any gaps in what the user gave us */
6637 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6638 spi->sync_period = cur_spi->sync_period;
6639 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6640 spi->sync_period = 0;
6641 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6642 spi->sync_offset = cur_spi->sync_offset;
6643 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6644 spi->sync_offset = 0;
6645 if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6646 spi->ppr_options = cur_spi->ppr_options;
6647 if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6648 spi->ppr_options = 0;
6649 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6650 spi->bus_width = cur_spi->bus_width;
6651 if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6652 spi->bus_width = 0;
6653 if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6654 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6655 spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6657 if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6658 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6659 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6660 && (inq_data->flags & SID_Sync) == 0
6661 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6662 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6663 || (spi->sync_offset == 0)
6664 || (spi->sync_period == 0)) {
6665 /* Force async */
6666 spi->sync_period = 0;
6667 spi->sync_offset = 0;
6670 switch (spi->bus_width) {
6671 case MSG_EXT_WDTR_BUS_32_BIT:
6672 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6673 || (inq_data->flags & SID_WBus32) != 0
6674 || cts->type == CTS_TYPE_USER_SETTINGS)
6675 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6676 break;
6677 /* Fall Through to 16-bit */
6678 case MSG_EXT_WDTR_BUS_16_BIT:
6679 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6680 || (inq_data->flags & SID_WBus16) != 0
6681 || cts->type == CTS_TYPE_USER_SETTINGS)
6682 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6683 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6684 break;
6686 /* Fall Through to 8-bit */
6687 default: /* New bus width?? */
6688 case MSG_EXT_WDTR_BUS_8_BIT:
6689 /* All targets can do this */
6690 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6691 break;
6694 spi3caps = cpi.xport_specific.spi.ppr_options;
6695 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6696 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6697 spi3caps &= inq_data->spi3data;
6699 if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6700 spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6702 if ((spi3caps & SID_SPI_IUS) == 0)
6703 spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6705 if ((spi3caps & SID_SPI_QAS) == 0)
6706 spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6708 /* No SPI Transfer settings are allowed unless we are wide */
6709 if (spi->bus_width == 0)
6710 spi->ppr_options = 0;
6712 if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) {
6714 * Can't tag queue without disconnection.
6716 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6717 scsi->valid |= CTS_SCSI_VALID_TQ;
6721 * If we are currently performing tagged transactions to
6722 * this device and want to change its negotiation parameters,
6723 * go non-tagged for a bit to give the controller a chance to
6724 * negotiate unhampered by tag messages.
6726 if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6727 && (device->inq_flags & SID_CmdQue) != 0
6728 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6729 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6730 CTS_SPI_VALID_SYNC_OFFSET|
6731 CTS_SPI_VALID_BUS_WIDTH)) != 0)
6732 xpt_toggle_tags(cts->ccb_h.path);
6735 if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6736 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6737 int device_tagenb;
6740 * If we are transitioning from tags to no-tags or
6741 * vice-versa, we need to carefully freeze and restart
6742 * the queue so that we don't overlap tagged and non-tagged
6743 * commands. We also temporarily stop tags if there is
6744 * a change in transfer negotiation settings to allow
6745 * "tag-less" negotiation.
6747 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6748 || (device->inq_flags & SID_CmdQue) != 0)
6749 device_tagenb = TRUE;
6750 else
6751 device_tagenb = FALSE;
6753 if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6754 && device_tagenb == FALSE)
6755 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6756 && device_tagenb == TRUE)) {
6758 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6760 * Delay change to use tags until after a
6761 * few commands have gone to this device so
6762 * the controller has time to perform transfer
6763 * negotiations without tagged messages getting
6764 * in the way.
6766 device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6767 device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6768 } else {
6769 struct ccb_relsim crs;
6771 xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6772 device->inq_flags &= ~SID_CmdQue;
6773 xpt_dev_ccbq_resize(cts->ccb_h.path,
6774 sim->max_dev_openings);
6775 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6776 device->tag_delay_count = 0;
6778 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6779 /*priority*/1);
6780 crs.ccb_h.func_code = XPT_REL_SIMQ;
6781 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6782 crs.openings
6783 = crs.release_timeout
6784 = crs.qfrozen_cnt
6785 = 0;
6786 xpt_action((union ccb *)&crs);
6790 if (async_update == FALSE)
6791 (*(sim->sim_action))(sim, (union ccb *)cts);
6794 static void
6795 xpt_toggle_tags(struct cam_path *path)
6797 struct cam_ed *dev;
6800 * Give controllers a chance to renegotiate
6801 * before starting tag operations. We
6802 * "toggle" tagged queuing off then on
6803 * which causes the tag enable command delay
6804 * counter to come into effect.
6806 dev = path->device;
6807 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6808 || ((dev->inq_flags & SID_CmdQue) != 0
6809 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6810 struct ccb_trans_settings cts;
6812 xpt_setup_ccb(&cts.ccb_h, path, 1);
6813 cts.protocol = PROTO_SCSI;
6814 cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6815 cts.transport = XPORT_UNSPECIFIED;
6816 cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6817 cts.proto_specific.scsi.flags = 0;
6818 cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6819 xpt_set_transfer_settings(&cts, path->device,
6820 /*async_update*/TRUE);
6821 cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6822 xpt_set_transfer_settings(&cts, path->device,
6823 /*async_update*/TRUE);
6827 static void
6828 xpt_start_tags(struct cam_path *path)
6830 struct ccb_relsim crs;
6831 struct cam_ed *device;
6832 struct cam_sim *sim;
6833 int newopenings;
6835 device = path->device;
6836 sim = path->bus->sim;
6837 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6838 xpt_freeze_devq(path, /*count*/1);
6839 device->inq_flags |= SID_CmdQue;
6840 if (device->tag_saved_openings != 0)
6841 newopenings = device->tag_saved_openings;
6842 else
6843 newopenings = min(device->quirk->maxtags,
6844 sim->max_tagged_dev_openings);
6845 xpt_dev_ccbq_resize(path, newopenings);
6846 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6847 crs.ccb_h.func_code = XPT_REL_SIMQ;
6848 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6849 crs.openings
6850 = crs.release_timeout
6851 = crs.qfrozen_cnt
6852 = 0;
6853 xpt_action((union ccb *)&crs);
6856 static int busses_to_config;
6857 static int busses_to_reset;
6859 static int
6860 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6863 sim_lock_assert_owned(bus->sim->lock);
6865 if (bus->path_id != CAM_XPT_PATH_ID) {
6866 struct cam_path path;
6867 struct ccb_pathinq cpi;
6868 int can_negotiate;
6870 busses_to_config++;
6871 xpt_compile_path(&path, NULL, bus->path_id,
6872 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6873 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6874 cpi.ccb_h.func_code = XPT_PATH_INQ;
6875 xpt_action((union ccb *)&cpi);
6876 can_negotiate = cpi.hba_inquiry;
6877 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6878 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
6879 && can_negotiate)
6880 busses_to_reset++;
6881 xpt_release_path(&path);
6884 return(1);
6887 static int
6888 xptconfigfunc(struct cam_eb *bus, void *arg)
6890 struct cam_path *path;
6891 union ccb *work_ccb;
6893 sim_lock_assert_owned(bus->sim->lock);
6895 if (bus->path_id != CAM_XPT_PATH_ID) {
6896 cam_status status;
6897 int can_negotiate;
6899 work_ccb = xpt_alloc_ccb();
6900 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6901 CAM_TARGET_WILDCARD,
6902 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6903 kprintf("xptconfigfunc: xpt_create_path failed with "
6904 "status %#x for bus %d\n", status, bus->path_id);
6905 kprintf("xptconfigfunc: halting bus configuration\n");
6906 xpt_free_ccb(work_ccb);
6907 busses_to_config--;
6908 xpt_finishconfig(xpt_periph, NULL);
6909 return(0);
6911 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6912 work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6913 xpt_action(work_ccb);
6914 if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6915 kprintf("xptconfigfunc: CPI failed on bus %d "
6916 "with status %d\n", bus->path_id,
6917 work_ccb->ccb_h.status);
6918 xpt_finishconfig(xpt_periph, work_ccb);
6919 return(1);
6922 can_negotiate = work_ccb->cpi.hba_inquiry;
6923 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6924 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6925 && (can_negotiate != 0)) {
6926 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6927 work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6928 work_ccb->ccb_h.cbfcnp = NULL;
6929 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6930 ("Resetting Bus\n"));
6931 xpt_action(work_ccb);
6932 xpt_finishconfig(xpt_periph, work_ccb);
6933 } else {
6934 /* Act as though we performed a successful BUS RESET */
6935 work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6936 xpt_finishconfig(xpt_periph, work_ccb);
6940 return(1);
6943 static void
6944 xpt_config(void *arg)
6947 * Now that interrupts are enabled, go find our devices
6950 #ifdef CAMDEBUG
6951 /* Setup debugging flags and path */
6952 #ifdef CAM_DEBUG_FLAGS
6953 cam_dflags = CAM_DEBUG_FLAGS;
6954 #else /* !CAM_DEBUG_FLAGS */
6955 cam_dflags = CAM_DEBUG_NONE;
6956 #endif /* CAM_DEBUG_FLAGS */
6957 #ifdef CAM_DEBUG_BUS
6958 if (cam_dflags != CAM_DEBUG_NONE) {
6960 * Locking is specifically omitted here. No SIMs have
6961 * registered yet, so xpt_create_path will only be searching
6962 * empty lists of targets and devices.
6964 if (xpt_create_path(&cam_dpath, xpt_periph,
6965 CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6966 CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6967 kprintf("xpt_config: xpt_create_path() failed for debug"
6968 " target %d:%d:%d, debugging disabled\n",
6969 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6970 cam_dflags = CAM_DEBUG_NONE;
6972 } else
6973 cam_dpath = NULL;
6974 #else /* !CAM_DEBUG_BUS */
6975 cam_dpath = NULL;
6976 #endif /* CAM_DEBUG_BUS */
6977 #endif /* CAMDEBUG */
6980 * Scan all installed busses.
6982 xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6984 if (busses_to_config == 0) {
6985 /* Call manually because we don't have any busses */
6986 xpt_finishconfig(xpt_periph, NULL);
6987 } else {
6988 if (busses_to_reset > 0 && scsi_delay >= 2000) {
6989 kprintf("Waiting %d seconds for SCSI "
6990 "devices to settle\n", scsi_delay/1000);
6992 xpt_for_all_busses(xptconfigfunc, NULL);
6997 * If the given device only has one peripheral attached to it, and if that
6998 * peripheral is the passthrough driver, announce it. This insures that the
6999 * user sees some sort of announcement for every peripheral in their system.
7001 static int
7002 xptpassannouncefunc(struct cam_ed *device, void *arg)
7004 struct cam_periph *periph;
7005 int i;
7007 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
7008 periph = SLIST_NEXT(periph, periph_links), i++);
7010 periph = SLIST_FIRST(&device->periphs);
7011 if ((i == 1)
7012 && (strncmp(periph->periph_name, "pass", 4) == 0))
7013 xpt_announce_periph(periph, NULL);
7015 return(1);
7018 static void
7019 xpt_finishconfig_task(void *context, int pending)
7021 struct periph_driver **p_drv;
7022 int i;
7024 if (busses_to_config == 0) {
7025 /* Register all the peripheral drivers */
7026 /* XXX This will have to change when we have loadable modules */
7027 p_drv = periph_drivers;
7028 for (i = 0; p_drv[i] != NULL; i++) {
7029 (*p_drv[i]->init)();
7033 * Check for devices with no "standard" peripheral driver
7034 * attached. For any devices like that, announce the
7035 * passthrough driver so the user will see something.
7037 xpt_for_all_devices(xptpassannouncefunc, NULL);
7039 /* Release our hook so that the boot can continue. */
7040 config_intrhook_disestablish(xsoftc.xpt_config_hook);
7041 kfree(xsoftc.xpt_config_hook, M_CAMXPT);
7042 xsoftc.xpt_config_hook = NULL;
7045 kfree(context, M_CAMXPT);
7048 static void
7049 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
7051 struct xpt_task *task;
7053 if (done_ccb != NULL) {
7054 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
7055 ("xpt_finishconfig\n"));
7056 switch(done_ccb->ccb_h.func_code) {
7057 case XPT_RESET_BUS:
7058 if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
7059 done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
7060 done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
7061 done_ccb->crcn.flags = 0;
7062 xpt_action(done_ccb);
7063 return;
7065 /* FALLTHROUGH */
7066 case XPT_SCAN_BUS:
7067 default:
7068 xpt_free_path(done_ccb->ccb_h.path);
7069 busses_to_config--;
7070 break;
7074 if (busses_to_config == 0) {
7075 task = kmalloc(sizeof(struct xpt_task), M_CAMXPT, M_INTWAIT);
7076 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
7077 taskqueue_enqueue(taskqueue_thread[mycpuid], &task->task);
7080 if (done_ccb != NULL)
7081 xpt_free_ccb(done_ccb);
7084 cam_status
7085 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
7086 struct cam_path *path)
7088 struct ccb_setasync csa;
7089 cam_status status;
7090 int xptpath = 0;
7092 if (path == NULL) {
7093 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7094 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
7095 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
7096 if (status != CAM_REQ_CMP) {
7097 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7098 return (status);
7100 xptpath = 1;
7103 xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
7104 csa.ccb_h.func_code = XPT_SASYNC_CB;
7105 csa.event_enable = event;
7106 csa.callback = cbfunc;
7107 csa.callback_arg = cbarg;
7108 xpt_action((union ccb *)&csa);
7109 status = csa.ccb_h.status;
7110 if (xptpath) {
7111 xpt_free_path(path);
7112 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7114 return (status);
7117 static void
7118 xptaction(struct cam_sim *sim, union ccb *work_ccb)
7120 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
7122 switch (work_ccb->ccb_h.func_code) {
7123 /* Common cases first */
7124 case XPT_PATH_INQ: /* Path routing inquiry */
7126 struct ccb_pathinq *cpi;
7128 cpi = &work_ccb->cpi;
7129 cpi->version_num = 1; /* XXX??? */
7130 cpi->hba_inquiry = 0;
7131 cpi->target_sprt = 0;
7132 cpi->hba_misc = 0;
7133 cpi->hba_eng_cnt = 0;
7134 cpi->max_target = 0;
7135 cpi->max_lun = 0;
7136 cpi->initiator_id = 0;
7137 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
7138 strncpy(cpi->hba_vid, "", HBA_IDLEN);
7139 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
7140 cpi->unit_number = sim->unit_number;
7141 cpi->bus_id = sim->bus_id;
7142 cpi->base_transfer_speed = 0;
7143 cpi->protocol = PROTO_UNSPECIFIED;
7144 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
7145 cpi->transport = XPORT_UNSPECIFIED;
7146 cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
7147 cpi->ccb_h.status = CAM_REQ_CMP;
7148 xpt_done(work_ccb);
7149 break;
7151 default:
7152 work_ccb->ccb_h.status = CAM_REQ_INVALID;
7153 xpt_done(work_ccb);
7154 break;
7159 * The xpt as a "controller" has no interrupt sources, so polling
7160 * is a no-op.
7162 static void
7163 xptpoll(struct cam_sim *sim)
7167 void
7168 xpt_lock_buses(void)
7170 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
7173 void
7174 xpt_unlock_buses(void)
7176 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
7181 * Should only be called by the machine interrupt dispatch routines,
7182 * so put these prototypes here instead of in the header.
7185 static void
7186 swi_cambio(void *arg, void *frame)
7188 camisr(NULL);
7191 static void
7192 camisr(void *dummy)
7194 cam_simq_t queue;
7195 struct cam_sim *sim;
7197 spin_lock_wr(&cam_simq_spin);
7198 TAILQ_INIT(&queue);
7199 TAILQ_CONCAT(&queue, &cam_simq, links);
7200 spin_unlock_wr(&cam_simq_spin);
7202 while ((sim = TAILQ_FIRST(&queue)) != NULL) {
7203 TAILQ_REMOVE(&queue, sim, links);
7204 CAM_SIM_LOCK(sim);
7205 sim->flags &= ~CAM_SIM_ON_DONEQ;
7206 camisr_runqueue(sim);
7207 CAM_SIM_UNLOCK(sim);
7211 static void
7212 camisr_runqueue(struct cam_sim *sim)
7214 struct ccb_hdr *ccb_h;
7215 int runq;
7217 spin_lock_wr(&sim->sim_spin);
7218 while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) {
7219 TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe);
7220 spin_unlock_wr(&sim->sim_spin);
7221 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
7223 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
7224 ("camisr\n"));
7226 runq = FALSE;
7228 if (ccb_h->flags & CAM_HIGH_POWER) {
7229 struct highpowerlist *hphead;
7230 struct cam_ed *device;
7231 union ccb *send_ccb;
7233 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7234 hphead = &xsoftc.highpowerq;
7236 send_ccb = (union ccb *)STAILQ_FIRST(hphead);
7239 * Increment the count since this command is done.
7241 xsoftc.num_highpower++;
7244 * Any high powered commands queued up?
7246 if (send_ccb != NULL) {
7247 device = send_ccb->ccb_h.path->device;
7249 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
7250 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7252 xpt_release_devq(send_ccb->ccb_h.path,
7253 /*count*/1, /*runqueue*/TRUE);
7254 } else
7255 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7258 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
7259 struct cam_ed *dev;
7261 dev = ccb_h->path->device;
7263 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
7266 * devq may be NULL if this is cam_dead_sim
7268 if (ccb_h->path->bus->sim->devq) {
7269 ccb_h->path->bus->sim->devq->send_active--;
7270 ccb_h->path->bus->sim->devq->send_openings++;
7273 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
7274 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
7275 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
7276 && (dev->ccbq.dev_active == 0))) {
7278 xpt_release_devq(ccb_h->path, /*count*/1,
7279 /*run_queue*/TRUE);
7282 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
7283 && (--dev->tag_delay_count == 0))
7284 xpt_start_tags(ccb_h->path);
7286 if ((dev->ccbq.queue.entries > 0)
7287 && (dev->qfrozen_cnt == 0)
7288 && (device_is_send_queued(dev) == 0)) {
7289 runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
7290 dev);
7294 if (ccb_h->status & CAM_RELEASE_SIMQ) {
7295 xpt_release_simq(ccb_h->path->bus->sim,
7296 /*run_queue*/TRUE);
7297 ccb_h->status &= ~CAM_RELEASE_SIMQ;
7298 runq = FALSE;
7301 if ((ccb_h->flags & CAM_DEV_QFRZDIS)
7302 && (ccb_h->status & CAM_DEV_QFRZN)) {
7303 xpt_release_devq(ccb_h->path, /*count*/1,
7304 /*run_queue*/TRUE);
7305 ccb_h->status &= ~CAM_DEV_QFRZN;
7306 } else if (runq) {
7307 xpt_run_dev_sendq(ccb_h->path->bus);
7310 /* Call the peripheral driver's callback */
7311 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
7312 spin_lock_wr(&sim->sim_spin);
7314 spin_unlock_wr(&sim->sim_spin);
7318 * The dead_sim isn't completely hooked into CAM, we have to make sure
7319 * the doneq is cleared after calling xpt_done() so cam_periph_ccbwait()
7320 * doesn't block.
7322 static void
7323 dead_sim_action(struct cam_sim *sim, union ccb *ccb)
7326 ccb->ccb_h.status = CAM_DEV_NOT_THERE;
7327 xpt_done(ccb);
7328 camisr_runqueue(sim);
7331 static void
7332 dead_sim_poll(struct cam_sim *sim)