Sync with FreeBSD (adds reload).
[dragonfly.git] / sbin / newfs / mkfs.c
blobbb80bdc74ea63e51c5832df398ce1099a9b11db5
1 /*
2 * Copyright (c) 1980, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * @(#)mkfs.c 8.11 (Berkeley) 5/3/95
34 * $FreeBSD: src/sbin/newfs/mkfs.c,v 1.29.2.6 2001/09/21 19:15:21 dillon Exp $
35 * $DragonFly: src/sbin/newfs/mkfs.c,v 1.14 2007/05/20 19:29:21 dillon Exp $
38 #include "defs.h"
40 #ifndef STANDALONE
41 #include <stdlib.h>
42 #else
44 extern int atoi(char *);
45 extern char * getenv(char *);
47 #ifdef FSIRAND
48 extern long random(void);
49 extern void srandomdev(void);
50 #endif
52 #endif /* STANDALONE */
55 * make file system for cylinder-group style file systems
59 * We limit the size of the inode map to be no more than a
60 * third of the cylinder group space, since we must leave at
61 * least an equal amount of space for the block map.
63 * N.B.: MAXIPG must be a multiple of INOPB(fs).
65 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
67 #define UMASK 0755
68 #define MAXINOPB (MAXBSIZE / sizeof(struct ufs1_dinode))
69 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
72 * variables set up by front end.
74 extern int mfs; /* run as the memory based filesystem */
75 extern char *mfs_mtpt; /* mount point for mfs */
76 extern struct stat mfs_mtstat; /* stat prior to mount */
77 extern int Nflag; /* run mkfs without writing file system */
78 extern int Oflag; /* format as an 4.3BSD file system */
79 extern int Uflag; /* enable soft updates for file system */
80 extern int fssize; /* file system size */
81 extern int ntracks; /* # tracks/cylinder */
82 extern int nsectors; /* # sectors/track */
83 extern int nphyssectors; /* # sectors/track including spares */
84 extern int secpercyl; /* sectors per cylinder */
85 extern int sectorsize; /* bytes/sector */
86 extern int realsectorsize; /* bytes/sector in hardware*/
87 extern int rpm; /* revolutions/minute of drive */
88 extern int interleave; /* hardware sector interleave */
89 extern int trackskew; /* sector 0 skew, per track */
90 extern int fsize; /* fragment size */
91 extern int bsize; /* block size */
92 extern int cpg; /* cylinders/cylinder group */
93 extern int cpgflg; /* cylinders/cylinder group flag was given */
94 extern int minfree; /* free space threshold */
95 extern int opt; /* optimization preference (space or time) */
96 extern int density; /* number of bytes per inode */
97 extern int maxcontig; /* max contiguous blocks to allocate */
98 extern int rotdelay; /* rotational delay between blocks */
99 extern int maxbpg; /* maximum blocks per file in a cyl group */
100 extern int nrpos; /* # of distinguished rotational positions */
101 extern int bbsize; /* boot block size */
102 extern int sbsize; /* superblock size */
103 extern int avgfilesize; /* expected average file size */
104 extern int avgfilesperdir; /* expected number of files per directory */
105 extern u_long memleft; /* virtual memory available */
106 extern caddr_t membase; /* start address of memory based filesystem */
107 extern char * filename;
108 extern struct disktab geom;
110 extern void fatal(const char *fmt, ...);
112 union {
113 struct fs fs;
114 char pad[SBSIZE];
115 } fsun;
116 #define sblock fsun.fs
117 struct csum *fscs;
119 union {
120 struct cg cg;
121 char pad[MAXBSIZE];
122 } cgun;
123 #define acg cgun.cg
125 struct ufs1_dinode zino[MAXBSIZE / sizeof(struct ufs1_dinode)];
127 int fsi, fso;
128 static fsnode_t copyroot;
129 static fsnode_t copyhlinks;
130 #ifdef FSIRAND
131 int randinit;
132 #endif
133 daddr_t alloc(int, int);
134 long calcipg(long, long, off_t *);
135 static int charsperline(void);
136 void clrblock(struct fs *, unsigned char *, int);
137 void fsinit(time_t);
138 void initcg(int, time_t);
139 int isblock(struct fs *, unsigned char *, int);
140 void iput(struct ufs1_dinode *, ino_t);
141 int makedir(struct direct *, int);
142 void parentready(int);
143 void rdfs(daddr_t, int, char *);
144 void setblock(struct fs *, unsigned char *, int);
145 void started(int);
146 void wtfs(daddr_t, int, char *);
147 void wtfsflush(void);
149 #ifndef STANDALONE
150 void get_memleft(void);
151 void raise_data_limit(void);
152 #else
153 void free(char *);
154 char * calloc(u_long, u_long);
155 caddr_t malloc(u_long);
156 caddr_t realloc(char *, u_long);
157 #endif
159 int mfs_ppid = 0;
160 int parentready_signalled;
162 void
163 mkfs(char *fsys, int fi, int fo, const char *mfscopy)
165 long i, mincpc, mincpg, inospercg;
166 long cylno, rpos, blk, j, emitwarn = 0;
167 long used, mincpgcnt, bpcg;
168 off_t usedb;
169 long mapcramped, inodecramped;
170 long postblsize, rotblsize, totalsbsize;
171 int status, fd;
172 time_t utime;
173 quad_t sizepb;
174 int width;
175 char tmpbuf[100]; /* XXX this will break in about 2,500 years */
177 #ifndef STANDALONE
178 time(&utime);
179 #endif
180 #ifdef FSIRAND
181 if (!randinit) {
182 randinit = 1;
183 srandomdev();
185 #endif
186 if (mfs) {
187 int omask;
188 pid_t child;
190 mfs_ppid = getpid();
191 signal(SIGUSR1, parentready);
192 if ((child = fork()) != 0) {
193 if (child == -1)
194 err(10, "mfs");
195 if (mfscopy)
196 copyroot = FSCopy(&copyhlinks, mfscopy);
197 signal(SIGUSR1, started);
198 kill(child, SIGUSR1);
199 if (waitpid(child, &status, 0) != -1 && WIFEXITED(status))
200 exit(WEXITSTATUS(status));
201 exit(11);
202 /* NOTREACHED */
204 omask = sigblock(1 << SIGUSR1);
205 while (parentready_signalled == 0)
206 sigpause(1 << SIGUSR1);
207 sigblock(omask);
208 #ifdef STANDALONE
209 malloc(0);
210 #else
211 raise_data_limit();
212 #endif
213 if (filename != NULL) {
214 unsigned char buf[BUFSIZ];
215 unsigned long l, l1;
216 ssize_t w;
218 fd = open(filename, O_RDWR|O_TRUNC|O_CREAT, 0644);
219 if(fd < 0)
220 err(12, "%s", filename);
221 l1 = fssize * sectorsize;
222 if (l1 > BUFSIZ)
223 l1 = BUFSIZ;
224 for (l = 0; l < (u_long)fssize * (u_long)sectorsize; l += l1) {
225 w = write(fd, buf, l1);
226 if (w < 0 || (u_long)w != l1)
227 err(12, "%s", filename);
229 membase = mmap(
231 fssize * sectorsize,
232 PROT_READ|PROT_WRITE,
233 MAP_SHARED,
236 if(membase == MAP_FAILED)
237 err(12, "mmap");
238 close(fd);
239 } else {
240 #ifndef STANDALONE
241 get_memleft();
242 #endif
243 if ((u_long)fssize * (u_long)sectorsize >
244 (memleft - 131072))
245 fssize = (memleft - 131072) / sectorsize;
246 if ((membase = malloc(fssize * sectorsize)) == NULL)
247 errx(13, "malloc failed");
250 fsi = fi;
251 fso = fo;
252 if (Oflag) {
253 sblock.fs_inodefmt = FS_42INODEFMT;
254 sblock.fs_maxsymlinklen = 0;
255 } else {
256 sblock.fs_inodefmt = FS_44INODEFMT;
257 sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
259 if (Uflag)
260 sblock.fs_flags |= FS_DOSOFTDEP;
262 * Validate the given file system size.
263 * Verify that its last block can actually be accessed.
265 if (fssize <= 0)
266 printf("preposterous size %d\n", fssize), exit(13);
267 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
268 (char *)&sblock);
270 * collect and verify the sector and track info
272 sblock.fs_nsect = nsectors;
273 sblock.fs_ntrak = ntracks;
274 if (sblock.fs_ntrak <= 0)
275 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
276 if (sblock.fs_nsect <= 0)
277 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
279 * collect and verify the filesystem density info
281 sblock.fs_avgfilesize = avgfilesize;
282 sblock.fs_avgfpdir = avgfilesperdir;
283 if (sblock.fs_avgfilesize <= 0)
284 printf("illegal expected average file size %d\n",
285 sblock.fs_avgfilesize), exit(14);
286 if (sblock.fs_avgfpdir <= 0)
287 printf("illegal expected number of files per directory %d\n",
288 sblock.fs_avgfpdir), exit(15);
290 * collect and verify the block and fragment sizes
292 sblock.fs_bsize = bsize;
293 sblock.fs_fsize = fsize;
294 if (!POWEROF2(sblock.fs_bsize)) {
295 printf("block size must be a power of 2, not %d\n",
296 sblock.fs_bsize);
297 exit(16);
299 if (!POWEROF2(sblock.fs_fsize)) {
300 printf("fragment size must be a power of 2, not %d\n",
301 sblock.fs_fsize);
302 exit(17);
304 if (sblock.fs_fsize < sectorsize) {
305 printf("fragment size %d is too small, minimum is %d\n",
306 sblock.fs_fsize, sectorsize);
307 exit(18);
309 if (sblock.fs_bsize < MINBSIZE) {
310 printf("block size %d is too small, minimum is %d\n",
311 sblock.fs_bsize, MINBSIZE);
312 exit(19);
314 if (sblock.fs_bsize < sblock.fs_fsize) {
315 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
316 sblock.fs_bsize, sblock.fs_fsize);
317 exit(20);
319 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
320 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
321 sblock.fs_qbmask = ~sblock.fs_bmask;
322 sblock.fs_qfmask = ~sblock.fs_fmask;
323 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
324 sblock.fs_bshift++;
325 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
326 sblock.fs_fshift++;
327 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
328 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
329 sblock.fs_fragshift++;
330 if (sblock.fs_frag > MAXFRAG) {
331 printf("fragment size %d is too small, minimum with block size %d is %d\n",
332 sblock.fs_fsize, sblock.fs_bsize,
333 sblock.fs_bsize / MAXFRAG);
334 exit(21);
336 sblock.fs_nrpos = nrpos;
337 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
338 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
339 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
340 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
341 sblock.fs_fsbtodb++;
342 sblock.fs_sblkno =
343 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
344 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
345 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
346 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
347 sblock.fs_cgoffset = roundup(
348 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
349 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
350 sblock.fs_cgmask <<= 1;
351 if (!POWEROF2(sblock.fs_ntrak))
352 sblock.fs_cgmask <<= 1;
353 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
354 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
355 sizepb *= NINDIR(&sblock);
356 sblock.fs_maxfilesize += sizepb;
359 * Validate specified/determined secpercyl
360 * and calculate minimum cylinders per group.
362 sblock.fs_spc = secpercyl;
363 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
364 sblock.fs_cpc > 1 && (i & 1) == 0;
365 sblock.fs_cpc >>= 1, i >>= 1)
366 /* void */;
367 mincpc = sblock.fs_cpc;
368 bpcg = sblock.fs_spc * sectorsize;
369 inospercg = roundup(bpcg / sizeof(struct ufs1_dinode), INOPB(&sblock));
370 if (inospercg > MAXIPG(&sblock))
371 inospercg = MAXIPG(&sblock);
372 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
373 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
374 sblock.fs_spc);
375 mincpg = roundup(mincpgcnt, mincpc);
377 * Ensure that cylinder group with mincpg has enough space
378 * for block maps.
380 sblock.fs_cpg = mincpg;
381 sblock.fs_ipg = inospercg;
382 if (maxcontig > 1)
383 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
384 mapcramped = 0;
385 while (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
386 mapcramped = 1;
387 if (sblock.fs_bsize < MAXBSIZE) {
388 sblock.fs_bsize <<= 1;
389 if ((i & 1) == 0) {
390 i >>= 1;
391 } else {
392 sblock.fs_cpc <<= 1;
393 mincpc <<= 1;
394 mincpg = roundup(mincpgcnt, mincpc);
395 sblock.fs_cpg = mincpg;
397 sblock.fs_frag <<= 1;
398 sblock.fs_fragshift += 1;
399 if (sblock.fs_frag <= MAXFRAG)
400 continue;
402 if (sblock.fs_fsize == sblock.fs_bsize) {
403 printf("There is no block size that");
404 printf(" can support this disk\n");
405 exit(22);
407 sblock.fs_frag >>= 1;
408 sblock.fs_fragshift -= 1;
409 sblock.fs_fsize <<= 1;
410 sblock.fs_nspf <<= 1;
413 * Ensure that cylinder group with mincpg has enough space for inodes.
415 inodecramped = 0;
416 inospercg = calcipg(mincpg, bpcg, &usedb);
417 sblock.fs_ipg = inospercg;
418 while (inospercg > MAXIPG(&sblock)) {
419 inodecramped = 1;
420 if (mincpc == 1 || sblock.fs_frag == 1 ||
421 sblock.fs_bsize == MINBSIZE)
422 break;
423 printf("With a block size of %d %s %d\n", sblock.fs_bsize,
424 "minimum bytes per inode is",
425 (int)((mincpg * (off_t)bpcg - usedb)
426 / MAXIPG(&sblock) + 1));
427 sblock.fs_bsize >>= 1;
428 sblock.fs_frag >>= 1;
429 sblock.fs_fragshift -= 1;
430 mincpc >>= 1;
431 sblock.fs_cpg = roundup(mincpgcnt, mincpc);
432 if (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
433 sblock.fs_bsize <<= 1;
434 break;
436 mincpg = sblock.fs_cpg;
437 inospercg = calcipg(mincpg, bpcg, &usedb);
438 sblock.fs_ipg = inospercg;
440 if (inodecramped) {
441 if (inospercg > MAXIPG(&sblock)) {
442 printf("Minimum bytes per inode is %d\n",
443 (int)((mincpg * (off_t)bpcg - usedb)
444 / MAXIPG(&sblock) + 1));
445 } else if (!mapcramped) {
446 printf("With %d bytes per inode, ", density);
447 printf("minimum cylinders per group is %ld\n", mincpg);
450 if (mapcramped) {
451 printf("With %d sectors per cylinder, ", sblock.fs_spc);
452 printf("minimum cylinders per group is %ld\n", mincpg);
454 if (inodecramped || mapcramped) {
455 if (sblock.fs_bsize != bsize)
456 printf("%s to be changed from %d to %d\n",
457 "This requires the block size",
458 bsize, sblock.fs_bsize);
459 if (sblock.fs_fsize != fsize)
460 printf("\t%s to be changed from %d to %d\n",
461 "and the fragment size",
462 fsize, sblock.fs_fsize);
463 exit(23);
466 * Calculate the number of cylinders per group
468 sblock.fs_cpg = cpg;
469 if (sblock.fs_cpg % mincpc != 0) {
470 printf("%s groups must have a multiple of %ld cylinders\n",
471 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
472 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
473 if (!cpgflg)
474 cpg = sblock.fs_cpg;
477 * Must ensure there is enough space for inodes.
479 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
480 while (sblock.fs_ipg > MAXIPG(&sblock)) {
481 inodecramped = 1;
482 sblock.fs_cpg -= mincpc;
483 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
486 * Must ensure there is enough space to hold block map.
488 while (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
489 mapcramped = 1;
490 sblock.fs_cpg -= mincpc;
491 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
493 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
494 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
495 printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
496 exit(24);
498 if (sblock.fs_cpg < mincpg) {
499 printf("cylinder groups must have at least %ld cylinders\n",
500 mincpg);
501 exit(25);
502 } else if (sblock.fs_cpg != cpg) {
503 if (!cpgflg && !mfs)
504 printf("Warning: ");
505 else if (!mapcramped && !inodecramped)
506 exit(26);
507 if (!mfs) {
508 if (mapcramped && inodecramped)
509 printf("Block size and bytes per inode restrict");
510 else if (mapcramped)
511 printf("Block size restricts");
512 else
513 printf("Bytes per inode restrict");
514 printf(" cylinders per group to %d.\n", sblock.fs_cpg);
516 if (cpgflg)
517 exit(27);
519 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
521 * Now have size for file system and nsect and ntrak.
522 * Determine number of cylinders and blocks in the file system.
524 sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
525 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
526 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
527 sblock.fs_ncyl++;
528 emitwarn = 1;
530 if (sblock.fs_ncyl < 1) {
531 printf("file systems must have at least one cylinder\n");
532 exit(28);
535 * Determine feasability/values of rotational layout tables.
537 * The size of the rotational layout tables is limited by the
538 * size of the superblock, SBSIZE. The amount of space available
539 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
540 * The size of these tables is inversely proportional to the block
541 * size of the file system. The size increases if sectors per track
542 * are not powers of two, because more cylinders must be described
543 * by the tables before the rotational pattern repeats (fs_cpc).
545 sblock.fs_interleave = interleave;
546 sblock.fs_trackskew = trackskew;
547 sblock.fs_npsect = nphyssectors;
548 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
549 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
550 if (sblock.fs_sbsize > SBSIZE)
551 sblock.fs_sbsize = SBSIZE;
552 if (sblock.fs_ntrak == 1) {
553 sblock.fs_cpc = 0;
554 goto next;
556 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
557 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
558 totalsbsize = sizeof(struct fs) + rotblsize;
559 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
560 /* use old static table space */
561 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
562 (char *)(&sblock.fs_firstfield);
563 sblock.fs_rotbloff = &sblock.fs_space[0] -
564 (u_char *)(&sblock.fs_firstfield);
565 } else {
566 /* use dynamic table space */
567 sblock.fs_postbloff = &sblock.fs_space[0] -
568 (u_char *)(&sblock.fs_firstfield);
569 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
570 totalsbsize += postblsize;
572 if (totalsbsize > SBSIZE ||
573 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
574 printf("%s %s %d %s %d.%s",
575 "Warning: insufficient space in super block for\n",
576 "rotational layout tables with nsect", sblock.fs_nsect,
577 "and ntrak", sblock.fs_ntrak,
578 "\nFile system performance may be impaired.\n");
579 sblock.fs_cpc = 0;
580 goto next;
582 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
583 if (sblock.fs_sbsize > SBSIZE)
584 sblock.fs_sbsize = SBSIZE;
586 * calculate the available blocks for each rotational position
588 for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
589 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
590 fs_postbl(&sblock, cylno)[rpos] = -1;
591 for (i = (rotblsize - 1) * sblock.fs_frag;
592 i >= 0; i -= sblock.fs_frag) {
593 cylno = cbtocylno(&sblock, i);
594 rpos = cbtorpos(&sblock, i);
595 blk = fragstoblks(&sblock, i);
596 if (fs_postbl(&sblock, cylno)[rpos] == -1)
597 fs_rotbl(&sblock)[blk] = 0;
598 else
599 fs_rotbl(&sblock)[blk] =
600 fs_postbl(&sblock, cylno)[rpos] - blk;
601 fs_postbl(&sblock, cylno)[rpos] = blk;
603 next:
605 * Compute/validate number of cylinder groups.
607 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
608 if (sblock.fs_ncyl % sblock.fs_cpg)
609 sblock.fs_ncg++;
610 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
611 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
612 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
613 printf("inode blocks/cyl group (%ld) >= data blocks (%ld)\n",
614 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
615 (long)(sblock.fs_fpg / sblock.fs_frag));
616 printf("number of cylinders per cylinder group (%d) %s.\n",
617 sblock.fs_cpg, "must be increased");
618 exit(29);
620 j = sblock.fs_ncg - 1;
621 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
622 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
623 if (j == 0) {
624 printf("Filesystem must have at least %d sectors\n",
625 NSPF(&sblock) *
626 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
627 exit(30);
629 printf(
630 "Warning: inode blocks/cyl group (%ld) >= data blocks (%ld) in last\n",
631 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
632 i / sblock.fs_frag);
633 printf(
634 " cylinder group. This implies %ld sector(s) cannot be allocated.\n",
635 i * NSPF(&sblock));
636 sblock.fs_ncg--;
637 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
638 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
639 NSPF(&sblock);
640 emitwarn = 0;
642 if (emitwarn && !mfs) {
643 printf("Warning: %d sector(s) in last cylinder unallocated\n",
644 sblock.fs_spc -
645 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
646 * sblock.fs_spc));
649 * fill in remaining fields of the super block
651 sblock.fs_csaddr = cgdmin(&sblock, 0);
652 sblock.fs_cssize =
653 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
655 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
656 * longer used. However, we still initialise them so that the
657 * filesystem remains compatible with old kernels.
659 i = sblock.fs_bsize / sizeof(struct csum);
660 sblock.fs_csmask = ~(i - 1);
661 for (sblock.fs_csshift = 0; i > 1; i >>= 1)
662 sblock.fs_csshift++;
663 fscs = (struct csum *)calloc(1, sblock.fs_cssize);
664 if (fscs == NULL)
665 errx(31, "calloc failed");
666 sblock.fs_magic = FS_MAGIC;
667 sblock.fs_rotdelay = rotdelay;
668 sblock.fs_minfree = minfree;
669 sblock.fs_maxcontig = maxcontig;
670 sblock.fs_maxbpg = maxbpg;
671 sblock.fs_rps = rpm / 60;
672 sblock.fs_optim = opt;
673 sblock.fs_cgrotor = 0;
674 sblock.fs_cstotal.cs_ndir = 0;
675 sblock.fs_cstotal.cs_nbfree = 0;
676 sblock.fs_cstotal.cs_nifree = 0;
677 sblock.fs_cstotal.cs_nffree = 0;
678 sblock.fs_fmod = 0;
679 sblock.fs_ronly = 0;
680 sblock.fs_clean = 1;
681 #ifdef FSIRAND
682 sblock.fs_id[0] = (long)utime;
683 sblock.fs_id[1] = random();
684 #endif
687 * Dump out summary information about file system.
689 if (!mfs) {
690 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
691 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
692 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
693 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
694 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)%s\n",
695 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
696 sblock.fs_ncg, sblock.fs_cpg,
697 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
698 sblock.fs_ipg,
699 sblock.fs_flags & FS_DOSOFTDEP ? " SOFTUPDATES" : "");
700 #undef B2MBFACTOR
703 * Now build the cylinders group blocks and
704 * then print out indices of cylinder groups.
706 if (!mfs)
707 printf("super-block backups (for fsck -b #) at:\n");
708 i = 0;
709 width = charsperline();
710 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
711 initcg(cylno, utime);
712 if (mfs)
713 continue;
714 j = snprintf(tmpbuf, sizeof(tmpbuf), " %ld%s",
715 fsbtodb(&sblock, cgsblock(&sblock, cylno)),
716 cylno < (sblock.fs_ncg-1) ? "," : "" );
717 if (i + j >= width) {
718 printf("\n");
719 i = 0;
721 i += j;
722 printf("%s", tmpbuf);
723 fflush(stdout);
725 if (!mfs)
726 printf("\n");
727 if (Nflag && !mfs)
728 exit(0);
730 * Now construct the initial file system,
731 * then write out the super-block.
733 fsinit(utime);
734 sblock.fs_time = utime;
735 wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock);
736 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
737 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
738 sblock.fs_cssize - i < sblock.fs_bsize ?
739 sblock.fs_cssize - i : sblock.fs_bsize,
740 ((char *)fscs) + i);
742 * Write out the duplicate super blocks
744 for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
745 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
746 sbsize, (char *)&sblock);
747 wtfsflush();
750 * NOTE: we no longer update information in the disklabel
754 * Notify parent process of success.
755 * Dissociate from session and tty.
757 if (mfs) {
758 kill(mfs_ppid, SIGUSR1);
759 setsid();
760 close(0);
761 close(1);
762 close(2);
763 chdir("/");
768 * Initialize a cylinder group.
770 void
771 initcg(int cylno, time_t utime)
773 daddr_t cbase, d, dlower, dupper, dmax, blkno;
774 long i;
775 unsigned long k;
776 struct csum *cs;
777 #ifdef FSIRAND
778 uint32_t j;
779 #endif
782 * Determine block bounds for cylinder group.
783 * Allow space for super block summary information in first
784 * cylinder group.
786 cbase = cgbase(&sblock, cylno);
787 dmax = cbase + sblock.fs_fpg;
788 if (dmax > sblock.fs_size)
789 dmax = sblock.fs_size;
790 dlower = cgsblock(&sblock, cylno) - cbase;
791 dupper = cgdmin(&sblock, cylno) - cbase;
792 if (cylno == 0)
793 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
794 cs = fscs + cylno;
795 memset(&acg, 0, sblock.fs_cgsize);
796 acg.cg_time = utime;
797 acg.cg_magic = CG_MAGIC;
798 acg.cg_cgx = cylno;
799 if (cylno == sblock.fs_ncg - 1)
800 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
801 else
802 acg.cg_ncyl = sblock.fs_cpg;
803 acg.cg_niblk = sblock.fs_ipg;
804 acg.cg_ndblk = dmax - cbase;
805 if (sblock.fs_contigsumsize > 0)
806 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
807 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
808 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
809 acg.cg_iusedoff = acg.cg_boff +
810 sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t);
811 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
812 if (sblock.fs_contigsumsize <= 0) {
813 acg.cg_nextfreeoff = acg.cg_freeoff +
814 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
815 } else {
816 acg.cg_clustersumoff = acg.cg_freeoff + howmany
817 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
818 sizeof(u_int32_t);
819 acg.cg_clustersumoff =
820 roundup(acg.cg_clustersumoff, sizeof(u_int32_t));
821 acg.cg_clusteroff = acg.cg_clustersumoff +
822 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
823 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
824 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
826 if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) {
827 printf("Panic: cylinder group too big\n");
828 exit(37);
830 acg.cg_cs.cs_nifree += sblock.fs_ipg;
831 if (cylno == 0) {
832 for (k = 0; k < ROOTINO; k++) {
833 setbit(cg_inosused(&acg), k);
834 acg.cg_cs.cs_nifree--;
837 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
838 #ifdef FSIRAND
839 for (j = 0;
840 j < sblock.fs_bsize / sizeof(struct ufs1_dinode);
841 j++) {
842 zino[j].di_gen = random();
844 #endif
845 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
846 sblock.fs_bsize, (char *)zino);
848 if (cylno > 0) {
850 * In cylno 0, beginning space is reserved
851 * for boot and super blocks.
853 for (d = 0; d < dlower; d += sblock.fs_frag) {
854 blkno = d / sblock.fs_frag;
855 setblock(&sblock, cg_blksfree(&acg), blkno);
856 if (sblock.fs_contigsumsize > 0)
857 setbit(cg_clustersfree(&acg), blkno);
858 acg.cg_cs.cs_nbfree++;
859 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
860 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
861 [cbtorpos(&sblock, d)]++;
863 sblock.fs_dsize += dlower;
865 sblock.fs_dsize += acg.cg_ndblk - dupper;
866 if ((i = dupper % sblock.fs_frag)) {
867 acg.cg_frsum[sblock.fs_frag - i]++;
868 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
869 setbit(cg_blksfree(&acg), dupper);
870 acg.cg_cs.cs_nffree++;
873 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
874 blkno = d / sblock.fs_frag;
875 setblock(&sblock, cg_blksfree(&acg), blkno);
876 if (sblock.fs_contigsumsize > 0)
877 setbit(cg_clustersfree(&acg), blkno);
878 acg.cg_cs.cs_nbfree++;
879 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
880 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
881 [cbtorpos(&sblock, d)]++;
882 d += sblock.fs_frag;
884 if (d < dmax - cbase) {
885 acg.cg_frsum[dmax - cbase - d]++;
886 for (; d < dmax - cbase; d++) {
887 setbit(cg_blksfree(&acg), d);
888 acg.cg_cs.cs_nffree++;
891 if (sblock.fs_contigsumsize > 0) {
892 int32_t *sump = cg_clustersum(&acg);
893 u_char *mapp = cg_clustersfree(&acg);
894 int map = *mapp++;
895 int bit = 1;
896 int run = 0;
898 for (i = 0; i < acg.cg_nclusterblks; i++) {
899 if ((map & bit) != 0) {
900 run++;
901 } else if (run != 0) {
902 if (run > sblock.fs_contigsumsize)
903 run = sblock.fs_contigsumsize;
904 sump[run]++;
905 run = 0;
907 if ((i & (NBBY - 1)) != (NBBY - 1)) {
908 bit <<= 1;
909 } else {
910 map = *mapp++;
911 bit = 1;
914 if (run != 0) {
915 if (run > sblock.fs_contigsumsize)
916 run = sblock.fs_contigsumsize;
917 sump[run]++;
920 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
921 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
922 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
923 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
924 *cs = acg.cg_cs;
925 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
926 sblock.fs_bsize, (char *)&acg);
930 * initialize the file system
932 struct ufs1_dinode node;
934 #ifdef LOSTDIR
935 #define PREDEFDIR 3
936 #else
937 #define PREDEFDIR 2
938 #endif
940 struct direct root_dir[] = {
941 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
942 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
943 #ifdef LOSTDIR
944 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
945 #endif
947 struct odirect {
948 u_long d_ino;
949 u_short d_reclen;
950 u_short d_namlen;
951 u_char d_name[MAXNAMLEN + 1];
952 } oroot_dir[] = {
953 { ROOTINO, sizeof(struct direct), 1, "." },
954 { ROOTINO, sizeof(struct direct), 2, ".." },
955 #ifdef LOSTDIR
956 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
957 #endif
959 #ifdef LOSTDIR
960 struct direct lost_found_dir[] = {
961 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
962 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
963 { 0, DIRBLKSIZ, 0, 0, 0 },
965 struct odirect olost_found_dir[] = {
966 { LOSTFOUNDINO, sizeof(struct direct), 1, "." },
967 { ROOTINO, sizeof(struct direct), 2, ".." },
968 { 0, DIRBLKSIZ, 0, 0 },
970 #endif
971 char buf[MAXBSIZE];
973 void
974 fsinit(time_t utime)
976 #ifdef LOSTDIR
977 int i;
978 #endif
981 * initialize the node
983 node.di_atime = utime;
984 node.di_mtime = utime;
985 node.di_ctime = utime;
986 #ifdef LOSTDIR
988 * create the lost+found directory
990 if (Oflag) {
991 makedir((struct direct *)olost_found_dir, 2);
992 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
993 memmove(&buf[i], &olost_found_dir[2],
994 DIRSIZ(0, &olost_found_dir[2]));
995 } else {
996 makedir(lost_found_dir, 2);
997 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
998 memmove(&buf[i], &lost_found_dir[2],
999 DIRSIZ(0, &lost_found_dir[2]));
1001 node.di_mode = IFDIR | UMASK;
1002 node.di_nlink = 2;
1003 node.di_size = sblock.fs_bsize;
1004 node.di_db[0] = alloc(node.di_size, node.di_mode);
1005 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
1006 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
1007 iput(&node, LOSTFOUNDINO);
1008 #endif
1010 * create the root directory
1012 if (mfs)
1013 node.di_mode = IFDIR | 01777;
1014 else
1015 node.di_mode = IFDIR | UMASK;
1016 node.di_nlink = PREDEFDIR;
1017 if (Oflag)
1018 node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
1019 else
1020 node.di_size = makedir(root_dir, PREDEFDIR);
1021 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
1022 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
1023 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
1024 iput(&node, ROOTINO);
1028 * construct a set of directory entries in "buf".
1029 * return size of directory.
1032 makedir(struct direct *protodir, int entries)
1034 char *cp;
1035 int i, spcleft;
1037 spcleft = DIRBLKSIZ;
1038 for (cp = buf, i = 0; i < entries - 1; i++) {
1039 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
1040 memmove(cp, &protodir[i], protodir[i].d_reclen);
1041 cp += protodir[i].d_reclen;
1042 spcleft -= protodir[i].d_reclen;
1044 protodir[i].d_reclen = spcleft;
1045 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
1046 return (DIRBLKSIZ);
1050 * allocate a block or frag
1052 daddr_t
1053 alloc(int size, int mode)
1055 int i, frag;
1056 daddr_t d, blkno;
1058 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1059 (char *)&acg);
1060 if (acg.cg_magic != CG_MAGIC) {
1061 printf("cg 0: bad magic number\n");
1062 return (0);
1064 if (acg.cg_cs.cs_nbfree == 0) {
1065 printf("first cylinder group ran out of space\n");
1066 return (0);
1068 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
1069 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
1070 goto goth;
1071 printf("internal error: can't find block in cyl 0\n");
1072 return (0);
1073 goth:
1074 blkno = fragstoblks(&sblock, d);
1075 clrblock(&sblock, cg_blksfree(&acg), blkno);
1076 if (sblock.fs_contigsumsize > 0)
1077 clrbit(cg_clustersfree(&acg), blkno);
1078 acg.cg_cs.cs_nbfree--;
1079 sblock.fs_cstotal.cs_nbfree--;
1080 fscs[0].cs_nbfree--;
1081 if (mode & IFDIR) {
1082 acg.cg_cs.cs_ndir++;
1083 sblock.fs_cstotal.cs_ndir++;
1084 fscs[0].cs_ndir++;
1086 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1087 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1088 if (size != sblock.fs_bsize) {
1089 frag = howmany(size, sblock.fs_fsize);
1090 fscs[0].cs_nffree += sblock.fs_frag - frag;
1091 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1092 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1093 acg.cg_frsum[sblock.fs_frag - frag]++;
1094 for (i = frag; i < sblock.fs_frag; i++)
1095 setbit(cg_blksfree(&acg), d + i);
1097 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1098 (char *)&acg);
1099 return (d);
1103 * Calculate number of inodes per group.
1105 long
1106 calcipg(long cylspg, long bpcg, off_t *usedbp)
1108 int i;
1109 long ipg, new_ipg, ncg, ncyl;
1110 off_t usedb;
1113 * Prepare to scale by fssize / (number of sectors in cylinder groups).
1114 * Note that fssize is still in sectors, not filesystem blocks.
1116 ncyl = howmany(fssize, (u_int)secpercyl);
1117 ncg = howmany(ncyl, cylspg);
1119 * Iterate a few times to allow for ipg depending on itself.
1121 ipg = 0;
1122 for (i = 0; i < 10; i++) {
1123 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1124 * NSPF(&sblock) * (off_t)sectorsize;
1125 new_ipg = (cylspg * (quad_t)bpcg - usedb) / density * fssize
1126 / ncg / secpercyl / cylspg;
1127 new_ipg = roundup(new_ipg, INOPB(&sblock));
1128 if (new_ipg == ipg)
1129 break;
1130 ipg = new_ipg;
1132 *usedbp = usedb;
1133 return (ipg);
1137 * Allocate an inode on the disk
1139 void
1140 iput(struct ufs1_dinode *ip, ino_t ino)
1142 struct ufs1_dinode inobuf[MAXINOPB];
1143 daddr_t d;
1144 int c;
1146 #ifdef FSIRAND
1147 ip->di_gen = random();
1148 #endif
1149 c = ino_to_cg(&sblock, ino);
1150 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1151 (char *)&acg);
1152 if (acg.cg_magic != CG_MAGIC) {
1153 printf("cg 0: bad magic number\n");
1154 exit(31);
1156 acg.cg_cs.cs_nifree--;
1157 setbit(cg_inosused(&acg), ino);
1158 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1159 (char *)&acg);
1160 sblock.fs_cstotal.cs_nifree--;
1161 fscs[0].cs_nifree--;
1162 if (ino >= (uint32_t)sblock.fs_ipg * (uint32_t)sblock.fs_ncg) {
1163 printf("fsinit: inode value out of range (%ju).\n",
1164 (uintmax_t)ino);
1165 exit(32);
1167 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1168 rdfs(d, sblock.fs_bsize, (char *)inobuf);
1169 inobuf[ino_to_fsbo(&sblock, ino)] = *ip;
1170 wtfs(d, sblock.fs_bsize, (char *)inobuf);
1174 * Parent notifies child that it can proceed with the newfs and mount
1175 * operation (occurs after parent has copied the underlying filesystem
1176 * if the -C option was specified (for MFS), or immediately after the
1177 * parent forked the child otherwise).
1179 void
1180 parentready(__unused int signo)
1182 parentready_signalled = 1;
1186 * Notify parent process that the filesystem has created itself successfully.
1188 * We have to wait until the mount has actually completed!
1190 void
1191 started(__unused int signo)
1193 int retry = 100; /* 10 seconds, 100ms */
1195 while (mfs_ppid && retry) {
1196 struct stat st;
1198 if (
1199 stat(mfs_mtpt, &st) < 0 ||
1200 st.st_dev != mfs_mtstat.st_dev
1202 break;
1204 usleep(100*1000);
1205 --retry;
1207 if (retry == 0) {
1208 fatal("mfs mount failed waiting for mount to go active");
1209 } else if (copyroot) {
1210 FSPaste(mfs_mtpt, copyroot, copyhlinks);
1212 exit(0);
1215 #ifdef STANDALONE
1217 * Replace libc function with one suited to our needs.
1219 caddr_t
1220 malloc(u_long size)
1222 char *base, *i;
1223 static u_long pgsz;
1224 struct rlimit rlp;
1226 if (pgsz == 0) {
1227 base = sbrk(0);
1228 pgsz = getpagesize() - 1;
1229 i = (char *)((u_long)(base + pgsz) &~ pgsz);
1230 base = sbrk(i - base);
1231 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1232 warn("getrlimit");
1233 rlp.rlim_cur = rlp.rlim_max;
1234 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1235 warn("setrlimit");
1236 memleft = rlp.rlim_max - (u_long)base;
1238 size = (size + pgsz) &~ pgsz;
1239 if (size > memleft)
1240 size = memleft;
1241 memleft -= size;
1242 if (size == 0)
1243 return (0);
1244 return ((caddr_t)sbrk(size));
1248 * Replace libc function with one suited to our needs.
1250 caddr_t
1251 realloc(char *ptr, u_long size)
1253 void *p;
1255 if ((p = malloc(size)) == NULL)
1256 return (NULL);
1257 memmove(p, ptr, size);
1258 free(ptr);
1259 return (p);
1263 * Replace libc function with one suited to our needs.
1265 char *
1266 calloc(u_long size, u_long numelm)
1268 caddr_t base;
1270 size *= numelm;
1271 if ((base = malloc(size)) == NULL)
1272 return (NULL);
1273 memset(base, 0, size);
1274 return (base);
1278 * Replace libc function with one suited to our needs.
1280 void
1281 free(char *ptr)
1284 /* do not worry about it for now */
1287 #else /* !STANDALONE */
1289 void
1290 raise_data_limit(void)
1292 struct rlimit rlp;
1294 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1295 warn("getrlimit");
1296 rlp.rlim_cur = rlp.rlim_max;
1297 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1298 warn("setrlimit");
1301 #ifdef __ELF__
1302 extern char *_etext;
1303 #define etext _etext
1304 #else
1305 extern char *etext;
1306 #endif
1308 void
1309 get_memleft(void)
1311 static u_long pgsz;
1312 struct rlimit rlp;
1313 u_long freestart;
1314 u_long dstart;
1315 u_long memused;
1317 pgsz = getpagesize() - 1;
1318 dstart = ((u_long)&etext) &~ pgsz;
1319 freestart = ((u_long)((char *)sbrk(0) + pgsz) &~ pgsz);
1320 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1321 warn("getrlimit");
1322 memused = freestart - dstart;
1323 memleft = rlp.rlim_cur - memused;
1325 #endif /* STANDALONE */
1328 * read a block from the file system
1330 void
1331 rdfs(daddr_t bno, int size, char *bf)
1333 int n;
1335 wtfsflush();
1336 if (mfs) {
1337 memmove(bf, membase + bno * sectorsize, size);
1338 return;
1340 if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) {
1341 printf("seek error: %ld\n", (long)bno);
1342 err(33, "rdfs");
1344 n = read(fsi, bf, size);
1345 if (n != size) {
1346 printf("read error: %ld\n", (long)bno);
1347 err(34, "rdfs");
1351 #define WCSIZE (128 * 1024)
1352 daddr_t wc_sect; /* units of sectorsize */
1353 int wc_end; /* bytes */
1354 static char wc[WCSIZE]; /* bytes */
1357 * Flush dirty write behind buffer.
1359 void
1360 wtfsflush(void)
1362 int n;
1363 if (wc_end) {
1364 if (lseek(fso, (off_t)wc_sect * sectorsize, SEEK_SET) < 0) {
1365 printf("seek error: %ld\n", (long)wc_sect);
1366 err(35, "wtfs - writecombine");
1368 n = write(fso, wc, wc_end);
1369 if (n != wc_end) {
1370 printf("write error: %ld\n", (long)wc_sect);
1371 err(36, "wtfs - writecombine");
1373 wc_end = 0;
1378 * write a block to the file system
1380 void
1381 wtfs(daddr_t bno, int size, char *bf)
1383 int n;
1384 int done;
1386 if (mfs) {
1387 memmove(membase + bno * sectorsize, bf, size);
1388 return;
1390 if (Nflag)
1391 return;
1392 done = 0;
1393 if (wc_end == 0 && size <= WCSIZE) {
1394 wc_sect = bno;
1395 bcopy(bf, wc, size);
1396 wc_end = size;
1397 if (wc_end < WCSIZE)
1398 return;
1399 done = 1;
1401 if ((off_t)wc_sect * sectorsize + wc_end == (off_t)bno * sectorsize &&
1402 wc_end + size <= WCSIZE) {
1403 bcopy(bf, wc + wc_end, size);
1404 wc_end += size;
1405 if (wc_end < WCSIZE)
1406 return;
1407 done = 1;
1409 wtfsflush();
1410 if (done)
1411 return;
1412 if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) {
1413 printf("seek error: %ld\n", (long)bno);
1414 err(35, "wtfs");
1416 n = write(fso, bf, size);
1417 if (n != size) {
1418 printf("write error: fso %d blk %ld %d/%d\n",
1419 fso, (long)bno, n, size);
1420 err(36, "wtfs");
1425 * check if a block is available
1428 isblock(struct fs *fs, unsigned char *cp, int h)
1430 unsigned char mask;
1432 switch (fs->fs_frag) {
1433 case 8:
1434 return (cp[h] == 0xff);
1435 case 4:
1436 mask = 0x0f << ((h & 0x1) << 2);
1437 return ((cp[h >> 1] & mask) == mask);
1438 case 2:
1439 mask = 0x03 << ((h & 0x3) << 1);
1440 return ((cp[h >> 2] & mask) == mask);
1441 case 1:
1442 mask = 0x01 << (h & 0x7);
1443 return ((cp[h >> 3] & mask) == mask);
1444 default:
1445 #ifdef STANDALONE
1446 printf("isblock bad fs_frag %d\n", fs->fs_frag);
1447 #else
1448 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1449 #endif
1450 return (0);
1455 * take a block out of the map
1457 void
1458 clrblock(struct fs *fs, unsigned char *cp, int h)
1460 switch ((fs)->fs_frag) {
1461 case 8:
1462 cp[h] = 0;
1463 return;
1464 case 4:
1465 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1466 return;
1467 case 2:
1468 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1469 return;
1470 case 1:
1471 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1472 return;
1473 default:
1474 #ifdef STANDALONE
1475 printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1476 #else
1477 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1478 #endif
1479 return;
1484 * put a block into the map
1486 void
1487 setblock(struct fs *fs, unsigned char *cp, int h)
1489 switch (fs->fs_frag) {
1490 case 8:
1491 cp[h] = 0xff;
1492 return;
1493 case 4:
1494 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1495 return;
1496 case 2:
1497 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1498 return;
1499 case 1:
1500 cp[h >> 3] |= (0x01 << (h & 0x7));
1501 return;
1502 default:
1503 #ifdef STANDALONE
1504 printf("setblock bad fs_frag %d\n", fs->fs_frag);
1505 #else
1506 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1507 #endif
1508 return;
1513 * Determine the number of characters in a
1514 * single line.
1517 static int
1518 charsperline(void)
1520 int columns;
1521 char *cp;
1522 struct winsize ws;
1524 columns = 0;
1525 if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1526 columns = ws.ws_col;
1527 if (columns == 0 && (cp = getenv("COLUMNS")))
1528 columns = atoi(cp);
1529 if (columns == 0)
1530 columns = 80; /* last resort */
1531 return columns;