efi - Add EFI run-time ABI support (2)
[dragonfly.git] / sys / vfs / ufs / ffs_inode.c
blob74d4f8df18b61f06883fb9776fc66228d4430168
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95
30 * $FreeBSD: src/sys/ufs/ffs/ffs_inode.c,v 1.56.2.5 2002/02/05 18:35:03 dillon Exp $
33 #include "opt_quota.h"
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/mount.h>
38 #include <sys/proc.h>
39 #include <sys/buf.h>
40 #include <sys/vnode.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/resourcevar.h>
44 #include <sys/vmmeter.h>
46 #include <vm/vm.h>
47 #include <vm/vm_extern.h>
49 #include "quota.h"
50 #include "ufsmount.h"
51 #include "inode.h"
52 #include "ufs_extern.h"
54 #include "fs.h"
55 #include "ffs_extern.h"
57 #include <vm/vm_page2.h>
58 #include <sys/buf2.h>
60 static int ffs_indirtrunc (struct inode *, ufs_daddr_t, ufs_daddr_t,
61 ufs_daddr_t, int, long *);
64 * Update the access, modified, and inode change times as specified by the
65 * IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively. Write the inode
66 * to disk if the IN_MODIFIED flag is set (it may be set initially, or by
67 * the timestamp update). The IN_LAZYMOD flag is set to force a write
68 * later if not now. If we write now, then clear both IN_MODIFIED and
69 * IN_LAZYMOD to reflect the presumably successful write, and if waitfor is
70 * set, then wait for the write to complete.
72 int
73 ffs_update(struct vnode *vp, int waitfor)
75 struct fs *fs;
76 struct buf *bp;
77 struct inode *ip;
78 int error;
80 ufs_itimes(vp);
81 ip = VTOI(vp);
82 if ((ip->i_flag & IN_MODIFIED) == 0 && waitfor == 0)
83 return (0);
84 ip->i_flag &= ~(IN_LAZYMOD | IN_MODIFIED);
85 fs = ip->i_fs;
86 if (fs->fs_ronly)
87 return (0);
90 * The vnode type is usually set to VBAD if an unrecoverable I/O
91 * error has occured (such as when reading the inode). Clear the
92 * modified bits but do not write anything out in this case.
94 if (vp->v_type == VBAD)
95 return (0);
97 * Ensure that uid and gid are correct. This is a temporary
98 * fix until fsck has been changed to do the update.
100 if (fs->fs_inodefmt < FS_44INODEFMT) { /* XXX */
101 ip->i_din.di_ouid = ip->i_uid; /* XXX */
102 ip->i_din.di_ogid = ip->i_gid; /* XXX */
103 } /* XXX */
104 error = bread(ip->i_devvp,
105 fsbtodoff(fs, ino_to_fsba(fs, ip->i_number)),
106 (int)fs->fs_bsize, &bp);
107 if (error) {
108 brelse(bp);
109 return (error);
111 if (DOINGSOFTDEP(vp))
112 softdep_update_inodeblock(ip, bp, waitfor);
113 else if (ip->i_effnlink != ip->i_nlink)
114 panic("ffs_update: bad link cnt");
115 *((struct ufs1_dinode *)bp->b_data +
116 ino_to_fsbo(fs, ip->i_number)) = ip->i_din;
117 if (waitfor && !DOINGASYNC(vp)) {
118 return (bwrite(bp));
119 } else if (vm_page_count_severe() || buf_dirty_count_severe()) {
120 return (bwrite(bp));
121 } else {
122 if (bp->b_bufsize == fs->fs_bsize)
123 bp->b_flags |= B_CLUSTEROK;
124 bdwrite(bp);
125 return (0);
129 #define SINGLE 0 /* index of single indirect block */
130 #define DOUBLE 1 /* index of double indirect block */
131 #define TRIPLE 2 /* index of triple indirect block */
133 * Truncate the inode oip to at most length size, freeing the
134 * disk blocks.
137 ffs_truncate(struct vnode *vp, off_t length, int flags, struct ucred *cred)
139 struct vnode *ovp = vp;
140 ufs_daddr_t lastblock;
141 struct inode *oip;
142 ufs_daddr_t bn, lbn, lastiblock[NIADDR], indir_lbn[NIADDR];
143 ufs_daddr_t oldblks[NDADDR + NIADDR], newblks[NDADDR + NIADDR];
144 struct fs *fs;
145 struct buf *bp;
146 int offset, size, level;
147 long count, nblocks, blocksreleased = 0;
148 int i;
149 int aflags, error, allerror;
150 off_t osize;
152 oip = VTOI(ovp);
153 fs = oip->i_fs;
154 if (length < 0)
155 return (EINVAL);
156 if (length > fs->fs_maxfilesize)
157 return (EFBIG);
158 if (ovp->v_type == VLNK &&
159 (oip->i_size < ovp->v_mount->mnt_maxsymlinklen || oip->i_din.di_blocks == 0)) {
160 #ifdef DIAGNOSTIC
161 if (length != 0)
162 panic("ffs_truncate: partial truncate of symlink");
163 #endif /* DIAGNOSTIC */
164 bzero((char *)&oip->i_shortlink, (uint)oip->i_size);
165 oip->i_size = 0;
166 oip->i_flag |= IN_CHANGE | IN_UPDATE;
167 return (ffs_update(ovp, 1));
169 if (oip->i_size == length) {
170 oip->i_flag |= IN_CHANGE | IN_UPDATE;
171 return (ffs_update(ovp, 0));
173 if (fs->fs_ronly)
174 panic("ffs_truncate: read-only filesystem");
175 #ifdef QUOTA
176 error = ufs_getinoquota(oip);
177 if (error)
178 return (error);
179 #endif
180 if (DOINGSOFTDEP(ovp)) {
181 if (length > 0 || softdep_slowdown(ovp)) {
183 * If a file is only partially truncated, then
184 * we have to clean up the data structures
185 * describing the allocation past the truncation
186 * point. Finding and deallocating those structures
187 * is a lot of work. Since partial truncation occurs
188 * rarely, we solve the problem by syncing the file
189 * so that it will have no data structures left.
191 if ((error = VOP_FSYNC(ovp, MNT_WAIT, 0)) != 0)
192 return (error);
193 } else {
194 #ifdef QUOTA
195 (void) ufs_chkdq(oip, -oip->i_blocks, NOCRED, 0);
196 #endif
197 softdep_setup_freeblocks(oip, length);
198 vinvalbuf(ovp, 0, 0, 0);
199 nvnode_pager_setsize(ovp, 0, fs->fs_bsize, 0);
200 oip->i_flag |= IN_CHANGE | IN_UPDATE;
201 return (ffs_update(ovp, 0));
204 osize = oip->i_size;
207 * Lengthen the size of the file. We must ensure that the
208 * last byte of the file is allocated. Since the smallest
209 * value of osize is 0, length will be at least 1.
211 * nvextendbuf() only breads the old buffer. The blocksize
212 * of the new buffer must be specified so it knows how large
213 * to make the VM object.
215 if (osize < length) {
216 nvextendbuf(vp, osize, length,
217 blkoffsize(fs, oip, osize), /* oblksize */
218 blkoffresize(fs, length), /* nblksize */
219 blkoff(fs, osize),
220 blkoff(fs, length),
223 aflags = B_CLRBUF;
224 if (flags & IO_SYNC)
225 aflags |= B_SYNC;
226 /* BALLOC will reallocate the fragment at the old EOF */
227 error = VOP_BALLOC(ovp, length - 1, 1, cred, aflags, &bp);
228 if (error)
229 return (error);
230 oip->i_size = length;
231 if (bp->b_bufsize == fs->fs_bsize)
232 bp->b_flags |= B_CLUSTEROK;
233 if (aflags & B_SYNC)
234 bwrite(bp);
235 else
236 bawrite(bp);
237 oip->i_flag |= IN_CHANGE | IN_UPDATE;
238 return (ffs_update(ovp, 1));
242 * Shorten the size of the file.
244 * NOTE: The block size specified in nvtruncbuf() is the blocksize
245 * of the buffer containing length prior to any reallocation
246 * of the block.
248 allerror = nvtruncbuf(ovp, length, blkoffsize(fs, oip, length),
249 blkoff(fs, length), 0);
250 offset = blkoff(fs, length);
251 if (offset == 0) {
252 oip->i_size = length;
253 } else {
254 lbn = lblkno(fs, length);
255 aflags = B_CLRBUF;
256 if (flags & IO_SYNC)
257 aflags |= B_SYNC;
258 error = VOP_BALLOC(ovp, length - 1, 1, cred, aflags, &bp);
259 if (error)
260 return (error);
263 * When we are doing soft updates and the UFS_BALLOC
264 * above fills in a direct block hole with a full sized
265 * block that will be truncated down to a fragment below,
266 * we must flush out the block dependency with an FSYNC
267 * so that we do not get a soft updates inconsistency
268 * when we create the fragment below.
270 * nvtruncbuf() may have re-dirtied the underlying block
271 * as part of its truncation zeroing code. To avoid a
272 * 'locking against myself' panic in the second fsync we
273 * can simply undirty the bp since the redirtying was
274 * related to areas of the buffer that we are going to
275 * throw away anyway, and we will b*write() the remainder
276 * anyway down below.
278 if (DOINGSOFTDEP(ovp) && lbn < NDADDR &&
279 fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize) {
280 bundirty(bp);
281 error = VOP_FSYNC(ovp, MNT_WAIT, 0);
282 if (error) {
283 bdwrite(bp);
284 return (error);
287 oip->i_size = length;
288 size = blksize(fs, oip, lbn);
289 #if 0
290 /* remove - nvtruncbuf deals with this */
291 if (ovp->v_type != VDIR)
292 bzero((char *)bp->b_data + offset,
293 (uint)(size - offset));
294 #endif
295 /* Kirk's code has reallocbuf(bp, size, 1) here */
296 allocbuf(bp, size);
297 if (bp->b_bufsize == fs->fs_bsize)
298 bp->b_flags |= B_CLUSTEROK;
299 if (aflags & B_SYNC)
300 bwrite(bp);
301 else
302 bawrite(bp);
305 * Calculate index into inode's block list of
306 * last direct and indirect blocks (if any)
307 * which we want to keep. Lastblock is -1 when
308 * the file is truncated to 0.
310 lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
311 lastiblock[SINGLE] = lastblock - NDADDR;
312 lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
313 lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
314 nblocks = btodb(fs->fs_bsize);
317 * Update file and block pointers on disk before we start freeing
318 * blocks. If we crash before free'ing blocks below, the blocks
319 * will be returned to the free list. lastiblock values are also
320 * normalized to -1 for calls to ffs_indirtrunc below.
322 for (level = TRIPLE; level >= SINGLE; level--) {
323 oldblks[NDADDR + level] = oip->i_ib[level];
324 if (lastiblock[level] < 0) {
325 oip->i_ib[level] = 0;
326 lastiblock[level] = -1;
329 for (i = 0; i < NDADDR; i++) {
330 oldblks[i] = oip->i_db[i];
331 if (i > lastblock)
332 oip->i_db[i] = 0;
334 oip->i_flag |= IN_CHANGE | IN_UPDATE;
335 error = ffs_update(ovp, 1);
336 if (error && allerror == 0)
337 allerror = error;
340 * Having written the new inode to disk, save its new configuration
341 * and put back the old block pointers long enough to process them.
342 * Note that we save the new block configuration so we can check it
343 * when we are done.
345 for (i = 0; i < NDADDR; i++) {
346 newblks[i] = oip->i_db[i];
347 oip->i_db[i] = oldblks[i];
349 for (i = 0; i < NIADDR; i++) {
350 newblks[NDADDR + i] = oip->i_ib[i];
351 oip->i_ib[i] = oldblks[NDADDR + i];
353 oip->i_size = osize;
355 if (error && allerror == 0)
356 allerror = error;
359 * Indirect blocks first.
361 indir_lbn[SINGLE] = -NDADDR;
362 indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
363 indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
364 for (level = TRIPLE; level >= SINGLE; level--) {
365 bn = oip->i_ib[level];
366 if (bn != 0) {
367 error = ffs_indirtrunc(oip, indir_lbn[level],
368 fsbtodb(fs, bn), lastiblock[level], level, &count);
369 if (error)
370 allerror = error;
371 blocksreleased += count;
372 if (lastiblock[level] < 0) {
373 oip->i_ib[level] = 0;
374 ffs_blkfree(oip, bn, fs->fs_bsize);
375 blocksreleased += nblocks;
378 if (lastiblock[level] >= 0)
379 goto done;
383 * All whole direct blocks or frags.
385 for (i = NDADDR - 1; i > lastblock; i--) {
386 long bsize;
388 bn = oip->i_db[i];
389 if (bn == 0)
390 continue;
391 oip->i_db[i] = 0;
392 bsize = blksize(fs, oip, i);
393 ffs_blkfree(oip, bn, bsize);
394 blocksreleased += btodb(bsize);
396 if (lastblock < 0)
397 goto done;
400 * Finally, look for a change in size of the
401 * last direct block; release any frags.
403 bn = oip->i_db[lastblock];
404 if (bn != 0) {
405 long oldspace, newspace;
408 * Calculate amount of space we're giving
409 * back as old block size minus new block size.
411 oldspace = blksize(fs, oip, lastblock);
412 oip->i_size = length;
413 newspace = blksize(fs, oip, lastblock);
414 if (newspace == 0)
415 panic("ffs_truncate: newspace");
416 if (oldspace - newspace > 0) {
418 * Block number of space to be free'd is
419 * the old block # plus the number of frags
420 * required for the storage we're keeping.
422 bn += numfrags(fs, newspace);
423 ffs_blkfree(oip, bn, oldspace - newspace);
424 blocksreleased += btodb(oldspace - newspace);
427 done:
428 #ifdef DIAGNOSTIC
429 for (level = SINGLE; level <= TRIPLE; level++)
430 if (newblks[NDADDR + level] != oip->i_ib[level])
431 panic("ffs_truncate1");
432 for (i = 0; i < NDADDR; i++)
433 if (newblks[i] != oip->i_db[i])
434 panic("ffs_truncate2");
435 if (length == 0 && !RB_EMPTY(&ovp->v_rbdirty_tree))
436 panic("ffs_truncate3");
437 #endif /* DIAGNOSTIC */
439 * Put back the real size.
441 oip->i_size = length;
442 oip->i_blocks -= blocksreleased;
444 if (oip->i_blocks < 0) /* sanity */
445 oip->i_blocks = 0;
446 oip->i_flag |= IN_CHANGE;
447 #ifdef QUOTA
448 (void) ufs_chkdq(oip, -blocksreleased, NOCRED, 0);
449 #endif
450 return (allerror);
454 * Release blocks associated with the inode ip and stored in the indirect
455 * block bn. Blocks are free'd in LIFO order up to (but not including)
456 * lastbn. If level is greater than SINGLE, the block is an indirect block
457 * and recursive calls to indirtrunc must be used to cleanse other indirect
458 * blocks.
460 * NB: triple indirect blocks are untested.
462 static int
463 ffs_indirtrunc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t dbn,
464 ufs_daddr_t lastbn, int level, long *countp)
466 int i;
467 struct buf *bp;
468 struct fs *fs = ip->i_fs;
469 ufs_daddr_t *bap;
470 struct vnode *vp;
471 ufs_daddr_t *copy = NULL, nb, nlbn, last;
472 long blkcount, factor;
473 int nblocks, blocksreleased = 0;
474 int error = 0, allerror = 0;
477 * Calculate index in current block of last
478 * block to be kept. -1 indicates the entire
479 * block so we need not calculate the index.
481 factor = 1;
482 for (i = SINGLE; i < level; i++)
483 factor *= NINDIR(fs);
484 last = lastbn;
485 if (lastbn > 0)
486 last /= factor;
487 nblocks = btodb(fs->fs_bsize);
489 * Get buffer of block pointers, zero those entries corresponding
490 * to blocks to be free'd, and update on disk copy first. Since
491 * double(triple) indirect before single(double) indirect, calls
492 * to bmap on these blocks will fail. However, we already have
493 * the on disk address, so we have to set the bio_offset field
494 * explicitly instead of letting bread do everything for us.
496 vp = ITOV(ip);
497 bp = getblk(vp, lblktodoff(fs, lbn), (int)fs->fs_bsize, 0, 0);
498 if ((bp->b_flags & B_CACHE) == 0) {
499 bp->b_flags &= ~(B_ERROR|B_INVAL);
500 bp->b_cmd = BUF_CMD_READ;
501 if (bp->b_bcount > bp->b_bufsize)
502 panic("ffs_indirtrunc: bad buffer size");
504 * BIO is bio2 which chains back to bio1. We wait
505 * on bio1.
507 bp->b_bio2.bio_offset = dbtodoff(fs, dbn);
508 bp->b_bio1.bio_done = biodone_sync;
509 bp->b_bio1.bio_flags |= BIO_SYNC;
510 vfs_busy_pages(vp, bp);
512 * Access the block device layer using the device vnode
513 * and the translated block number (bio2) instead of the
514 * file vnode (vp) and logical block number (bio1).
516 * Even though we are bypassing the vnode layer, we still
517 * want the vnode state to indicate that an I/O on its behalf
518 * is in progress.
520 bio_start_transaction(&bp->b_bio1, &vp->v_track_read);
521 vn_strategy(ip->i_devvp, &bp->b_bio2);
522 error = biowait(&bp->b_bio1, "biord");
524 if (error) {
525 brelse(bp);
526 *countp = 0;
527 return (error);
530 bap = (ufs_daddr_t *)bp->b_data;
531 if (lastbn != -1) {
532 copy = kmalloc(fs->fs_bsize, M_TEMP, M_WAITOK);
533 bcopy((caddr_t)bap, (caddr_t)copy, (uint)fs->fs_bsize);
534 bzero((caddr_t)&bap[last + 1],
535 (uint)(NINDIR(fs) - (last + 1)) * sizeof (ufs_daddr_t));
536 if (DOINGASYNC(vp)) {
537 bawrite(bp);
538 } else {
539 error = bwrite(bp);
540 if (error)
541 allerror = error;
543 bap = copy;
547 * Recursively free totally unused blocks.
549 for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
550 i--, nlbn += factor) {
551 nb = bap[i];
552 if (nb == 0)
553 continue;
554 if (level > SINGLE) {
555 if ((error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
556 (ufs_daddr_t)-1, level - 1, &blkcount)) != 0)
557 allerror = error;
558 blocksreleased += blkcount;
560 ffs_blkfree(ip, nb, fs->fs_bsize);
561 blocksreleased += nblocks;
565 * Recursively free last partial block.
567 if (level > SINGLE && lastbn >= 0) {
568 last = lastbn % factor;
569 nb = bap[i];
570 if (nb != 0) {
571 error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
572 last, level - 1, &blkcount);
573 if (error)
574 allerror = error;
575 blocksreleased += blkcount;
578 if (copy != NULL) {
579 kfree(copy, M_TEMP);
580 } else {
581 bp->b_flags |= B_INVAL | B_NOCACHE;
582 brelse(bp);
585 *countp = blocksreleased;
586 return (allerror);