Merge branch 'master' of ssh://crater.dragonflybsd.org/repository/git/dragonfly
[dragonfly.git] / sys / vm / vm_map.c
bloba3260374eb26d08b9ac7edd7de97dc8e05604dac
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 * Carnegie Mellon requests users of this software to return to
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
64 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65 * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
69 * Virtual memory mapping module.
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/lock.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/shm.h>
82 #include <sys/tree.h>
83 #include <sys/malloc.h>
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_zone.h>
97 #include <sys/thread2.h>
98 #include <sys/sysref2.h>
101 * Virtual memory maps provide for the mapping, protection,
102 * and sharing of virtual memory objects. In addition,
103 * this module provides for an efficient virtual copy of
104 * memory from one map to another.
106 * Synchronization is required prior to most operations.
108 * Maps consist of an ordered doubly-linked list of simple
109 * entries; a single hint is used to speed up lookups.
111 * Since portions of maps are specified by start/end addresses,
112 * which may not align with existing map entries, all
113 * routines merely "clip" entries to these start/end values.
114 * [That is, an entry is split into two, bordering at a
115 * start or end value.] Note that these clippings may not
116 * always be necessary (as the two resulting entries are then
117 * not changed); however, the clipping is done for convenience.
119 * As mentioned above, virtual copy operations are performed
120 * by copying VM object references from one map to
121 * another, and then marking both regions as copy-on-write.
124 static void vmspace_terminate(struct vmspace *vm);
125 static void vmspace_dtor(void *obj, void *private);
127 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
129 struct sysref_class vmspace_sysref_class = {
130 .name = "vmspace",
131 .mtype = M_VMSPACE,
132 .proto = SYSREF_PROTO_VMSPACE,
133 .offset = offsetof(struct vmspace, vm_sysref),
134 .objsize = sizeof(struct vmspace),
135 .mag_capacity = 32,
136 .flags = SRC_MANAGEDINIT,
137 .dtor = vmspace_dtor,
138 .ops = {
139 .terminate = (sysref_terminate_func_t)vmspace_terminate
143 #define VMEPERCPU 2
145 static struct vm_zone mapentzone_store, mapzone_store;
146 static vm_zone_t mapentzone, mapzone;
147 static struct vm_object mapentobj, mapobj;
149 static struct vm_map_entry map_entry_init[MAX_MAPENT];
150 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
151 static struct vm_map map_init[MAX_KMAP];
153 static void vm_map_entry_shadow(vm_map_entry_t entry);
154 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
155 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
156 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
157 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
158 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
159 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
160 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
161 vm_map_entry_t);
162 static void vm_map_split (vm_map_entry_t);
163 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
166 * vm_map_startup:
168 * Initialize the vm_map module. Must be called before
169 * any other vm_map routines.
171 * Map and entry structures are allocated from the general
172 * purpose memory pool with some exceptions:
174 * - The kernel map and kmem submap are allocated statically.
175 * - Kernel map entries are allocated out of a static pool.
177 * These restrictions are necessary since malloc() uses the
178 * maps and requires map entries.
180 void
181 vm_map_startup(void)
183 mapzone = &mapzone_store;
184 zbootinit(mapzone, "MAP", sizeof (struct vm_map),
185 map_init, MAX_KMAP);
186 mapentzone = &mapentzone_store;
187 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
188 map_entry_init, MAX_MAPENT);
192 * vm_init2 - called prior to any vmspace allocations
194 void
195 vm_init2(void)
197 zinitna(mapentzone, &mapentobj, NULL, 0, 0,
198 ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
199 zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
200 pmap_init2();
201 vm_object_init2();
206 * Red black tree functions
208 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
209 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
211 /* a->start is address, and the only field has to be initialized */
212 static int
213 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
215 if (a->start < b->start)
216 return(-1);
217 else if (a->start > b->start)
218 return(1);
219 return(0);
223 * Allocate a vmspace structure, including a vm_map and pmap.
224 * Initialize numerous fields. While the initial allocation is zerod,
225 * subsequence reuse from the objcache leaves elements of the structure
226 * intact (particularly the pmap), so portions must be zerod.
228 * The structure is not considered activated until we call sysref_activate().
230 struct vmspace *
231 vmspace_alloc(vm_offset_t min, vm_offset_t max)
233 struct vmspace *vm;
235 vm = sysref_alloc(&vmspace_sysref_class);
236 bzero(&vm->vm_startcopy,
237 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
238 vm_map_init(&vm->vm_map, min, max, NULL);
239 pmap_pinit(vmspace_pmap(vm)); /* (some fields reused) */
240 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */
241 vm->vm_shm = NULL;
242 vm->vm_exitingcnt = 0;
243 cpu_vmspace_alloc(vm);
244 sysref_activate(&vm->vm_sysref);
245 return (vm);
249 * dtor function - Some elements of the pmap are retained in the
250 * free-cached vmspaces to improve performance. We have to clean them up
251 * here before returning the vmspace to the memory pool.
253 static void
254 vmspace_dtor(void *obj, void *private)
256 struct vmspace *vm = obj;
258 pmap_puninit(vmspace_pmap(vm));
262 * Called in two cases:
264 * (1) When the last sysref is dropped, but exitingcnt might still be
265 * non-zero.
267 * (2) When there are no sysrefs (i.e. refcnt is negative) left and the
268 * exitingcnt becomes zero
270 * sysref will not scrap the object until we call sysref_put() once more
271 * after the last ref has been dropped.
273 static void
274 vmspace_terminate(struct vmspace *vm)
276 int count;
279 * If exitingcnt is non-zero we can't get rid of the entire vmspace
280 * yet, but we can scrap user memory.
282 if (vm->vm_exitingcnt) {
283 shmexit(vm);
284 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
285 VM_MAX_USER_ADDRESS);
286 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
287 VM_MAX_USER_ADDRESS);
289 return;
291 cpu_vmspace_free(vm);
294 * Make sure any SysV shm is freed, it might not have in
295 * exit1()
297 shmexit(vm);
299 KKASSERT(vm->vm_upcalls == NULL);
302 * Lock the map, to wait out all other references to it.
303 * Delete all of the mappings and pages they hold, then call
304 * the pmap module to reclaim anything left.
306 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
307 vm_map_lock(&vm->vm_map);
308 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
309 vm->vm_map.max_offset, &count);
310 vm_map_unlock(&vm->vm_map);
311 vm_map_entry_release(count);
313 pmap_release(vmspace_pmap(vm));
314 sysref_put(&vm->vm_sysref);
318 * This is called in the wait*() handling code. The vmspace can be terminated
319 * after the last wait is finished using it.
321 void
322 vmspace_exitfree(struct proc *p)
324 struct vmspace *vm;
326 vm = p->p_vmspace;
327 p->p_vmspace = NULL;
329 if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
330 vmspace_terminate(vm);
334 * vmspace_swap_count()
336 * Swap useage is determined by taking the proportional swap used by
337 * VM objects backing the VM map. To make up for fractional losses,
338 * if the VM object has any swap use at all the associated map entries
339 * count for at least 1 swap page.
342 vmspace_swap_count(struct vmspace *vmspace)
344 vm_map_t map = &vmspace->vm_map;
345 vm_map_entry_t cur;
346 vm_object_t object;
347 int count = 0;
348 int n;
350 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
351 switch(cur->maptype) {
352 case VM_MAPTYPE_NORMAL:
353 case VM_MAPTYPE_VPAGETABLE:
354 if ((object = cur->object.vm_object) == NULL)
355 break;
356 if (object->type != OBJT_SWAP)
357 break;
358 n = (cur->end - cur->start) / PAGE_SIZE;
359 if (object->un_pager.swp.swp_bcount) {
360 count += object->un_pager.swp.swp_bcount *
361 SWAP_META_PAGES * n / object->size + 1;
363 break;
364 default:
365 break;
368 return(count);
372 * vmspace_anonymous_count()
374 * Calculate the approximate number of anonymous pages in use by
375 * this vmspace. To make up for fractional losses, we count each
376 * VM object as having at least 1 anonymous page.
379 vmspace_anonymous_count(struct vmspace *vmspace)
381 vm_map_t map = &vmspace->vm_map;
382 vm_map_entry_t cur;
383 vm_object_t object;
384 int count = 0;
386 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
387 switch(cur->maptype) {
388 case VM_MAPTYPE_NORMAL:
389 case VM_MAPTYPE_VPAGETABLE:
390 if ((object = cur->object.vm_object) == NULL)
391 break;
392 if (object->type != OBJT_DEFAULT &&
393 object->type != OBJT_SWAP) {
394 break;
396 count += object->resident_page_count;
397 break;
398 default:
399 break;
402 return(count);
409 * vm_map_create:
411 * Creates and returns a new empty VM map with
412 * the given physical map structure, and having
413 * the given lower and upper address bounds.
415 vm_map_t
416 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
418 if (result == NULL)
419 result = zalloc(mapzone);
420 vm_map_init(result, min, max, pmap);
421 return (result);
425 * Initialize an existing vm_map structure
426 * such as that in the vmspace structure.
427 * The pmap is set elsewhere.
429 void
430 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
432 map->header.next = map->header.prev = &map->header;
433 RB_INIT(&map->rb_root);
434 map->nentries = 0;
435 map->size = 0;
436 map->system_map = 0;
437 map->infork = 0;
438 map->min_offset = min;
439 map->max_offset = max;
440 map->pmap = pmap;
441 map->first_free = &map->header;
442 map->hint = &map->header;
443 map->timestamp = 0;
444 lockinit(&map->lock, "thrd_sleep", 0, 0);
448 * Shadow the vm_map_entry's object. This typically needs to be done when
449 * a write fault is taken on an entry which had previously been cloned by
450 * fork(). The shared object (which might be NULL) must become private so
451 * we add a shadow layer above it.
453 * Object allocation for anonymous mappings is defered as long as possible.
454 * When creating a shadow, however, the underlying object must be instantiated
455 * so it can be shared.
457 * If the map segment is governed by a virtual page table then it is
458 * possible to address offsets beyond the mapped area. Just allocate
459 * a maximally sized object for this case.
461 static
462 void
463 vm_map_entry_shadow(vm_map_entry_t entry)
465 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
466 vm_object_shadow(&entry->object.vm_object, &entry->offset,
467 0x7FFFFFFF); /* XXX */
468 } else {
469 vm_object_shadow(&entry->object.vm_object, &entry->offset,
470 atop(entry->end - entry->start));
472 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
476 * Allocate an object for a vm_map_entry.
478 * Object allocation for anonymous mappings is defered as long as possible.
479 * This function is called when we can defer no longer, generally when a map
480 * entry might be split or forked or takes a page fault.
482 * If the map segment is governed by a virtual page table then it is
483 * possible to address offsets beyond the mapped area. Just allocate
484 * a maximally sized object for this case.
486 void
487 vm_map_entry_allocate_object(vm_map_entry_t entry)
489 vm_object_t obj;
491 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
492 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
493 } else {
494 obj = vm_object_allocate(OBJT_DEFAULT,
495 atop(entry->end - entry->start));
497 entry->object.vm_object = obj;
498 entry->offset = 0;
502 * vm_map_entry_reserve_cpu_init:
504 * Set an initial negative count so the first attempt to reserve
505 * space preloads a bunch of vm_map_entry's for this cpu. Also
506 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
507 * map a new page for vm_map_entry structures. SMP systems are
508 * particularly sensitive.
510 * This routine is called in early boot so we cannot just call
511 * vm_map_entry_reserve().
513 * May be called for a gd other then mycpu, but may only be called
514 * during early boot.
516 void
517 vm_map_entry_reserve_cpu_init(globaldata_t gd)
519 vm_map_entry_t entry;
520 int i;
522 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
523 entry = &cpu_map_entry_init[gd->gd_cpuid][0];
524 for (i = 0; i < VMEPERCPU; ++i, ++entry) {
525 entry->next = gd->gd_vme_base;
526 gd->gd_vme_base = entry;
531 * vm_map_entry_reserve:
533 * Reserves vm_map_entry structures so code later on can manipulate
534 * map_entry structures within a locked map without blocking trying
535 * to allocate a new vm_map_entry.
538 vm_map_entry_reserve(int count)
540 struct globaldata *gd = mycpu;
541 vm_map_entry_t entry;
543 crit_enter();
546 * Make sure we have enough structures in gd_vme_base to handle
547 * the reservation request.
549 while (gd->gd_vme_avail < count) {
550 entry = zalloc(mapentzone);
551 entry->next = gd->gd_vme_base;
552 gd->gd_vme_base = entry;
553 ++gd->gd_vme_avail;
555 gd->gd_vme_avail -= count;
556 crit_exit();
557 return(count);
561 * vm_map_entry_release:
563 * Releases previously reserved vm_map_entry structures that were not
564 * used. If we have too much junk in our per-cpu cache clean some of
565 * it out.
567 void
568 vm_map_entry_release(int count)
570 struct globaldata *gd = mycpu;
571 vm_map_entry_t entry;
573 crit_enter();
574 gd->gd_vme_avail += count;
575 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
576 entry = gd->gd_vme_base;
577 KKASSERT(entry != NULL);
578 gd->gd_vme_base = entry->next;
579 --gd->gd_vme_avail;
580 crit_exit();
581 zfree(mapentzone, entry);
582 crit_enter();
584 crit_exit();
588 * vm_map_entry_kreserve:
590 * Reserve map entry structures for use in kernel_map itself. These
591 * entries have *ALREADY* been reserved on a per-cpu basis when the map
592 * was inited. This function is used by zalloc() to avoid a recursion
593 * when zalloc() itself needs to allocate additional kernel memory.
595 * This function works like the normal reserve but does not load the
596 * vm_map_entry cache (because that would result in an infinite
597 * recursion). Note that gd_vme_avail may go negative. This is expected.
599 * Any caller of this function must be sure to renormalize after
600 * potentially eating entries to ensure that the reserve supply
601 * remains intact.
604 vm_map_entry_kreserve(int count)
606 struct globaldata *gd = mycpu;
608 crit_enter();
609 gd->gd_vme_avail -= count;
610 crit_exit();
611 KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail));
612 return(count);
616 * vm_map_entry_krelease:
618 * Release previously reserved map entries for kernel_map. We do not
619 * attempt to clean up like the normal release function as this would
620 * cause an unnecessary (but probably not fatal) deep procedure call.
622 void
623 vm_map_entry_krelease(int count)
625 struct globaldata *gd = mycpu;
627 crit_enter();
628 gd->gd_vme_avail += count;
629 crit_exit();
633 * vm_map_entry_create: [ internal use only ]
635 * Allocates a VM map entry for insertion. No entry fields are filled
636 * in.
638 * This routine may be called from an interrupt thread but not a FAST
639 * interrupt. This routine may recurse the map lock.
641 static vm_map_entry_t
642 vm_map_entry_create(vm_map_t map, int *countp)
644 struct globaldata *gd = mycpu;
645 vm_map_entry_t entry;
647 KKASSERT(*countp > 0);
648 --*countp;
649 crit_enter();
650 entry = gd->gd_vme_base;
651 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
652 gd->gd_vme_base = entry->next;
653 crit_exit();
654 return(entry);
658 * vm_map_entry_dispose: [ internal use only ]
660 * Dispose of a vm_map_entry that is no longer being referenced. This
661 * function may be called from an interrupt.
663 static void
664 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
666 struct globaldata *gd = mycpu;
668 KKASSERT(map->hint != entry);
669 KKASSERT(map->first_free != entry);
671 ++*countp;
672 crit_enter();
673 entry->next = gd->gd_vme_base;
674 gd->gd_vme_base = entry;
675 crit_exit();
680 * vm_map_entry_{un,}link:
682 * Insert/remove entries from maps.
684 static __inline void
685 vm_map_entry_link(vm_map_t map,
686 vm_map_entry_t after_where,
687 vm_map_entry_t entry)
689 map->nentries++;
690 entry->prev = after_where;
691 entry->next = after_where->next;
692 entry->next->prev = entry;
693 after_where->next = entry;
694 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
695 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
698 static __inline void
699 vm_map_entry_unlink(vm_map_t map,
700 vm_map_entry_t entry)
702 vm_map_entry_t prev;
703 vm_map_entry_t next;
705 if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
706 panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
707 prev = entry->prev;
708 next = entry->next;
709 next->prev = prev;
710 prev->next = next;
711 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
712 map->nentries--;
716 * vm_map_lookup_entry: [ internal use only ]
718 * Finds the map entry containing (or
719 * immediately preceding) the specified address
720 * in the given map; the entry is returned
721 * in the "entry" parameter. The boolean
722 * result indicates whether the address is
723 * actually contained in the map.
725 boolean_t
726 vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
727 vm_map_entry_t *entry /* OUT */)
729 vm_map_entry_t tmp;
730 vm_map_entry_t last;
732 #if 0
734 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive
735 * the hint code with the red-black lookup meets with system crashes
736 * and lockups. We do not yet know why.
738 * It is possible that the problem is related to the setting
739 * of the hint during map_entry deletion, in the code specified
740 * at the GGG comment later on in this file.
743 * Quickly check the cached hint, there's a good chance of a match.
745 if (map->hint != &map->header) {
746 tmp = map->hint;
747 if (address >= tmp->start && address < tmp->end) {
748 *entry = tmp;
749 return(TRUE);
752 #endif
755 * Locate the record from the top of the tree. 'last' tracks the
756 * closest prior record and is returned if no match is found, which
757 * in binary tree terms means tracking the most recent right-branch
758 * taken. If there is no prior record, &map->header is returned.
760 last = &map->header;
761 tmp = RB_ROOT(&map->rb_root);
763 while (tmp) {
764 if (address >= tmp->start) {
765 if (address < tmp->end) {
766 *entry = tmp;
767 map->hint = tmp;
768 return(TRUE);
770 last = tmp;
771 tmp = RB_RIGHT(tmp, rb_entry);
772 } else {
773 tmp = RB_LEFT(tmp, rb_entry);
776 *entry = last;
777 return (FALSE);
781 * vm_map_insert:
783 * Inserts the given whole VM object into the target
784 * map at the specified address range. The object's
785 * size should match that of the address range.
787 * Requires that the map be locked, and leaves it so. Requires that
788 * sufficient vm_map_entry structures have been reserved and tracks
789 * the use via countp.
791 * If object is non-NULL, ref count must be bumped by caller
792 * prior to making call to account for the new entry.
795 vm_map_insert(vm_map_t map, int *countp,
796 vm_object_t object, vm_ooffset_t offset,
797 vm_offset_t start, vm_offset_t end,
798 vm_maptype_t maptype,
799 vm_prot_t prot, vm_prot_t max,
800 int cow)
802 vm_map_entry_t new_entry;
803 vm_map_entry_t prev_entry;
804 vm_map_entry_t temp_entry;
805 vm_eflags_t protoeflags;
808 * Check that the start and end points are not bogus.
811 if ((start < map->min_offset) || (end > map->max_offset) ||
812 (start >= end))
813 return (KERN_INVALID_ADDRESS);
816 * Find the entry prior to the proposed starting address; if it's part
817 * of an existing entry, this range is bogus.
820 if (vm_map_lookup_entry(map, start, &temp_entry))
821 return (KERN_NO_SPACE);
823 prev_entry = temp_entry;
826 * Assert that the next entry doesn't overlap the end point.
829 if ((prev_entry->next != &map->header) &&
830 (prev_entry->next->start < end))
831 return (KERN_NO_SPACE);
833 protoeflags = 0;
835 if (cow & MAP_COPY_ON_WRITE)
836 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
838 if (cow & MAP_NOFAULT) {
839 protoeflags |= MAP_ENTRY_NOFAULT;
841 KASSERT(object == NULL,
842 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
844 if (cow & MAP_DISABLE_SYNCER)
845 protoeflags |= MAP_ENTRY_NOSYNC;
846 if (cow & MAP_DISABLE_COREDUMP)
847 protoeflags |= MAP_ENTRY_NOCOREDUMP;
848 if (cow & MAP_IS_STACK)
849 protoeflags |= MAP_ENTRY_STACK;
851 if (object) {
853 * When object is non-NULL, it could be shared with another
854 * process. We have to set or clear OBJ_ONEMAPPING
855 * appropriately.
857 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
858 vm_object_clear_flag(object, OBJ_ONEMAPPING);
861 else if ((prev_entry != &map->header) &&
862 (prev_entry->eflags == protoeflags) &&
863 (prev_entry->end == start) &&
864 (prev_entry->wired_count == 0) &&
865 prev_entry->maptype == maptype &&
866 ((prev_entry->object.vm_object == NULL) ||
867 vm_object_coalesce(prev_entry->object.vm_object,
868 OFF_TO_IDX(prev_entry->offset),
869 (vm_size_t)(prev_entry->end - prev_entry->start),
870 (vm_size_t)(end - prev_entry->end)))) {
872 * We were able to extend the object. Determine if we
873 * can extend the previous map entry to include the
874 * new range as well.
876 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
877 (prev_entry->protection == prot) &&
878 (prev_entry->max_protection == max)) {
879 map->size += (end - prev_entry->end);
880 prev_entry->end = end;
881 vm_map_simplify_entry(map, prev_entry, countp);
882 return (KERN_SUCCESS);
886 * If we can extend the object but cannot extend the
887 * map entry, we have to create a new map entry. We
888 * must bump the ref count on the extended object to
889 * account for it. object may be NULL.
891 object = prev_entry->object.vm_object;
892 offset = prev_entry->offset +
893 (prev_entry->end - prev_entry->start);
894 vm_object_reference(object);
898 * NOTE: if conditionals fail, object can be NULL here. This occurs
899 * in things like the buffer map where we manage kva but do not manage
900 * backing objects.
904 * Create a new entry
907 new_entry = vm_map_entry_create(map, countp);
908 new_entry->start = start;
909 new_entry->end = end;
911 new_entry->maptype = maptype;
912 new_entry->eflags = protoeflags;
913 new_entry->object.vm_object = object;
914 new_entry->offset = offset;
915 new_entry->aux.master_pde = 0;
917 new_entry->inheritance = VM_INHERIT_DEFAULT;
918 new_entry->protection = prot;
919 new_entry->max_protection = max;
920 new_entry->wired_count = 0;
923 * Insert the new entry into the list
926 vm_map_entry_link(map, prev_entry, new_entry);
927 map->size += new_entry->end - new_entry->start;
930 * Update the free space hint
932 if ((map->first_free == prev_entry) &&
933 (prev_entry->end >= new_entry->start)) {
934 map->first_free = new_entry;
937 #if 0
939 * Temporarily removed to avoid MAP_STACK panic, due to
940 * MAP_STACK being a huge hack. Will be added back in
941 * when MAP_STACK (and the user stack mapping) is fixed.
944 * It may be possible to simplify the entry
946 vm_map_simplify_entry(map, new_entry, countp);
947 #endif
950 * Try to pre-populate the page table. Mappings governed by virtual
951 * page tables cannot be prepopulated without a lot of work, so
952 * don't try.
954 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
955 maptype != VM_MAPTYPE_VPAGETABLE) {
956 pmap_object_init_pt(map->pmap, start, prot,
957 object, OFF_TO_IDX(offset), end - start,
958 cow & MAP_PREFAULT_PARTIAL);
961 return (KERN_SUCCESS);
965 * Find sufficient space for `length' bytes in the given map, starting at
966 * `start'. The map must be locked. Returns 0 on success, 1 on no space.
968 * This function will returned an arbitrarily aligned pointer. If no
969 * particular alignment is required you should pass align as 1. Note that
970 * the map may return PAGE_SIZE aligned pointers if all the lengths used in
971 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
972 * argument.
974 * 'align' should be a power of 2 but is not required to be.
977 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
978 vm_offset_t align, int flags, vm_offset_t *addr)
980 vm_map_entry_t entry, next;
981 vm_offset_t end;
982 vm_offset_t align_mask;
984 if (start < map->min_offset)
985 start = map->min_offset;
986 if (start > map->max_offset)
987 return (1);
990 * If the alignment is not a power of 2 we will have to use
991 * a mod/division, set align_mask to a special value.
993 if ((align | (align - 1)) + 1 != (align << 1))
994 align_mask = (vm_offset_t)-1;
995 else
996 align_mask = align - 1;
998 retry:
1000 * Look for the first possible address; if there's already something
1001 * at this address, we have to start after it.
1003 if (start == map->min_offset) {
1004 if ((entry = map->first_free) != &map->header)
1005 start = entry->end;
1006 } else {
1007 vm_map_entry_t tmp;
1009 if (vm_map_lookup_entry(map, start, &tmp))
1010 start = tmp->end;
1011 entry = tmp;
1015 * Look through the rest of the map, trying to fit a new region in the
1016 * gap between existing regions, or after the very last region.
1018 for (;; start = (entry = next)->end) {
1020 * Adjust the proposed start by the requested alignment,
1021 * be sure that we didn't wrap the address.
1023 if (align_mask == (vm_offset_t)-1)
1024 end = ((start + align - 1) / align) * align;
1025 else
1026 end = (start + align_mask) & ~align_mask;
1027 if (end < start)
1028 return (1);
1029 start = end;
1031 * Find the end of the proposed new region. Be sure we didn't
1032 * go beyond the end of the map, or wrap around the address.
1033 * Then check to see if this is the last entry or if the
1034 * proposed end fits in the gap between this and the next
1035 * entry.
1037 end = start + length;
1038 if (end > map->max_offset || end < start)
1039 return (1);
1040 next = entry->next;
1043 * If the next entry's start address is beyond the desired
1044 * end address we may have found a good entry.
1046 * If the next entry is a stack mapping we do not map into
1047 * the stack's reserved space.
1049 * XXX continue to allow mapping into the stack's reserved
1050 * space if doing a MAP_STACK mapping inside a MAP_STACK
1051 * mapping, for backwards compatibility. But the caller
1052 * really should use MAP_STACK | MAP_TRYFIXED if they
1053 * want to do that.
1055 if (next == &map->header)
1056 break;
1057 if (next->start >= end) {
1058 if ((next->eflags & MAP_ENTRY_STACK) == 0)
1059 break;
1060 if (flags & MAP_STACK)
1061 break;
1062 if (next->start - next->aux.avail_ssize >= end)
1063 break;
1066 map->hint = entry;
1067 if (map == &kernel_map) {
1068 vm_offset_t ksize;
1069 if ((ksize = round_page(start + length)) > kernel_vm_end) {
1070 pmap_growkernel(ksize);
1071 goto retry;
1074 *addr = start;
1075 return (0);
1079 * vm_map_find finds an unallocated region in the target address
1080 * map with the given length. The search is defined to be
1081 * first-fit from the specified address; the region found is
1082 * returned in the same parameter.
1084 * If object is non-NULL, ref count must be bumped by caller
1085 * prior to making call to account for the new entry.
1088 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1089 vm_offset_t *addr, vm_size_t length,
1090 boolean_t fitit,
1091 vm_maptype_t maptype,
1092 vm_prot_t prot, vm_prot_t max,
1093 int cow)
1095 vm_offset_t start;
1096 int result;
1097 int count;
1099 start = *addr;
1101 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1102 vm_map_lock(map);
1103 if (fitit) {
1104 if (vm_map_findspace(map, start, length, 1, 0, addr)) {
1105 vm_map_unlock(map);
1106 vm_map_entry_release(count);
1107 return (KERN_NO_SPACE);
1109 start = *addr;
1111 result = vm_map_insert(map, &count, object, offset,
1112 start, start + length,
1113 maptype,
1114 prot, max,
1115 cow);
1116 vm_map_unlock(map);
1117 vm_map_entry_release(count);
1119 return (result);
1123 * vm_map_simplify_entry:
1125 * Simplify the given map entry by merging with either neighbor. This
1126 * routine also has the ability to merge with both neighbors.
1128 * The map must be locked.
1130 * This routine guarentees that the passed entry remains valid (though
1131 * possibly extended). When merging, this routine may delete one or
1132 * both neighbors. No action is taken on entries which have their
1133 * in-transition flag set.
1135 void
1136 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1138 vm_map_entry_t next, prev;
1139 vm_size_t prevsize, esize;
1141 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1142 ++mycpu->gd_cnt.v_intrans_coll;
1143 return;
1146 if (entry->maptype == VM_MAPTYPE_SUBMAP)
1147 return;
1149 prev = entry->prev;
1150 if (prev != &map->header) {
1151 prevsize = prev->end - prev->start;
1152 if ( (prev->end == entry->start) &&
1153 (prev->maptype == entry->maptype) &&
1154 (prev->object.vm_object == entry->object.vm_object) &&
1155 (!prev->object.vm_object ||
1156 (prev->offset + prevsize == entry->offset)) &&
1157 (prev->eflags == entry->eflags) &&
1158 (prev->protection == entry->protection) &&
1159 (prev->max_protection == entry->max_protection) &&
1160 (prev->inheritance == entry->inheritance) &&
1161 (prev->wired_count == entry->wired_count)) {
1162 if (map->first_free == prev)
1163 map->first_free = entry;
1164 if (map->hint == prev)
1165 map->hint = entry;
1166 vm_map_entry_unlink(map, prev);
1167 entry->start = prev->start;
1168 entry->offset = prev->offset;
1169 if (prev->object.vm_object)
1170 vm_object_deallocate(prev->object.vm_object);
1171 vm_map_entry_dispose(map, prev, countp);
1175 next = entry->next;
1176 if (next != &map->header) {
1177 esize = entry->end - entry->start;
1178 if ((entry->end == next->start) &&
1179 (next->maptype == entry->maptype) &&
1180 (next->object.vm_object == entry->object.vm_object) &&
1181 (!entry->object.vm_object ||
1182 (entry->offset + esize == next->offset)) &&
1183 (next->eflags == entry->eflags) &&
1184 (next->protection == entry->protection) &&
1185 (next->max_protection == entry->max_protection) &&
1186 (next->inheritance == entry->inheritance) &&
1187 (next->wired_count == entry->wired_count)) {
1188 if (map->first_free == next)
1189 map->first_free = entry;
1190 if (map->hint == next)
1191 map->hint = entry;
1192 vm_map_entry_unlink(map, next);
1193 entry->end = next->end;
1194 if (next->object.vm_object)
1195 vm_object_deallocate(next->object.vm_object);
1196 vm_map_entry_dispose(map, next, countp);
1201 * vm_map_clip_start: [ internal use only ]
1203 * Asserts that the given entry begins at or after
1204 * the specified address; if necessary,
1205 * it splits the entry into two.
1207 #define vm_map_clip_start(map, entry, startaddr, countp) \
1209 if (startaddr > entry->start) \
1210 _vm_map_clip_start(map, entry, startaddr, countp); \
1214 * This routine is called only when it is known that
1215 * the entry must be split.
1217 static void
1218 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1220 vm_map_entry_t new_entry;
1223 * Split off the front portion -- note that we must insert the new
1224 * entry BEFORE this one, so that this entry has the specified
1225 * starting address.
1228 vm_map_simplify_entry(map, entry, countp);
1231 * If there is no object backing this entry, we might as well create
1232 * one now. If we defer it, an object can get created after the map
1233 * is clipped, and individual objects will be created for the split-up
1234 * map. This is a bit of a hack, but is also about the best place to
1235 * put this improvement.
1237 if (entry->object.vm_object == NULL && !map->system_map) {
1238 vm_map_entry_allocate_object(entry);
1241 new_entry = vm_map_entry_create(map, countp);
1242 *new_entry = *entry;
1244 new_entry->end = start;
1245 entry->offset += (start - entry->start);
1246 entry->start = start;
1248 vm_map_entry_link(map, entry->prev, new_entry);
1250 switch(entry->maptype) {
1251 case VM_MAPTYPE_NORMAL:
1252 case VM_MAPTYPE_VPAGETABLE:
1253 vm_object_reference(new_entry->object.vm_object);
1254 break;
1255 default:
1256 break;
1261 * vm_map_clip_end: [ internal use only ]
1263 * Asserts that the given entry ends at or before
1264 * the specified address; if necessary,
1265 * it splits the entry into two.
1268 #define vm_map_clip_end(map, entry, endaddr, countp) \
1270 if (endaddr < entry->end) \
1271 _vm_map_clip_end(map, entry, endaddr, countp); \
1275 * This routine is called only when it is known that
1276 * the entry must be split.
1278 static void
1279 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1281 vm_map_entry_t new_entry;
1284 * If there is no object backing this entry, we might as well create
1285 * one now. If we defer it, an object can get created after the map
1286 * is clipped, and individual objects will be created for the split-up
1287 * map. This is a bit of a hack, but is also about the best place to
1288 * put this improvement.
1291 if (entry->object.vm_object == NULL && !map->system_map) {
1292 vm_map_entry_allocate_object(entry);
1296 * Create a new entry and insert it AFTER the specified entry
1299 new_entry = vm_map_entry_create(map, countp);
1300 *new_entry = *entry;
1302 new_entry->start = entry->end = end;
1303 new_entry->offset += (end - entry->start);
1305 vm_map_entry_link(map, entry, new_entry);
1307 switch(entry->maptype) {
1308 case VM_MAPTYPE_NORMAL:
1309 case VM_MAPTYPE_VPAGETABLE:
1310 vm_object_reference(new_entry->object.vm_object);
1311 break;
1312 default:
1313 break;
1318 * VM_MAP_RANGE_CHECK: [ internal use only ]
1320 * Asserts that the starting and ending region
1321 * addresses fall within the valid range of the map.
1323 #define VM_MAP_RANGE_CHECK(map, start, end) \
1325 if (start < vm_map_min(map)) \
1326 start = vm_map_min(map); \
1327 if (end > vm_map_max(map)) \
1328 end = vm_map_max(map); \
1329 if (start > end) \
1330 start = end; \
1334 * vm_map_transition_wait: [ kernel use only ]
1336 * Used to block when an in-transition collison occurs. The map
1337 * is unlocked for the sleep and relocked before the return.
1339 static
1340 void
1341 vm_map_transition_wait(vm_map_t map)
1343 vm_map_unlock(map);
1344 tsleep(map, 0, "vment", 0);
1345 vm_map_lock(map);
1349 * CLIP_CHECK_BACK
1350 * CLIP_CHECK_FWD
1352 * When we do blocking operations with the map lock held it is
1353 * possible that a clip might have occured on our in-transit entry,
1354 * requiring an adjustment to the entry in our loop. These macros
1355 * help the pageable and clip_range code deal with the case. The
1356 * conditional costs virtually nothing if no clipping has occured.
1359 #define CLIP_CHECK_BACK(entry, save_start) \
1360 do { \
1361 while (entry->start != save_start) { \
1362 entry = entry->prev; \
1363 KASSERT(entry != &map->header, ("bad entry clip")); \
1365 } while(0)
1367 #define CLIP_CHECK_FWD(entry, save_end) \
1368 do { \
1369 while (entry->end != save_end) { \
1370 entry = entry->next; \
1371 KASSERT(entry != &map->header, ("bad entry clip")); \
1373 } while(0)
1377 * vm_map_clip_range: [ kernel use only ]
1379 * Clip the specified range and return the base entry. The
1380 * range may cover several entries starting at the returned base
1381 * and the first and last entry in the covering sequence will be
1382 * properly clipped to the requested start and end address.
1384 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1385 * flag.
1387 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1388 * covered by the requested range.
1390 * The map must be exclusively locked on entry and will remain locked
1391 * on return. If no range exists or the range contains holes and you
1392 * specified that no holes were allowed, NULL will be returned. This
1393 * routine may temporarily unlock the map in order avoid a deadlock when
1394 * sleeping.
1396 static
1397 vm_map_entry_t
1398 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1399 int *countp, int flags)
1401 vm_map_entry_t start_entry;
1402 vm_map_entry_t entry;
1405 * Locate the entry and effect initial clipping. The in-transition
1406 * case does not occur very often so do not try to optimize it.
1408 again:
1409 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1410 return (NULL);
1411 entry = start_entry;
1412 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1413 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1414 ++mycpu->gd_cnt.v_intrans_coll;
1415 ++mycpu->gd_cnt.v_intrans_wait;
1416 vm_map_transition_wait(map);
1418 * entry and/or start_entry may have been clipped while
1419 * we slept, or may have gone away entirely. We have
1420 * to restart from the lookup.
1422 goto again;
1425 * Since we hold an exclusive map lock we do not have to restart
1426 * after clipping, even though clipping may block in zalloc.
1428 vm_map_clip_start(map, entry, start, countp);
1429 vm_map_clip_end(map, entry, end, countp);
1430 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1433 * Scan entries covered by the range. When working on the next
1434 * entry a restart need only re-loop on the current entry which
1435 * we have already locked, since 'next' may have changed. Also,
1436 * even though entry is safe, it may have been clipped so we
1437 * have to iterate forwards through the clip after sleeping.
1439 while (entry->next != &map->header && entry->next->start < end) {
1440 vm_map_entry_t next = entry->next;
1442 if (flags & MAP_CLIP_NO_HOLES) {
1443 if (next->start > entry->end) {
1444 vm_map_unclip_range(map, start_entry,
1445 start, entry->end, countp, flags);
1446 return(NULL);
1450 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1451 vm_offset_t save_end = entry->end;
1452 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1453 ++mycpu->gd_cnt.v_intrans_coll;
1454 ++mycpu->gd_cnt.v_intrans_wait;
1455 vm_map_transition_wait(map);
1458 * clips might have occured while we blocked.
1460 CLIP_CHECK_FWD(entry, save_end);
1461 CLIP_CHECK_BACK(start_entry, start);
1462 continue;
1465 * No restart necessary even though clip_end may block, we
1466 * are holding the map lock.
1468 vm_map_clip_end(map, next, end, countp);
1469 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1470 entry = next;
1472 if (flags & MAP_CLIP_NO_HOLES) {
1473 if (entry->end != end) {
1474 vm_map_unclip_range(map, start_entry,
1475 start, entry->end, countp, flags);
1476 return(NULL);
1479 return(start_entry);
1483 * vm_map_unclip_range: [ kernel use only ]
1485 * Undo the effect of vm_map_clip_range(). You should pass the same
1486 * flags and the same range that you passed to vm_map_clip_range().
1487 * This code will clear the in-transition flag on the entries and
1488 * wake up anyone waiting. This code will also simplify the sequence
1489 * and attempt to merge it with entries before and after the sequence.
1491 * The map must be locked on entry and will remain locked on return.
1493 * Note that you should also pass the start_entry returned by
1494 * vm_map_clip_range(). However, if you block between the two calls
1495 * with the map unlocked please be aware that the start_entry may
1496 * have been clipped and you may need to scan it backwards to find
1497 * the entry corresponding with the original start address. You are
1498 * responsible for this, vm_map_unclip_range() expects the correct
1499 * start_entry to be passed to it and will KASSERT otherwise.
1501 static
1502 void
1503 vm_map_unclip_range(
1504 vm_map_t map,
1505 vm_map_entry_t start_entry,
1506 vm_offset_t start,
1507 vm_offset_t end,
1508 int *countp,
1509 int flags)
1511 vm_map_entry_t entry;
1513 entry = start_entry;
1515 KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1516 while (entry != &map->header && entry->start < end) {
1517 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1518 KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1519 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1520 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1521 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1522 wakeup(map);
1524 entry = entry->next;
1528 * Simplification does not block so there is no restart case.
1530 entry = start_entry;
1531 while (entry != &map->header && entry->start < end) {
1532 vm_map_simplify_entry(map, entry, countp);
1533 entry = entry->next;
1538 * vm_map_submap: [ kernel use only ]
1540 * Mark the given range as handled by a subordinate map.
1542 * This range must have been created with vm_map_find,
1543 * and no other operations may have been performed on this
1544 * range prior to calling vm_map_submap.
1546 * Only a limited number of operations can be performed
1547 * within this rage after calling vm_map_submap:
1548 * vm_fault
1549 * [Don't try vm_map_copy!]
1551 * To remove a submapping, one must first remove the
1552 * range from the superior map, and then destroy the
1553 * submap (if desired). [Better yet, don't try it.]
1556 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1558 vm_map_entry_t entry;
1559 int result = KERN_INVALID_ARGUMENT;
1560 int count;
1562 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1563 vm_map_lock(map);
1565 VM_MAP_RANGE_CHECK(map, start, end);
1567 if (vm_map_lookup_entry(map, start, &entry)) {
1568 vm_map_clip_start(map, entry, start, &count);
1569 } else {
1570 entry = entry->next;
1573 vm_map_clip_end(map, entry, end, &count);
1575 if ((entry->start == start) && (entry->end == end) &&
1576 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1577 (entry->object.vm_object == NULL)) {
1578 entry->object.sub_map = submap;
1579 entry->maptype = VM_MAPTYPE_SUBMAP;
1580 result = KERN_SUCCESS;
1582 vm_map_unlock(map);
1583 vm_map_entry_release(count);
1585 return (result);
1589 * vm_map_protect:
1591 * Sets the protection of the specified address region in the target map.
1592 * If "set_max" is specified, the maximum protection is to be set;
1593 * otherwise, only the current protection is affected.
1595 * The protection is not applicable to submaps, but is applicable to normal
1596 * maps and maps governed by virtual page tables. For example, when operating
1597 * on a virtual page table our protection basically controls how COW occurs
1598 * on the backing object, whereas the virtual page table abstraction itself
1599 * is an abstraction for userland.
1602 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1603 vm_prot_t new_prot, boolean_t set_max)
1605 vm_map_entry_t current;
1606 vm_map_entry_t entry;
1607 int count;
1609 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1610 vm_map_lock(map);
1612 VM_MAP_RANGE_CHECK(map, start, end);
1614 if (vm_map_lookup_entry(map, start, &entry)) {
1615 vm_map_clip_start(map, entry, start, &count);
1616 } else {
1617 entry = entry->next;
1621 * Make a first pass to check for protection violations.
1623 current = entry;
1624 while ((current != &map->header) && (current->start < end)) {
1625 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1626 vm_map_unlock(map);
1627 vm_map_entry_release(count);
1628 return (KERN_INVALID_ARGUMENT);
1630 if ((new_prot & current->max_protection) != new_prot) {
1631 vm_map_unlock(map);
1632 vm_map_entry_release(count);
1633 return (KERN_PROTECTION_FAILURE);
1635 current = current->next;
1639 * Go back and fix up protections. [Note that clipping is not
1640 * necessary the second time.]
1642 current = entry;
1644 while ((current != &map->header) && (current->start < end)) {
1645 vm_prot_t old_prot;
1647 vm_map_clip_end(map, current, end, &count);
1649 old_prot = current->protection;
1650 if (set_max) {
1651 current->protection =
1652 (current->max_protection = new_prot) &
1653 old_prot;
1654 } else {
1655 current->protection = new_prot;
1659 * Update physical map if necessary. Worry about copy-on-write
1660 * here -- CHECK THIS XXX
1663 if (current->protection != old_prot) {
1664 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1665 VM_PROT_ALL)
1667 pmap_protect(map->pmap, current->start,
1668 current->end,
1669 current->protection & MASK(current));
1670 #undef MASK
1673 vm_map_simplify_entry(map, current, &count);
1675 current = current->next;
1678 vm_map_unlock(map);
1679 vm_map_entry_release(count);
1680 return (KERN_SUCCESS);
1684 * vm_map_madvise:
1686 * This routine traverses a processes map handling the madvise
1687 * system call. Advisories are classified as either those effecting
1688 * the vm_map_entry structure, or those effecting the underlying
1689 * objects.
1691 * The <value> argument is used for extended madvise calls.
1694 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1695 int behav, off_t value)
1697 vm_map_entry_t current, entry;
1698 int modify_map = 0;
1699 int error = 0;
1700 int count;
1703 * Some madvise calls directly modify the vm_map_entry, in which case
1704 * we need to use an exclusive lock on the map and we need to perform
1705 * various clipping operations. Otherwise we only need a read-lock
1706 * on the map.
1709 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1711 switch(behav) {
1712 case MADV_NORMAL:
1713 case MADV_SEQUENTIAL:
1714 case MADV_RANDOM:
1715 case MADV_NOSYNC:
1716 case MADV_AUTOSYNC:
1717 case MADV_NOCORE:
1718 case MADV_CORE:
1719 case MADV_SETMAP:
1720 case MADV_INVAL:
1721 modify_map = 1;
1722 vm_map_lock(map);
1723 break;
1724 case MADV_WILLNEED:
1725 case MADV_DONTNEED:
1726 case MADV_FREE:
1727 vm_map_lock_read(map);
1728 break;
1729 default:
1730 vm_map_entry_release(count);
1731 return (EINVAL);
1735 * Locate starting entry and clip if necessary.
1738 VM_MAP_RANGE_CHECK(map, start, end);
1740 if (vm_map_lookup_entry(map, start, &entry)) {
1741 if (modify_map)
1742 vm_map_clip_start(map, entry, start, &count);
1743 } else {
1744 entry = entry->next;
1747 if (modify_map) {
1749 * madvise behaviors that are implemented in the vm_map_entry.
1751 * We clip the vm_map_entry so that behavioral changes are
1752 * limited to the specified address range.
1754 for (current = entry;
1755 (current != &map->header) && (current->start < end);
1756 current = current->next
1758 if (current->maptype == VM_MAPTYPE_SUBMAP)
1759 continue;
1761 vm_map_clip_end(map, current, end, &count);
1763 switch (behav) {
1764 case MADV_NORMAL:
1765 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1766 break;
1767 case MADV_SEQUENTIAL:
1768 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1769 break;
1770 case MADV_RANDOM:
1771 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1772 break;
1773 case MADV_NOSYNC:
1774 current->eflags |= MAP_ENTRY_NOSYNC;
1775 break;
1776 case MADV_AUTOSYNC:
1777 current->eflags &= ~MAP_ENTRY_NOSYNC;
1778 break;
1779 case MADV_NOCORE:
1780 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1781 break;
1782 case MADV_CORE:
1783 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1784 break;
1785 case MADV_INVAL:
1787 * Invalidate the related pmap entries, used
1788 * to flush portions of the real kernel's
1789 * pmap when the caller has removed or
1790 * modified existing mappings in a virtual
1791 * page table.
1793 pmap_remove(map->pmap,
1794 current->start, current->end);
1795 break;
1796 case MADV_SETMAP:
1798 * Set the page directory page for a map
1799 * governed by a virtual page table. Mark
1800 * the entry as being governed by a virtual
1801 * page table if it is not.
1803 * XXX the page directory page is stored
1804 * in the avail_ssize field if the map_entry.
1806 * XXX the map simplification code does not
1807 * compare this field so weird things may
1808 * happen if you do not apply this function
1809 * to the entire mapping governed by the
1810 * virtual page table.
1812 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1813 error = EINVAL;
1814 break;
1816 current->aux.master_pde = value;
1817 pmap_remove(map->pmap,
1818 current->start, current->end);
1819 break;
1820 default:
1821 error = EINVAL;
1822 break;
1824 vm_map_simplify_entry(map, current, &count);
1826 vm_map_unlock(map);
1827 } else {
1828 vm_pindex_t pindex;
1829 int count;
1832 * madvise behaviors that are implemented in the underlying
1833 * vm_object.
1835 * Since we don't clip the vm_map_entry, we have to clip
1836 * the vm_object pindex and count.
1838 * NOTE! We currently do not support these functions on
1839 * virtual page tables.
1841 for (current = entry;
1842 (current != &map->header) && (current->start < end);
1843 current = current->next
1845 vm_offset_t useStart;
1847 if (current->maptype != VM_MAPTYPE_NORMAL)
1848 continue;
1850 pindex = OFF_TO_IDX(current->offset);
1851 count = atop(current->end - current->start);
1852 useStart = current->start;
1854 if (current->start < start) {
1855 pindex += atop(start - current->start);
1856 count -= atop(start - current->start);
1857 useStart = start;
1859 if (current->end > end)
1860 count -= atop(current->end - end);
1862 if (count <= 0)
1863 continue;
1865 vm_object_madvise(current->object.vm_object,
1866 pindex, count, behav);
1869 * Try to populate the page table. Mappings governed
1870 * by virtual page tables cannot be pre-populated
1871 * without a lot of work so don't try.
1873 if (behav == MADV_WILLNEED &&
1874 current->maptype != VM_MAPTYPE_VPAGETABLE) {
1875 pmap_object_init_pt(
1876 map->pmap,
1877 useStart,
1878 current->protection,
1879 current->object.vm_object,
1880 pindex,
1881 (count << PAGE_SHIFT),
1882 MAP_PREFAULT_MADVISE
1886 vm_map_unlock_read(map);
1888 vm_map_entry_release(count);
1889 return(error);
1894 * vm_map_inherit:
1896 * Sets the inheritance of the specified address
1897 * range in the target map. Inheritance
1898 * affects how the map will be shared with
1899 * child maps at the time of vm_map_fork.
1902 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1903 vm_inherit_t new_inheritance)
1905 vm_map_entry_t entry;
1906 vm_map_entry_t temp_entry;
1907 int count;
1909 switch (new_inheritance) {
1910 case VM_INHERIT_NONE:
1911 case VM_INHERIT_COPY:
1912 case VM_INHERIT_SHARE:
1913 break;
1914 default:
1915 return (KERN_INVALID_ARGUMENT);
1918 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1919 vm_map_lock(map);
1921 VM_MAP_RANGE_CHECK(map, start, end);
1923 if (vm_map_lookup_entry(map, start, &temp_entry)) {
1924 entry = temp_entry;
1925 vm_map_clip_start(map, entry, start, &count);
1926 } else
1927 entry = temp_entry->next;
1929 while ((entry != &map->header) && (entry->start < end)) {
1930 vm_map_clip_end(map, entry, end, &count);
1932 entry->inheritance = new_inheritance;
1934 vm_map_simplify_entry(map, entry, &count);
1936 entry = entry->next;
1938 vm_map_unlock(map);
1939 vm_map_entry_release(count);
1940 return (KERN_SUCCESS);
1944 * Implement the semantics of mlock
1947 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1948 boolean_t new_pageable)
1950 vm_map_entry_t entry;
1951 vm_map_entry_t start_entry;
1952 vm_offset_t end;
1953 int rv = KERN_SUCCESS;
1954 int count;
1956 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1957 vm_map_lock(map);
1958 VM_MAP_RANGE_CHECK(map, start, real_end);
1959 end = real_end;
1961 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1962 if (start_entry == NULL) {
1963 vm_map_unlock(map);
1964 vm_map_entry_release(count);
1965 return (KERN_INVALID_ADDRESS);
1968 if (new_pageable == 0) {
1969 entry = start_entry;
1970 while ((entry != &map->header) && (entry->start < end)) {
1971 vm_offset_t save_start;
1972 vm_offset_t save_end;
1975 * Already user wired or hard wired (trivial cases)
1977 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1978 entry = entry->next;
1979 continue;
1981 if (entry->wired_count != 0) {
1982 entry->wired_count++;
1983 entry->eflags |= MAP_ENTRY_USER_WIRED;
1984 entry = entry->next;
1985 continue;
1989 * A new wiring requires instantiation of appropriate
1990 * management structures and the faulting in of the
1991 * page.
1993 if (entry->maptype != VM_MAPTYPE_SUBMAP) {
1994 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1995 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1996 vm_map_entry_shadow(entry);
1997 } else if (entry->object.vm_object == NULL &&
1998 !map->system_map) {
1999 vm_map_entry_allocate_object(entry);
2002 entry->wired_count++;
2003 entry->eflags |= MAP_ENTRY_USER_WIRED;
2006 * Now fault in the area. Note that vm_fault_wire()
2007 * may release the map lock temporarily, it will be
2008 * relocked on return. The in-transition
2009 * flag protects the entries.
2011 save_start = entry->start;
2012 save_end = entry->end;
2013 rv = vm_fault_wire(map, entry, TRUE);
2014 if (rv) {
2015 CLIP_CHECK_BACK(entry, save_start);
2016 for (;;) {
2017 KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2018 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2019 entry->wired_count = 0;
2020 if (entry->end == save_end)
2021 break;
2022 entry = entry->next;
2023 KASSERT(entry != &map->header, ("bad entry clip during backout"));
2025 end = save_start; /* unwire the rest */
2026 break;
2029 * note that even though the entry might have been
2030 * clipped, the USER_WIRED flag we set prevents
2031 * duplication so we do not have to do a
2032 * clip check.
2034 entry = entry->next;
2038 * If we failed fall through to the unwiring section to
2039 * unwire what we had wired so far. 'end' has already
2040 * been adjusted.
2042 if (rv)
2043 new_pageable = 1;
2046 * start_entry might have been clipped if we unlocked the
2047 * map and blocked. No matter how clipped it has gotten
2048 * there should be a fragment that is on our start boundary.
2050 CLIP_CHECK_BACK(start_entry, start);
2054 * Deal with the unwiring case.
2056 if (new_pageable) {
2058 * This is the unwiring case. We must first ensure that the
2059 * range to be unwired is really wired down. We know there
2060 * are no holes.
2062 entry = start_entry;
2063 while ((entry != &map->header) && (entry->start < end)) {
2064 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2065 rv = KERN_INVALID_ARGUMENT;
2066 goto done;
2068 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2069 entry = entry->next;
2073 * Now decrement the wiring count for each region. If a region
2074 * becomes completely unwired, unwire its physical pages and
2075 * mappings.
2078 * The map entries are processed in a loop, checking to
2079 * make sure the entry is wired and asserting it has a wired
2080 * count. However, another loop was inserted more-or-less in
2081 * the middle of the unwiring path. This loop picks up the
2082 * "entry" loop variable from the first loop without first
2083 * setting it to start_entry. Naturally, the secound loop
2084 * is never entered and the pages backing the entries are
2085 * never unwired. This can lead to a leak of wired pages.
2087 entry = start_entry;
2088 while ((entry != &map->header) && (entry->start < end)) {
2089 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2090 ("expected USER_WIRED on entry %p", entry));
2091 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2092 entry->wired_count--;
2093 if (entry->wired_count == 0)
2094 vm_fault_unwire(map, entry);
2095 entry = entry->next;
2098 done:
2099 vm_map_unclip_range(map, start_entry, start, real_end, &count,
2100 MAP_CLIP_NO_HOLES);
2101 map->timestamp++;
2102 vm_map_unlock(map);
2103 vm_map_entry_release(count);
2104 return (rv);
2108 * vm_map_wire:
2110 * Sets the pageability of the specified address
2111 * range in the target map. Regions specified
2112 * as not pageable require locked-down physical
2113 * memory and physical page maps.
2115 * The map must not be locked, but a reference
2116 * must remain to the map throughout the call.
2118 * This function may be called via the zalloc path and must properly
2119 * reserve map entries for kernel_map.
2122 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2124 vm_map_entry_t entry;
2125 vm_map_entry_t start_entry;
2126 vm_offset_t end;
2127 int rv = KERN_SUCCESS;
2128 int count;
2130 if (kmflags & KM_KRESERVE)
2131 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2132 else
2133 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2134 vm_map_lock(map);
2135 VM_MAP_RANGE_CHECK(map, start, real_end);
2136 end = real_end;
2138 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
2139 if (start_entry == NULL) {
2140 vm_map_unlock(map);
2141 rv = KERN_INVALID_ADDRESS;
2142 goto failure;
2144 if ((kmflags & KM_PAGEABLE) == 0) {
2146 * Wiring.
2148 * 1. Holding the write lock, we create any shadow or zero-fill
2149 * objects that need to be created. Then we clip each map
2150 * entry to the region to be wired and increment its wiring
2151 * count. We create objects before clipping the map entries
2152 * to avoid object proliferation.
2154 * 2. We downgrade to a read lock, and call vm_fault_wire to
2155 * fault in the pages for any newly wired area (wired_count is
2156 * 1).
2158 * Downgrading to a read lock for vm_fault_wire avoids a
2159 * possible deadlock with another process that may have faulted
2160 * on one of the pages to be wired (it would mark the page busy,
2161 * blocking us, then in turn block on the map lock that we
2162 * hold). Because of problems in the recursive lock package,
2163 * we cannot upgrade to a write lock in vm_map_lookup. Thus,
2164 * any actions that require the write lock must be done
2165 * beforehand. Because we keep the read lock on the map, the
2166 * copy-on-write status of the entries we modify here cannot
2167 * change.
2170 entry = start_entry;
2171 while ((entry != &map->header) && (entry->start < end)) {
2173 * Trivial case if the entry is already wired
2175 if (entry->wired_count) {
2176 entry->wired_count++;
2177 entry = entry->next;
2178 continue;
2182 * The entry is being newly wired, we have to setup
2183 * appropriate management structures. A shadow
2184 * object is required for a copy-on-write region,
2185 * or a normal object for a zero-fill region. We
2186 * do not have to do this for entries that point to sub
2187 * maps because we won't hold the lock on the sub map.
2189 if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2190 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
2191 if (copyflag &&
2192 ((entry->protection & VM_PROT_WRITE) != 0)) {
2193 vm_map_entry_shadow(entry);
2194 } else if (entry->object.vm_object == NULL &&
2195 !map->system_map) {
2196 vm_map_entry_allocate_object(entry);
2200 entry->wired_count++;
2201 entry = entry->next;
2205 * Pass 2.
2209 * HACK HACK HACK HACK
2211 * Unlock the map to avoid deadlocks. The in-transit flag
2212 * protects us from most changes but note that
2213 * clipping may still occur. To prevent clipping from
2214 * occuring after the unlock, except for when we are
2215 * blocking in vm_fault_wire, we must run in a critical
2216 * section, otherwise our accesses to entry->start and
2217 * entry->end could be corrupted. We have to enter the
2218 * critical section prior to unlocking so start_entry does
2219 * not change out from under us at the very beginning of the
2220 * loop.
2222 * HACK HACK HACK HACK
2225 crit_enter();
2227 entry = start_entry;
2228 while (entry != &map->header && entry->start < end) {
2230 * If vm_fault_wire fails for any page we need to undo
2231 * what has been done. We decrement the wiring count
2232 * for those pages which have not yet been wired (now)
2233 * and unwire those that have (later).
2235 vm_offset_t save_start = entry->start;
2236 vm_offset_t save_end = entry->end;
2238 if (entry->wired_count == 1)
2239 rv = vm_fault_wire(map, entry, FALSE);
2240 if (rv) {
2241 CLIP_CHECK_BACK(entry, save_start);
2242 for (;;) {
2243 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2244 entry->wired_count = 0;
2245 if (entry->end == save_end)
2246 break;
2247 entry = entry->next;
2248 KASSERT(entry != &map->header, ("bad entry clip during backout"));
2250 end = save_start;
2251 break;
2253 CLIP_CHECK_FWD(entry, save_end);
2254 entry = entry->next;
2256 crit_exit();
2259 * If a failure occured undo everything by falling through
2260 * to the unwiring code. 'end' has already been adjusted
2261 * appropriately.
2263 if (rv)
2264 kmflags |= KM_PAGEABLE;
2267 * start_entry is still IN_TRANSITION but may have been
2268 * clipped since vm_fault_wire() unlocks and relocks the
2269 * map. No matter how clipped it has gotten there should
2270 * be a fragment that is on our start boundary.
2272 CLIP_CHECK_BACK(start_entry, start);
2275 if (kmflags & KM_PAGEABLE) {
2277 * This is the unwiring case. We must first ensure that the
2278 * range to be unwired is really wired down. We know there
2279 * are no holes.
2281 entry = start_entry;
2282 while ((entry != &map->header) && (entry->start < end)) {
2283 if (entry->wired_count == 0) {
2284 rv = KERN_INVALID_ARGUMENT;
2285 goto done;
2287 entry = entry->next;
2291 * Now decrement the wiring count for each region. If a region
2292 * becomes completely unwired, unwire its physical pages and
2293 * mappings.
2295 entry = start_entry;
2296 while ((entry != &map->header) && (entry->start < end)) {
2297 entry->wired_count--;
2298 if (entry->wired_count == 0)
2299 vm_fault_unwire(map, entry);
2300 entry = entry->next;
2303 done:
2304 vm_map_unclip_range(map, start_entry, start, real_end, &count,
2305 MAP_CLIP_NO_HOLES);
2306 map->timestamp++;
2307 vm_map_unlock(map);
2308 failure:
2309 if (kmflags & KM_KRESERVE)
2310 vm_map_entry_krelease(count);
2311 else
2312 vm_map_entry_release(count);
2313 return (rv);
2317 * vm_map_set_wired_quick()
2319 * Mark a newly allocated address range as wired but do not fault in
2320 * the pages. The caller is expected to load the pages into the object.
2322 * The map must be locked on entry and will remain locked on return.
2324 void
2325 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2327 vm_map_entry_t scan;
2328 vm_map_entry_t entry;
2330 entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2331 for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2332 KKASSERT(entry->wired_count == 0);
2333 entry->wired_count = 1;
2335 vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2339 * vm_map_clean
2341 * Push any dirty cached pages in the address range to their pager.
2342 * If syncio is TRUE, dirty pages are written synchronously.
2343 * If invalidate is TRUE, any cached pages are freed as well.
2345 * Returns an error if any part of the specified range is not mapped.
2348 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio,
2349 boolean_t invalidate)
2351 vm_map_entry_t current;
2352 vm_map_entry_t entry;
2353 vm_size_t size;
2354 vm_object_t object;
2355 vm_ooffset_t offset;
2357 vm_map_lock_read(map);
2358 VM_MAP_RANGE_CHECK(map, start, end);
2359 if (!vm_map_lookup_entry(map, start, &entry)) {
2360 vm_map_unlock_read(map);
2361 return (KERN_INVALID_ADDRESS);
2364 * Make a first pass to check for holes.
2366 for (current = entry; current->start < end; current = current->next) {
2367 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2368 vm_map_unlock_read(map);
2369 return (KERN_INVALID_ARGUMENT);
2371 if (end > current->end &&
2372 (current->next == &map->header ||
2373 current->end != current->next->start)) {
2374 vm_map_unlock_read(map);
2375 return (KERN_INVALID_ADDRESS);
2379 if (invalidate)
2380 pmap_remove(vm_map_pmap(map), start, end);
2382 * Make a second pass, cleaning/uncaching pages from the indicated
2383 * objects as we go.
2385 for (current = entry; current->start < end; current = current->next) {
2386 offset = current->offset + (start - current->start);
2387 size = (end <= current->end ? end : current->end) - start;
2388 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2389 vm_map_t smap;
2390 vm_map_entry_t tentry;
2391 vm_size_t tsize;
2393 smap = current->object.sub_map;
2394 vm_map_lock_read(smap);
2395 vm_map_lookup_entry(smap, offset, &tentry);
2396 tsize = tentry->end - offset;
2397 if (tsize < size)
2398 size = tsize;
2399 object = tentry->object.vm_object;
2400 offset = tentry->offset + (offset - tentry->start);
2401 vm_map_unlock_read(smap);
2402 } else {
2403 object = current->object.vm_object;
2406 * Note that there is absolutely no sense in writing out
2407 * anonymous objects, so we track down the vnode object
2408 * to write out.
2409 * We invalidate (remove) all pages from the address space
2410 * anyway, for semantic correctness.
2412 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2413 * may start out with a NULL object.
2415 while (object && object->backing_object) {
2416 offset += object->backing_object_offset;
2417 object = object->backing_object;
2418 if (object->size < OFF_TO_IDX( offset + size))
2419 size = IDX_TO_OFF(object->size) - offset;
2421 if (object && (object->type == OBJT_VNODE) &&
2422 (current->protection & VM_PROT_WRITE)) {
2424 * Flush pages if writing is allowed, invalidate them
2425 * if invalidation requested. Pages undergoing I/O
2426 * will be ignored by vm_object_page_remove().
2428 * We cannot lock the vnode and then wait for paging
2429 * to complete without deadlocking against vm_fault.
2430 * Instead we simply call vm_object_page_remove() and
2431 * allow it to block internally on a page-by-page
2432 * basis when it encounters pages undergoing async
2433 * I/O.
2435 int flags;
2437 vm_object_reference(object);
2438 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2439 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2440 flags |= invalidate ? OBJPC_INVAL : 0;
2443 * When operating on a virtual page table just
2444 * flush the whole object. XXX we probably ought
2445 * to
2447 switch(current->maptype) {
2448 case VM_MAPTYPE_NORMAL:
2449 vm_object_page_clean(object,
2450 OFF_TO_IDX(offset),
2451 OFF_TO_IDX(offset + size + PAGE_MASK),
2452 flags);
2453 break;
2454 case VM_MAPTYPE_VPAGETABLE:
2455 vm_object_page_clean(object, 0, 0, flags);
2456 break;
2458 vn_unlock(((struct vnode *)object->handle));
2459 vm_object_deallocate(object);
2461 if (object && invalidate &&
2462 ((object->type == OBJT_VNODE) ||
2463 (object->type == OBJT_DEVICE))) {
2464 int clean_only =
2465 (object->type == OBJT_DEVICE) ? FALSE : TRUE;
2466 vm_object_reference(object);
2467 switch(current->maptype) {
2468 case VM_MAPTYPE_NORMAL:
2469 vm_object_page_remove(object,
2470 OFF_TO_IDX(offset),
2471 OFF_TO_IDX(offset + size + PAGE_MASK),
2472 clean_only);
2473 break;
2474 case VM_MAPTYPE_VPAGETABLE:
2475 vm_object_page_remove(object, 0, 0, clean_only);
2476 break;
2478 vm_object_deallocate(object);
2480 start += size;
2483 vm_map_unlock_read(map);
2484 return (KERN_SUCCESS);
2488 * vm_map_entry_unwire: [ internal use only ]
2490 * Make the region specified by this entry pageable.
2492 * The map in question should be locked.
2493 * [This is the reason for this routine's existence.]
2495 static void
2496 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2498 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2499 entry->wired_count = 0;
2500 vm_fault_unwire(map, entry);
2504 * vm_map_entry_delete: [ internal use only ]
2506 * Deallocate the given entry from the target map.
2508 static void
2509 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2511 vm_map_entry_unlink(map, entry);
2512 map->size -= entry->end - entry->start;
2514 switch(entry->maptype) {
2515 case VM_MAPTYPE_NORMAL:
2516 case VM_MAPTYPE_VPAGETABLE:
2517 vm_object_deallocate(entry->object.vm_object);
2518 break;
2519 default:
2520 break;
2523 vm_map_entry_dispose(map, entry, countp);
2527 * vm_map_delete: [ internal use only ]
2529 * Deallocates the given address range from the target
2530 * map.
2533 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2535 vm_object_t object;
2536 vm_map_entry_t entry;
2537 vm_map_entry_t first_entry;
2539 again:
2541 * Find the start of the region, and clip it. Set entry to point
2542 * at the first record containing the requested address or, if no
2543 * such record exists, the next record with a greater address. The
2544 * loop will run from this point until a record beyond the termination
2545 * address is encountered.
2547 * map->hint must be adjusted to not point to anything we delete,
2548 * so set it to the entry prior to the one being deleted.
2550 * GGG see other GGG comment.
2552 if (vm_map_lookup_entry(map, start, &first_entry)) {
2553 entry = first_entry;
2554 vm_map_clip_start(map, entry, start, countp);
2555 map->hint = entry->prev; /* possible problem XXX */
2556 } else {
2557 map->hint = first_entry; /* possible problem XXX */
2558 entry = first_entry->next;
2562 * If a hole opens up prior to the current first_free then
2563 * adjust first_free. As with map->hint, map->first_free
2564 * cannot be left set to anything we might delete.
2566 if (entry == &map->header) {
2567 map->first_free = &map->header;
2568 } else if (map->first_free->start >= start) {
2569 map->first_free = entry->prev;
2573 * Step through all entries in this region
2576 while ((entry != &map->header) && (entry->start < end)) {
2577 vm_map_entry_t next;
2578 vm_offset_t s, e;
2579 vm_pindex_t offidxstart, offidxend, count;
2582 * If we hit an in-transition entry we have to sleep and
2583 * retry. It's easier (and not really slower) to just retry
2584 * since this case occurs so rarely and the hint is already
2585 * pointing at the right place. We have to reset the
2586 * start offset so as not to accidently delete an entry
2587 * another process just created in vacated space.
2589 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2590 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2591 start = entry->start;
2592 ++mycpu->gd_cnt.v_intrans_coll;
2593 ++mycpu->gd_cnt.v_intrans_wait;
2594 vm_map_transition_wait(map);
2595 goto again;
2597 vm_map_clip_end(map, entry, end, countp);
2599 s = entry->start;
2600 e = entry->end;
2601 next = entry->next;
2603 offidxstart = OFF_TO_IDX(entry->offset);
2604 count = OFF_TO_IDX(e - s);
2605 object = entry->object.vm_object;
2608 * Unwire before removing addresses from the pmap; otherwise,
2609 * unwiring will put the entries back in the pmap.
2611 if (entry->wired_count != 0)
2612 vm_map_entry_unwire(map, entry);
2614 offidxend = offidxstart + count;
2616 if (object == &kernel_object) {
2617 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2618 } else {
2619 pmap_remove(map->pmap, s, e);
2620 if (object != NULL &&
2621 object->ref_count != 1 &&
2622 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2623 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2624 vm_object_collapse(object);
2625 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2626 if (object->type == OBJT_SWAP) {
2627 swap_pager_freespace(object, offidxstart, count);
2629 if (offidxend >= object->size &&
2630 offidxstart < object->size) {
2631 object->size = offidxstart;
2637 * Delete the entry (which may delete the object) only after
2638 * removing all pmap entries pointing to its pages.
2639 * (Otherwise, its page frames may be reallocated, and any
2640 * modify bits will be set in the wrong object!)
2642 vm_map_entry_delete(map, entry, countp);
2643 entry = next;
2645 return (KERN_SUCCESS);
2649 * vm_map_remove:
2651 * Remove the given address range from the target map.
2652 * This is the exported form of vm_map_delete.
2655 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2657 int result;
2658 int count;
2660 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2661 vm_map_lock(map);
2662 VM_MAP_RANGE_CHECK(map, start, end);
2663 result = vm_map_delete(map, start, end, &count);
2664 vm_map_unlock(map);
2665 vm_map_entry_release(count);
2667 return (result);
2671 * vm_map_check_protection:
2673 * Assert that the target map allows the specified
2674 * privilege on the entire address region given.
2675 * The entire region must be allocated.
2677 boolean_t
2678 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2679 vm_prot_t protection)
2681 vm_map_entry_t entry;
2682 vm_map_entry_t tmp_entry;
2684 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2685 return (FALSE);
2687 entry = tmp_entry;
2689 while (start < end) {
2690 if (entry == &map->header) {
2691 return (FALSE);
2694 * No holes allowed!
2697 if (start < entry->start) {
2698 return (FALSE);
2701 * Check protection associated with entry.
2704 if ((entry->protection & protection) != protection) {
2705 return (FALSE);
2707 /* go to next entry */
2709 start = entry->end;
2710 entry = entry->next;
2712 return (TRUE);
2716 * Split the pages in a map entry into a new object. This affords
2717 * easier removal of unused pages, and keeps object inheritance from
2718 * being a negative impact on memory usage.
2720 static void
2721 vm_map_split(vm_map_entry_t entry)
2723 vm_page_t m;
2724 vm_object_t orig_object, new_object, source;
2725 vm_offset_t s, e;
2726 vm_pindex_t offidxstart, offidxend, idx;
2727 vm_size_t size;
2728 vm_ooffset_t offset;
2730 orig_object = entry->object.vm_object;
2731 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2732 return;
2733 if (orig_object->ref_count <= 1)
2734 return;
2736 offset = entry->offset;
2737 s = entry->start;
2738 e = entry->end;
2740 offidxstart = OFF_TO_IDX(offset);
2741 offidxend = offidxstart + OFF_TO_IDX(e - s);
2742 size = offidxend - offidxstart;
2744 new_object = vm_pager_allocate(orig_object->type, NULL,
2745 IDX_TO_OFF(size), VM_PROT_ALL, 0);
2746 if (new_object == NULL)
2747 return;
2749 source = orig_object->backing_object;
2750 if (source != NULL) {
2751 vm_object_reference(source); /* Referenced by new_object */
2752 LIST_INSERT_HEAD(&source->shadow_head,
2753 new_object, shadow_list);
2754 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2755 new_object->backing_object_offset =
2756 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2757 new_object->backing_object = source;
2758 source->shadow_count++;
2759 source->generation++;
2762 for (idx = 0; idx < size; idx++) {
2763 vm_page_t m;
2766 * A critical section is required to avoid a race between
2767 * the lookup and an interrupt/unbusy/free and our busy
2768 * check.
2770 crit_enter();
2771 retry:
2772 m = vm_page_lookup(orig_object, offidxstart + idx);
2773 if (m == NULL) {
2774 crit_exit();
2775 continue;
2779 * We must wait for pending I/O to complete before we can
2780 * rename the page.
2782 * We do not have to VM_PROT_NONE the page as mappings should
2783 * not be changed by this operation.
2785 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2786 goto retry;
2787 vm_page_busy(m);
2788 vm_page_rename(m, new_object, idx);
2789 /* page automatically made dirty by rename and cache handled */
2790 vm_page_busy(m);
2791 crit_exit();
2794 if (orig_object->type == OBJT_SWAP) {
2795 vm_object_pip_add(orig_object, 1);
2797 * copy orig_object pages into new_object
2798 * and destroy unneeded pages in
2799 * shadow object.
2801 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2802 vm_object_pip_wakeup(orig_object);
2806 * Wakeup the pages we played with. No spl protection is needed
2807 * for a simple wakeup.
2809 for (idx = 0; idx < size; idx++) {
2810 m = vm_page_lookup(new_object, idx);
2811 if (m)
2812 vm_page_wakeup(m);
2815 entry->object.vm_object = new_object;
2816 entry->offset = 0LL;
2817 vm_object_deallocate(orig_object);
2821 * vm_map_copy_entry:
2823 * Copies the contents of the source entry to the destination
2824 * entry. The entries *must* be aligned properly.
2826 static void
2827 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2828 vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2830 vm_object_t src_object;
2832 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2833 return;
2834 if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2835 return;
2837 if (src_entry->wired_count == 0) {
2839 * If the source entry is marked needs_copy, it is already
2840 * write-protected.
2842 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2843 pmap_protect(src_map->pmap,
2844 src_entry->start,
2845 src_entry->end,
2846 src_entry->protection & ~VM_PROT_WRITE);
2850 * Make a copy of the object.
2852 if ((src_object = src_entry->object.vm_object) != NULL) {
2853 if ((src_object->handle == NULL) &&
2854 (src_object->type == OBJT_DEFAULT ||
2855 src_object->type == OBJT_SWAP)) {
2856 vm_object_collapse(src_object);
2857 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2858 vm_map_split(src_entry);
2859 src_object = src_entry->object.vm_object;
2863 vm_object_reference(src_object);
2864 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2865 dst_entry->object.vm_object = src_object;
2866 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2867 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2868 dst_entry->offset = src_entry->offset;
2869 } else {
2870 dst_entry->object.vm_object = NULL;
2871 dst_entry->offset = 0;
2874 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2875 dst_entry->end - dst_entry->start, src_entry->start);
2876 } else {
2878 * Of course, wired down pages can't be set copy-on-write.
2879 * Cause wired pages to be copied into the new map by
2880 * simulating faults (the new pages are pageable)
2882 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2887 * vmspace_fork:
2888 * Create a new process vmspace structure and vm_map
2889 * based on those of an existing process. The new map
2890 * is based on the old map, according to the inheritance
2891 * values on the regions in that map.
2893 * The source map must not be locked.
2895 struct vmspace *
2896 vmspace_fork(struct vmspace *vm1)
2898 struct vmspace *vm2;
2899 vm_map_t old_map = &vm1->vm_map;
2900 vm_map_t new_map;
2901 vm_map_entry_t old_entry;
2902 vm_map_entry_t new_entry;
2903 vm_object_t object;
2904 int count;
2906 vm_map_lock(old_map);
2907 old_map->infork = 1;
2910 * XXX Note: upcalls are not copied.
2912 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2913 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2914 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2915 new_map = &vm2->vm_map; /* XXX */
2916 new_map->timestamp = 1;
2918 count = 0;
2919 old_entry = old_map->header.next;
2920 while (old_entry != &old_map->header) {
2921 ++count;
2922 old_entry = old_entry->next;
2925 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2927 old_entry = old_map->header.next;
2928 while (old_entry != &old_map->header) {
2929 if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
2930 panic("vm_map_fork: encountered a submap");
2932 switch (old_entry->inheritance) {
2933 case VM_INHERIT_NONE:
2934 break;
2936 case VM_INHERIT_SHARE:
2938 * Clone the entry, creating the shared object if
2939 * necessary.
2941 object = old_entry->object.vm_object;
2942 if (object == NULL) {
2943 vm_map_entry_allocate_object(old_entry);
2944 object = old_entry->object.vm_object;
2948 * Add the reference before calling vm_map_entry_shadow
2949 * to insure that a shadow object is created.
2951 vm_object_reference(object);
2952 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2953 vm_map_entry_shadow(old_entry);
2954 /* Transfer the second reference too. */
2955 vm_object_reference(
2956 old_entry->object.vm_object);
2957 vm_object_deallocate(object);
2958 object = old_entry->object.vm_object;
2960 vm_object_clear_flag(object, OBJ_ONEMAPPING);
2963 * Clone the entry, referencing the shared object.
2965 new_entry = vm_map_entry_create(new_map, &count);
2966 *new_entry = *old_entry;
2967 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2968 new_entry->wired_count = 0;
2971 * Insert the entry into the new map -- we know we're
2972 * inserting at the end of the new map.
2975 vm_map_entry_link(new_map, new_map->header.prev,
2976 new_entry);
2979 * Update the physical map
2982 pmap_copy(new_map->pmap, old_map->pmap,
2983 new_entry->start,
2984 (old_entry->end - old_entry->start),
2985 old_entry->start);
2986 break;
2988 case VM_INHERIT_COPY:
2990 * Clone the entry and link into the map.
2992 new_entry = vm_map_entry_create(new_map, &count);
2993 *new_entry = *old_entry;
2994 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2995 new_entry->wired_count = 0;
2996 new_entry->object.vm_object = NULL;
2997 vm_map_entry_link(new_map, new_map->header.prev,
2998 new_entry);
2999 vm_map_copy_entry(old_map, new_map, old_entry,
3000 new_entry);
3001 break;
3003 old_entry = old_entry->next;
3006 new_map->size = old_map->size;
3007 old_map->infork = 0;
3008 vm_map_unlock(old_map);
3009 vm_map_entry_release(count);
3011 return (vm2);
3015 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3016 int flags, vm_prot_t prot, vm_prot_t max, int cow)
3018 vm_map_entry_t prev_entry;
3019 vm_map_entry_t new_stack_entry;
3020 vm_size_t init_ssize;
3021 int rv;
3022 int count;
3023 vm_offset_t tmpaddr;
3025 cow |= MAP_IS_STACK;
3027 if (max_ssize < sgrowsiz)
3028 init_ssize = max_ssize;
3029 else
3030 init_ssize = sgrowsiz;
3032 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3033 vm_map_lock(map);
3036 * Find space for the mapping
3038 if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3039 if (vm_map_findspace(map, addrbos, max_ssize, 1,
3040 flags, &tmpaddr)) {
3041 vm_map_unlock(map);
3042 vm_map_entry_release(count);
3043 return (KERN_NO_SPACE);
3045 addrbos = tmpaddr;
3048 /* If addr is already mapped, no go */
3049 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3050 vm_map_unlock(map);
3051 vm_map_entry_release(count);
3052 return (KERN_NO_SPACE);
3055 #if 0
3056 /* XXX already handled by kern_mmap() */
3057 /* If we would blow our VMEM resource limit, no go */
3058 if (map->size + init_ssize >
3059 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3060 vm_map_unlock(map);
3061 vm_map_entry_release(count);
3062 return (KERN_NO_SPACE);
3064 #endif
3067 * If we can't accomodate max_ssize in the current mapping,
3068 * no go. However, we need to be aware that subsequent user
3069 * mappings might map into the space we have reserved for
3070 * stack, and currently this space is not protected.
3072 * Hopefully we will at least detect this condition
3073 * when we try to grow the stack.
3075 if ((prev_entry->next != &map->header) &&
3076 (prev_entry->next->start < addrbos + max_ssize)) {
3077 vm_map_unlock(map);
3078 vm_map_entry_release(count);
3079 return (KERN_NO_SPACE);
3083 * We initially map a stack of only init_ssize. We will
3084 * grow as needed later. Since this is to be a grow
3085 * down stack, we map at the top of the range.
3087 * Note: we would normally expect prot and max to be
3088 * VM_PROT_ALL, and cow to be 0. Possibly we should
3089 * eliminate these as input parameters, and just
3090 * pass these values here in the insert call.
3092 rv = vm_map_insert(map, &count,
3093 NULL, 0, addrbos + max_ssize - init_ssize,
3094 addrbos + max_ssize,
3095 VM_MAPTYPE_NORMAL,
3096 prot, max,
3097 cow);
3099 /* Now set the avail_ssize amount */
3100 if (rv == KERN_SUCCESS) {
3101 if (prev_entry != &map->header)
3102 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3103 new_stack_entry = prev_entry->next;
3104 if (new_stack_entry->end != addrbos + max_ssize ||
3105 new_stack_entry->start != addrbos + max_ssize - init_ssize)
3106 panic ("Bad entry start/end for new stack entry");
3107 else
3108 new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3111 vm_map_unlock(map);
3112 vm_map_entry_release(count);
3113 return (rv);
3116 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
3117 * desired address is already mapped, or if we successfully grow
3118 * the stack. Also returns KERN_SUCCESS if addr is outside the
3119 * stack range (this is strange, but preserves compatibility with
3120 * the grow function in vm_machdep.c).
3123 vm_map_growstack (struct proc *p, vm_offset_t addr)
3125 vm_map_entry_t prev_entry;
3126 vm_map_entry_t stack_entry;
3127 vm_map_entry_t new_stack_entry;
3128 struct vmspace *vm = p->p_vmspace;
3129 vm_map_t map = &vm->vm_map;
3130 vm_offset_t end;
3131 int grow_amount;
3132 int rv = KERN_SUCCESS;
3133 int is_procstack;
3134 int use_read_lock = 1;
3135 int count;
3137 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3138 Retry:
3139 if (use_read_lock)
3140 vm_map_lock_read(map);
3141 else
3142 vm_map_lock(map);
3144 /* If addr is already in the entry range, no need to grow.*/
3145 if (vm_map_lookup_entry(map, addr, &prev_entry))
3146 goto done;
3148 if ((stack_entry = prev_entry->next) == &map->header)
3149 goto done;
3150 if (prev_entry == &map->header)
3151 end = stack_entry->start - stack_entry->aux.avail_ssize;
3152 else
3153 end = prev_entry->end;
3156 * This next test mimics the old grow function in vm_machdep.c.
3157 * It really doesn't quite make sense, but we do it anyway
3158 * for compatibility.
3160 * If not growable stack, return success. This signals the
3161 * caller to proceed as he would normally with normal vm.
3163 if (stack_entry->aux.avail_ssize < 1 ||
3164 addr >= stack_entry->start ||
3165 addr < stack_entry->start - stack_entry->aux.avail_ssize) {
3166 goto done;
3169 /* Find the minimum grow amount */
3170 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3171 if (grow_amount > stack_entry->aux.avail_ssize) {
3172 rv = KERN_NO_SPACE;
3173 goto done;
3177 * If there is no longer enough space between the entries
3178 * nogo, and adjust the available space. Note: this
3179 * should only happen if the user has mapped into the
3180 * stack area after the stack was created, and is
3181 * probably an error.
3183 * This also effectively destroys any guard page the user
3184 * might have intended by limiting the stack size.
3186 if (grow_amount > stack_entry->start - end) {
3187 if (use_read_lock && vm_map_lock_upgrade(map)) {
3188 use_read_lock = 0;
3189 goto Retry;
3191 use_read_lock = 0;
3192 stack_entry->aux.avail_ssize = stack_entry->start - end;
3193 rv = KERN_NO_SPACE;
3194 goto done;
3197 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3199 /* If this is the main process stack, see if we're over the
3200 * stack limit.
3202 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3203 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3204 rv = KERN_NO_SPACE;
3205 goto done;
3208 /* Round up the grow amount modulo SGROWSIZ */
3209 grow_amount = roundup (grow_amount, sgrowsiz);
3210 if (grow_amount > stack_entry->aux.avail_ssize) {
3211 grow_amount = stack_entry->aux.avail_ssize;
3213 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3214 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3215 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3216 ctob(vm->vm_ssize);
3219 /* If we would blow our VMEM resource limit, no go */
3220 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3221 rv = KERN_NO_SPACE;
3222 goto done;
3225 if (use_read_lock && vm_map_lock_upgrade(map)) {
3226 use_read_lock = 0;
3227 goto Retry;
3229 use_read_lock = 0;
3231 /* Get the preliminary new entry start value */
3232 addr = stack_entry->start - grow_amount;
3234 /* If this puts us into the previous entry, cut back our growth
3235 * to the available space. Also, see the note above.
3237 if (addr < end) {
3238 stack_entry->aux.avail_ssize = stack_entry->start - end;
3239 addr = end;
3242 rv = vm_map_insert(map, &count,
3243 NULL, 0, addr, stack_entry->start,
3244 VM_MAPTYPE_NORMAL,
3245 VM_PROT_ALL, VM_PROT_ALL,
3248 /* Adjust the available stack space by the amount we grew. */
3249 if (rv == KERN_SUCCESS) {
3250 if (prev_entry != &map->header)
3251 vm_map_clip_end(map, prev_entry, addr, &count);
3252 new_stack_entry = prev_entry->next;
3253 if (new_stack_entry->end != stack_entry->start ||
3254 new_stack_entry->start != addr)
3255 panic ("Bad stack grow start/end in new stack entry");
3256 else {
3257 new_stack_entry->aux.avail_ssize =
3258 stack_entry->aux.avail_ssize -
3259 (new_stack_entry->end - new_stack_entry->start);
3260 if (is_procstack)
3261 vm->vm_ssize += btoc(new_stack_entry->end -
3262 new_stack_entry->start);
3266 done:
3267 if (use_read_lock)
3268 vm_map_unlock_read(map);
3269 else
3270 vm_map_unlock(map);
3271 vm_map_entry_release(count);
3272 return (rv);
3276 * Unshare the specified VM space for exec. If other processes are
3277 * mapped to it, then create a new one. The new vmspace is null.
3279 void
3280 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3282 struct vmspace *oldvmspace = p->p_vmspace;
3283 struct vmspace *newvmspace;
3284 vm_map_t map = &p->p_vmspace->vm_map;
3287 * If we are execing a resident vmspace we fork it, otherwise
3288 * we create a new vmspace. Note that exitingcnt and upcalls
3289 * are not copied to the new vmspace.
3291 if (vmcopy) {
3292 newvmspace = vmspace_fork(vmcopy);
3293 } else {
3294 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3295 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3296 (caddr_t)&oldvmspace->vm_endcopy -
3297 (caddr_t)&oldvmspace->vm_startcopy);
3301 * Finish initializing the vmspace before assigning it
3302 * to the process. The vmspace will become the current vmspace
3303 * if p == curproc.
3305 pmap_pinit2(vmspace_pmap(newvmspace));
3306 pmap_replacevm(p, newvmspace, 0);
3307 sysref_put(&oldvmspace->vm_sysref);
3311 * Unshare the specified VM space for forcing COW. This
3312 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3314 * The exitingcnt test is not strictly necessary but has been
3315 * included for code sanity (to make the code a bit more deterministic).
3318 void
3319 vmspace_unshare(struct proc *p)
3321 struct vmspace *oldvmspace = p->p_vmspace;
3322 struct vmspace *newvmspace;
3324 if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3325 return;
3326 newvmspace = vmspace_fork(oldvmspace);
3327 pmap_pinit2(vmspace_pmap(newvmspace));
3328 pmap_replacevm(p, newvmspace, 0);
3329 sysref_put(&oldvmspace->vm_sysref);
3333 * vm_map_lookup:
3335 * Finds the VM object, offset, and
3336 * protection for a given virtual address in the
3337 * specified map, assuming a page fault of the
3338 * type specified.
3340 * Leaves the map in question locked for read; return
3341 * values are guaranteed until a vm_map_lookup_done
3342 * call is performed. Note that the map argument
3343 * is in/out; the returned map must be used in
3344 * the call to vm_map_lookup_done.
3346 * A handle (out_entry) is returned for use in
3347 * vm_map_lookup_done, to make that fast.
3349 * If a lookup is requested with "write protection"
3350 * specified, the map may be changed to perform virtual
3351 * copying operations, although the data referenced will
3352 * remain the same.
3355 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
3356 vm_offset_t vaddr,
3357 vm_prot_t fault_typea,
3358 vm_map_entry_t *out_entry, /* OUT */
3359 vm_object_t *object, /* OUT */
3360 vm_pindex_t *pindex, /* OUT */
3361 vm_prot_t *out_prot, /* OUT */
3362 boolean_t *wired) /* OUT */
3364 vm_map_entry_t entry;
3365 vm_map_t map = *var_map;
3366 vm_prot_t prot;
3367 vm_prot_t fault_type = fault_typea;
3368 int use_read_lock = 1;
3369 int rv = KERN_SUCCESS;
3371 RetryLookup:
3372 if (use_read_lock)
3373 vm_map_lock_read(map);
3374 else
3375 vm_map_lock(map);
3378 * If the map has an interesting hint, try it before calling full
3379 * blown lookup routine.
3381 entry = map->hint;
3382 *out_entry = entry;
3384 if ((entry == &map->header) ||
3385 (vaddr < entry->start) || (vaddr >= entry->end)) {
3386 vm_map_entry_t tmp_entry;
3389 * Entry was either not a valid hint, or the vaddr was not
3390 * contained in the entry, so do a full lookup.
3392 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3393 rv = KERN_INVALID_ADDRESS;
3394 goto done;
3397 entry = tmp_entry;
3398 *out_entry = entry;
3402 * Handle submaps.
3404 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3405 vm_map_t old_map = map;
3407 *var_map = map = entry->object.sub_map;
3408 if (use_read_lock)
3409 vm_map_unlock_read(old_map);
3410 else
3411 vm_map_unlock(old_map);
3412 use_read_lock = 1;
3413 goto RetryLookup;
3417 * Check whether this task is allowed to have this page.
3418 * Note the special case for MAP_ENTRY_COW
3419 * pages with an override. This is to implement a forced
3420 * COW for debuggers.
3423 if (fault_type & VM_PROT_OVERRIDE_WRITE)
3424 prot = entry->max_protection;
3425 else
3426 prot = entry->protection;
3428 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3429 if ((fault_type & prot) != fault_type) {
3430 rv = KERN_PROTECTION_FAILURE;
3431 goto done;
3434 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3435 (entry->eflags & MAP_ENTRY_COW) &&
3436 (fault_type & VM_PROT_WRITE) &&
3437 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3438 rv = KERN_PROTECTION_FAILURE;
3439 goto done;
3443 * If this page is not pageable, we have to get it for all possible
3444 * accesses.
3446 *wired = (entry->wired_count != 0);
3447 if (*wired)
3448 prot = fault_type = entry->protection;
3451 * Virtual page tables may need to update the accessed (A) bit
3452 * in a page table entry. Upgrade the fault to a write fault for
3453 * that case if the map will support it. If the map does not support
3454 * it the page table entry simply will not be updated.
3456 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3457 if (prot & VM_PROT_WRITE)
3458 fault_type |= VM_PROT_WRITE;
3462 * If the entry was copy-on-write, we either ...
3464 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3466 * If we want to write the page, we may as well handle that
3467 * now since we've got the map locked.
3469 * If we don't need to write the page, we just demote the
3470 * permissions allowed.
3473 if (fault_type & VM_PROT_WRITE) {
3475 * Make a new object, and place it in the object
3476 * chain. Note that no new references have appeared
3477 * -- one just moved from the map to the new
3478 * object.
3481 if (use_read_lock && vm_map_lock_upgrade(map)) {
3482 use_read_lock = 0;
3483 goto RetryLookup;
3485 use_read_lock = 0;
3487 vm_map_entry_shadow(entry);
3488 } else {
3490 * We're attempting to read a copy-on-write page --
3491 * don't allow writes.
3494 prot &= ~VM_PROT_WRITE;
3499 * Create an object if necessary.
3501 if (entry->object.vm_object == NULL &&
3502 !map->system_map) {
3503 if (use_read_lock && vm_map_lock_upgrade(map)) {
3504 use_read_lock = 0;
3505 goto RetryLookup;
3507 use_read_lock = 0;
3508 vm_map_entry_allocate_object(entry);
3512 * Return the object/offset from this entry. If the entry was
3513 * copy-on-write or empty, it has been fixed up.
3516 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3517 *object = entry->object.vm_object;
3520 * Return whether this is the only map sharing this data. On
3521 * success we return with a read lock held on the map. On failure
3522 * we return with the map unlocked.
3524 *out_prot = prot;
3525 done:
3526 if (rv == KERN_SUCCESS) {
3527 if (use_read_lock == 0)
3528 vm_map_lock_downgrade(map);
3529 } else if (use_read_lock) {
3530 vm_map_unlock_read(map);
3531 } else {
3532 vm_map_unlock(map);
3534 return (rv);
3538 * vm_map_lookup_done:
3540 * Releases locks acquired by a vm_map_lookup
3541 * (according to the handle returned by that lookup).
3544 void
3545 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3548 * Unlock the main-level map
3550 vm_map_unlock_read(map);
3551 if (count)
3552 vm_map_entry_release(count);
3555 #include "opt_ddb.h"
3556 #ifdef DDB
3557 #include <sys/kernel.h>
3559 #include <ddb/ddb.h>
3562 * vm_map_print: [ debug ]
3564 DB_SHOW_COMMAND(map, vm_map_print)
3566 static int nlines;
3567 /* XXX convert args. */
3568 vm_map_t map = (vm_map_t)addr;
3569 boolean_t full = have_addr;
3571 vm_map_entry_t entry;
3573 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3574 (void *)map,
3575 (void *)map->pmap, map->nentries, map->timestamp);
3576 nlines++;
3578 if (!full && db_indent)
3579 return;
3581 db_indent += 2;
3582 for (entry = map->header.next; entry != &map->header;
3583 entry = entry->next) {
3584 db_iprintf("map entry %p: start=%p, end=%p\n",
3585 (void *)entry, (void *)entry->start, (void *)entry->end);
3586 nlines++;
3588 static char *inheritance_name[4] =
3589 {"share", "copy", "none", "donate_copy"};
3591 db_iprintf(" prot=%x/%x/%s",
3592 entry->protection,
3593 entry->max_protection,
3594 inheritance_name[(int)(unsigned char)entry->inheritance]);
3595 if (entry->wired_count != 0)
3596 db_printf(", wired");
3598 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3599 /* XXX no %qd in kernel. Truncate entry->offset. */
3600 db_printf(", share=%p, offset=0x%lx\n",
3601 (void *)entry->object.sub_map,
3602 (long)entry->offset);
3603 nlines++;
3604 if ((entry->prev == &map->header) ||
3605 (entry->prev->object.sub_map !=
3606 entry->object.sub_map)) {
3607 db_indent += 2;
3608 vm_map_print((db_expr_t)(intptr_t)
3609 entry->object.sub_map,
3610 full, 0, NULL);
3611 db_indent -= 2;
3613 } else {
3614 /* XXX no %qd in kernel. Truncate entry->offset. */
3615 db_printf(", object=%p, offset=0x%lx",
3616 (void *)entry->object.vm_object,
3617 (long)entry->offset);
3618 if (entry->eflags & MAP_ENTRY_COW)
3619 db_printf(", copy (%s)",
3620 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3621 db_printf("\n");
3622 nlines++;
3624 if ((entry->prev == &map->header) ||
3625 (entry->prev->object.vm_object !=
3626 entry->object.vm_object)) {
3627 db_indent += 2;
3628 vm_object_print((db_expr_t)(intptr_t)
3629 entry->object.vm_object,
3630 full, 0, NULL);
3631 nlines += 4;
3632 db_indent -= 2;
3636 db_indent -= 2;
3637 if (db_indent == 0)
3638 nlines = 0;
3642 DB_SHOW_COMMAND(procvm, procvm)
3644 struct proc *p;
3646 if (have_addr) {
3647 p = (struct proc *) addr;
3648 } else {
3649 p = curproc;
3652 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3653 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3654 (void *)vmspace_pmap(p->p_vmspace));
3656 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3659 #endif /* DDB */