bnx: Free ringmap in device_detach device method
[dragonfly.git] / sys / dev / netif / bnx / if_bnx.c
blob4d25d051526d2b0cc45d7609ff04dd78a8d77386
1 /*
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2001
4 * Bill Paul <wpaul@windriver.com>. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
33 * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
36 #include "opt_bnx.h"
37 #include "opt_ifpoll.h"
39 #include <sys/param.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kernel.h>
43 #include <sys/interrupt.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/rman.h>
48 #include <sys/serialize.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/sysctl.h>
53 #include <netinet/ip.h>
54 #include <netinet/tcp.h>
56 #include <net/bpf.h>
57 #include <net/ethernet.h>
58 #include <net/if.h>
59 #include <net/if_arp.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_poll.h>
63 #include <net/if_types.h>
64 #include <net/ifq_var.h>
65 #include <net/toeplitz.h>
66 #include <net/toeplitz2.h>
67 #include <net/vlan/if_vlan_var.h>
68 #include <net/vlan/if_vlan_ether.h>
70 #include <dev/netif/mii_layer/mii.h>
71 #include <dev/netif/mii_layer/miivar.h>
72 #include <dev/netif/mii_layer/brgphyreg.h>
74 #include "pcidevs.h"
75 #include <bus/pci/pcireg.h>
76 #include <bus/pci/pcivar.h>
78 #include <dev/netif/bge/if_bgereg.h>
79 #include <dev/netif/bnx/if_bnxvar.h>
81 /* "device miibus" required. See GENERIC if you get errors here. */
82 #include "miibus_if.h"
84 #define BNX_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
86 #define BNX_RESET_SHUTDOWN 0
87 #define BNX_RESET_START 1
88 #define BNX_RESET_SUSPEND 2
90 #define BNX_INTR_CKINTVL ((10 * hz) / 1000) /* 10ms */
92 #ifdef BNX_RSS_DEBUG
93 #define BNX_RSS_DPRINTF(sc, lvl, fmt, ...) \
94 do { \
95 if (sc->bnx_rss_debug >= lvl) \
96 if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
97 } while (0)
98 #else /* !BNX_RSS_DEBUG */
99 #define BNX_RSS_DPRINTF(sc, lvl, fmt, ...) ((void)0)
100 #endif /* BNX_RSS_DEBUG */
102 static const struct bnx_type {
103 uint16_t bnx_vid;
104 uint16_t bnx_did;
105 char *bnx_name;
106 } bnx_devs[] = {
107 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5717,
108 "Broadcom BCM5717 Gigabit Ethernet" },
109 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5717C,
110 "Broadcom BCM5717C Gigabit Ethernet" },
111 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5718,
112 "Broadcom BCM5718 Gigabit Ethernet" },
113 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5719,
114 "Broadcom BCM5719 Gigabit Ethernet" },
115 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720_ALT,
116 "Broadcom BCM5720 Gigabit Ethernet" },
118 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5725,
119 "Broadcom BCM5725 Gigabit Ethernet" },
120 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5727,
121 "Broadcom BCM5727 Gigabit Ethernet" },
122 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5762,
123 "Broadcom BCM5762 Gigabit Ethernet" },
125 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57761,
126 "Broadcom BCM57761 Gigabit Ethernet" },
127 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57762,
128 "Broadcom BCM57762 Gigabit Ethernet" },
129 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57765,
130 "Broadcom BCM57765 Gigabit Ethernet" },
131 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57766,
132 "Broadcom BCM57766 Gigabit Ethernet" },
133 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57781,
134 "Broadcom BCM57781 Gigabit Ethernet" },
135 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57782,
136 "Broadcom BCM57782 Gigabit Ethernet" },
137 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57785,
138 "Broadcom BCM57785 Gigabit Ethernet" },
139 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57786,
140 "Broadcom BCM57786 Gigabit Ethernet" },
141 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57791,
142 "Broadcom BCM57791 Fast Ethernet" },
143 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57795,
144 "Broadcom BCM57795 Fast Ethernet" },
146 { 0, 0, NULL }
149 static const int bnx_tx_mailbox[BNX_TX_RING_MAX] = {
150 BGE_MBX_TX_HOST_PROD0_LO,
151 BGE_MBX_TX_HOST_PROD0_HI,
152 BGE_MBX_TX_HOST_PROD1_LO,
153 BGE_MBX_TX_HOST_PROD1_HI
156 #define BNX_IS_JUMBO_CAPABLE(sc) ((sc)->bnx_flags & BNX_FLAG_JUMBO)
157 #define BNX_IS_5717_PLUS(sc) ((sc)->bnx_flags & BNX_FLAG_5717_PLUS)
158 #define BNX_IS_57765_PLUS(sc) ((sc)->bnx_flags & BNX_FLAG_57765_PLUS)
159 #define BNX_IS_57765_FAMILY(sc) \
160 ((sc)->bnx_flags & BNX_FLAG_57765_FAMILY)
162 typedef int (*bnx_eaddr_fcn_t)(struct bnx_softc *, uint8_t[]);
164 static int bnx_probe(device_t);
165 static int bnx_attach(device_t);
166 static int bnx_detach(device_t);
167 static void bnx_shutdown(device_t);
168 static int bnx_suspend(device_t);
169 static int bnx_resume(device_t);
170 static int bnx_miibus_readreg(device_t, int, int);
171 static int bnx_miibus_writereg(device_t, int, int, int);
172 static void bnx_miibus_statchg(device_t);
174 static int bnx_handle_status(struct bnx_softc *);
175 #ifdef IFPOLL_ENABLE
176 static void bnx_npoll(struct ifnet *, struct ifpoll_info *);
177 static void bnx_npoll_rx(struct ifnet *, void *, int);
178 static void bnx_npoll_tx(struct ifnet *, void *, int);
179 static void bnx_npoll_tx_notag(struct ifnet *, void *, int);
180 static void bnx_npoll_status(struct ifnet *);
181 static void bnx_npoll_status_notag(struct ifnet *);
182 #endif
183 static void bnx_intr_legacy(void *);
184 static void bnx_msi(void *);
185 static void bnx_intr(struct bnx_softc *);
186 static void bnx_msix_status(void *);
187 static void bnx_msix_tx_status(void *);
188 static void bnx_msix_rx(void *);
189 static void bnx_msix_rxtx(void *);
190 static void bnx_enable_intr(struct bnx_softc *);
191 static void bnx_disable_intr(struct bnx_softc *);
192 static void bnx_txeof(struct bnx_tx_ring *, uint16_t);
193 static void bnx_rxeof(struct bnx_rx_ret_ring *, uint16_t, int);
194 static int bnx_alloc_intr(struct bnx_softc *);
195 static int bnx_setup_intr(struct bnx_softc *);
196 static void bnx_free_intr(struct bnx_softc *);
197 static void bnx_teardown_intr(struct bnx_softc *, int);
198 static int bnx_alloc_msix(struct bnx_softc *);
199 static void bnx_free_msix(struct bnx_softc *, boolean_t);
200 static void bnx_check_intr_rxtx(void *);
201 static void bnx_check_intr_rx(void *);
202 static void bnx_check_intr_tx(void *);
203 static void bnx_rx_std_refill_ithread(void *);
204 static void bnx_rx_std_refill(void *, void *);
205 static void bnx_rx_std_refill_sched_ipi(void *);
206 static void bnx_rx_std_refill_stop(void *);
207 static void bnx_rx_std_refill_sched(struct bnx_rx_ret_ring *,
208 struct bnx_rx_std_ring *);
210 static void bnx_start(struct ifnet *, struct ifaltq_subque *);
211 static int bnx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
212 static void bnx_init(void *);
213 static void bnx_stop(struct bnx_softc *);
214 static void bnx_watchdog(struct ifaltq_subque *);
215 static int bnx_ifmedia_upd(struct ifnet *);
216 static void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217 static void bnx_tick(void *);
218 static void bnx_serialize(struct ifnet *, enum ifnet_serialize);
219 static void bnx_deserialize(struct ifnet *, enum ifnet_serialize);
220 static int bnx_tryserialize(struct ifnet *, enum ifnet_serialize);
221 #ifdef INVARIANTS
222 static void bnx_serialize_assert(struct ifnet *, enum ifnet_serialize,
223 boolean_t);
224 #endif
225 static void bnx_serialize_skipmain(struct bnx_softc *);
226 static void bnx_deserialize_skipmain(struct bnx_softc *sc);
228 static int bnx_alloc_jumbo_mem(struct bnx_softc *);
229 static void bnx_free_jumbo_mem(struct bnx_softc *);
230 static struct bnx_jslot
231 *bnx_jalloc(struct bnx_softc *);
232 static void bnx_jfree(void *);
233 static void bnx_jref(void *);
234 static int bnx_newbuf_std(struct bnx_rx_ret_ring *, int, int);
235 static int bnx_newbuf_jumbo(struct bnx_softc *, int, int);
236 static void bnx_setup_rxdesc_std(struct bnx_rx_std_ring *, int);
237 static void bnx_setup_rxdesc_jumbo(struct bnx_softc *, int);
238 static int bnx_init_rx_ring_std(struct bnx_rx_std_ring *);
239 static void bnx_free_rx_ring_std(struct bnx_rx_std_ring *);
240 static int bnx_init_rx_ring_jumbo(struct bnx_softc *);
241 static void bnx_free_rx_ring_jumbo(struct bnx_softc *);
242 static void bnx_free_tx_ring(struct bnx_tx_ring *);
243 static int bnx_init_tx_ring(struct bnx_tx_ring *);
244 static int bnx_create_tx_ring(struct bnx_tx_ring *);
245 static void bnx_destroy_tx_ring(struct bnx_tx_ring *);
246 static int bnx_create_rx_ret_ring(struct bnx_rx_ret_ring *);
247 static void bnx_destroy_rx_ret_ring(struct bnx_rx_ret_ring *);
248 static int bnx_dma_alloc(device_t);
249 static void bnx_dma_free(struct bnx_softc *);
250 static int bnx_dma_block_alloc(struct bnx_softc *, bus_size_t,
251 bus_dma_tag_t *, bus_dmamap_t *, void **, bus_addr_t *);
252 static void bnx_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
253 static struct mbuf *
254 bnx_defrag_shortdma(struct mbuf *);
255 static int bnx_encap(struct bnx_tx_ring *, struct mbuf **,
256 uint32_t *, int *);
257 static int bnx_setup_tso(struct bnx_tx_ring *, struct mbuf **,
258 uint16_t *, uint16_t *);
259 static void bnx_setup_serialize(struct bnx_softc *);
260 static void bnx_set_tick_cpuid(struct bnx_softc *, boolean_t);
261 static void bnx_setup_ring_cnt(struct bnx_softc *);
263 static struct pktinfo *bnx_rss_info(struct pktinfo *,
264 const struct bge_rx_bd *);
265 static void bnx_init_rss(struct bnx_softc *);
266 static void bnx_reset(struct bnx_softc *);
267 static int bnx_chipinit(struct bnx_softc *);
268 static int bnx_blockinit(struct bnx_softc *);
269 static void bnx_stop_block(struct bnx_softc *, bus_size_t, uint32_t);
270 static void bnx_enable_msi(struct bnx_softc *, boolean_t);
271 static void bnx_setmulti(struct bnx_softc *);
272 static void bnx_setpromisc(struct bnx_softc *);
273 static void bnx_stats_update_regs(struct bnx_softc *);
274 static uint32_t bnx_dma_swap_options(struct bnx_softc *);
276 static uint32_t bnx_readmem_ind(struct bnx_softc *, uint32_t);
277 static void bnx_writemem_ind(struct bnx_softc *, uint32_t, uint32_t);
278 #ifdef notdef
279 static uint32_t bnx_readreg_ind(struct bnx_softc *, uint32_t);
280 #endif
281 static void bnx_writemem_direct(struct bnx_softc *, uint32_t, uint32_t);
282 static void bnx_writembx(struct bnx_softc *, int, int);
283 static int bnx_read_nvram(struct bnx_softc *, caddr_t, int, int);
284 static uint8_t bnx_eeprom_getbyte(struct bnx_softc *, uint32_t, uint8_t *);
285 static int bnx_read_eeprom(struct bnx_softc *, caddr_t, uint32_t, size_t);
287 static void bnx_tbi_link_upd(struct bnx_softc *, uint32_t);
288 static void bnx_copper_link_upd(struct bnx_softc *, uint32_t);
289 static void bnx_autopoll_link_upd(struct bnx_softc *, uint32_t);
290 static void bnx_link_poll(struct bnx_softc *);
292 static int bnx_get_eaddr_mem(struct bnx_softc *, uint8_t[]);
293 static int bnx_get_eaddr_nvram(struct bnx_softc *, uint8_t[]);
294 static int bnx_get_eaddr_eeprom(struct bnx_softc *, uint8_t[]);
295 static int bnx_get_eaddr(struct bnx_softc *, uint8_t[]);
297 static void bnx_coal_change(struct bnx_softc *);
298 static int bnx_sysctl_force_defrag(SYSCTL_HANDLER_ARGS);
299 static int bnx_sysctl_tx_wreg(SYSCTL_HANDLER_ARGS);
300 static int bnx_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
301 static int bnx_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
302 static int bnx_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
303 static int bnx_sysctl_rx_coal_bds_poll(SYSCTL_HANDLER_ARGS);
304 static int bnx_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
305 static int bnx_sysctl_tx_coal_bds_poll(SYSCTL_HANDLER_ARGS);
306 static int bnx_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
307 static int bnx_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
308 static int bnx_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
309 int, int, uint32_t);
310 static int bnx_sysctl_std_refill(SYSCTL_HANDLER_ARGS);
312 static void bnx_sig_post_reset(struct bnx_softc *, int);
313 static void bnx_sig_pre_reset(struct bnx_softc *, int);
314 static void bnx_ape_lock_init(struct bnx_softc *);
315 static void bnx_ape_read_fw_ver(struct bnx_softc *);
316 static int bnx_ape_lock(struct bnx_softc *, int);
317 static void bnx_ape_unlock(struct bnx_softc *, int);
318 static void bnx_ape_send_event(struct bnx_softc *, uint32_t);
319 static void bnx_ape_driver_state_change(struct bnx_softc *, int);
321 static int bnx_msi_enable = 1;
322 static int bnx_msix_enable = 1;
324 static int bnx_rx_rings = 0; /* auto */
325 static int bnx_tx_rings = 0; /* auto */
327 TUNABLE_INT("hw.bnx.msi.enable", &bnx_msi_enable);
328 TUNABLE_INT("hw.bnx.msix.enable", &bnx_msix_enable);
329 TUNABLE_INT("hw.bnx.rx_rings", &bnx_rx_rings);
330 TUNABLE_INT("hw.bnx.tx_rings", &bnx_tx_rings);
332 static device_method_t bnx_methods[] = {
333 /* Device interface */
334 DEVMETHOD(device_probe, bnx_probe),
335 DEVMETHOD(device_attach, bnx_attach),
336 DEVMETHOD(device_detach, bnx_detach),
337 DEVMETHOD(device_shutdown, bnx_shutdown),
338 DEVMETHOD(device_suspend, bnx_suspend),
339 DEVMETHOD(device_resume, bnx_resume),
341 /* bus interface */
342 DEVMETHOD(bus_print_child, bus_generic_print_child),
343 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
345 /* MII interface */
346 DEVMETHOD(miibus_readreg, bnx_miibus_readreg),
347 DEVMETHOD(miibus_writereg, bnx_miibus_writereg),
348 DEVMETHOD(miibus_statchg, bnx_miibus_statchg),
350 DEVMETHOD_END
353 static DEFINE_CLASS_0(bnx, bnx_driver, bnx_methods, sizeof(struct bnx_softc));
354 static devclass_t bnx_devclass;
356 DECLARE_DUMMY_MODULE(if_bnx);
357 MODULE_DEPEND(if_bnx, miibus, 1, 1, 1);
358 DRIVER_MODULE(if_bnx, pci, bnx_driver, bnx_devclass, NULL, NULL);
359 DRIVER_MODULE(miibus, bnx, miibus_driver, miibus_devclass, NULL, NULL);
361 static uint32_t
362 bnx_readmem_ind(struct bnx_softc *sc, uint32_t off)
364 device_t dev = sc->bnx_dev;
365 uint32_t val;
367 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
368 val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
369 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
370 return (val);
373 static void
374 bnx_writemem_ind(struct bnx_softc *sc, uint32_t off, uint32_t val)
376 device_t dev = sc->bnx_dev;
378 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
379 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
380 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
383 static void
384 bnx_writemem_direct(struct bnx_softc *sc, uint32_t off, uint32_t val)
386 CSR_WRITE_4(sc, off, val);
389 static void
390 bnx_writembx(struct bnx_softc *sc, int off, int val)
392 CSR_WRITE_4(sc, off, val);
396 * Read a sequence of bytes from NVRAM.
398 static int
399 bnx_read_nvram(struct bnx_softc *sc, caddr_t dest, int off, int cnt)
401 return (1);
405 * Read a byte of data stored in the EEPROM at address 'addr.' The
406 * BCM570x supports both the traditional bitbang interface and an
407 * auto access interface for reading the EEPROM. We use the auto
408 * access method.
410 static uint8_t
411 bnx_eeprom_getbyte(struct bnx_softc *sc, uint32_t addr, uint8_t *dest)
413 int i;
414 uint32_t byte = 0;
417 * Enable use of auto EEPROM access so we can avoid
418 * having to use the bitbang method.
420 BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
422 /* Reset the EEPROM, load the clock period. */
423 CSR_WRITE_4(sc, BGE_EE_ADDR,
424 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
425 DELAY(20);
427 /* Issue the read EEPROM command. */
428 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
430 /* Wait for completion */
431 for(i = 0; i < BNX_TIMEOUT * 10; i++) {
432 DELAY(10);
433 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
434 break;
437 if (i == BNX_TIMEOUT) {
438 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
439 return(1);
442 /* Get result. */
443 byte = CSR_READ_4(sc, BGE_EE_DATA);
445 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
447 return(0);
451 * Read a sequence of bytes from the EEPROM.
453 static int
454 bnx_read_eeprom(struct bnx_softc *sc, caddr_t dest, uint32_t off, size_t len)
456 size_t i;
457 int err;
458 uint8_t byte;
460 for (byte = 0, err = 0, i = 0; i < len; i++) {
461 err = bnx_eeprom_getbyte(sc, off + i, &byte);
462 if (err)
463 break;
464 *(dest + i) = byte;
467 return(err ? 1 : 0);
470 static int
471 bnx_miibus_readreg(device_t dev, int phy, int reg)
473 struct bnx_softc *sc = device_get_softc(dev);
474 uint32_t val;
475 int i;
477 KASSERT(phy == sc->bnx_phyno,
478 ("invalid phyno %d, should be %d", phy, sc->bnx_phyno));
480 if (bnx_ape_lock(sc, sc->bnx_phy_ape_lock) != 0)
481 return 0;
483 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
484 if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
485 CSR_WRITE_4(sc, BGE_MI_MODE,
486 sc->bnx_mi_mode & ~BGE_MIMODE_AUTOPOLL);
487 DELAY(80);
490 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
491 BGE_MIPHY(phy) | BGE_MIREG(reg));
493 /* Poll for the PHY register access to complete. */
494 for (i = 0; i < BNX_TIMEOUT; i++) {
495 DELAY(10);
496 val = CSR_READ_4(sc, BGE_MI_COMM);
497 if ((val & BGE_MICOMM_BUSY) == 0) {
498 DELAY(5);
499 val = CSR_READ_4(sc, BGE_MI_COMM);
500 break;
503 if (i == BNX_TIMEOUT) {
504 if_printf(&sc->arpcom.ac_if, "PHY read timed out "
505 "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
506 val = 0;
509 /* Restore the autopoll bit if necessary. */
510 if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
511 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bnx_mi_mode);
512 DELAY(80);
515 bnx_ape_unlock(sc, sc->bnx_phy_ape_lock);
517 if (val & BGE_MICOMM_READFAIL)
518 return 0;
520 return (val & 0xFFFF);
523 static int
524 bnx_miibus_writereg(device_t dev, int phy, int reg, int val)
526 struct bnx_softc *sc = device_get_softc(dev);
527 int i;
529 KASSERT(phy == sc->bnx_phyno,
530 ("invalid phyno %d, should be %d", phy, sc->bnx_phyno));
532 if (bnx_ape_lock(sc, sc->bnx_phy_ape_lock) != 0)
533 return 0;
535 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
536 if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
537 CSR_WRITE_4(sc, BGE_MI_MODE,
538 sc->bnx_mi_mode & ~BGE_MIMODE_AUTOPOLL);
539 DELAY(80);
542 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
543 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
545 for (i = 0; i < BNX_TIMEOUT; i++) {
546 DELAY(10);
547 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
548 DELAY(5);
549 CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
550 break;
553 if (i == BNX_TIMEOUT) {
554 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
555 "(phy %d, reg %d, val %d)\n", phy, reg, val);
558 /* Restore the autopoll bit if necessary. */
559 if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
560 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bnx_mi_mode);
561 DELAY(80);
564 bnx_ape_unlock(sc, sc->bnx_phy_ape_lock);
566 return 0;
569 static void
570 bnx_miibus_statchg(device_t dev)
572 struct bnx_softc *sc;
573 struct mii_data *mii;
574 uint32_t mac_mode;
576 sc = device_get_softc(dev);
577 if ((sc->arpcom.ac_if.if_flags & IFF_RUNNING) == 0)
578 return;
580 mii = device_get_softc(sc->bnx_miibus);
582 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
583 (IFM_ACTIVE | IFM_AVALID)) {
584 switch (IFM_SUBTYPE(mii->mii_media_active)) {
585 case IFM_10_T:
586 case IFM_100_TX:
587 sc->bnx_link = 1;
588 break;
589 case IFM_1000_T:
590 case IFM_1000_SX:
591 case IFM_2500_SX:
592 sc->bnx_link = 1;
593 break;
594 default:
595 sc->bnx_link = 0;
596 break;
598 } else {
599 sc->bnx_link = 0;
601 if (sc->bnx_link == 0)
602 return;
605 * APE firmware touches these registers to keep the MAC
606 * connected to the outside world. Try to keep the
607 * accesses atomic.
610 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
611 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
613 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
614 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
615 mac_mode |= BGE_PORTMODE_GMII;
616 else
617 mac_mode |= BGE_PORTMODE_MII;
619 if ((mii->mii_media_active & IFM_GMASK) != IFM_FDX)
620 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
622 CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
623 DELAY(40);
627 * Memory management for jumbo frames.
629 static int
630 bnx_alloc_jumbo_mem(struct bnx_softc *sc)
632 struct ifnet *ifp = &sc->arpcom.ac_if;
633 struct bnx_jslot *entry;
634 uint8_t *ptr;
635 bus_addr_t paddr;
636 int i, error;
639 * Create tag for jumbo mbufs.
640 * This is really a bit of a kludge. We allocate a special
641 * jumbo buffer pool which (thanks to the way our DMA
642 * memory allocation works) will consist of contiguous
643 * pages. This means that even though a jumbo buffer might
644 * be larger than a page size, we don't really need to
645 * map it into more than one DMA segment. However, the
646 * default mbuf tag will result in multi-segment mappings,
647 * so we have to create a special jumbo mbuf tag that
648 * lets us get away with mapping the jumbo buffers as
649 * a single segment. I think eventually the driver should
650 * be changed so that it uses ordinary mbufs and cluster
651 * buffers, i.e. jumbo frames can span multiple DMA
652 * descriptors. But that's a project for another day.
656 * Create DMA stuffs for jumbo RX ring.
658 error = bnx_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
659 &sc->bnx_cdata.bnx_rx_jumbo_ring_tag,
660 &sc->bnx_cdata.bnx_rx_jumbo_ring_map,
661 (void *)&sc->bnx_ldata.bnx_rx_jumbo_ring,
662 &sc->bnx_ldata.bnx_rx_jumbo_ring_paddr);
663 if (error) {
664 if_printf(ifp, "could not create jumbo RX ring\n");
665 return error;
669 * Create DMA stuffs for jumbo buffer block.
671 error = bnx_dma_block_alloc(sc, BNX_JMEM,
672 &sc->bnx_cdata.bnx_jumbo_tag,
673 &sc->bnx_cdata.bnx_jumbo_map,
674 (void **)&sc->bnx_ldata.bnx_jumbo_buf,
675 &paddr);
676 if (error) {
677 if_printf(ifp, "could not create jumbo buffer\n");
678 return error;
681 SLIST_INIT(&sc->bnx_jfree_listhead);
684 * Now divide it up into 9K pieces and save the addresses
685 * in an array. Note that we play an evil trick here by using
686 * the first few bytes in the buffer to hold the the address
687 * of the softc structure for this interface. This is because
688 * bnx_jfree() needs it, but it is called by the mbuf management
689 * code which will not pass it to us explicitly.
691 for (i = 0, ptr = sc->bnx_ldata.bnx_jumbo_buf; i < BNX_JSLOTS; i++) {
692 entry = &sc->bnx_cdata.bnx_jslots[i];
693 entry->bnx_sc = sc;
694 entry->bnx_buf = ptr;
695 entry->bnx_paddr = paddr;
696 entry->bnx_inuse = 0;
697 entry->bnx_slot = i;
698 SLIST_INSERT_HEAD(&sc->bnx_jfree_listhead, entry, jslot_link);
700 ptr += BNX_JLEN;
701 paddr += BNX_JLEN;
703 return 0;
706 static void
707 bnx_free_jumbo_mem(struct bnx_softc *sc)
709 /* Destroy jumbo RX ring. */
710 bnx_dma_block_free(sc->bnx_cdata.bnx_rx_jumbo_ring_tag,
711 sc->bnx_cdata.bnx_rx_jumbo_ring_map,
712 sc->bnx_ldata.bnx_rx_jumbo_ring);
714 /* Destroy jumbo buffer block. */
715 bnx_dma_block_free(sc->bnx_cdata.bnx_jumbo_tag,
716 sc->bnx_cdata.bnx_jumbo_map,
717 sc->bnx_ldata.bnx_jumbo_buf);
721 * Allocate a jumbo buffer.
723 static struct bnx_jslot *
724 bnx_jalloc(struct bnx_softc *sc)
726 struct bnx_jslot *entry;
728 lwkt_serialize_enter(&sc->bnx_jslot_serializer);
729 entry = SLIST_FIRST(&sc->bnx_jfree_listhead);
730 if (entry) {
731 SLIST_REMOVE_HEAD(&sc->bnx_jfree_listhead, jslot_link);
732 entry->bnx_inuse = 1;
733 } else {
734 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
736 lwkt_serialize_exit(&sc->bnx_jslot_serializer);
737 return(entry);
741 * Adjust usage count on a jumbo buffer.
743 static void
744 bnx_jref(void *arg)
746 struct bnx_jslot *entry = (struct bnx_jslot *)arg;
747 struct bnx_softc *sc = entry->bnx_sc;
749 if (sc == NULL)
750 panic("bnx_jref: can't find softc pointer!");
752 if (&sc->bnx_cdata.bnx_jslots[entry->bnx_slot] != entry) {
753 panic("bnx_jref: asked to reference buffer "
754 "that we don't manage!");
755 } else if (entry->bnx_inuse == 0) {
756 panic("bnx_jref: buffer already free!");
757 } else {
758 atomic_add_int(&entry->bnx_inuse, 1);
763 * Release a jumbo buffer.
765 static void
766 bnx_jfree(void *arg)
768 struct bnx_jslot *entry = (struct bnx_jslot *)arg;
769 struct bnx_softc *sc = entry->bnx_sc;
771 if (sc == NULL)
772 panic("bnx_jfree: can't find softc pointer!");
774 if (&sc->bnx_cdata.bnx_jslots[entry->bnx_slot] != entry) {
775 panic("bnx_jfree: asked to free buffer that we don't manage!");
776 } else if (entry->bnx_inuse == 0) {
777 panic("bnx_jfree: buffer already free!");
778 } else {
780 * Possible MP race to 0, use the serializer. The atomic insn
781 * is still needed for races against bnx_jref().
783 lwkt_serialize_enter(&sc->bnx_jslot_serializer);
784 atomic_subtract_int(&entry->bnx_inuse, 1);
785 if (entry->bnx_inuse == 0) {
786 SLIST_INSERT_HEAD(&sc->bnx_jfree_listhead,
787 entry, jslot_link);
789 lwkt_serialize_exit(&sc->bnx_jslot_serializer);
795 * Intialize a standard receive ring descriptor.
797 static int
798 bnx_newbuf_std(struct bnx_rx_ret_ring *ret, int i, int init)
800 struct mbuf *m_new = NULL;
801 bus_dma_segment_t seg;
802 bus_dmamap_t map;
803 int error, nsegs;
804 struct bnx_rx_buf *rb;
806 rb = &ret->bnx_std->bnx_rx_std_buf[i];
807 KASSERT(!rb->bnx_rx_refilled, ("RX buf %dth has been refilled", i));
809 m_new = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
810 if (m_new == NULL) {
811 error = ENOBUFS;
812 goto back;
814 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
815 m_adj(m_new, ETHER_ALIGN);
817 error = bus_dmamap_load_mbuf_segment(ret->bnx_rx_mtag,
818 ret->bnx_rx_tmpmap, m_new, &seg, 1, &nsegs, BUS_DMA_NOWAIT);
819 if (error) {
820 m_freem(m_new);
821 goto back;
824 if (!init) {
825 bus_dmamap_sync(ret->bnx_rx_mtag, rb->bnx_rx_dmamap,
826 BUS_DMASYNC_POSTREAD);
827 bus_dmamap_unload(ret->bnx_rx_mtag, rb->bnx_rx_dmamap);
830 map = ret->bnx_rx_tmpmap;
831 ret->bnx_rx_tmpmap = rb->bnx_rx_dmamap;
833 rb->bnx_rx_dmamap = map;
834 rb->bnx_rx_mbuf = m_new;
835 rb->bnx_rx_paddr = seg.ds_addr;
836 rb->bnx_rx_len = m_new->m_len;
837 back:
838 cpu_sfence();
839 rb->bnx_rx_refilled = 1;
840 return error;
843 static void
844 bnx_setup_rxdesc_std(struct bnx_rx_std_ring *std, int i)
846 struct bnx_rx_buf *rb;
847 struct bge_rx_bd *r;
848 bus_addr_t paddr;
849 int len;
851 rb = &std->bnx_rx_std_buf[i];
852 KASSERT(rb->bnx_rx_refilled, ("RX buf %dth is not refilled", i));
854 paddr = rb->bnx_rx_paddr;
855 len = rb->bnx_rx_len;
857 cpu_mfence();
859 rb->bnx_rx_refilled = 0;
861 r = &std->bnx_rx_std_ring[i];
862 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(paddr);
863 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(paddr);
864 r->bge_len = len;
865 r->bge_idx = i;
866 r->bge_flags = BGE_RXBDFLAG_END;
870 * Initialize a jumbo receive ring descriptor. This allocates
871 * a jumbo buffer from the pool managed internally by the driver.
873 static int
874 bnx_newbuf_jumbo(struct bnx_softc *sc, int i, int init)
876 struct mbuf *m_new = NULL;
877 struct bnx_jslot *buf;
878 bus_addr_t paddr;
880 /* Allocate the mbuf. */
881 MGETHDR(m_new, init ? M_WAITOK : M_NOWAIT, MT_DATA);
882 if (m_new == NULL)
883 return ENOBUFS;
885 /* Allocate the jumbo buffer */
886 buf = bnx_jalloc(sc);
887 if (buf == NULL) {
888 m_freem(m_new);
889 return ENOBUFS;
892 /* Attach the buffer to the mbuf. */
893 m_new->m_ext.ext_arg = buf;
894 m_new->m_ext.ext_buf = buf->bnx_buf;
895 m_new->m_ext.ext_free = bnx_jfree;
896 m_new->m_ext.ext_ref = bnx_jref;
897 m_new->m_ext.ext_size = BNX_JUMBO_FRAMELEN;
899 m_new->m_flags |= M_EXT;
901 m_new->m_data = m_new->m_ext.ext_buf;
902 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
904 paddr = buf->bnx_paddr;
905 m_adj(m_new, ETHER_ALIGN);
906 paddr += ETHER_ALIGN;
908 /* Save necessary information */
909 sc->bnx_cdata.bnx_rx_jumbo_chain[i].bnx_rx_mbuf = m_new;
910 sc->bnx_cdata.bnx_rx_jumbo_chain[i].bnx_rx_paddr = paddr;
912 /* Set up the descriptor. */
913 bnx_setup_rxdesc_jumbo(sc, i);
914 return 0;
917 static void
918 bnx_setup_rxdesc_jumbo(struct bnx_softc *sc, int i)
920 struct bge_rx_bd *r;
921 struct bnx_rx_buf *rc;
923 r = &sc->bnx_ldata.bnx_rx_jumbo_ring[i];
924 rc = &sc->bnx_cdata.bnx_rx_jumbo_chain[i];
926 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bnx_rx_paddr);
927 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bnx_rx_paddr);
928 r->bge_len = rc->bnx_rx_mbuf->m_len;
929 r->bge_idx = i;
930 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
933 static int
934 bnx_init_rx_ring_std(struct bnx_rx_std_ring *std)
936 int i, error;
938 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
939 /* Use the first RX return ring's tmp RX mbuf DMA map */
940 error = bnx_newbuf_std(&std->bnx_sc->bnx_rx_ret_ring[0], i, 1);
941 if (error)
942 return error;
943 bnx_setup_rxdesc_std(std, i);
946 std->bnx_rx_std_used = 0;
947 std->bnx_rx_std_refill = 0;
948 std->bnx_rx_std_running = 0;
949 cpu_sfence();
950 lwkt_serialize_handler_enable(&std->bnx_rx_std_serialize);
952 std->bnx_rx_std = BGE_STD_RX_RING_CNT - 1;
953 bnx_writembx(std->bnx_sc, BGE_MBX_RX_STD_PROD_LO, std->bnx_rx_std);
955 return(0);
958 static void
959 bnx_free_rx_ring_std(struct bnx_rx_std_ring *std)
961 int i;
963 lwkt_serialize_handler_disable(&std->bnx_rx_std_serialize);
965 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
966 struct bnx_rx_buf *rb = &std->bnx_rx_std_buf[i];
968 rb->bnx_rx_refilled = 0;
969 if (rb->bnx_rx_mbuf != NULL) {
970 bus_dmamap_unload(std->bnx_rx_mtag, rb->bnx_rx_dmamap);
971 m_freem(rb->bnx_rx_mbuf);
972 rb->bnx_rx_mbuf = NULL;
974 bzero(&std->bnx_rx_std_ring[i], sizeof(struct bge_rx_bd));
978 static int
979 bnx_init_rx_ring_jumbo(struct bnx_softc *sc)
981 struct bge_rcb *rcb;
982 int i, error;
984 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
985 error = bnx_newbuf_jumbo(sc, i, 1);
986 if (error)
987 return error;
990 sc->bnx_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
992 rcb = &sc->bnx_ldata.bnx_info.bnx_jumbo_rx_rcb;
993 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
994 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
996 bnx_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bnx_jumbo);
998 return(0);
1001 static void
1002 bnx_free_rx_ring_jumbo(struct bnx_softc *sc)
1004 int i;
1006 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1007 struct bnx_rx_buf *rc = &sc->bnx_cdata.bnx_rx_jumbo_chain[i];
1009 if (rc->bnx_rx_mbuf != NULL) {
1010 m_freem(rc->bnx_rx_mbuf);
1011 rc->bnx_rx_mbuf = NULL;
1013 bzero(&sc->bnx_ldata.bnx_rx_jumbo_ring[i],
1014 sizeof(struct bge_rx_bd));
1018 static void
1019 bnx_free_tx_ring(struct bnx_tx_ring *txr)
1021 int i;
1023 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1024 struct bnx_tx_buf *buf = &txr->bnx_tx_buf[i];
1026 if (buf->bnx_tx_mbuf != NULL) {
1027 bus_dmamap_unload(txr->bnx_tx_mtag,
1028 buf->bnx_tx_dmamap);
1029 m_freem(buf->bnx_tx_mbuf);
1030 buf->bnx_tx_mbuf = NULL;
1032 bzero(&txr->bnx_tx_ring[i], sizeof(struct bge_tx_bd));
1034 txr->bnx_tx_saved_considx = BNX_TXCONS_UNSET;
1037 static int
1038 bnx_init_tx_ring(struct bnx_tx_ring *txr)
1040 txr->bnx_tx_cnt = 0;
1041 txr->bnx_tx_saved_considx = 0;
1042 txr->bnx_tx_prodidx = 0;
1044 /* Initialize transmit producer index for host-memory send ring. */
1045 bnx_writembx(txr->bnx_sc, txr->bnx_tx_mbx, txr->bnx_tx_prodidx);
1047 return(0);
1050 static void
1051 bnx_setmulti(struct bnx_softc *sc)
1053 struct ifnet *ifp;
1054 struct ifmultiaddr *ifma;
1055 uint32_t hashes[4] = { 0, 0, 0, 0 };
1056 int h, i;
1058 ifp = &sc->arpcom.ac_if;
1060 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1061 for (i = 0; i < 4; i++)
1062 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1063 return;
1066 /* First, zot all the existing filters. */
1067 for (i = 0; i < 4; i++)
1068 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1070 /* Now program new ones. */
1071 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1072 if (ifma->ifma_addr->sa_family != AF_LINK)
1073 continue;
1074 h = ether_crc32_le(
1075 LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1076 ETHER_ADDR_LEN) & 0x7f;
1077 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1080 for (i = 0; i < 4; i++)
1081 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1085 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1086 * self-test results.
1088 static int
1089 bnx_chipinit(struct bnx_softc *sc)
1091 uint32_t dma_rw_ctl, mode_ctl;
1092 int i;
1094 /* Set endian type before we access any non-PCI registers. */
1095 pci_write_config(sc->bnx_dev, BGE_PCI_MISC_CTL,
1096 BGE_INIT | BGE_PCIMISCCTL_TAGGED_STATUS, 4);
1099 * Clear the MAC statistics block in the NIC's
1100 * internal memory.
1102 for (i = BGE_STATS_BLOCK;
1103 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1104 BNX_MEMWIN_WRITE(sc, i, 0);
1106 for (i = BGE_STATUS_BLOCK;
1107 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1108 BNX_MEMWIN_WRITE(sc, i, 0);
1110 if (BNX_IS_57765_FAMILY(sc)) {
1111 uint32_t val;
1113 if (sc->bnx_chipid == BGE_CHIPID_BCM57765_A0) {
1114 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
1115 val = mode_ctl & ~BGE_MODECTL_PCIE_PORTS;
1117 /* Access the lower 1K of PL PCI-E block registers. */
1118 CSR_WRITE_4(sc, BGE_MODE_CTL,
1119 val | BGE_MODECTL_PCIE_PL_SEL);
1121 val = CSR_READ_4(sc, BGE_PCIE_PL_LO_PHYCTL5);
1122 val |= BGE_PCIE_PL_LO_PHYCTL5_DIS_L2CLKREQ;
1123 CSR_WRITE_4(sc, BGE_PCIE_PL_LO_PHYCTL5, val);
1125 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1127 if (sc->bnx_chiprev != BGE_CHIPREV_57765_AX) {
1128 /* Fix transmit hangs */
1129 val = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
1130 val |= BGE_CPMU_PADRNG_CTL_RDIV2;
1131 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL, val);
1133 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
1134 val = mode_ctl & ~BGE_MODECTL_PCIE_PORTS;
1136 /* Access the lower 1K of DL PCI-E block registers. */
1137 CSR_WRITE_4(sc, BGE_MODE_CTL,
1138 val | BGE_MODECTL_PCIE_DL_SEL);
1140 val = CSR_READ_4(sc, BGE_PCIE_DL_LO_FTSMAX);
1141 val &= ~BGE_PCIE_DL_LO_FTSMAX_MASK;
1142 val |= BGE_PCIE_DL_LO_FTSMAX_VAL;
1143 CSR_WRITE_4(sc, BGE_PCIE_DL_LO_FTSMAX, val);
1145 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1148 val = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
1149 val &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
1150 val |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
1151 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, val);
1155 * Set up the PCI DMA control register.
1157 dma_rw_ctl = pci_read_config(sc->bnx_dev, BGE_PCI_DMA_RW_CTL, 4);
1159 * Disable 32bytes cache alignment for DMA write to host memory
1161 * NOTE:
1162 * 64bytes cache alignment for DMA write to host memory is still
1163 * enabled.
1165 dma_rw_ctl |= BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1166 if (sc->bnx_chipid == BGE_CHIPID_BCM57765_A0)
1167 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1169 * Enable HW workaround for controllers that misinterpret
1170 * a status tag update and leave interrupts permanently
1171 * disabled.
1173 if (sc->bnx_asicrev != BGE_ASICREV_BCM5717 &&
1174 sc->bnx_asicrev != BGE_ASICREV_BCM5762 &&
1175 !BNX_IS_57765_FAMILY(sc))
1176 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1177 if (bootverbose) {
1178 if_printf(&sc->arpcom.ac_if, "DMA read/write %#x\n",
1179 dma_rw_ctl);
1181 pci_write_config(sc->bnx_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1184 * Set up general mode register.
1186 mode_ctl = bnx_dma_swap_options(sc);
1187 if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1188 sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1189 /* Retain Host-2-BMC settings written by APE firmware. */
1190 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1191 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1192 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1193 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1195 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR |
1196 BGE_MODECTL_HOST_SEND_BDS | BGE_MODECTL_TX_NO_PHDR_CSUM;
1197 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1200 * Disable memory write invalidate. Apparently it is not supported
1201 * properly by these devices. Also ensure that INTx isn't disabled,
1202 * as these chips need it even when using MSI.
1204 PCI_CLRBIT(sc->bnx_dev, BGE_PCI_CMD,
1205 (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1207 /* Set the timer prescaler (always 66Mhz) */
1208 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1210 return(0);
1213 static int
1214 bnx_blockinit(struct bnx_softc *sc)
1216 struct bnx_intr_data *intr;
1217 struct bge_rcb *rcb;
1218 bus_size_t vrcb;
1219 bge_hostaddr taddr;
1220 uint32_t val;
1221 int i, limit;
1224 * Initialize the memory window pointer register so that
1225 * we can access the first 32K of internal NIC RAM. This will
1226 * allow us to set up the TX send ring RCBs and the RX return
1227 * ring RCBs, plus other things which live in NIC memory.
1229 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1231 /* Configure mbuf pool watermarks */
1232 if (BNX_IS_57765_PLUS(sc)) {
1233 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1234 if (sc->arpcom.ac_if.if_mtu > ETHERMTU) {
1235 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1236 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1237 } else {
1238 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1239 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1241 } else {
1242 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1243 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1244 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1247 /* Configure DMA resource watermarks */
1248 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1249 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1251 /* Enable buffer manager */
1252 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
1254 * Change the arbitration algorithm of TXMBUF read request to
1255 * round-robin instead of priority based for BCM5719. When
1256 * TXFIFO is almost empty, RDMA will hold its request until
1257 * TXFIFO is not almost empty.
1259 if (sc->bnx_asicrev == BGE_ASICREV_BCM5719)
1260 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
1261 if (sc->bnx_asicrev == BGE_ASICREV_BCM5717 ||
1262 sc->bnx_chipid == BGE_CHIPID_BCM5719_A0 ||
1263 sc->bnx_chipid == BGE_CHIPID_BCM5720_A0)
1264 val |= BGE_BMANMODE_LOMBUF_ATTN;
1265 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
1267 /* Poll for buffer manager start indication */
1268 for (i = 0; i < BNX_TIMEOUT; i++) {
1269 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1270 break;
1271 DELAY(10);
1274 if (i == BNX_TIMEOUT) {
1275 if_printf(&sc->arpcom.ac_if,
1276 "buffer manager failed to start\n");
1277 return(ENXIO);
1280 /* Enable flow-through queues */
1281 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1282 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1284 /* Wait until queue initialization is complete */
1285 for (i = 0; i < BNX_TIMEOUT; i++) {
1286 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1287 break;
1288 DELAY(10);
1291 if (i == BNX_TIMEOUT) {
1292 if_printf(&sc->arpcom.ac_if,
1293 "flow-through queue init failed\n");
1294 return(ENXIO);
1298 * Summary of rings supported by the controller:
1300 * Standard Receive Producer Ring
1301 * - This ring is used to feed receive buffers for "standard"
1302 * sized frames (typically 1536 bytes) to the controller.
1304 * Jumbo Receive Producer Ring
1305 * - This ring is used to feed receive buffers for jumbo sized
1306 * frames (i.e. anything bigger than the "standard" frames)
1307 * to the controller.
1309 * Mini Receive Producer Ring
1310 * - This ring is used to feed receive buffers for "mini"
1311 * sized frames to the controller.
1312 * - This feature required external memory for the controller
1313 * but was never used in a production system. Should always
1314 * be disabled.
1316 * Receive Return Ring
1317 * - After the controller has placed an incoming frame into a
1318 * receive buffer that buffer is moved into a receive return
1319 * ring. The driver is then responsible to passing the
1320 * buffer up to the stack. BCM5718/BCM57785 families support
1321 * multiple receive return rings.
1323 * Send Ring
1324 * - This ring is used for outgoing frames. BCM5719/BCM5720
1325 * support multiple send rings.
1328 /* Initialize the standard receive producer ring control block. */
1329 rcb = &sc->bnx_ldata.bnx_info.bnx_std_rx_rcb;
1330 rcb->bge_hostaddr.bge_addr_lo =
1331 BGE_ADDR_LO(sc->bnx_rx_std_ring.bnx_rx_std_ring_paddr);
1332 rcb->bge_hostaddr.bge_addr_hi =
1333 BGE_ADDR_HI(sc->bnx_rx_std_ring.bnx_rx_std_ring_paddr);
1334 if (BNX_IS_57765_PLUS(sc)) {
1336 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
1337 * Bits 15-2 : Maximum RX frame size
1338 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
1339 * Bit 0 : Reserved
1341 rcb->bge_maxlen_flags =
1342 BGE_RCB_MAXLEN_FLAGS(512, BNX_MAX_FRAMELEN << 2);
1343 } else {
1345 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1346 * Bits 15-2 : Reserved (should be 0)
1347 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
1348 * Bit 0 : Reserved
1350 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1352 if (BNX_IS_5717_PLUS(sc))
1353 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
1354 else
1355 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1356 /* Write the standard receive producer ring control block. */
1357 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1358 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1359 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1360 if (!BNX_IS_5717_PLUS(sc))
1361 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1362 /* Reset the standard receive producer ring producer index. */
1363 bnx_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1366 * Initialize the jumbo RX producer ring control
1367 * block. We set the 'ring disabled' bit in the
1368 * flags field until we're actually ready to start
1369 * using this ring (i.e. once we set the MTU
1370 * high enough to require it).
1372 if (BNX_IS_JUMBO_CAPABLE(sc)) {
1373 rcb = &sc->bnx_ldata.bnx_info.bnx_jumbo_rx_rcb;
1374 /* Get the jumbo receive producer ring RCB parameters. */
1375 rcb->bge_hostaddr.bge_addr_lo =
1376 BGE_ADDR_LO(sc->bnx_ldata.bnx_rx_jumbo_ring_paddr);
1377 rcb->bge_hostaddr.bge_addr_hi =
1378 BGE_ADDR_HI(sc->bnx_ldata.bnx_rx_jumbo_ring_paddr);
1379 rcb->bge_maxlen_flags =
1380 BGE_RCB_MAXLEN_FLAGS(BNX_MAX_FRAMELEN,
1381 BGE_RCB_FLAG_RING_DISABLED);
1382 if (BNX_IS_5717_PLUS(sc))
1383 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
1384 else
1385 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1386 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1387 rcb->bge_hostaddr.bge_addr_hi);
1388 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1389 rcb->bge_hostaddr.bge_addr_lo);
1390 /* Program the jumbo receive producer ring RCB parameters. */
1391 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1392 rcb->bge_maxlen_flags);
1393 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1394 /* Reset the jumbo receive producer ring producer index. */
1395 bnx_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1399 * The BD ring replenish thresholds control how often the
1400 * hardware fetches new BD's from the producer rings in host
1401 * memory. Setting the value too low on a busy system can
1402 * starve the hardware and recue the throughpout.
1404 * Set the BD ring replentish thresholds. The recommended
1405 * values are 1/8th the number of descriptors allocated to
1406 * each ring.
1408 val = 8;
1409 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1410 if (BNX_IS_JUMBO_CAPABLE(sc)) {
1411 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1412 BGE_JUMBO_RX_RING_CNT/8);
1414 if (BNX_IS_57765_PLUS(sc)) {
1415 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
1416 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
1420 * Disable all send rings by setting the 'ring disabled' bit
1421 * in the flags field of all the TX send ring control blocks,
1422 * located in NIC memory.
1424 if (BNX_IS_5717_PLUS(sc))
1425 limit = 4;
1426 else if (BNX_IS_57765_FAMILY(sc) ||
1427 sc->bnx_asicrev == BGE_ASICREV_BCM5762)
1428 limit = 2;
1429 else
1430 limit = 1;
1431 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1432 for (i = 0; i < limit; i++) {
1433 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1434 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1435 vrcb += sizeof(struct bge_rcb);
1439 * Configure send ring RCBs
1441 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1442 for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
1443 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
1445 BGE_HOSTADDR(taddr, txr->bnx_tx_ring_paddr);
1446 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi,
1447 taddr.bge_addr_hi);
1448 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo,
1449 taddr.bge_addr_lo);
1450 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1451 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1452 vrcb += sizeof(struct bge_rcb);
1456 * Disable all receive return rings by setting the
1457 * 'ring disabled' bit in the flags field of all the receive
1458 * return ring control blocks, located in NIC memory.
1460 if (BNX_IS_5717_PLUS(sc)) {
1461 /* Should be 17, use 16 until we get an SRAM map. */
1462 limit = 16;
1463 } else if (BNX_IS_57765_FAMILY(sc) ||
1464 sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1465 limit = 4;
1466 } else {
1467 limit = 1;
1469 /* Disable all receive return rings. */
1470 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1471 for (i = 0; i < limit; i++) {
1472 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1473 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1474 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1475 BGE_RCB_FLAG_RING_DISABLED);
1476 bnx_writembx(sc, BGE_MBX_RX_CONS0_LO +
1477 (i * (sizeof(uint64_t))), 0);
1478 vrcb += sizeof(struct bge_rcb);
1482 * Set up receive return rings.
1484 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1485 for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
1486 struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[i];
1488 BGE_HOSTADDR(taddr, ret->bnx_rx_ret_ring_paddr);
1489 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi,
1490 taddr.bge_addr_hi);
1491 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo,
1492 taddr.bge_addr_lo);
1493 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1494 BGE_RCB_MAXLEN_FLAGS(BNX_RETURN_RING_CNT, 0));
1495 vrcb += sizeof(struct bge_rcb);
1498 /* Set random backoff seed for TX */
1499 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1500 (sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1501 sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1502 sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5]) &
1503 BGE_TX_BACKOFF_SEED_MASK);
1505 /* Set inter-packet gap */
1506 val = 0x2620;
1507 if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1508 sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1509 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
1510 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
1512 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
1515 * Specify which ring to use for packets that don't match
1516 * any RX rules.
1518 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1521 * Configure number of RX lists. One interrupt distribution
1522 * list, sixteen active lists, one bad frames class.
1524 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1526 /* Inialize RX list placement stats mask. */
1527 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1528 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1530 /* Disable host coalescing until we get it set up */
1531 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1533 /* Poll to make sure it's shut down. */
1534 for (i = 0; i < BNX_TIMEOUT; i++) {
1535 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1536 break;
1537 DELAY(10);
1540 if (i == BNX_TIMEOUT) {
1541 if_printf(&sc->arpcom.ac_if,
1542 "host coalescing engine failed to idle\n");
1543 return(ENXIO);
1546 /* Set up host coalescing defaults */
1547 sc->bnx_coal_chg = BNX_RX_COAL_TICKS_CHG |
1548 BNX_TX_COAL_TICKS_CHG |
1549 BNX_RX_COAL_BDS_CHG |
1550 BNX_TX_COAL_BDS_CHG |
1551 BNX_RX_COAL_BDS_INT_CHG |
1552 BNX_TX_COAL_BDS_INT_CHG;
1553 bnx_coal_change(sc);
1556 * Set up addresses of status blocks
1558 intr = &sc->bnx_intr_data[0];
1559 bzero(intr->bnx_status_block, BGE_STATUS_BLK_SZ);
1560 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1561 BGE_ADDR_HI(intr->bnx_status_block_paddr));
1562 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1563 BGE_ADDR_LO(intr->bnx_status_block_paddr));
1564 for (i = 1; i < sc->bnx_intr_cnt; ++i) {
1565 intr = &sc->bnx_intr_data[i];
1566 bzero(intr->bnx_status_block, BGE_STATUS_BLK_SZ);
1567 CSR_WRITE_4(sc, BGE_VEC1_STATUSBLK_ADDR_HI + ((i - 1) * 8),
1568 BGE_ADDR_HI(intr->bnx_status_block_paddr));
1569 CSR_WRITE_4(sc, BGE_VEC1_STATUSBLK_ADDR_LO + ((i - 1) * 8),
1570 BGE_ADDR_LO(intr->bnx_status_block_paddr));
1573 /* Set up status block partail update size. */
1574 val = BGE_STATBLKSZ_32BYTE;
1575 #if 0
1577 * Does not seem to have visible effect in both
1578 * bulk data (1472B UDP datagram) and tiny data
1579 * (18B UDP datagram) TX tests.
1581 val |= BGE_HCCMODE_CLRTICK_TX;
1582 #endif
1583 /* Turn on host coalescing state machine */
1584 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1586 /* Turn on RX BD completion state machine and enable attentions */
1587 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1588 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1590 /* Turn on RX list placement state machine */
1591 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1593 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1594 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1595 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1596 BGE_MACMODE_FRMHDR_DMA_ENB;
1598 if (sc->bnx_flags & BNX_FLAG_TBI)
1599 val |= BGE_PORTMODE_TBI;
1600 else if (sc->bnx_flags & BNX_FLAG_MII_SERDES)
1601 val |= BGE_PORTMODE_GMII;
1602 else
1603 val |= BGE_PORTMODE_MII;
1605 /* Allow APE to send/receive frames. */
1606 if (sc->bnx_mfw_flags & BNX_MFW_ON_APE)
1607 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
1609 /* Turn on DMA, clear stats */
1610 CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1611 DELAY(40);
1613 /* Set misc. local control, enable interrupts on attentions */
1614 BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1616 #ifdef notdef
1617 /* Assert GPIO pins for PHY reset */
1618 BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1619 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1620 BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1621 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1622 #endif
1624 if (sc->bnx_intr_type == PCI_INTR_TYPE_MSIX)
1625 bnx_enable_msi(sc, TRUE);
1627 /* Turn on write DMA state machine */
1628 val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1629 /* Enable host coalescing bug fix. */
1630 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1631 if (sc->bnx_asicrev == BGE_ASICREV_BCM5785) {
1632 /* Request larger DMA burst size to get better performance. */
1633 val |= BGE_WDMAMODE_BURST_ALL_DATA;
1635 CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1636 DELAY(40);
1638 if (BNX_IS_57765_PLUS(sc)) {
1639 uint32_t dmactl, dmactl_reg;
1641 if (sc->bnx_asicrev == BGE_ASICREV_BCM5762)
1642 dmactl_reg = BGE_RDMA_RSRVCTRL2;
1643 else
1644 dmactl_reg = BGE_RDMA_RSRVCTRL;
1646 dmactl = CSR_READ_4(sc, dmactl_reg);
1648 * Adjust tx margin to prevent TX data corruption and
1649 * fix internal FIFO overflow.
1651 if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 ||
1652 sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1653 sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1654 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
1655 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
1656 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
1657 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
1658 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
1659 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
1662 * Enable fix for read DMA FIFO overruns.
1663 * The fix is to limit the number of RX BDs
1664 * the hardware would fetch at a fime.
1666 CSR_WRITE_4(sc, dmactl_reg,
1667 dmactl | BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1670 if (sc->bnx_asicrev == BGE_ASICREV_BCM5719) {
1671 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
1672 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
1673 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
1674 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
1675 } else if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1676 sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1677 uint32_t ctrl_reg;
1679 if (sc->bnx_asicrev == BGE_ASICREV_BCM5762)
1680 ctrl_reg = BGE_RDMA_LSO_CRPTEN_CTRL2;
1681 else
1682 ctrl_reg = BGE_RDMA_LSO_CRPTEN_CTRL;
1685 * Allow 4KB burst length reads for non-LSO frames.
1686 * Enable 512B burst length reads for buffer descriptors.
1688 CSR_WRITE_4(sc, ctrl_reg,
1689 CSR_READ_4(sc, ctrl_reg) |
1690 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
1691 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
1694 /* Turn on read DMA state machine */
1695 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1696 if (sc->bnx_asicrev == BGE_ASICREV_BCM5717)
1697 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
1698 if (sc->bnx_asicrev == BGE_ASICREV_BCM5784 ||
1699 sc->bnx_asicrev == BGE_ASICREV_BCM5785 ||
1700 sc->bnx_asicrev == BGE_ASICREV_BCM57780) {
1701 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1702 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1703 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1705 if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1706 sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1707 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
1708 BGE_RDMAMODE_H2BNC_VLAN_DET;
1710 * Allow multiple outstanding read requests from
1711 * non-LSO read DMA engine.
1713 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
1715 if (sc->bnx_asicrev == BGE_ASICREV_BCM57766)
1716 val |= BGE_RDMAMODE_JMB_2K_MMRR;
1717 if (sc->bnx_flags & BNX_FLAG_TSO)
1718 val |= BGE_RDMAMODE_TSO4_ENABLE;
1719 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1720 CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1721 DELAY(40);
1723 /* Turn on RX data completion state machine */
1724 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1726 /* Turn on RX BD initiator state machine */
1727 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1729 /* Turn on RX data and RX BD initiator state machine */
1730 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1732 /* Turn on send BD completion state machine */
1733 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1735 /* Turn on send data completion state machine */
1736 val = BGE_SDCMODE_ENABLE;
1737 if (sc->bnx_asicrev == BGE_ASICREV_BCM5761)
1738 val |= BGE_SDCMODE_CDELAY;
1739 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1741 /* Turn on send data initiator state machine */
1742 if (sc->bnx_flags & BNX_FLAG_TSO) {
1743 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1744 BGE_SDIMODE_HW_LSO_PRE_DMA);
1745 } else {
1746 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1749 /* Turn on send BD initiator state machine */
1750 val = BGE_SBDIMODE_ENABLE;
1751 if (sc->bnx_tx_ringcnt > 1)
1752 val |= BGE_SBDIMODE_MULTI_TXR;
1753 CSR_WRITE_4(sc, BGE_SBDI_MODE, val);
1755 /* Turn on send BD selector state machine */
1756 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1758 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1759 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1760 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1762 /* ack/clear link change events */
1763 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1764 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1765 BGE_MACSTAT_LINK_CHANGED);
1766 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1769 * Enable attention when the link has changed state for
1770 * devices that use auto polling.
1772 if (sc->bnx_flags & BNX_FLAG_TBI) {
1773 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1774 } else {
1775 if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
1776 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bnx_mi_mode);
1777 DELAY(80);
1782 * Clear any pending link state attention.
1783 * Otherwise some link state change events may be lost until attention
1784 * is cleared by bnx_intr() -> bnx_softc.bnx_link_upd() sequence.
1785 * It's not necessary on newer BCM chips - perhaps enabling link
1786 * state change attentions implies clearing pending attention.
1788 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1789 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1790 BGE_MACSTAT_LINK_CHANGED);
1792 /* Enable link state change attentions. */
1793 BNX_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1795 return(0);
1799 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1800 * against our list and return its name if we find a match. Note
1801 * that since the Broadcom controller contains VPD support, we
1802 * can get the device name string from the controller itself instead
1803 * of the compiled-in string. This is a little slow, but it guarantees
1804 * we'll always announce the right product name.
1806 static int
1807 bnx_probe(device_t dev)
1809 const struct bnx_type *t;
1810 uint16_t product, vendor;
1812 if (!pci_is_pcie(dev))
1813 return ENXIO;
1815 product = pci_get_device(dev);
1816 vendor = pci_get_vendor(dev);
1818 for (t = bnx_devs; t->bnx_name != NULL; t++) {
1819 if (vendor == t->bnx_vid && product == t->bnx_did)
1820 break;
1822 if (t->bnx_name == NULL)
1823 return ENXIO;
1825 device_set_desc(dev, t->bnx_name);
1826 return 0;
1829 static int
1830 bnx_attach(device_t dev)
1832 struct ifnet *ifp;
1833 struct bnx_softc *sc;
1834 struct bnx_rx_std_ring *std;
1835 struct sysctl_ctx_list *ctx;
1836 struct sysctl_oid_list *tree;
1837 uint32_t hwcfg = 0;
1838 int error = 0, rid, capmask, i, std_cpuid, std_cpuid_def;
1839 uint8_t ether_addr[ETHER_ADDR_LEN];
1840 uint16_t product;
1841 uintptr_t mii_priv = 0;
1842 #if defined(BNX_TSO_DEBUG) || defined(BNX_RSS_DEBUG) || defined(BNX_TSS_DEBUG)
1843 char desc[32];
1844 #endif
1846 sc = device_get_softc(dev);
1847 sc->bnx_dev = dev;
1848 callout_init_mp(&sc->bnx_tick_timer);
1849 lwkt_serialize_init(&sc->bnx_jslot_serializer);
1850 lwkt_serialize_init(&sc->bnx_main_serialize);
1852 /* Always setup interrupt mailboxes */
1853 for (i = 0; i < BNX_INTR_MAX; ++i) {
1854 callout_init_mp(&sc->bnx_intr_data[i].bnx_intr_timer);
1855 sc->bnx_intr_data[i].bnx_sc = sc;
1856 sc->bnx_intr_data[i].bnx_intr_mbx = BGE_MBX_IRQ0_LO + (i * 8);
1857 sc->bnx_intr_data[i].bnx_intr_rid = -1;
1858 sc->bnx_intr_data[i].bnx_intr_cpuid = -1;
1861 sc->bnx_func_addr = pci_get_function(dev);
1862 product = pci_get_device(dev);
1864 #ifndef BURN_BRIDGES
1865 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1866 uint32_t irq, mem;
1868 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1869 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
1871 device_printf(dev, "chip is in D%d power mode "
1872 "-- setting to D0\n", pci_get_powerstate(dev));
1874 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1876 pci_write_config(dev, PCIR_INTLINE, irq, 4);
1877 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
1879 #endif /* !BURN_BRIDGE */
1882 * Map control/status registers.
1884 pci_enable_busmaster(dev);
1886 rid = BGE_PCI_BAR0;
1887 sc->bnx_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1888 RF_ACTIVE);
1890 if (sc->bnx_res == NULL) {
1891 device_printf(dev, "couldn't map memory\n");
1892 return ENXIO;
1895 sc->bnx_btag = rman_get_bustag(sc->bnx_res);
1896 sc->bnx_bhandle = rman_get_bushandle(sc->bnx_res);
1898 /* Save various chip information */
1899 sc->bnx_chipid =
1900 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
1901 BGE_PCIMISCCTL_ASICREV_SHIFT;
1902 if (BGE_ASICREV(sc->bnx_chipid) == BGE_ASICREV_USE_PRODID_REG) {
1903 /* All chips having dedicated ASICREV register have CPMU */
1904 sc->bnx_flags |= BNX_FLAG_CPMU;
1906 switch (product) {
1907 case PCI_PRODUCT_BROADCOM_BCM5717:
1908 case PCI_PRODUCT_BROADCOM_BCM5717C:
1909 case PCI_PRODUCT_BROADCOM_BCM5718:
1910 case PCI_PRODUCT_BROADCOM_BCM5719:
1911 case PCI_PRODUCT_BROADCOM_BCM5720_ALT:
1912 case PCI_PRODUCT_BROADCOM_BCM5725:
1913 case PCI_PRODUCT_BROADCOM_BCM5727:
1914 case PCI_PRODUCT_BROADCOM_BCM5762:
1915 sc->bnx_chipid = pci_read_config(dev,
1916 BGE_PCI_GEN2_PRODID_ASICREV, 4);
1917 break;
1919 case PCI_PRODUCT_BROADCOM_BCM57761:
1920 case PCI_PRODUCT_BROADCOM_BCM57762:
1921 case PCI_PRODUCT_BROADCOM_BCM57765:
1922 case PCI_PRODUCT_BROADCOM_BCM57766:
1923 case PCI_PRODUCT_BROADCOM_BCM57781:
1924 case PCI_PRODUCT_BROADCOM_BCM57782:
1925 case PCI_PRODUCT_BROADCOM_BCM57785:
1926 case PCI_PRODUCT_BROADCOM_BCM57786:
1927 case PCI_PRODUCT_BROADCOM_BCM57791:
1928 case PCI_PRODUCT_BROADCOM_BCM57795:
1929 sc->bnx_chipid = pci_read_config(dev,
1930 BGE_PCI_GEN15_PRODID_ASICREV, 4);
1931 break;
1933 default:
1934 sc->bnx_chipid = pci_read_config(dev,
1935 BGE_PCI_PRODID_ASICREV, 4);
1936 break;
1939 if (sc->bnx_chipid == BGE_CHIPID_BCM5717_C0)
1940 sc->bnx_chipid = BGE_CHIPID_BCM5720_A0;
1942 sc->bnx_asicrev = BGE_ASICREV(sc->bnx_chipid);
1943 sc->bnx_chiprev = BGE_CHIPREV(sc->bnx_chipid);
1945 switch (sc->bnx_asicrev) {
1946 case BGE_ASICREV_BCM5717:
1947 case BGE_ASICREV_BCM5719:
1948 case BGE_ASICREV_BCM5720:
1949 sc->bnx_flags |= BNX_FLAG_5717_PLUS | BNX_FLAG_57765_PLUS;
1950 break;
1952 case BGE_ASICREV_BCM5762:
1953 sc->bnx_flags |= BNX_FLAG_57765_PLUS;
1954 break;
1956 case BGE_ASICREV_BCM57765:
1957 case BGE_ASICREV_BCM57766:
1958 sc->bnx_flags |= BNX_FLAG_57765_FAMILY | BNX_FLAG_57765_PLUS;
1959 break;
1962 if (sc->bnx_asicrev == BGE_ASICREV_BCM5717 ||
1963 sc->bnx_asicrev == BGE_ASICREV_BCM5719 ||
1964 sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1965 sc->bnx_asicrev == BGE_ASICREV_BCM5762)
1966 sc->bnx_flags |= BNX_FLAG_APE;
1968 sc->bnx_flags |= BNX_FLAG_TSO;
1969 if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 &&
1970 sc->bnx_chipid == BGE_CHIPID_BCM5719_A0)
1971 sc->bnx_flags &= ~BNX_FLAG_TSO;
1973 if (sc->bnx_asicrev == BGE_ASICREV_BCM5717 ||
1974 BNX_IS_57765_FAMILY(sc)) {
1976 * All BCM57785 and BCM5718 families chips have a bug that
1977 * under certain situation interrupt will not be enabled
1978 * even if status tag is written to interrupt mailbox.
1980 * While BCM5719 and BCM5720 have a hardware workaround
1981 * which could fix the above bug.
1982 * See the comment near BGE_PCIDMARWCTL_TAGGED_STATUS_WA in
1983 * bnx_chipinit().
1985 * For the rest of the chips in these two families, we will
1986 * have to poll the status block at high rate (10ms currently)
1987 * to check whether the interrupt is hosed or not.
1988 * See bnx_check_intr_*() for details.
1990 sc->bnx_flags |= BNX_FLAG_STATUSTAG_BUG;
1993 sc->bnx_pciecap = pci_get_pciecap_ptr(sc->bnx_dev);
1994 if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 ||
1995 sc->bnx_asicrev == BGE_ASICREV_BCM5720)
1996 pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_2048);
1997 else
1998 pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
1999 device_printf(dev, "CHIP ID 0x%08x; "
2000 "ASIC REV 0x%02x; CHIP REV 0x%02x\n",
2001 sc->bnx_chipid, sc->bnx_asicrev, sc->bnx_chiprev);
2004 * Set various PHY quirk flags.
2007 capmask = MII_CAPMASK_DEFAULT;
2008 if (product == PCI_PRODUCT_BROADCOM_BCM57791 ||
2009 product == PCI_PRODUCT_BROADCOM_BCM57795) {
2010 /* 10/100 only */
2011 capmask &= ~BMSR_EXTSTAT;
2014 mii_priv |= BRGPHY_FLAG_WIRESPEED;
2015 if (sc->bnx_chipid == BGE_CHIPID_BCM5762_A0)
2016 mii_priv |= BRGPHY_FLAG_5762_A0;
2019 * Chips with APE need BAR2 access for APE registers/memory.
2021 if (sc->bnx_flags & BNX_FLAG_APE) {
2022 uint32_t pcistate;
2024 rid = PCIR_BAR(2);
2025 sc->bnx_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2026 RF_ACTIVE);
2027 if (sc->bnx_res2 == NULL) {
2028 device_printf(dev, "couldn't map BAR2 memory\n");
2029 error = ENXIO;
2030 goto fail;
2033 /* Enable APE register/memory access by host driver. */
2034 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2035 pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
2036 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
2037 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
2038 pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
2040 bnx_ape_lock_init(sc);
2041 bnx_ape_read_fw_ver(sc);
2044 /* Initialize if_name earlier, so if_printf could be used */
2045 ifp = &sc->arpcom.ac_if;
2046 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2049 * Try to reset the chip.
2051 bnx_sig_pre_reset(sc, BNX_RESET_SHUTDOWN);
2052 bnx_reset(sc);
2053 bnx_sig_post_reset(sc, BNX_RESET_SHUTDOWN);
2055 if (bnx_chipinit(sc)) {
2056 device_printf(dev, "chip initialization failed\n");
2057 error = ENXIO;
2058 goto fail;
2062 * Get station address
2064 error = bnx_get_eaddr(sc, ether_addr);
2065 if (error) {
2066 device_printf(dev, "failed to read station address\n");
2067 goto fail;
2070 /* Setup RX/TX and interrupt count */
2071 bnx_setup_ring_cnt(sc);
2073 if ((sc->bnx_rx_retcnt == 1 && sc->bnx_tx_ringcnt == 1) ||
2074 (sc->bnx_rx_retcnt > 1 && sc->bnx_tx_ringcnt > 1)) {
2076 * The RX ring and the corresponding TX ring processing
2077 * should be on the same CPU, since they share the same
2078 * status block.
2080 sc->bnx_flags |= BNX_FLAG_RXTX_BUNDLE;
2081 if (bootverbose)
2082 device_printf(dev, "RX/TX bundle\n");
2083 if (sc->bnx_tx_ringcnt > 1) {
2085 * Multiple TX rings do not share status block
2086 * with link status, so link status will have
2087 * to save its own status_tag.
2089 sc->bnx_flags |= BNX_FLAG_STATUS_HASTAG;
2090 if (bootverbose)
2091 device_printf(dev, "status needs tag\n");
2093 } else {
2094 KKASSERT(sc->bnx_rx_retcnt > 1 && sc->bnx_tx_ringcnt == 1);
2095 if (bootverbose)
2096 device_printf(dev, "RX/TX not bundled\n");
2099 error = bnx_dma_alloc(dev);
2100 if (error)
2101 goto fail;
2104 * Allocate interrupt
2106 error = bnx_alloc_intr(sc);
2107 if (error)
2108 goto fail;
2110 /* Setup serializers */
2111 bnx_setup_serialize(sc);
2113 /* Set default tuneable values. */
2114 sc->bnx_rx_coal_ticks = BNX_RX_COAL_TICKS_DEF;
2115 sc->bnx_tx_coal_ticks = BNX_TX_COAL_TICKS_DEF;
2116 sc->bnx_rx_coal_bds = BNX_RX_COAL_BDS_DEF;
2117 sc->bnx_rx_coal_bds_poll = sc->bnx_rx_ret_ring[0].bnx_rx_cntmax;
2118 sc->bnx_tx_coal_bds = BNX_TX_COAL_BDS_DEF;
2119 sc->bnx_tx_coal_bds_poll = BNX_TX_COAL_BDS_POLL_DEF;
2120 sc->bnx_rx_coal_bds_int = BNX_RX_COAL_BDS_INT_DEF;
2121 sc->bnx_tx_coal_bds_int = BNX_TX_COAL_BDS_INT_DEF;
2123 /* Set up ifnet structure */
2124 ifp->if_softc = sc;
2125 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2126 ifp->if_ioctl = bnx_ioctl;
2127 ifp->if_start = bnx_start;
2128 #ifdef IFPOLL_ENABLE
2129 ifp->if_npoll = bnx_npoll;
2130 #endif
2131 ifp->if_init = bnx_init;
2132 ifp->if_serialize = bnx_serialize;
2133 ifp->if_deserialize = bnx_deserialize;
2134 ifp->if_tryserialize = bnx_tryserialize;
2135 #ifdef INVARIANTS
2136 ifp->if_serialize_assert = bnx_serialize_assert;
2137 #endif
2138 ifp->if_mtu = ETHERMTU;
2139 ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2141 ifp->if_capabilities |= IFCAP_HWCSUM;
2142 ifp->if_hwassist = BNX_CSUM_FEATURES;
2143 if (sc->bnx_flags & BNX_FLAG_TSO) {
2144 ifp->if_capabilities |= IFCAP_TSO;
2145 ifp->if_hwassist |= CSUM_TSO;
2147 if (BNX_RSS_ENABLED(sc))
2148 ifp->if_capabilities |= IFCAP_RSS;
2149 ifp->if_capenable = ifp->if_capabilities;
2151 ifp->if_nmbclusters = BGE_STD_RX_RING_CNT;
2153 ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2154 ifq_set_ready(&ifp->if_snd);
2155 ifq_set_subq_cnt(&ifp->if_snd, sc->bnx_tx_ringcnt);
2157 if (sc->bnx_tx_ringcnt > 1) {
2158 ifp->if_mapsubq = ifq_mapsubq_modulo;
2159 ifq_set_subq_divisor(&ifp->if_snd, sc->bnx_tx_ringcnt);
2163 * Figure out what sort of media we have by checking the
2164 * hardware config word in the first 32k of NIC internal memory,
2165 * or fall back to examining the EEPROM if necessary.
2166 * Note: on some BCM5700 cards, this value appears to be unset.
2167 * If that's the case, we have to rely on identifying the NIC
2168 * by its PCI subsystem ID, as we do below for the SysKonnect
2169 * SK-9D41.
2171 if (bnx_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
2172 hwcfg = bnx_readmem_ind(sc, BGE_SRAM_DATA_CFG);
2173 } else {
2174 if (bnx_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2175 sizeof(hwcfg))) {
2176 device_printf(dev, "failed to read EEPROM\n");
2177 error = ENXIO;
2178 goto fail;
2180 hwcfg = ntohl(hwcfg);
2183 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2184 if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2185 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2186 sc->bnx_flags |= BNX_FLAG_TBI;
2188 /* Setup MI MODE */
2189 if (sc->bnx_flags & BNX_FLAG_CPMU)
2190 sc->bnx_mi_mode = BGE_MIMODE_500KHZ_CONST;
2191 else
2192 sc->bnx_mi_mode = BGE_MIMODE_BASE;
2194 /* Setup link status update stuffs */
2195 if (sc->bnx_flags & BNX_FLAG_TBI) {
2196 sc->bnx_link_upd = bnx_tbi_link_upd;
2197 sc->bnx_link_chg = BGE_MACSTAT_LINK_CHANGED;
2198 } else if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
2199 sc->bnx_link_upd = bnx_autopoll_link_upd;
2200 sc->bnx_link_chg = BGE_MACSTAT_LINK_CHANGED;
2201 } else {
2202 sc->bnx_link_upd = bnx_copper_link_upd;
2203 sc->bnx_link_chg = BGE_MACSTAT_LINK_CHANGED;
2206 /* Set default PHY address */
2207 sc->bnx_phyno = 1;
2210 * PHY address mapping for various devices.
2212 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2213 * ---------+-------+-------+-------+-------+
2214 * BCM57XX | 1 | X | X | X |
2215 * BCM5717 | 1 | 8 | 2 | 9 |
2216 * BCM5719 | 1 | 8 | 2 | 9 |
2217 * BCM5720 | 1 | 8 | 2 | 9 |
2219 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2220 * ---------+-------+-------+-------+-------+
2221 * BCM57XX | X | X | X | X |
2222 * BCM5717 | X | X | X | X |
2223 * BCM5719 | 3 | 10 | 4 | 11 |
2224 * BCM5720 | X | X | X | X |
2226 * Other addresses may respond but they are not
2227 * IEEE compliant PHYs and should be ignored.
2229 if (BNX_IS_5717_PLUS(sc)) {
2230 if (sc->bnx_chipid == BGE_CHIPID_BCM5717_A0) {
2231 if (CSR_READ_4(sc, BGE_SGDIG_STS) &
2232 BGE_SGDIGSTS_IS_SERDES)
2233 sc->bnx_phyno = sc->bnx_func_addr + 8;
2234 else
2235 sc->bnx_phyno = sc->bnx_func_addr + 1;
2236 } else {
2237 if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2238 BGE_CPMU_PHY_STRAP_IS_SERDES)
2239 sc->bnx_phyno = sc->bnx_func_addr + 8;
2240 else
2241 sc->bnx_phyno = sc->bnx_func_addr + 1;
2245 if (sc->bnx_flags & BNX_FLAG_TBI) {
2246 ifmedia_init(&sc->bnx_ifmedia, IFM_IMASK,
2247 bnx_ifmedia_upd, bnx_ifmedia_sts);
2248 ifmedia_add(&sc->bnx_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2249 ifmedia_add(&sc->bnx_ifmedia,
2250 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2251 ifmedia_add(&sc->bnx_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2252 ifmedia_set(&sc->bnx_ifmedia, IFM_ETHER|IFM_AUTO);
2253 sc->bnx_ifmedia.ifm_media = sc->bnx_ifmedia.ifm_cur->ifm_media;
2254 } else {
2255 struct mii_probe_args mii_args;
2257 mii_probe_args_init(&mii_args, bnx_ifmedia_upd, bnx_ifmedia_sts);
2258 mii_args.mii_probemask = 1 << sc->bnx_phyno;
2259 mii_args.mii_capmask = capmask;
2260 mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2261 mii_args.mii_priv = mii_priv;
2263 error = mii_probe(dev, &sc->bnx_miibus, &mii_args);
2264 if (error) {
2265 device_printf(dev, "MII without any PHY!\n");
2266 goto fail;
2270 ctx = device_get_sysctl_ctx(sc->bnx_dev);
2271 tree = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bnx_dev));
2273 SYSCTL_ADD_INT(ctx, tree, OID_AUTO,
2274 "rx_rings", CTLFLAG_RD, &sc->bnx_rx_retcnt, 0, "# of RX rings");
2275 SYSCTL_ADD_INT(ctx, tree, OID_AUTO,
2276 "tx_rings", CTLFLAG_RD, &sc->bnx_tx_ringcnt, 0, "# of TX rings");
2278 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "rx_coal_ticks",
2279 CTLTYPE_INT | CTLFLAG_RW,
2280 sc, 0, bnx_sysctl_rx_coal_ticks, "I",
2281 "Receive coalescing ticks (usec).");
2282 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "tx_coal_ticks",
2283 CTLTYPE_INT | CTLFLAG_RW,
2284 sc, 0, bnx_sysctl_tx_coal_ticks, "I",
2285 "Transmit coalescing ticks (usec).");
2286 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "rx_coal_bds",
2287 CTLTYPE_INT | CTLFLAG_RW,
2288 sc, 0, bnx_sysctl_rx_coal_bds, "I",
2289 "Receive max coalesced BD count.");
2290 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "rx_coal_bds_poll",
2291 CTLTYPE_INT | CTLFLAG_RW,
2292 sc, 0, bnx_sysctl_rx_coal_bds_poll, "I",
2293 "Receive max coalesced BD count in polling.");
2294 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "tx_coal_bds",
2295 CTLTYPE_INT | CTLFLAG_RW,
2296 sc, 0, bnx_sysctl_tx_coal_bds, "I",
2297 "Transmit max coalesced BD count.");
2298 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "tx_coal_bds_poll",
2299 CTLTYPE_INT | CTLFLAG_RW,
2300 sc, 0, bnx_sysctl_tx_coal_bds_poll, "I",
2301 "Transmit max coalesced BD count in polling.");
2303 * A common design characteristic for many Broadcom
2304 * client controllers is that they only support a
2305 * single outstanding DMA read operation on the PCIe
2306 * bus. This means that it will take twice as long to
2307 * fetch a TX frame that is split into header and
2308 * payload buffers as it does to fetch a single,
2309 * contiguous TX frame (2 reads vs. 1 read). For these
2310 * controllers, coalescing buffers to reduce the number
2311 * of memory reads is effective way to get maximum
2312 * performance(about 940Mbps). Without collapsing TX
2313 * buffers the maximum TCP bulk transfer performance
2314 * is about 850Mbps. However forcing coalescing mbufs
2315 * consumes a lot of CPU cycles, so leave it off by
2316 * default.
2318 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO,
2319 "force_defrag", CTLTYPE_INT | CTLFLAG_RW,
2320 sc, 0, bnx_sysctl_force_defrag, "I",
2321 "Force defragment on TX path");
2323 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO,
2324 "tx_wreg", CTLTYPE_INT | CTLFLAG_RW,
2325 sc, 0, bnx_sysctl_tx_wreg, "I",
2326 "# of segments before writing to hardware register");
2328 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO,
2329 "std_refill", CTLTYPE_INT | CTLFLAG_RW,
2330 sc, 0, bnx_sysctl_std_refill, "I",
2331 "# of packets received before scheduling standard refilling");
2333 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO,
2334 "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2335 sc, 0, bnx_sysctl_rx_coal_bds_int, "I",
2336 "Receive max coalesced BD count during interrupt.");
2337 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO,
2338 "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2339 sc, 0, bnx_sysctl_tx_coal_bds_int, "I",
2340 "Transmit max coalesced BD count during interrupt.");
2342 if (sc->bnx_intr_type == PCI_INTR_TYPE_MSIX) {
2343 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "tx_cpumap",
2344 CTLTYPE_OPAQUE | CTLFLAG_RD,
2345 sc->bnx_tx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
2346 "TX ring CPU map");
2347 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "rx_cpumap",
2348 CTLTYPE_OPAQUE | CTLFLAG_RD,
2349 sc->bnx_rx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
2350 "RX ring CPU map");
2351 } else {
2352 #ifdef IFPOLL_ENABLE
2353 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "tx_poll_cpumap",
2354 CTLTYPE_OPAQUE | CTLFLAG_RD,
2355 sc->bnx_tx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
2356 "TX poll CPU map");
2357 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "rx_poll_cpumap",
2358 CTLTYPE_OPAQUE | CTLFLAG_RD,
2359 sc->bnx_rx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
2360 "RX poll CPU map");
2361 #endif
2364 #ifdef BNX_RSS_DEBUG
2365 SYSCTL_ADD_INT(ctx, tree, OID_AUTO,
2366 "std_refill_mask", CTLFLAG_RD,
2367 &sc->bnx_rx_std_ring.bnx_rx_std_refill, 0, "");
2368 SYSCTL_ADD_INT(ctx, tree, OID_AUTO,
2369 "std_used", CTLFLAG_RD,
2370 &sc->bnx_rx_std_ring.bnx_rx_std_used, 0, "");
2371 SYSCTL_ADD_INT(ctx, tree, OID_AUTO,
2372 "rss_debug", CTLFLAG_RW, &sc->bnx_rss_debug, 0, "");
2373 for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
2374 ksnprintf(desc, sizeof(desc), "rx_pkt%d", i);
2375 SYSCTL_ADD_ULONG(ctx, tree, OID_AUTO,
2376 desc, CTLFLAG_RW, &sc->bnx_rx_ret_ring[i].bnx_rx_pkt, "");
2378 ksnprintf(desc, sizeof(desc), "rx_force_sched%d", i);
2379 SYSCTL_ADD_ULONG(ctx, tree, OID_AUTO,
2380 desc, CTLFLAG_RW,
2381 &sc->bnx_rx_ret_ring[i].bnx_rx_force_sched, "");
2383 #endif
2384 #ifdef BNX_TSS_DEBUG
2385 for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
2386 ksnprintf(desc, sizeof(desc), "tx_pkt%d", i);
2387 SYSCTL_ADD_ULONG(ctx, tree, OID_AUTO,
2388 desc, CTLFLAG_RW, &sc->bnx_tx_ring[i].bnx_tx_pkt, "");
2390 #endif
2392 SYSCTL_ADD_ULONG(ctx, tree, OID_AUTO,
2393 "norxbds", CTLFLAG_RW, &sc->bnx_norxbds, "");
2395 SYSCTL_ADD_ULONG(ctx, tree, OID_AUTO,
2396 "errors", CTLFLAG_RW, &sc->bnx_errors, "");
2398 #ifdef BNX_TSO_DEBUG
2399 for (i = 0; i < BNX_TSO_NSTATS; ++i) {
2400 ksnprintf(desc, sizeof(desc), "tso%d", i + 1);
2401 SYSCTL_ADD_ULONG(ctx, tree, OID_AUTO,
2402 desc, CTLFLAG_RW, &sc->bnx_tsosegs[i], "");
2404 #endif
2407 * Call MI attach routine.
2409 ether_ifattach(ifp, ether_addr, NULL);
2411 /* Setup TX rings and subqueues */
2412 for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
2413 struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
2414 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
2416 ifsq_set_cpuid(ifsq, txr->bnx_tx_cpuid);
2417 ifsq_set_hw_serialize(ifsq, &txr->bnx_tx_serialize);
2418 ifsq_set_priv(ifsq, txr);
2419 txr->bnx_ifsq = ifsq;
2421 ifsq_watchdog_init(&txr->bnx_tx_watchdog, ifsq, bnx_watchdog);
2423 if (bootverbose) {
2424 device_printf(dev, "txr %d -> cpu%d\n", i,
2425 txr->bnx_tx_cpuid);
2429 error = bnx_setup_intr(sc);
2430 if (error) {
2431 ether_ifdetach(ifp);
2432 goto fail;
2434 bnx_set_tick_cpuid(sc, FALSE);
2437 * Create RX standard ring refilling thread
2439 std_cpuid_def = if_ringmap_cpumap(sc->bnx_rx_rmap, 0);
2440 std_cpuid = device_getenv_int(dev, "std.cpuid", std_cpuid_def);
2441 if (std_cpuid < 0 || std_cpuid >= ncpus) {
2442 device_printf(dev, "invalid std.cpuid %d, use %d\n",
2443 std_cpuid, std_cpuid_def);
2444 std_cpuid = std_cpuid_def;
2447 std = &sc->bnx_rx_std_ring;
2448 lwkt_create(bnx_rx_std_refill_ithread, std, &std->bnx_rx_std_ithread,
2449 NULL, TDF_NOSTART | TDF_INTTHREAD, std_cpuid,
2450 "%s std", device_get_nameunit(dev));
2451 lwkt_setpri(std->bnx_rx_std_ithread, TDPRI_INT_MED);
2452 std->bnx_rx_std_ithread->td_preemptable = lwkt_preempt;
2454 return(0);
2455 fail:
2456 bnx_detach(dev);
2457 return(error);
2460 static int
2461 bnx_detach(device_t dev)
2463 struct bnx_softc *sc = device_get_softc(dev);
2464 struct bnx_rx_std_ring *std = &sc->bnx_rx_std_ring;
2466 if (device_is_attached(dev)) {
2467 struct ifnet *ifp = &sc->arpcom.ac_if;
2469 ifnet_serialize_all(ifp);
2470 bnx_stop(sc);
2471 bnx_teardown_intr(sc, sc->bnx_intr_cnt);
2472 ifnet_deserialize_all(ifp);
2474 ether_ifdetach(ifp);
2477 if (std->bnx_rx_std_ithread != NULL) {
2478 tsleep_interlock(std, 0);
2480 if (std->bnx_rx_std_ithread->td_gd == mycpu) {
2481 bnx_rx_std_refill_stop(std);
2482 } else {
2483 lwkt_send_ipiq(std->bnx_rx_std_ithread->td_gd,
2484 bnx_rx_std_refill_stop, std);
2487 tsleep(std, PINTERLOCKED, "bnx_detach", 0);
2488 if (bootverbose)
2489 device_printf(dev, "RX std ithread exited\n");
2491 lwkt_synchronize_ipiqs("bnx_detach_ipiq");
2494 if (sc->bnx_flags & BNX_FLAG_TBI)
2495 ifmedia_removeall(&sc->bnx_ifmedia);
2496 if (sc->bnx_miibus)
2497 device_delete_child(dev, sc->bnx_miibus);
2498 bus_generic_detach(dev);
2500 bnx_free_intr(sc);
2502 if (sc->bnx_msix_mem_res != NULL) {
2503 bus_release_resource(dev, SYS_RES_MEMORY, sc->bnx_msix_mem_rid,
2504 sc->bnx_msix_mem_res);
2506 if (sc->bnx_res != NULL) {
2507 bus_release_resource(dev, SYS_RES_MEMORY,
2508 BGE_PCI_BAR0, sc->bnx_res);
2510 if (sc->bnx_res2 != NULL) {
2511 bus_release_resource(dev, SYS_RES_MEMORY,
2512 PCIR_BAR(2), sc->bnx_res2);
2515 bnx_dma_free(sc);
2517 if (sc->bnx_serialize != NULL)
2518 kfree(sc->bnx_serialize, M_DEVBUF);
2520 if (sc->bnx_rx_rmap != NULL)
2521 if_ringmap_free(sc->bnx_rx_rmap);
2522 if (sc->bnx_tx_rmap != NULL)
2523 if_ringmap_free(sc->bnx_tx_rmap);
2525 return 0;
2528 static void
2529 bnx_reset(struct bnx_softc *sc)
2531 device_t dev = sc->bnx_dev;
2532 uint32_t cachesize, command, reset, mac_mode, mac_mode_mask;
2533 void (*write_op)(struct bnx_softc *, uint32_t, uint32_t);
2534 int i, val = 0;
2535 uint16_t devctl;
2537 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
2538 if (sc->bnx_mfw_flags & BNX_MFW_ON_APE)
2539 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2540 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
2542 write_op = bnx_writemem_direct;
2544 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
2545 for (i = 0; i < 8000; i++) {
2546 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
2547 break;
2548 DELAY(20);
2550 if (i == 8000)
2551 if_printf(&sc->arpcom.ac_if, "NVRAM lock timedout!\n");
2553 /* Take APE lock when performing reset. */
2554 bnx_ape_lock(sc, BGE_APE_LOCK_GRC);
2556 /* Save some important PCI state. */
2557 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2558 command = pci_read_config(dev, BGE_PCI_CMD, 4);
2560 pci_write_config(dev, BGE_PCI_MISC_CTL,
2561 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2562 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2563 BGE_PCIMISCCTL_TAGGED_STATUS, 4);
2565 /* Disable fastboot on controllers that support it. */
2566 if (bootverbose)
2567 if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2568 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2571 * Write the magic number to SRAM at offset 0xB50.
2572 * When firmware finishes its initialization it will
2573 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
2575 bnx_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2577 reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2579 /* XXX: Broadcom Linux driver. */
2580 /* Force PCI-E 1.0a mode */
2581 if (!BNX_IS_57765_PLUS(sc) &&
2582 CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2583 (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2584 BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2585 CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2586 BGE_PCIE_PHY_TSTCTL_PSCRAM);
2588 if (sc->bnx_chipid != BGE_CHIPID_BCM5750_A0) {
2589 /* Prevent PCIE link training during global reset */
2590 CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2591 reset |= (1<<29);
2595 * Set GPHY Power Down Override to leave GPHY
2596 * powered up in D0 uninitialized.
2598 if ((sc->bnx_flags & BNX_FLAG_CPMU) == 0)
2599 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2601 /* Issue global reset */
2602 write_op(sc, BGE_MISC_CFG, reset);
2604 DELAY(100 * 1000);
2606 /* XXX: Broadcom Linux driver. */
2607 if (sc->bnx_chipid == BGE_CHIPID_BCM5750_A0) {
2608 uint32_t v;
2610 DELAY(500000); /* wait for link training to complete */
2611 v = pci_read_config(dev, 0xc4, 4);
2612 pci_write_config(dev, 0xc4, v | (1<<15), 4);
2615 devctl = pci_read_config(dev, sc->bnx_pciecap + PCIER_DEVCTRL, 2);
2617 /* Disable no snoop and disable relaxed ordering. */
2618 devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2620 /* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2621 if ((sc->bnx_flags & BNX_FLAG_CPMU) == 0) {
2622 devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2623 devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2626 pci_write_config(dev, sc->bnx_pciecap + PCIER_DEVCTRL,
2627 devctl, 2);
2629 /* Clear error status. */
2630 pci_write_config(dev, sc->bnx_pciecap + PCIER_DEVSTS,
2631 PCIEM_DEVSTS_CORR_ERR |
2632 PCIEM_DEVSTS_NFATAL_ERR |
2633 PCIEM_DEVSTS_FATAL_ERR |
2634 PCIEM_DEVSTS_UNSUPP_REQ, 2);
2636 /* Reset some of the PCI state that got zapped by reset */
2637 pci_write_config(dev, BGE_PCI_MISC_CTL,
2638 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2639 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2640 BGE_PCIMISCCTL_TAGGED_STATUS, 4);
2641 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
2642 if (sc->bnx_mfw_flags & BNX_MFW_ON_APE) {
2643 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
2644 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
2645 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
2647 pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
2648 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2649 pci_write_config(dev, BGE_PCI_CMD, command, 4);
2651 /* Enable memory arbiter */
2652 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2654 /* Fix up byte swapping */
2655 CSR_WRITE_4(sc, BGE_MODE_CTL, bnx_dma_swap_options(sc));
2657 val = CSR_READ_4(sc, BGE_MAC_MODE);
2658 val = (val & ~mac_mode_mask) | mac_mode;
2659 CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2660 DELAY(40);
2662 bnx_ape_unlock(sc, BGE_APE_LOCK_GRC);
2665 * Poll until we see the 1's complement of the magic number.
2666 * This indicates that the firmware initialization is complete.
2668 for (i = 0; i < BNX_FIRMWARE_TIMEOUT; i++) {
2669 val = bnx_readmem_ind(sc, BGE_SRAM_FW_MB);
2670 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2671 break;
2672 DELAY(10);
2674 if (i == BNX_FIRMWARE_TIMEOUT) {
2675 if_printf(&sc->arpcom.ac_if, "firmware handshake "
2676 "timed out, found 0x%08x\n", val);
2679 /* BCM57765 A0 needs additional time before accessing. */
2680 if (sc->bnx_chipid == BGE_CHIPID_BCM57765_A0)
2681 DELAY(10 * 1000);
2684 * The 5704 in TBI mode apparently needs some special
2685 * adjustment to insure the SERDES drive level is set
2686 * to 1.2V.
2688 if (sc->bnx_asicrev == BGE_ASICREV_BCM5704 &&
2689 (sc->bnx_flags & BNX_FLAG_TBI)) {
2690 uint32_t serdescfg;
2692 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2693 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2694 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2697 CSR_WRITE_4(sc, BGE_MI_MODE,
2698 sc->bnx_mi_mode & ~BGE_MIMODE_AUTOPOLL);
2699 DELAY(80);
2701 /* XXX: Broadcom Linux driver. */
2702 if (!BNX_IS_57765_PLUS(sc)) {
2703 uint32_t v;
2705 /* Enable Data FIFO protection. */
2706 v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
2707 CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
2710 DELAY(10000);
2712 if (sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
2713 BNX_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
2714 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
2719 * Frame reception handling. This is called if there's a frame
2720 * on the receive return list.
2722 * Note: we have to be able to handle two possibilities here:
2723 * 1) the frame is from the jumbo recieve ring
2724 * 2) the frame is from the standard receive ring
2727 static void
2728 bnx_rxeof(struct bnx_rx_ret_ring *ret, uint16_t rx_prod, int count)
2730 struct bnx_softc *sc = ret->bnx_sc;
2731 struct bnx_rx_std_ring *std = ret->bnx_std;
2732 struct ifnet *ifp = &sc->arpcom.ac_if;
2733 int std_used = 0, cpuid = mycpuid;
2735 while (ret->bnx_rx_saved_considx != rx_prod && count != 0) {
2736 struct pktinfo pi0, *pi = NULL;
2737 struct bge_rx_bd *cur_rx;
2738 struct bnx_rx_buf *rb;
2739 uint32_t rxidx;
2740 struct mbuf *m = NULL;
2741 uint16_t vlan_tag = 0;
2742 int have_tag = 0;
2744 --count;
2746 cur_rx = &ret->bnx_rx_ret_ring[ret->bnx_rx_saved_considx];
2748 rxidx = cur_rx->bge_idx;
2749 KKASSERT(rxidx < BGE_STD_RX_RING_CNT);
2751 BNX_INC(ret->bnx_rx_saved_considx, BNX_RETURN_RING_CNT);
2752 #ifdef BNX_RSS_DEBUG
2753 ret->bnx_rx_pkt++;
2754 #endif
2756 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2757 have_tag = 1;
2758 vlan_tag = cur_rx->bge_vlan_tag;
2761 if (ret->bnx_rx_cnt >= ret->bnx_rx_cntmax) {
2762 atomic_add_int(&std->bnx_rx_std_used, std_used);
2763 std_used = 0;
2765 bnx_rx_std_refill_sched(ret, std);
2767 ret->bnx_rx_cnt++;
2768 ++std_used;
2770 rb = &std->bnx_rx_std_buf[rxidx];
2771 m = rb->bnx_rx_mbuf;
2772 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2773 IFNET_STAT_INC(ifp, ierrors, 1);
2774 cpu_sfence();
2775 rb->bnx_rx_refilled = 1;
2776 continue;
2778 if (bnx_newbuf_std(ret, rxidx, 0)) {
2779 IFNET_STAT_INC(ifp, ierrors, 1);
2780 continue;
2783 IFNET_STAT_INC(ifp, ipackets, 1);
2784 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2785 m->m_pkthdr.rcvif = ifp;
2787 if ((ifp->if_capenable & IFCAP_RXCSUM) &&
2788 (cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
2789 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2790 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2791 if ((cur_rx->bge_error_flag &
2792 BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
2793 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2795 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2796 m->m_pkthdr.csum_data =
2797 cur_rx->bge_tcp_udp_csum;
2798 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2799 CSUM_PSEUDO_HDR;
2802 if (ifp->if_capenable & IFCAP_RSS) {
2803 pi = bnx_rss_info(&pi0, cur_rx);
2804 if (pi != NULL &&
2805 (cur_rx->bge_flags & BGE_RXBDFLAG_RSS_HASH))
2806 m_sethash(m, toeplitz_hash(cur_rx->bge_hash));
2810 * If we received a packet with a vlan tag, pass it
2811 * to vlan_input() instead of ether_input().
2813 if (have_tag) {
2814 m->m_flags |= M_VLANTAG;
2815 m->m_pkthdr.ether_vlantag = vlan_tag;
2817 ifp->if_input(ifp, m, pi, cpuid);
2819 bnx_writembx(sc, ret->bnx_rx_mbx, ret->bnx_rx_saved_considx);
2821 if (std_used > 0) {
2822 int cur_std_used;
2824 cur_std_used = atomic_fetchadd_int(&std->bnx_rx_std_used,
2825 std_used);
2826 if (cur_std_used + std_used >= (BGE_STD_RX_RING_CNT / 2)) {
2827 #ifdef BNX_RSS_DEBUG
2828 ret->bnx_rx_force_sched++;
2829 #endif
2830 bnx_rx_std_refill_sched(ret, std);
2835 static void
2836 bnx_txeof(struct bnx_tx_ring *txr, uint16_t tx_cons)
2838 struct ifnet *ifp = &txr->bnx_sc->arpcom.ac_if;
2841 * Go through our tx ring and free mbufs for those
2842 * frames that have been sent.
2844 while (txr->bnx_tx_saved_considx != tx_cons) {
2845 struct bnx_tx_buf *buf;
2846 uint32_t idx = 0;
2848 idx = txr->bnx_tx_saved_considx;
2849 buf = &txr->bnx_tx_buf[idx];
2850 if (buf->bnx_tx_mbuf != NULL) {
2851 IFNET_STAT_INC(ifp, opackets, 1);
2852 #ifdef BNX_TSS_DEBUG
2853 txr->bnx_tx_pkt++;
2854 #endif
2855 bus_dmamap_unload(txr->bnx_tx_mtag,
2856 buf->bnx_tx_dmamap);
2857 m_freem(buf->bnx_tx_mbuf);
2858 buf->bnx_tx_mbuf = NULL;
2860 txr->bnx_tx_cnt--;
2861 BNX_INC(txr->bnx_tx_saved_considx, BGE_TX_RING_CNT);
2864 if ((BGE_TX_RING_CNT - txr->bnx_tx_cnt) >=
2865 (BNX_NSEG_RSVD + BNX_NSEG_SPARE))
2866 ifsq_clr_oactive(txr->bnx_ifsq);
2868 if (txr->bnx_tx_cnt == 0)
2869 txr->bnx_tx_watchdog.wd_timer = 0;
2871 if (!ifsq_is_empty(txr->bnx_ifsq))
2872 ifsq_devstart(txr->bnx_ifsq);
2875 static int
2876 bnx_handle_status(struct bnx_softc *sc)
2878 uint32_t status;
2879 int handle = 0;
2881 status = *sc->bnx_hw_status;
2883 if (status & BGE_STATFLAG_ERROR) {
2884 uint32_t val;
2885 int reset = 0;
2887 sc->bnx_errors++;
2889 val = CSR_READ_4(sc, BGE_FLOW_ATTN);
2890 if (val & ~BGE_FLOWATTN_MB_LOWAT) {
2891 if_printf(&sc->arpcom.ac_if,
2892 "flow attn 0x%08x\n", val);
2893 reset = 1;
2896 val = CSR_READ_4(sc, BGE_MSI_STATUS);
2897 if (val & ~BGE_MSISTAT_MSI_PCI_REQ) {
2898 if_printf(&sc->arpcom.ac_if,
2899 "msi status 0x%08x\n", val);
2900 reset = 1;
2903 val = CSR_READ_4(sc, BGE_RDMA_STATUS);
2904 if (val) {
2905 if_printf(&sc->arpcom.ac_if,
2906 "rmda status 0x%08x\n", val);
2907 reset = 1;
2910 val = CSR_READ_4(sc, BGE_WDMA_STATUS);
2911 if (val) {
2912 if_printf(&sc->arpcom.ac_if,
2913 "wdma status 0x%08x\n", val);
2914 reset = 1;
2917 if (reset) {
2918 bnx_serialize_skipmain(sc);
2919 bnx_init(sc);
2920 bnx_deserialize_skipmain(sc);
2922 handle = 1;
2925 if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bnx_link_evt) {
2926 if (bootverbose) {
2927 if_printf(&sc->arpcom.ac_if, "link change, "
2928 "link_evt %d\n", sc->bnx_link_evt);
2930 bnx_link_poll(sc);
2931 handle = 1;
2934 return handle;
2937 #ifdef IFPOLL_ENABLE
2939 static void
2940 bnx_npoll_rx(struct ifnet *ifp __unused, void *xret, int cycle)
2942 struct bnx_rx_ret_ring *ret = xret;
2943 uint16_t rx_prod;
2945 ASSERT_SERIALIZED(&ret->bnx_rx_ret_serialize);
2947 ret->bnx_saved_status_tag = *ret->bnx_hw_status_tag;
2948 cpu_lfence();
2950 rx_prod = *ret->bnx_rx_considx;
2951 if (ret->bnx_rx_saved_considx != rx_prod)
2952 bnx_rxeof(ret, rx_prod, cycle);
2955 static void
2956 bnx_npoll_tx_notag(struct ifnet *ifp __unused, void *xtxr, int cycle __unused)
2958 struct bnx_tx_ring *txr = xtxr;
2959 uint16_t tx_cons;
2961 ASSERT_SERIALIZED(&txr->bnx_tx_serialize);
2963 tx_cons = *txr->bnx_tx_considx;
2964 if (txr->bnx_tx_saved_considx != tx_cons)
2965 bnx_txeof(txr, tx_cons);
2968 static void
2969 bnx_npoll_tx(struct ifnet *ifp, void *xtxr, int cycle)
2971 struct bnx_tx_ring *txr = xtxr;
2973 ASSERT_SERIALIZED(&txr->bnx_tx_serialize);
2975 txr->bnx_saved_status_tag = *txr->bnx_hw_status_tag;
2976 cpu_lfence();
2977 bnx_npoll_tx_notag(ifp, txr, cycle);
2980 static void
2981 bnx_npoll_status_notag(struct ifnet *ifp)
2983 struct bnx_softc *sc = ifp->if_softc;
2985 ASSERT_SERIALIZED(&sc->bnx_main_serialize);
2987 if (bnx_handle_status(sc)) {
2989 * Status changes are handled; force the chip to
2990 * update the status block to reflect whether there
2991 * are more status changes or not, else staled status
2992 * changes are always seen.
2994 BNX_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
2998 static void
2999 bnx_npoll_status(struct ifnet *ifp)
3001 struct bnx_softc *sc = ifp->if_softc;
3003 ASSERT_SERIALIZED(&sc->bnx_main_serialize);
3005 sc->bnx_saved_status_tag = *sc->bnx_hw_status_tag;
3006 cpu_lfence();
3007 bnx_npoll_status_notag(ifp);
3010 static void
3011 bnx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3013 struct bnx_softc *sc = ifp->if_softc;
3014 int i;
3016 ASSERT_IFNET_SERIALIZED_ALL(ifp);
3018 if (info != NULL) {
3019 if (sc->bnx_flags & BNX_FLAG_STATUS_HASTAG)
3020 info->ifpi_status.status_func = bnx_npoll_status;
3021 else
3022 info->ifpi_status.status_func = bnx_npoll_status_notag;
3023 info->ifpi_status.serializer = &sc->bnx_main_serialize;
3025 for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
3026 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
3027 int cpu = if_ringmap_cpumap(sc->bnx_tx_rmap, i);
3029 KKASSERT(cpu < netisr_ncpus);
3030 if (sc->bnx_flags & BNX_FLAG_RXTX_BUNDLE) {
3031 info->ifpi_tx[cpu].poll_func =
3032 bnx_npoll_tx_notag;
3033 } else {
3034 info->ifpi_tx[cpu].poll_func = bnx_npoll_tx;
3036 info->ifpi_tx[cpu].arg = txr;
3037 info->ifpi_tx[cpu].serializer = &txr->bnx_tx_serialize;
3038 ifsq_set_cpuid(txr->bnx_ifsq, cpu);
3041 for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
3042 struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[i];
3043 int cpu = if_ringmap_cpumap(sc->bnx_rx_rmap, i);
3045 KKASSERT(cpu < netisr_ncpus);
3046 info->ifpi_rx[cpu].poll_func = bnx_npoll_rx;
3047 info->ifpi_rx[cpu].arg = ret;
3048 info->ifpi_rx[cpu].serializer =
3049 &ret->bnx_rx_ret_serialize;
3052 if (ifp->if_flags & IFF_RUNNING) {
3053 bnx_disable_intr(sc);
3054 bnx_set_tick_cpuid(sc, TRUE);
3056 sc->bnx_coal_chg = BNX_TX_COAL_BDS_CHG |
3057 BNX_RX_COAL_BDS_CHG;
3058 bnx_coal_change(sc);
3060 } else {
3061 for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
3062 ifsq_set_cpuid(sc->bnx_tx_ring[i].bnx_ifsq,
3063 sc->bnx_tx_ring[i].bnx_tx_cpuid);
3065 if (ifp->if_flags & IFF_RUNNING) {
3066 sc->bnx_coal_chg = BNX_TX_COAL_BDS_CHG |
3067 BNX_RX_COAL_BDS_CHG;
3068 bnx_coal_change(sc);
3070 bnx_enable_intr(sc);
3071 bnx_set_tick_cpuid(sc, FALSE);
3076 #endif /* IFPOLL_ENABLE */
3078 static void
3079 bnx_intr_legacy(void *xsc)
3081 struct bnx_softc *sc = xsc;
3082 struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[0];
3084 if (ret->bnx_saved_status_tag == *ret->bnx_hw_status_tag) {
3085 uint32_t val;
3087 val = pci_read_config(sc->bnx_dev, BGE_PCI_PCISTATE, 4);
3088 if (val & BGE_PCISTAT_INTR_NOTACT)
3089 return;
3093 * NOTE:
3094 * Interrupt will have to be disabled if tagged status
3095 * is used, else interrupt will always be asserted on
3096 * certain chips (at least on BCM5750 AX/BX).
3098 bnx_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3100 bnx_intr(sc);
3103 static void
3104 bnx_msi(void *xsc)
3106 bnx_intr(xsc);
3109 static void
3110 bnx_intr(struct bnx_softc *sc)
3112 struct ifnet *ifp = &sc->arpcom.ac_if;
3113 struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[0];
3115 ASSERT_SERIALIZED(&sc->bnx_main_serialize);
3117 ret->bnx_saved_status_tag = *ret->bnx_hw_status_tag;
3119 * Use a load fence to ensure that status_tag is saved
3120 * before rx_prod, tx_cons and status.
3122 cpu_lfence();
3124 bnx_handle_status(sc);
3126 if (ifp->if_flags & IFF_RUNNING) {
3127 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[0];
3128 uint16_t rx_prod, tx_cons;
3130 lwkt_serialize_enter(&ret->bnx_rx_ret_serialize);
3131 rx_prod = *ret->bnx_rx_considx;
3132 if (ret->bnx_rx_saved_considx != rx_prod)
3133 bnx_rxeof(ret, rx_prod, -1);
3134 lwkt_serialize_exit(&ret->bnx_rx_ret_serialize);
3136 lwkt_serialize_enter(&txr->bnx_tx_serialize);
3137 tx_cons = *txr->bnx_tx_considx;
3138 if (txr->bnx_tx_saved_considx != tx_cons)
3139 bnx_txeof(txr, tx_cons);
3140 lwkt_serialize_exit(&txr->bnx_tx_serialize);
3143 bnx_writembx(sc, BGE_MBX_IRQ0_LO, ret->bnx_saved_status_tag << 24);
3146 static void
3147 bnx_msix_tx_status(void *xtxr)
3149 struct bnx_tx_ring *txr = xtxr;
3150 struct bnx_softc *sc = txr->bnx_sc;
3151 struct ifnet *ifp = &sc->arpcom.ac_if;
3153 ASSERT_SERIALIZED(&sc->bnx_main_serialize);
3155 txr->bnx_saved_status_tag = *txr->bnx_hw_status_tag;
3157 * Use a load fence to ensure that status_tag is saved
3158 * before tx_cons and status.
3160 cpu_lfence();
3162 bnx_handle_status(sc);
3164 if (ifp->if_flags & IFF_RUNNING) {
3165 uint16_t tx_cons;
3167 lwkt_serialize_enter(&txr->bnx_tx_serialize);
3168 tx_cons = *txr->bnx_tx_considx;
3169 if (txr->bnx_tx_saved_considx != tx_cons)
3170 bnx_txeof(txr, tx_cons);
3171 lwkt_serialize_exit(&txr->bnx_tx_serialize);
3174 bnx_writembx(sc, BGE_MBX_IRQ0_LO, txr->bnx_saved_status_tag << 24);
3177 static void
3178 bnx_msix_rx(void *xret)
3180 struct bnx_rx_ret_ring *ret = xret;
3181 uint16_t rx_prod;
3183 ASSERT_SERIALIZED(&ret->bnx_rx_ret_serialize);
3185 ret->bnx_saved_status_tag = *ret->bnx_hw_status_tag;
3187 * Use a load fence to ensure that status_tag is saved
3188 * before rx_prod.
3190 cpu_lfence();
3192 rx_prod = *ret->bnx_rx_considx;
3193 if (ret->bnx_rx_saved_considx != rx_prod)
3194 bnx_rxeof(ret, rx_prod, -1);
3196 bnx_writembx(ret->bnx_sc, ret->bnx_msix_mbx,
3197 ret->bnx_saved_status_tag << 24);
3200 static void
3201 bnx_msix_rxtx(void *xret)
3203 struct bnx_rx_ret_ring *ret = xret;
3204 struct bnx_tx_ring *txr = ret->bnx_txr;
3205 uint16_t rx_prod, tx_cons;
3207 ASSERT_SERIALIZED(&ret->bnx_rx_ret_serialize);
3209 ret->bnx_saved_status_tag = *ret->bnx_hw_status_tag;
3211 * Use a load fence to ensure that status_tag is saved
3212 * before rx_prod and tx_cons.
3214 cpu_lfence();
3216 rx_prod = *ret->bnx_rx_considx;
3217 if (ret->bnx_rx_saved_considx != rx_prod)
3218 bnx_rxeof(ret, rx_prod, -1);
3220 lwkt_serialize_enter(&txr->bnx_tx_serialize);
3221 tx_cons = *txr->bnx_tx_considx;
3222 if (txr->bnx_tx_saved_considx != tx_cons)
3223 bnx_txeof(txr, tx_cons);
3224 lwkt_serialize_exit(&txr->bnx_tx_serialize);
3226 bnx_writembx(ret->bnx_sc, ret->bnx_msix_mbx,
3227 ret->bnx_saved_status_tag << 24);
3230 static void
3231 bnx_msix_status(void *xsc)
3233 struct bnx_softc *sc = xsc;
3235 ASSERT_SERIALIZED(&sc->bnx_main_serialize);
3237 sc->bnx_saved_status_tag = *sc->bnx_hw_status_tag;
3239 * Use a load fence to ensure that status_tag is saved
3240 * before status.
3242 cpu_lfence();
3244 bnx_handle_status(sc);
3246 bnx_writembx(sc, BGE_MBX_IRQ0_LO, sc->bnx_saved_status_tag << 24);
3249 static void
3250 bnx_tick(void *xsc)
3252 struct bnx_softc *sc = xsc;
3254 lwkt_serialize_enter(&sc->bnx_main_serialize);
3256 bnx_stats_update_regs(sc);
3258 if (sc->bnx_flags & BNX_FLAG_TBI) {
3260 * Since in TBI mode auto-polling can't be used we should poll
3261 * link status manually. Here we register pending link event
3262 * and trigger interrupt.
3264 sc->bnx_link_evt++;
3265 BNX_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3266 } else if (!sc->bnx_link) {
3267 mii_tick(device_get_softc(sc->bnx_miibus));
3270 callout_reset_bycpu(&sc->bnx_tick_timer, hz, bnx_tick, sc,
3271 sc->bnx_tick_cpuid);
3273 lwkt_serialize_exit(&sc->bnx_main_serialize);
3276 static void
3277 bnx_stats_update_regs(struct bnx_softc *sc)
3279 struct ifnet *ifp = &sc->arpcom.ac_if;
3280 struct bge_mac_stats_regs stats;
3281 uint32_t *s, val;
3282 int i;
3284 s = (uint32_t *)&stats;
3285 for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3286 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
3287 s++;
3290 IFNET_STAT_SET(ifp, collisions,
3291 (stats.dot3StatsSingleCollisionFrames +
3292 stats.dot3StatsMultipleCollisionFrames +
3293 stats.dot3StatsExcessiveCollisions +
3294 stats.dot3StatsLateCollisions));
3296 val = CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3297 sc->bnx_norxbds += val;
3301 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3302 * pointers to descriptors.
3304 static int
3305 bnx_encap(struct bnx_tx_ring *txr, struct mbuf **m_head0, uint32_t *txidx,
3306 int *segs_used)
3308 struct bge_tx_bd *d = NULL;
3309 uint16_t csum_flags = 0, vlan_tag = 0, mss = 0;
3310 bus_dma_segment_t segs[BNX_NSEG_NEW];
3311 bus_dmamap_t map;
3312 int error, maxsegs, nsegs, idx, i;
3313 struct mbuf *m_head = *m_head0, *m_new;
3315 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3316 #ifdef BNX_TSO_DEBUG
3317 int tso_nsegs;
3318 #endif
3320 error = bnx_setup_tso(txr, m_head0, &mss, &csum_flags);
3321 if (error)
3322 return error;
3323 m_head = *m_head0;
3325 #ifdef BNX_TSO_DEBUG
3326 tso_nsegs = (m_head->m_pkthdr.len /
3327 m_head->m_pkthdr.tso_segsz) - 1;
3328 if (tso_nsegs > (BNX_TSO_NSTATS - 1))
3329 tso_nsegs = BNX_TSO_NSTATS - 1;
3330 else if (tso_nsegs < 0)
3331 tso_nsegs = 0;
3332 txr->bnx_sc->bnx_tsosegs[tso_nsegs]++;
3333 #endif
3334 } else if (m_head->m_pkthdr.csum_flags & BNX_CSUM_FEATURES) {
3335 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3336 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3337 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3338 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3339 if (m_head->m_flags & M_LASTFRAG)
3340 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3341 else if (m_head->m_flags & M_FRAG)
3342 csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3344 if (m_head->m_flags & M_VLANTAG) {
3345 csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
3346 vlan_tag = m_head->m_pkthdr.ether_vlantag;
3349 idx = *txidx;
3350 map = txr->bnx_tx_buf[idx].bnx_tx_dmamap;
3352 maxsegs = (BGE_TX_RING_CNT - txr->bnx_tx_cnt) - BNX_NSEG_RSVD;
3353 KASSERT(maxsegs >= BNX_NSEG_SPARE,
3354 ("not enough segments %d", maxsegs));
3356 if (maxsegs > BNX_NSEG_NEW)
3357 maxsegs = BNX_NSEG_NEW;
3360 * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3361 * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3362 * but when such padded frames employ the bge IP/TCP checksum
3363 * offload, the hardware checksum assist gives incorrect results
3364 * (possibly from incorporating its own padding into the UDP/TCP
3365 * checksum; who knows). If we pad such runts with zeros, the
3366 * onboard checksum comes out correct.
3368 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3369 m_head->m_pkthdr.len < BNX_MIN_FRAMELEN) {
3370 error = m_devpad(m_head, BNX_MIN_FRAMELEN);
3371 if (error)
3372 goto back;
3375 if ((txr->bnx_tx_flags & BNX_TX_FLAG_SHORTDMA) &&
3376 m_head->m_next != NULL) {
3377 m_new = bnx_defrag_shortdma(m_head);
3378 if (m_new == NULL) {
3379 error = ENOBUFS;
3380 goto back;
3382 *m_head0 = m_head = m_new;
3384 if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3385 (txr->bnx_tx_flags & BNX_TX_FLAG_FORCE_DEFRAG) &&
3386 m_head->m_next != NULL) {
3388 * Forcefully defragment mbuf chain to overcome hardware
3389 * limitation which only support a single outstanding
3390 * DMA read operation. If it fails, keep moving on using
3391 * the original mbuf chain.
3393 m_new = m_defrag(m_head, M_NOWAIT);
3394 if (m_new != NULL)
3395 *m_head0 = m_head = m_new;
3398 error = bus_dmamap_load_mbuf_defrag(txr->bnx_tx_mtag, map,
3399 m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3400 if (error)
3401 goto back;
3402 *segs_used += nsegs;
3404 m_head = *m_head0;
3405 bus_dmamap_sync(txr->bnx_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3407 for (i = 0; ; i++) {
3408 d = &txr->bnx_tx_ring[idx];
3410 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3411 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3412 d->bge_len = segs[i].ds_len;
3413 d->bge_flags = csum_flags;
3414 d->bge_vlan_tag = vlan_tag;
3415 d->bge_mss = mss;
3417 if (i == nsegs - 1)
3418 break;
3419 BNX_INC(idx, BGE_TX_RING_CNT);
3421 /* Mark the last segment as end of packet... */
3422 d->bge_flags |= BGE_TXBDFLAG_END;
3425 * Insure that the map for this transmission is placed at
3426 * the array index of the last descriptor in this chain.
3428 txr->bnx_tx_buf[*txidx].bnx_tx_dmamap = txr->bnx_tx_buf[idx].bnx_tx_dmamap;
3429 txr->bnx_tx_buf[idx].bnx_tx_dmamap = map;
3430 txr->bnx_tx_buf[idx].bnx_tx_mbuf = m_head;
3431 txr->bnx_tx_cnt += nsegs;
3433 BNX_INC(idx, BGE_TX_RING_CNT);
3434 *txidx = idx;
3435 back:
3436 if (error) {
3437 m_freem(*m_head0);
3438 *m_head0 = NULL;
3440 return error;
3444 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3445 * to the mbuf data regions directly in the transmit descriptors.
3447 static void
3448 bnx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3450 struct bnx_tx_ring *txr = ifsq_get_priv(ifsq);
3451 struct mbuf *m_head = NULL;
3452 uint32_t prodidx;
3453 int nsegs = 0;
3455 KKASSERT(txr->bnx_ifsq == ifsq);
3456 ASSERT_SERIALIZED(&txr->bnx_tx_serialize);
3458 if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
3459 return;
3461 prodidx = txr->bnx_tx_prodidx;
3463 while (txr->bnx_tx_buf[prodidx].bnx_tx_mbuf == NULL) {
3465 * Sanity check: avoid coming within BGE_NSEG_RSVD
3466 * descriptors of the end of the ring. Also make
3467 * sure there are BGE_NSEG_SPARE descriptors for
3468 * jumbo buffers' or TSO segments' defragmentation.
3470 if ((BGE_TX_RING_CNT - txr->bnx_tx_cnt) <
3471 (BNX_NSEG_RSVD + BNX_NSEG_SPARE)) {
3472 ifsq_set_oactive(ifsq);
3473 break;
3476 m_head = ifsq_dequeue(ifsq);
3477 if (m_head == NULL)
3478 break;
3481 * Pack the data into the transmit ring. If we
3482 * don't have room, set the OACTIVE flag and wait
3483 * for the NIC to drain the ring.
3485 if (bnx_encap(txr, &m_head, &prodidx, &nsegs)) {
3486 ifsq_set_oactive(ifsq);
3487 IFNET_STAT_INC(ifp, oerrors, 1);
3488 break;
3491 if (nsegs >= txr->bnx_tx_wreg) {
3492 /* Transmit */
3493 bnx_writembx(txr->bnx_sc, txr->bnx_tx_mbx, prodidx);
3494 nsegs = 0;
3497 ETHER_BPF_MTAP(ifp, m_head);
3500 * Set a timeout in case the chip goes out to lunch.
3502 txr->bnx_tx_watchdog.wd_timer = 5;
3505 if (nsegs > 0) {
3506 /* Transmit */
3507 bnx_writembx(txr->bnx_sc, txr->bnx_tx_mbx, prodidx);
3509 txr->bnx_tx_prodidx = prodidx;
3512 static void
3513 bnx_init(void *xsc)
3515 struct bnx_softc *sc = xsc;
3516 struct ifnet *ifp = &sc->arpcom.ac_if;
3517 uint16_t *m;
3518 uint32_t mode;
3519 int i;
3520 boolean_t polling;
3522 ASSERT_IFNET_SERIALIZED_ALL(ifp);
3524 /* Cancel pending I/O and flush buffers. */
3525 bnx_stop(sc);
3527 bnx_sig_pre_reset(sc, BNX_RESET_START);
3528 bnx_reset(sc);
3529 bnx_sig_post_reset(sc, BNX_RESET_START);
3531 bnx_chipinit(sc);
3534 * Init the various state machines, ring
3535 * control blocks and firmware.
3537 if (bnx_blockinit(sc)) {
3538 if_printf(ifp, "initialization failure\n");
3539 bnx_stop(sc);
3540 return;
3543 /* Specify MTU. */
3544 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3545 ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3547 /* Load our MAC address. */
3548 m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3549 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3550 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3552 /* Enable or disable promiscuous mode as needed. */
3553 bnx_setpromisc(sc);
3555 /* Program multicast filter. */
3556 bnx_setmulti(sc);
3558 /* Init RX ring. */
3559 if (bnx_init_rx_ring_std(&sc->bnx_rx_std_ring)) {
3560 if_printf(ifp, "RX ring initialization failed\n");
3561 bnx_stop(sc);
3562 return;
3565 /* Init jumbo RX ring. */
3566 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3567 if (bnx_init_rx_ring_jumbo(sc)) {
3568 if_printf(ifp, "Jumbo RX ring initialization failed\n");
3569 bnx_stop(sc);
3570 return;
3574 /* Init our RX return ring index */
3575 for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
3576 struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[i];
3578 ret->bnx_rx_saved_considx = 0;
3579 ret->bnx_rx_cnt = 0;
3582 /* Init TX ring. */
3583 for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
3584 bnx_init_tx_ring(&sc->bnx_tx_ring[i]);
3586 /* Enable TX MAC state machine lockup fix. */
3587 mode = CSR_READ_4(sc, BGE_TX_MODE);
3588 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3589 if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
3590 sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
3591 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
3592 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
3593 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
3595 /* Turn on transmitter */
3596 CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3597 DELAY(100);
3599 /* Initialize RSS */
3600 mode = BGE_RXMODE_ENABLE | BGE_RXMODE_IPV6_ENABLE;
3601 if (BNX_RSS_ENABLED(sc)) {
3602 bnx_init_rss(sc);
3603 mode |= BGE_RXMODE_RSS_ENABLE |
3604 BGE_RXMODE_RSS_HASH_MASK_BITS |
3605 BGE_RXMODE_RSS_IPV4_HASH |
3606 BGE_RXMODE_RSS_TCP_IPV4_HASH;
3608 /* Turn on receiver */
3609 BNX_SETBIT(sc, BGE_RX_MODE, mode);
3610 DELAY(10);
3613 * Set the number of good frames to receive after RX MBUF
3614 * Low Watermark has been reached. After the RX MAC receives
3615 * this number of frames, it will drop subsequent incoming
3616 * frames until the MBUF High Watermark is reached.
3618 if (BNX_IS_57765_FAMILY(sc))
3619 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
3620 else
3621 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3623 if (sc->bnx_intr_type == PCI_INTR_TYPE_MSI ||
3624 sc->bnx_intr_type == PCI_INTR_TYPE_MSIX) {
3625 if (bootverbose) {
3626 if_printf(ifp, "MSI_MODE: %#x\n",
3627 CSR_READ_4(sc, BGE_MSI_MODE));
3631 /* Tell firmware we're alive. */
3632 BNX_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3634 /* Enable host interrupts if polling(4) is not enabled. */
3635 PCI_SETBIT(sc->bnx_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3637 polling = FALSE;
3638 #ifdef IFPOLL_ENABLE
3639 if (ifp->if_flags & IFF_NPOLLING)
3640 polling = TRUE;
3641 #endif
3642 if (polling)
3643 bnx_disable_intr(sc);
3644 else
3645 bnx_enable_intr(sc);
3646 bnx_set_tick_cpuid(sc, polling);
3648 ifp->if_flags |= IFF_RUNNING;
3649 for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
3650 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
3652 ifsq_clr_oactive(txr->bnx_ifsq);
3653 ifsq_watchdog_start(&txr->bnx_tx_watchdog);
3656 bnx_ifmedia_upd(ifp);
3658 callout_reset_bycpu(&sc->bnx_tick_timer, hz, bnx_tick, sc,
3659 sc->bnx_tick_cpuid);
3663 * Set media options.
3665 static int
3666 bnx_ifmedia_upd(struct ifnet *ifp)
3668 struct bnx_softc *sc = ifp->if_softc;
3670 /* If this is a 1000baseX NIC, enable the TBI port. */
3671 if (sc->bnx_flags & BNX_FLAG_TBI) {
3672 struct ifmedia *ifm = &sc->bnx_ifmedia;
3674 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3675 return(EINVAL);
3677 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3678 case IFM_AUTO:
3679 break;
3681 case IFM_1000_SX:
3682 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3683 BNX_CLRBIT(sc, BGE_MAC_MODE,
3684 BGE_MACMODE_HALF_DUPLEX);
3685 } else {
3686 BNX_SETBIT(sc, BGE_MAC_MODE,
3687 BGE_MACMODE_HALF_DUPLEX);
3689 DELAY(40);
3690 break;
3691 default:
3692 return(EINVAL);
3694 } else {
3695 struct mii_data *mii = device_get_softc(sc->bnx_miibus);
3697 sc->bnx_link_evt++;
3698 sc->bnx_link = 0;
3699 if (mii->mii_instance) {
3700 struct mii_softc *miisc;
3702 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3703 mii_phy_reset(miisc);
3705 mii_mediachg(mii);
3708 * Force an interrupt so that we will call bnx_link_upd
3709 * if needed and clear any pending link state attention.
3710 * Without this we are not getting any further interrupts
3711 * for link state changes and thus will not UP the link and
3712 * not be able to send in bnx_start. The only way to get
3713 * things working was to receive a packet and get an RX
3714 * intr.
3716 * bnx_tick should help for fiber cards and we might not
3717 * need to do this here if BNX_FLAG_TBI is set but as
3718 * we poll for fiber anyway it should not harm.
3720 BNX_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3722 return(0);
3726 * Report current media status.
3728 static void
3729 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3731 struct bnx_softc *sc = ifp->if_softc;
3733 if ((ifp->if_flags & IFF_RUNNING) == 0)
3734 return;
3736 if (sc->bnx_flags & BNX_FLAG_TBI) {
3737 ifmr->ifm_status = IFM_AVALID;
3738 ifmr->ifm_active = IFM_ETHER;
3739 if (CSR_READ_4(sc, BGE_MAC_STS) &
3740 BGE_MACSTAT_TBI_PCS_SYNCHED) {
3741 ifmr->ifm_status |= IFM_ACTIVE;
3742 } else {
3743 ifmr->ifm_active |= IFM_NONE;
3744 return;
3747 ifmr->ifm_active |= IFM_1000_SX;
3748 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3749 ifmr->ifm_active |= IFM_HDX;
3750 else
3751 ifmr->ifm_active |= IFM_FDX;
3752 } else {
3753 struct mii_data *mii = device_get_softc(sc->bnx_miibus);
3755 mii_pollstat(mii);
3756 ifmr->ifm_active = mii->mii_media_active;
3757 ifmr->ifm_status = mii->mii_media_status;
3761 static int
3762 bnx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3764 struct bnx_softc *sc = ifp->if_softc;
3765 struct ifreq *ifr = (struct ifreq *)data;
3766 int mask, error = 0;
3768 ASSERT_IFNET_SERIALIZED_ALL(ifp);
3770 switch (command) {
3771 case SIOCSIFMTU:
3772 if ((!BNX_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3773 (BNX_IS_JUMBO_CAPABLE(sc) &&
3774 ifr->ifr_mtu > BNX_JUMBO_MTU)) {
3775 error = EINVAL;
3776 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3777 ifp->if_mtu = ifr->ifr_mtu;
3778 if (ifp->if_flags & IFF_RUNNING)
3779 bnx_init(sc);
3781 break;
3782 case SIOCSIFFLAGS:
3783 if (ifp->if_flags & IFF_UP) {
3784 if (ifp->if_flags & IFF_RUNNING) {
3785 mask = ifp->if_flags ^ sc->bnx_if_flags;
3788 * If only the state of the PROMISC flag
3789 * changed, then just use the 'set promisc
3790 * mode' command instead of reinitializing
3791 * the entire NIC. Doing a full re-init
3792 * means reloading the firmware and waiting
3793 * for it to start up, which may take a
3794 * second or two. Similarly for ALLMULTI.
3796 if (mask & IFF_PROMISC)
3797 bnx_setpromisc(sc);
3798 if (mask & IFF_ALLMULTI)
3799 bnx_setmulti(sc);
3800 } else {
3801 bnx_init(sc);
3803 } else if (ifp->if_flags & IFF_RUNNING) {
3804 bnx_stop(sc);
3806 sc->bnx_if_flags = ifp->if_flags;
3807 break;
3808 case SIOCADDMULTI:
3809 case SIOCDELMULTI:
3810 if (ifp->if_flags & IFF_RUNNING)
3811 bnx_setmulti(sc);
3812 break;
3813 case SIOCSIFMEDIA:
3814 case SIOCGIFMEDIA:
3815 if (sc->bnx_flags & BNX_FLAG_TBI) {
3816 error = ifmedia_ioctl(ifp, ifr,
3817 &sc->bnx_ifmedia, command);
3818 } else {
3819 struct mii_data *mii;
3821 mii = device_get_softc(sc->bnx_miibus);
3822 error = ifmedia_ioctl(ifp, ifr,
3823 &mii->mii_media, command);
3825 break;
3826 case SIOCSIFCAP:
3827 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3828 if (mask & IFCAP_HWCSUM) {
3829 ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
3830 if (ifp->if_capenable & IFCAP_TXCSUM)
3831 ifp->if_hwassist |= BNX_CSUM_FEATURES;
3832 else
3833 ifp->if_hwassist &= ~BNX_CSUM_FEATURES;
3835 if (mask & IFCAP_TSO) {
3836 ifp->if_capenable ^= (mask & IFCAP_TSO);
3837 if (ifp->if_capenable & IFCAP_TSO)
3838 ifp->if_hwassist |= CSUM_TSO;
3839 else
3840 ifp->if_hwassist &= ~CSUM_TSO;
3842 if (mask & IFCAP_RSS)
3843 ifp->if_capenable ^= IFCAP_RSS;
3844 break;
3845 default:
3846 error = ether_ioctl(ifp, command, data);
3847 break;
3849 return error;
3852 static void
3853 bnx_watchdog(struct ifaltq_subque *ifsq)
3855 struct ifnet *ifp = ifsq_get_ifp(ifsq);
3856 struct bnx_softc *sc = ifp->if_softc;
3857 int i;
3859 ASSERT_IFNET_SERIALIZED_ALL(ifp);
3861 if_printf(ifp, "watchdog timeout -- resetting\n");
3863 bnx_init(sc);
3865 IFNET_STAT_INC(ifp, oerrors, 1);
3867 for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
3868 ifsq_devstart_sched(sc->bnx_tx_ring[i].bnx_ifsq);
3872 * Stop the adapter and free any mbufs allocated to the
3873 * RX and TX lists.
3875 static void
3876 bnx_stop(struct bnx_softc *sc)
3878 struct ifnet *ifp = &sc->arpcom.ac_if;
3879 int i;
3881 ASSERT_IFNET_SERIALIZED_ALL(ifp);
3883 callout_stop(&sc->bnx_tick_timer);
3885 /* Disable host interrupts. */
3886 bnx_disable_intr(sc);
3889 * Tell firmware we're shutting down.
3891 bnx_sig_pre_reset(sc, BNX_RESET_SHUTDOWN);
3894 * Disable all of the receiver blocks
3896 bnx_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3897 bnx_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3898 bnx_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3899 bnx_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3900 bnx_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3901 bnx_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3904 * Disable all of the transmit blocks
3906 bnx_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3907 bnx_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3908 bnx_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3909 bnx_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3910 bnx_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3911 bnx_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3914 * Shut down all of the memory managers and related
3915 * state machines.
3917 bnx_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3918 bnx_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3919 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3920 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3922 bnx_reset(sc);
3923 bnx_sig_post_reset(sc, BNX_RESET_SHUTDOWN);
3926 * Tell firmware we're shutting down.
3928 BNX_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3930 /* Free the RX lists. */
3931 bnx_free_rx_ring_std(&sc->bnx_rx_std_ring);
3933 /* Free jumbo RX list. */
3934 if (BNX_IS_JUMBO_CAPABLE(sc))
3935 bnx_free_rx_ring_jumbo(sc);
3937 /* Free TX buffers. */
3938 for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
3939 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
3941 txr->bnx_saved_status_tag = 0;
3942 bnx_free_tx_ring(txr);
3945 /* Clear saved status tag */
3946 for (i = 0; i < sc->bnx_rx_retcnt; ++i)
3947 sc->bnx_rx_ret_ring[i].bnx_saved_status_tag = 0;
3949 sc->bnx_link = 0;
3950 sc->bnx_coal_chg = 0;
3952 ifp->if_flags &= ~IFF_RUNNING;
3953 for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
3954 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
3956 ifsq_clr_oactive(txr->bnx_ifsq);
3957 ifsq_watchdog_stop(&txr->bnx_tx_watchdog);
3962 * Stop all chip I/O so that the kernel's probe routines don't
3963 * get confused by errant DMAs when rebooting.
3965 static void
3966 bnx_shutdown(device_t dev)
3968 struct bnx_softc *sc = device_get_softc(dev);
3969 struct ifnet *ifp = &sc->arpcom.ac_if;
3971 ifnet_serialize_all(ifp);
3972 bnx_stop(sc);
3973 ifnet_deserialize_all(ifp);
3976 static int
3977 bnx_suspend(device_t dev)
3979 struct bnx_softc *sc = device_get_softc(dev);
3980 struct ifnet *ifp = &sc->arpcom.ac_if;
3982 ifnet_serialize_all(ifp);
3983 bnx_stop(sc);
3984 ifnet_deserialize_all(ifp);
3986 return 0;
3989 static int
3990 bnx_resume(device_t dev)
3992 struct bnx_softc *sc = device_get_softc(dev);
3993 struct ifnet *ifp = &sc->arpcom.ac_if;
3995 ifnet_serialize_all(ifp);
3997 if (ifp->if_flags & IFF_UP) {
3998 int i;
4000 bnx_init(sc);
4001 for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
4002 ifsq_devstart_sched(sc->bnx_tx_ring[i].bnx_ifsq);
4005 ifnet_deserialize_all(ifp);
4007 return 0;
4010 static void
4011 bnx_setpromisc(struct bnx_softc *sc)
4013 struct ifnet *ifp = &sc->arpcom.ac_if;
4015 if (ifp->if_flags & IFF_PROMISC)
4016 BNX_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4017 else
4018 BNX_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4021 static void
4022 bnx_dma_free(struct bnx_softc *sc)
4024 struct bnx_rx_std_ring *std = &sc->bnx_rx_std_ring;
4025 int i;
4027 /* Destroy RX return rings */
4028 if (sc->bnx_rx_ret_ring != NULL) {
4029 for (i = 0; i < sc->bnx_rx_retcnt; ++i)
4030 bnx_destroy_rx_ret_ring(&sc->bnx_rx_ret_ring[i]);
4031 kfree(sc->bnx_rx_ret_ring, M_DEVBUF);
4034 /* Destroy RX mbuf DMA stuffs. */
4035 if (std->bnx_rx_mtag != NULL) {
4036 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4037 KKASSERT(std->bnx_rx_std_buf[i].bnx_rx_mbuf == NULL);
4038 bus_dmamap_destroy(std->bnx_rx_mtag,
4039 std->bnx_rx_std_buf[i].bnx_rx_dmamap);
4041 bus_dma_tag_destroy(std->bnx_rx_mtag);
4044 /* Destroy standard RX ring */
4045 bnx_dma_block_free(std->bnx_rx_std_ring_tag,
4046 std->bnx_rx_std_ring_map, std->bnx_rx_std_ring);
4048 /* Destroy TX rings */
4049 if (sc->bnx_tx_ring != NULL) {
4050 for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
4051 bnx_destroy_tx_ring(&sc->bnx_tx_ring[i]);
4052 kfree(sc->bnx_tx_ring, M_DEVBUF);
4055 if (BNX_IS_JUMBO_CAPABLE(sc))
4056 bnx_free_jumbo_mem(sc);
4058 /* Destroy status blocks */
4059 for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4060 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4062 bnx_dma_block_free(intr->bnx_status_tag,
4063 intr->bnx_status_map, intr->bnx_status_block);
4066 /* Destroy the parent tag */
4067 if (sc->bnx_cdata.bnx_parent_tag != NULL)
4068 bus_dma_tag_destroy(sc->bnx_cdata.bnx_parent_tag);
4071 static int
4072 bnx_dma_alloc(device_t dev)
4074 struct bnx_softc *sc = device_get_softc(dev);
4075 struct bnx_rx_std_ring *std = &sc->bnx_rx_std_ring;
4076 int i, error, mbx;
4079 * Allocate the parent bus DMA tag appropriate for PCI.
4081 * All of the NetExtreme/NetLink controllers have 4GB boundary
4082 * DMA bug.
4083 * Whenever an address crosses a multiple of the 4GB boundary
4084 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4085 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4086 * state machine will lockup and cause the device to hang.
4088 error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4089 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
4090 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
4091 0, &sc->bnx_cdata.bnx_parent_tag);
4092 if (error) {
4093 device_printf(dev, "could not create parent DMA tag\n");
4094 return error;
4098 * Create DMA stuffs for status blocks.
4100 for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4101 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4103 error = bnx_dma_block_alloc(sc,
4104 __VM_CACHELINE_ALIGN(BGE_STATUS_BLK_SZ),
4105 &intr->bnx_status_tag, &intr->bnx_status_map,
4106 (void *)&intr->bnx_status_block,
4107 &intr->bnx_status_block_paddr);
4108 if (error) {
4109 device_printf(dev,
4110 "could not create %dth status block\n", i);
4111 return error;
4114 sc->bnx_hw_status = &sc->bnx_intr_data[0].bnx_status_block->bge_status;
4115 if (sc->bnx_flags & BNX_FLAG_STATUS_HASTAG) {
4116 sc->bnx_hw_status_tag =
4117 &sc->bnx_intr_data[0].bnx_status_block->bge_status_tag;
4121 * Create DMA tag and maps for RX mbufs.
4123 std->bnx_sc = sc;
4124 lwkt_serialize_init(&std->bnx_rx_std_serialize);
4125 error = bus_dma_tag_create(sc->bnx_cdata.bnx_parent_tag, 1, 0,
4126 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4127 NULL, NULL, MCLBYTES, 1, MCLBYTES,
4128 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK, &std->bnx_rx_mtag);
4129 if (error) {
4130 device_printf(dev, "could not create RX mbuf DMA tag\n");
4131 return error;
4134 for (i = 0; i < BGE_STD_RX_RING_CNT; ++i) {
4135 error = bus_dmamap_create(std->bnx_rx_mtag, BUS_DMA_WAITOK,
4136 &std->bnx_rx_std_buf[i].bnx_rx_dmamap);
4137 if (error) {
4138 int j;
4140 for (j = 0; j < i; ++j) {
4141 bus_dmamap_destroy(std->bnx_rx_mtag,
4142 std->bnx_rx_std_buf[j].bnx_rx_dmamap);
4144 bus_dma_tag_destroy(std->bnx_rx_mtag);
4145 std->bnx_rx_mtag = NULL;
4147 device_printf(dev,
4148 "could not create %dth RX mbuf DMA map\n", i);
4149 return error;
4154 * Create DMA stuffs for standard RX ring.
4156 error = bnx_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4157 &std->bnx_rx_std_ring_tag,
4158 &std->bnx_rx_std_ring_map,
4159 (void *)&std->bnx_rx_std_ring,
4160 &std->bnx_rx_std_ring_paddr);
4161 if (error) {
4162 device_printf(dev, "could not create std RX ring\n");
4163 return error;
4167 * Create RX return rings
4169 mbx = BGE_MBX_RX_CONS0_LO;
4170 sc->bnx_rx_ret_ring = kmalloc_cachealign(
4171 sizeof(struct bnx_rx_ret_ring) * sc->bnx_rx_retcnt, M_DEVBUF,
4172 M_WAITOK | M_ZERO);
4173 for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
4174 struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[i];
4175 struct bnx_intr_data *intr;
4177 ret->bnx_sc = sc;
4178 ret->bnx_std = std;
4179 ret->bnx_rx_mbx = mbx;
4180 ret->bnx_rx_cntmax = (BGE_STD_RX_RING_CNT / 4) /
4181 sc->bnx_rx_retcnt;
4182 ret->bnx_rx_mask = 1 << i;
4184 if (!BNX_RSS_ENABLED(sc)) {
4185 intr = &sc->bnx_intr_data[0];
4186 } else {
4187 KKASSERT(i + 1 < sc->bnx_intr_cnt);
4188 intr = &sc->bnx_intr_data[i + 1];
4191 if (i == 0) {
4192 ret->bnx_rx_considx =
4193 &intr->bnx_status_block->bge_idx[0].bge_rx_prod_idx;
4194 } else if (i == 1) {
4195 ret->bnx_rx_considx =
4196 &intr->bnx_status_block->bge_rx_jumbo_cons_idx;
4197 } else if (i == 2) {
4198 ret->bnx_rx_considx =
4199 &intr->bnx_status_block->bge_rsvd1;
4200 } else if (i == 3) {
4201 ret->bnx_rx_considx =
4202 &intr->bnx_status_block->bge_rx_mini_cons_idx;
4203 } else {
4204 panic("unknown RX return ring %d\n", i);
4206 ret->bnx_hw_status_tag =
4207 &intr->bnx_status_block->bge_status_tag;
4209 error = bnx_create_rx_ret_ring(ret);
4210 if (error) {
4211 device_printf(dev,
4212 "could not create %dth RX ret ring\n", i);
4213 return error;
4215 mbx += 8;
4219 * Create TX rings
4221 sc->bnx_tx_ring = kmalloc_cachealign(
4222 sizeof(struct bnx_tx_ring) * sc->bnx_tx_ringcnt, M_DEVBUF,
4223 M_WAITOK | M_ZERO);
4224 for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
4225 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
4226 struct bnx_intr_data *intr;
4228 txr->bnx_sc = sc;
4229 txr->bnx_tx_mbx = bnx_tx_mailbox[i];
4231 if (sc->bnx_tx_ringcnt == 1) {
4232 intr = &sc->bnx_intr_data[0];
4233 } else {
4234 KKASSERT(i + 1 < sc->bnx_intr_cnt);
4235 intr = &sc->bnx_intr_data[i + 1];
4238 if ((sc->bnx_flags & BNX_FLAG_RXTX_BUNDLE) == 0) {
4239 txr->bnx_hw_status_tag =
4240 &intr->bnx_status_block->bge_status_tag;
4242 txr->bnx_tx_considx =
4243 &intr->bnx_status_block->bge_idx[0].bge_tx_cons_idx;
4245 error = bnx_create_tx_ring(txr);
4246 if (error) {
4247 device_printf(dev,
4248 "could not create %dth TX ring\n", i);
4249 return error;
4254 * Create jumbo buffer pool.
4256 if (BNX_IS_JUMBO_CAPABLE(sc)) {
4257 error = bnx_alloc_jumbo_mem(sc);
4258 if (error) {
4259 device_printf(dev,
4260 "could not create jumbo buffer pool\n");
4261 return error;
4265 return 0;
4268 static int
4269 bnx_dma_block_alloc(struct bnx_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4270 bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4272 bus_dmamem_t dmem;
4273 int error;
4275 error = bus_dmamem_coherent(sc->bnx_cdata.bnx_parent_tag, PAGE_SIZE, 0,
4276 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4277 size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4278 if (error)
4279 return error;
4281 *tag = dmem.dmem_tag;
4282 *map = dmem.dmem_map;
4283 *addr = dmem.dmem_addr;
4284 *paddr = dmem.dmem_busaddr;
4286 return 0;
4289 static void
4290 bnx_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4292 if (tag != NULL) {
4293 bus_dmamap_unload(tag, map);
4294 bus_dmamem_free(tag, addr, map);
4295 bus_dma_tag_destroy(tag);
4299 static void
4300 bnx_tbi_link_upd(struct bnx_softc *sc, uint32_t status)
4302 struct ifnet *ifp = &sc->arpcom.ac_if;
4304 #define PCS_ENCODE_ERR (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4307 * Sometimes PCS encoding errors are detected in
4308 * TBI mode (on fiber NICs), and for some reason
4309 * the chip will signal them as link changes.
4310 * If we get a link change event, but the 'PCS
4311 * encoding error' bit in the MAC status register
4312 * is set, don't bother doing a link check.
4313 * This avoids spurious "gigabit link up" messages
4314 * that sometimes appear on fiber NICs during
4315 * periods of heavy traffic.
4317 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4318 if (!sc->bnx_link) {
4319 sc->bnx_link++;
4320 if (sc->bnx_asicrev == BGE_ASICREV_BCM5704) {
4321 BNX_CLRBIT(sc, BGE_MAC_MODE,
4322 BGE_MACMODE_TBI_SEND_CFGS);
4323 DELAY(40);
4325 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4327 if (bootverbose)
4328 if_printf(ifp, "link UP\n");
4330 ifp->if_link_state = LINK_STATE_UP;
4331 if_link_state_change(ifp);
4333 } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4334 if (sc->bnx_link) {
4335 sc->bnx_link = 0;
4337 if (bootverbose)
4338 if_printf(ifp, "link DOWN\n");
4340 ifp->if_link_state = LINK_STATE_DOWN;
4341 if_link_state_change(ifp);
4345 #undef PCS_ENCODE_ERR
4347 /* Clear the attention. */
4348 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4349 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4350 BGE_MACSTAT_LINK_CHANGED);
4353 static void
4354 bnx_copper_link_upd(struct bnx_softc *sc, uint32_t status __unused)
4356 struct ifnet *ifp = &sc->arpcom.ac_if;
4357 struct mii_data *mii = device_get_softc(sc->bnx_miibus);
4359 mii_pollstat(mii);
4360 bnx_miibus_statchg(sc->bnx_dev);
4362 if (bootverbose) {
4363 if (sc->bnx_link)
4364 if_printf(ifp, "link UP\n");
4365 else
4366 if_printf(ifp, "link DOWN\n");
4369 /* Clear the attention. */
4370 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4371 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4372 BGE_MACSTAT_LINK_CHANGED);
4375 static void
4376 bnx_autopoll_link_upd(struct bnx_softc *sc, uint32_t status __unused)
4378 struct ifnet *ifp = &sc->arpcom.ac_if;
4379 struct mii_data *mii = device_get_softc(sc->bnx_miibus);
4381 mii_pollstat(mii);
4383 if (!sc->bnx_link &&
4384 (mii->mii_media_status & IFM_ACTIVE) &&
4385 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4386 sc->bnx_link++;
4387 if (bootverbose)
4388 if_printf(ifp, "link UP\n");
4389 } else if (sc->bnx_link &&
4390 (!(mii->mii_media_status & IFM_ACTIVE) ||
4391 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4392 sc->bnx_link = 0;
4393 if (bootverbose)
4394 if_printf(ifp, "link DOWN\n");
4397 /* Clear the attention. */
4398 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4399 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4400 BGE_MACSTAT_LINK_CHANGED);
4403 static int
4404 bnx_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4406 struct bnx_softc *sc = arg1;
4408 return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4409 &sc->bnx_rx_coal_ticks,
4410 BNX_RX_COAL_TICKS_MIN, BNX_RX_COAL_TICKS_MAX,
4411 BNX_RX_COAL_TICKS_CHG);
4414 static int
4415 bnx_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4417 struct bnx_softc *sc = arg1;
4419 return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4420 &sc->bnx_tx_coal_ticks,
4421 BNX_TX_COAL_TICKS_MIN, BNX_TX_COAL_TICKS_MAX,
4422 BNX_TX_COAL_TICKS_CHG);
4425 static int
4426 bnx_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4428 struct bnx_softc *sc = arg1;
4430 return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4431 &sc->bnx_rx_coal_bds,
4432 BNX_RX_COAL_BDS_MIN, BNX_RX_COAL_BDS_MAX,
4433 BNX_RX_COAL_BDS_CHG);
4436 static int
4437 bnx_sysctl_rx_coal_bds_poll(SYSCTL_HANDLER_ARGS)
4439 struct bnx_softc *sc = arg1;
4441 return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4442 &sc->bnx_rx_coal_bds_poll,
4443 BNX_RX_COAL_BDS_MIN, BNX_RX_COAL_BDS_MAX,
4444 BNX_RX_COAL_BDS_CHG);
4447 static int
4448 bnx_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4450 struct bnx_softc *sc = arg1;
4452 return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4453 &sc->bnx_tx_coal_bds,
4454 BNX_TX_COAL_BDS_MIN, BNX_TX_COAL_BDS_MAX,
4455 BNX_TX_COAL_BDS_CHG);
4458 static int
4459 bnx_sysctl_tx_coal_bds_poll(SYSCTL_HANDLER_ARGS)
4461 struct bnx_softc *sc = arg1;
4463 return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4464 &sc->bnx_tx_coal_bds_poll,
4465 BNX_TX_COAL_BDS_MIN, BNX_TX_COAL_BDS_MAX,
4466 BNX_TX_COAL_BDS_CHG);
4469 static int
4470 bnx_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4472 struct bnx_softc *sc = arg1;
4474 return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4475 &sc->bnx_rx_coal_bds_int,
4476 BNX_RX_COAL_BDS_MIN, BNX_RX_COAL_BDS_MAX,
4477 BNX_RX_COAL_BDS_INT_CHG);
4480 static int
4481 bnx_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4483 struct bnx_softc *sc = arg1;
4485 return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4486 &sc->bnx_tx_coal_bds_int,
4487 BNX_TX_COAL_BDS_MIN, BNX_TX_COAL_BDS_MAX,
4488 BNX_TX_COAL_BDS_INT_CHG);
4491 static int
4492 bnx_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4493 int coal_min, int coal_max, uint32_t coal_chg_mask)
4495 struct bnx_softc *sc = arg1;
4496 struct ifnet *ifp = &sc->arpcom.ac_if;
4497 int error = 0, v;
4499 ifnet_serialize_all(ifp);
4501 v = *coal;
4502 error = sysctl_handle_int(oidp, &v, 0, req);
4503 if (!error && req->newptr != NULL) {
4504 if (v < coal_min || v > coal_max) {
4505 error = EINVAL;
4506 } else {
4507 *coal = v;
4508 sc->bnx_coal_chg |= coal_chg_mask;
4510 /* Commit changes */
4511 bnx_coal_change(sc);
4515 ifnet_deserialize_all(ifp);
4516 return error;
4519 static void
4520 bnx_coal_change(struct bnx_softc *sc)
4522 struct ifnet *ifp = &sc->arpcom.ac_if;
4523 int i;
4525 ASSERT_IFNET_SERIALIZED_ALL(ifp);
4527 if (sc->bnx_coal_chg & BNX_RX_COAL_TICKS_CHG) {
4528 if (sc->bnx_rx_retcnt == 1) {
4529 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4530 sc->bnx_rx_coal_ticks);
4531 i = 0;
4532 } else {
4533 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, 0);
4534 for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
4535 CSR_WRITE_4(sc, BGE_VEC1_RX_COAL_TICKS +
4536 (i * BGE_VEC_COALSET_SIZE),
4537 sc->bnx_rx_coal_ticks);
4540 for (; i < BNX_INTR_MAX - 1; ++i) {
4541 CSR_WRITE_4(sc, BGE_VEC1_RX_COAL_TICKS +
4542 (i * BGE_VEC_COALSET_SIZE), 0);
4544 if (bootverbose) {
4545 if_printf(ifp, "rx_coal_ticks -> %u\n",
4546 sc->bnx_rx_coal_ticks);
4550 if (sc->bnx_coal_chg & BNX_TX_COAL_TICKS_CHG) {
4551 if (sc->bnx_tx_ringcnt == 1) {
4552 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4553 sc->bnx_tx_coal_ticks);
4554 i = 0;
4555 } else {
4556 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, 0);
4557 for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
4558 CSR_WRITE_4(sc, BGE_VEC1_TX_COAL_TICKS +
4559 (i * BGE_VEC_COALSET_SIZE),
4560 sc->bnx_tx_coal_ticks);
4563 for (; i < BNX_INTR_MAX - 1; ++i) {
4564 CSR_WRITE_4(sc, BGE_VEC1_TX_COAL_TICKS +
4565 (i * BGE_VEC_COALSET_SIZE), 0);
4567 if (bootverbose) {
4568 if_printf(ifp, "tx_coal_ticks -> %u\n",
4569 sc->bnx_tx_coal_ticks);
4573 if (sc->bnx_coal_chg & BNX_RX_COAL_BDS_CHG) {
4574 uint32_t rx_coal_bds;
4576 if (ifp->if_flags & IFF_NPOLLING)
4577 rx_coal_bds = sc->bnx_rx_coal_bds_poll;
4578 else
4579 rx_coal_bds = sc->bnx_rx_coal_bds;
4581 if (sc->bnx_rx_retcnt == 1) {
4582 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_coal_bds);
4583 i = 0;
4584 } else {
4585 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, 0);
4586 for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
4587 CSR_WRITE_4(sc, BGE_VEC1_RX_MAX_COAL_BDS +
4588 (i * BGE_VEC_COALSET_SIZE), rx_coal_bds);
4591 for (; i < BNX_INTR_MAX - 1; ++i) {
4592 CSR_WRITE_4(sc, BGE_VEC1_RX_MAX_COAL_BDS +
4593 (i * BGE_VEC_COALSET_SIZE), 0);
4595 if (bootverbose) {
4596 if_printf(ifp, "%srx_coal_bds -> %u\n",
4597 (ifp->if_flags & IFF_NPOLLING) ? "polling " : "",
4598 rx_coal_bds);
4602 if (sc->bnx_coal_chg & BNX_TX_COAL_BDS_CHG) {
4603 uint32_t tx_coal_bds;
4605 if (ifp->if_flags & IFF_NPOLLING)
4606 tx_coal_bds = sc->bnx_tx_coal_bds_poll;
4607 else
4608 tx_coal_bds = sc->bnx_tx_coal_bds;
4610 if (sc->bnx_tx_ringcnt == 1) {
4611 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, tx_coal_bds);
4612 i = 0;
4613 } else {
4614 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, 0);
4615 for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
4616 CSR_WRITE_4(sc, BGE_VEC1_TX_MAX_COAL_BDS +
4617 (i * BGE_VEC_COALSET_SIZE), tx_coal_bds);
4620 for (; i < BNX_INTR_MAX - 1; ++i) {
4621 CSR_WRITE_4(sc, BGE_VEC1_TX_MAX_COAL_BDS +
4622 (i * BGE_VEC_COALSET_SIZE), 0);
4624 if (bootverbose) {
4625 if_printf(ifp, "%stx_coal_bds -> %u\n",
4626 (ifp->if_flags & IFF_NPOLLING) ? "polling " : "",
4627 tx_coal_bds);
4631 if (sc->bnx_coal_chg & BNX_RX_COAL_BDS_INT_CHG) {
4632 if (sc->bnx_rx_retcnt == 1) {
4633 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4634 sc->bnx_rx_coal_bds_int);
4635 i = 0;
4636 } else {
4637 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
4638 for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
4639 CSR_WRITE_4(sc, BGE_VEC1_RX_MAX_COAL_BDS_INT +
4640 (i * BGE_VEC_COALSET_SIZE),
4641 sc->bnx_rx_coal_bds_int);
4644 for (; i < BNX_INTR_MAX - 1; ++i) {
4645 CSR_WRITE_4(sc, BGE_VEC1_RX_MAX_COAL_BDS_INT +
4646 (i * BGE_VEC_COALSET_SIZE), 0);
4648 if (bootverbose) {
4649 if_printf(ifp, "rx_coal_bds_int -> %u\n",
4650 sc->bnx_rx_coal_bds_int);
4654 if (sc->bnx_coal_chg & BNX_TX_COAL_BDS_INT_CHG) {
4655 if (sc->bnx_tx_ringcnt == 1) {
4656 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4657 sc->bnx_tx_coal_bds_int);
4658 i = 0;
4659 } else {
4660 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
4661 for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
4662 CSR_WRITE_4(sc, BGE_VEC1_TX_MAX_COAL_BDS_INT +
4663 (i * BGE_VEC_COALSET_SIZE),
4664 sc->bnx_tx_coal_bds_int);
4667 for (; i < BNX_INTR_MAX - 1; ++i) {
4668 CSR_WRITE_4(sc, BGE_VEC1_TX_MAX_COAL_BDS_INT +
4669 (i * BGE_VEC_COALSET_SIZE), 0);
4671 if (bootverbose) {
4672 if_printf(ifp, "tx_coal_bds_int -> %u\n",
4673 sc->bnx_tx_coal_bds_int);
4677 sc->bnx_coal_chg = 0;
4680 static void
4681 bnx_check_intr_rxtx(void *xintr)
4683 struct bnx_intr_data *intr = xintr;
4684 struct bnx_rx_ret_ring *ret;
4685 struct bnx_tx_ring *txr;
4686 struct ifnet *ifp;
4688 lwkt_serialize_enter(intr->bnx_intr_serialize);
4690 KKASSERT(mycpuid == intr->bnx_intr_cpuid);
4692 ifp = &intr->bnx_sc->arpcom.ac_if;
4693 if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) != IFF_RUNNING) {
4694 lwkt_serialize_exit(intr->bnx_intr_serialize);
4695 return;
4698 txr = intr->bnx_txr;
4699 ret = intr->bnx_ret;
4701 if (*ret->bnx_rx_considx != ret->bnx_rx_saved_considx ||
4702 *txr->bnx_tx_considx != txr->bnx_tx_saved_considx) {
4703 if (intr->bnx_rx_check_considx == ret->bnx_rx_saved_considx &&
4704 intr->bnx_tx_check_considx == txr->bnx_tx_saved_considx) {
4705 if (!intr->bnx_intr_maylose) {
4706 intr->bnx_intr_maylose = TRUE;
4707 goto done;
4709 if (bootverbose)
4710 if_printf(ifp, "lost interrupt\n");
4711 intr->bnx_intr_func(intr->bnx_intr_arg);
4714 intr->bnx_intr_maylose = FALSE;
4715 intr->bnx_rx_check_considx = ret->bnx_rx_saved_considx;
4716 intr->bnx_tx_check_considx = txr->bnx_tx_saved_considx;
4718 done:
4719 callout_reset(&intr->bnx_intr_timer, BNX_INTR_CKINTVL,
4720 intr->bnx_intr_check, intr);
4721 lwkt_serialize_exit(intr->bnx_intr_serialize);
4724 static void
4725 bnx_check_intr_tx(void *xintr)
4727 struct bnx_intr_data *intr = xintr;
4728 struct bnx_tx_ring *txr;
4729 struct ifnet *ifp;
4731 lwkt_serialize_enter(intr->bnx_intr_serialize);
4733 KKASSERT(mycpuid == intr->bnx_intr_cpuid);
4735 ifp = &intr->bnx_sc->arpcom.ac_if;
4736 if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) != IFF_RUNNING) {
4737 lwkt_serialize_exit(intr->bnx_intr_serialize);
4738 return;
4741 txr = intr->bnx_txr;
4743 if (*txr->bnx_tx_considx != txr->bnx_tx_saved_considx) {
4744 if (intr->bnx_tx_check_considx == txr->bnx_tx_saved_considx) {
4745 if (!intr->bnx_intr_maylose) {
4746 intr->bnx_intr_maylose = TRUE;
4747 goto done;
4749 if (bootverbose)
4750 if_printf(ifp, "lost interrupt\n");
4751 intr->bnx_intr_func(intr->bnx_intr_arg);
4754 intr->bnx_intr_maylose = FALSE;
4755 intr->bnx_tx_check_considx = txr->bnx_tx_saved_considx;
4757 done:
4758 callout_reset(&intr->bnx_intr_timer, BNX_INTR_CKINTVL,
4759 intr->bnx_intr_check, intr);
4760 lwkt_serialize_exit(intr->bnx_intr_serialize);
4763 static void
4764 bnx_check_intr_rx(void *xintr)
4766 struct bnx_intr_data *intr = xintr;
4767 struct bnx_rx_ret_ring *ret;
4768 struct ifnet *ifp;
4770 lwkt_serialize_enter(intr->bnx_intr_serialize);
4772 KKASSERT(mycpuid == intr->bnx_intr_cpuid);
4774 ifp = &intr->bnx_sc->arpcom.ac_if;
4775 if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) != IFF_RUNNING) {
4776 lwkt_serialize_exit(intr->bnx_intr_serialize);
4777 return;
4780 ret = intr->bnx_ret;
4782 if (*ret->bnx_rx_considx != ret->bnx_rx_saved_considx) {
4783 if (intr->bnx_rx_check_considx == ret->bnx_rx_saved_considx) {
4784 if (!intr->bnx_intr_maylose) {
4785 intr->bnx_intr_maylose = TRUE;
4786 goto done;
4788 if (bootverbose)
4789 if_printf(ifp, "lost interrupt\n");
4790 intr->bnx_intr_func(intr->bnx_intr_arg);
4793 intr->bnx_intr_maylose = FALSE;
4794 intr->bnx_rx_check_considx = ret->bnx_rx_saved_considx;
4796 done:
4797 callout_reset(&intr->bnx_intr_timer, BNX_INTR_CKINTVL,
4798 intr->bnx_intr_check, intr);
4799 lwkt_serialize_exit(intr->bnx_intr_serialize);
4802 static void
4803 bnx_enable_intr(struct bnx_softc *sc)
4805 struct ifnet *ifp = &sc->arpcom.ac_if;
4806 int i;
4808 for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4809 lwkt_serialize_handler_enable(
4810 sc->bnx_intr_data[i].bnx_intr_serialize);
4814 * Enable interrupt.
4816 for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4817 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4819 bnx_writembx(sc, intr->bnx_intr_mbx,
4820 (*intr->bnx_saved_status_tag) << 24);
4821 /* XXX Linux driver */
4822 bnx_writembx(sc, intr->bnx_intr_mbx,
4823 (*intr->bnx_saved_status_tag) << 24);
4827 * Unmask the interrupt when we stop polling.
4829 PCI_CLRBIT(sc->bnx_dev, BGE_PCI_MISC_CTL,
4830 BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4833 * Trigger another interrupt, since above writing
4834 * to interrupt mailbox0 may acknowledge pending
4835 * interrupt.
4837 BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4839 if (sc->bnx_flags & BNX_FLAG_STATUSTAG_BUG) {
4840 if (bootverbose)
4841 if_printf(ifp, "status tag bug workaround\n");
4843 for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4844 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4846 if (intr->bnx_intr_check == NULL)
4847 continue;
4848 intr->bnx_intr_maylose = FALSE;
4849 intr->bnx_rx_check_considx = 0;
4850 intr->bnx_tx_check_considx = 0;
4851 callout_reset_bycpu(&intr->bnx_intr_timer,
4852 BNX_INTR_CKINTVL, intr->bnx_intr_check, intr,
4853 intr->bnx_intr_cpuid);
4858 static void
4859 bnx_disable_intr(struct bnx_softc *sc)
4861 int i;
4863 for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4864 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4866 callout_stop(&intr->bnx_intr_timer);
4867 intr->bnx_intr_maylose = FALSE;
4868 intr->bnx_rx_check_considx = 0;
4869 intr->bnx_tx_check_considx = 0;
4873 * Mask the interrupt when we start polling.
4875 PCI_SETBIT(sc->bnx_dev, BGE_PCI_MISC_CTL,
4876 BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4879 * Acknowledge possible asserted interrupt.
4881 for (i = 0; i < BNX_INTR_MAX; ++i)
4882 bnx_writembx(sc, sc->bnx_intr_data[i].bnx_intr_mbx, 1);
4884 for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4885 lwkt_serialize_handler_disable(
4886 sc->bnx_intr_data[i].bnx_intr_serialize);
4890 static int
4891 bnx_get_eaddr_mem(struct bnx_softc *sc, uint8_t ether_addr[])
4893 uint32_t mac_addr;
4894 int ret = 1;
4896 mac_addr = bnx_readmem_ind(sc, 0x0c14);
4897 if ((mac_addr >> 16) == 0x484b) {
4898 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4899 ether_addr[1] = (uint8_t)mac_addr;
4900 mac_addr = bnx_readmem_ind(sc, 0x0c18);
4901 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4902 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4903 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4904 ether_addr[5] = (uint8_t)mac_addr;
4905 ret = 0;
4907 return ret;
4910 static int
4911 bnx_get_eaddr_nvram(struct bnx_softc *sc, uint8_t ether_addr[])
4913 int mac_offset = BGE_EE_MAC_OFFSET;
4915 if (BNX_IS_5717_PLUS(sc)) {
4916 int f;
4918 f = pci_get_function(sc->bnx_dev);
4919 if (f & 1)
4920 mac_offset = BGE_EE_MAC_OFFSET_5717;
4921 if (f > 1)
4922 mac_offset += BGE_EE_MAC_OFFSET_5717_OFF;
4925 return bnx_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4928 static int
4929 bnx_get_eaddr_eeprom(struct bnx_softc *sc, uint8_t ether_addr[])
4931 if (sc->bnx_flags & BNX_FLAG_NO_EEPROM)
4932 return 1;
4934 return bnx_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4935 ETHER_ADDR_LEN);
4938 static int
4939 bnx_get_eaddr(struct bnx_softc *sc, uint8_t eaddr[])
4941 static const bnx_eaddr_fcn_t bnx_eaddr_funcs[] = {
4942 /* NOTE: Order is critical */
4943 bnx_get_eaddr_mem,
4944 bnx_get_eaddr_nvram,
4945 bnx_get_eaddr_eeprom,
4946 NULL
4948 const bnx_eaddr_fcn_t *func;
4950 for (func = bnx_eaddr_funcs; *func != NULL; ++func) {
4951 if ((*func)(sc, eaddr) == 0)
4952 break;
4954 return (*func == NULL ? ENXIO : 0);
4958 * NOTE: 'm' is not freed upon failure
4960 struct mbuf *
4961 bnx_defrag_shortdma(struct mbuf *m)
4963 struct mbuf *n;
4964 int found;
4967 * If device receive two back-to-back send BDs with less than
4968 * or equal to 8 total bytes then the device may hang. The two
4969 * back-to-back send BDs must in the same frame for this failure
4970 * to occur. Scan mbuf chains and see whether two back-to-back
4971 * send BDs are there. If this is the case, allocate new mbuf
4972 * and copy the frame to workaround the silicon bug.
4974 for (n = m, found = 0; n != NULL; n = n->m_next) {
4975 if (n->m_len < 8) {
4976 found++;
4977 if (found > 1)
4978 break;
4979 continue;
4981 found = 0;
4984 if (found > 1)
4985 n = m_defrag(m, M_NOWAIT);
4986 else
4987 n = m;
4988 return n;
4991 static void
4992 bnx_stop_block(struct bnx_softc *sc, bus_size_t reg, uint32_t bit)
4994 int i;
4996 BNX_CLRBIT(sc, reg, bit);
4997 for (i = 0; i < BNX_TIMEOUT; i++) {
4998 if ((CSR_READ_4(sc, reg) & bit) == 0)
4999 return;
5000 DELAY(100);
5004 static void
5005 bnx_link_poll(struct bnx_softc *sc)
5007 uint32_t status;
5009 status = CSR_READ_4(sc, BGE_MAC_STS);
5010 if ((status & sc->bnx_link_chg) || sc->bnx_link_evt) {
5011 sc->bnx_link_evt = 0;
5012 sc->bnx_link_upd(sc, status);
5016 static void
5017 bnx_enable_msi(struct bnx_softc *sc, boolean_t is_msix)
5019 uint32_t msi_mode;
5021 msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
5022 msi_mode |= BGE_MSIMODE_ENABLE;
5024 * NOTE:
5025 * 5718-PG105-R says that "one shot" mode does not work
5026 * if MSI is used, however, it obviously works.
5028 msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
5029 if (is_msix)
5030 msi_mode |= BGE_MSIMODE_MSIX_MULTIMODE;
5031 else
5032 msi_mode &= ~BGE_MSIMODE_MSIX_MULTIMODE;
5033 CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
5036 static uint32_t
5037 bnx_dma_swap_options(struct bnx_softc *sc)
5039 uint32_t dma_options;
5041 dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
5042 BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
5043 #if BYTE_ORDER == BIG_ENDIAN
5044 dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
5045 #endif
5046 return dma_options;
5049 static int
5050 bnx_setup_tso(struct bnx_tx_ring *txr, struct mbuf **mp,
5051 uint16_t *mss0, uint16_t *flags0)
5053 struct mbuf *m;
5054 struct ip *ip;
5055 struct tcphdr *th;
5056 int thoff, iphlen, hoff, hlen;
5057 uint16_t flags, mss;
5059 m = *mp;
5060 KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
5062 hoff = m->m_pkthdr.csum_lhlen;
5063 iphlen = m->m_pkthdr.csum_iphlen;
5064 thoff = m->m_pkthdr.csum_thlen;
5066 KASSERT(hoff > 0, ("invalid ether header len"));
5067 KASSERT(iphlen > 0, ("invalid ip header len"));
5068 KASSERT(thoff > 0, ("invalid tcp header len"));
5070 if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
5071 m = m_pullup(m, hoff + iphlen + thoff);
5072 if (m == NULL) {
5073 *mp = NULL;
5074 return ENOBUFS;
5076 *mp = m;
5078 ip = mtodoff(m, struct ip *, hoff);
5079 th = mtodoff(m, struct tcphdr *, hoff + iphlen);
5081 mss = m->m_pkthdr.tso_segsz;
5082 flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
5084 ip->ip_len = htons(mss + iphlen + thoff);
5085 th->th_sum = 0;
5087 hlen = (iphlen + thoff) >> 2;
5088 mss |= ((hlen & 0x3) << 14);
5089 flags |= ((hlen & 0xf8) << 7) | ((hlen & 0x4) << 2);
5091 *mss0 = mss;
5092 *flags0 = flags;
5094 return 0;
5097 static int
5098 bnx_create_tx_ring(struct bnx_tx_ring *txr)
5100 bus_size_t txmaxsz, txmaxsegsz;
5101 int i, error;
5103 lwkt_serialize_init(&txr->bnx_tx_serialize);
5106 * Create DMA tag and maps for TX mbufs.
5108 if (txr->bnx_sc->bnx_flags & BNX_FLAG_TSO)
5109 txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
5110 else
5111 txmaxsz = BNX_JUMBO_FRAMELEN;
5112 if (txr->bnx_sc->bnx_asicrev == BGE_ASICREV_BCM57766)
5113 txmaxsegsz = MCLBYTES;
5114 else
5115 txmaxsegsz = PAGE_SIZE;
5116 error = bus_dma_tag_create(txr->bnx_sc->bnx_cdata.bnx_parent_tag,
5117 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
5118 txmaxsz, BNX_NSEG_NEW, txmaxsegsz,
5119 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
5120 &txr->bnx_tx_mtag);
5121 if (error) {
5122 device_printf(txr->bnx_sc->bnx_dev,
5123 "could not create TX mbuf DMA tag\n");
5124 return error;
5127 for (i = 0; i < BGE_TX_RING_CNT; i++) {
5128 error = bus_dmamap_create(txr->bnx_tx_mtag,
5129 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
5130 &txr->bnx_tx_buf[i].bnx_tx_dmamap);
5131 if (error) {
5132 int j;
5134 for (j = 0; j < i; ++j) {
5135 bus_dmamap_destroy(txr->bnx_tx_mtag,
5136 txr->bnx_tx_buf[j].bnx_tx_dmamap);
5138 bus_dma_tag_destroy(txr->bnx_tx_mtag);
5139 txr->bnx_tx_mtag = NULL;
5141 device_printf(txr->bnx_sc->bnx_dev,
5142 "could not create TX mbuf DMA map\n");
5143 return error;
5148 * Create DMA stuffs for TX ring.
5150 error = bnx_dma_block_alloc(txr->bnx_sc, BGE_TX_RING_SZ,
5151 &txr->bnx_tx_ring_tag,
5152 &txr->bnx_tx_ring_map,
5153 (void *)&txr->bnx_tx_ring,
5154 &txr->bnx_tx_ring_paddr);
5155 if (error) {
5156 device_printf(txr->bnx_sc->bnx_dev,
5157 "could not create TX ring\n");
5158 return error;
5161 txr->bnx_tx_flags |= BNX_TX_FLAG_SHORTDMA;
5162 txr->bnx_tx_wreg = BNX_TX_WREG_NSEGS;
5164 return 0;
5167 static void
5168 bnx_destroy_tx_ring(struct bnx_tx_ring *txr)
5170 /* Destroy TX mbuf DMA stuffs. */
5171 if (txr->bnx_tx_mtag != NULL) {
5172 int i;
5174 for (i = 0; i < BGE_TX_RING_CNT; i++) {
5175 KKASSERT(txr->bnx_tx_buf[i].bnx_tx_mbuf == NULL);
5176 bus_dmamap_destroy(txr->bnx_tx_mtag,
5177 txr->bnx_tx_buf[i].bnx_tx_dmamap);
5179 bus_dma_tag_destroy(txr->bnx_tx_mtag);
5182 /* Destroy TX ring */
5183 bnx_dma_block_free(txr->bnx_tx_ring_tag,
5184 txr->bnx_tx_ring_map, txr->bnx_tx_ring);
5187 static int
5188 bnx_sysctl_force_defrag(SYSCTL_HANDLER_ARGS)
5190 struct bnx_softc *sc = (void *)arg1;
5191 struct ifnet *ifp = &sc->arpcom.ac_if;
5192 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[0];
5193 int error, defrag, i;
5195 if (txr->bnx_tx_flags & BNX_TX_FLAG_FORCE_DEFRAG)
5196 defrag = 1;
5197 else
5198 defrag = 0;
5200 error = sysctl_handle_int(oidp, &defrag, 0, req);
5201 if (error || req->newptr == NULL)
5202 return error;
5204 ifnet_serialize_all(ifp);
5205 for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
5206 txr = &sc->bnx_tx_ring[i];
5207 if (defrag)
5208 txr->bnx_tx_flags |= BNX_TX_FLAG_FORCE_DEFRAG;
5209 else
5210 txr->bnx_tx_flags &= ~BNX_TX_FLAG_FORCE_DEFRAG;
5212 ifnet_deserialize_all(ifp);
5214 return 0;
5217 static int
5218 bnx_sysctl_tx_wreg(SYSCTL_HANDLER_ARGS)
5220 struct bnx_softc *sc = (void *)arg1;
5221 struct ifnet *ifp = &sc->arpcom.ac_if;
5222 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[0];
5223 int error, tx_wreg, i;
5225 tx_wreg = txr->bnx_tx_wreg;
5226 error = sysctl_handle_int(oidp, &tx_wreg, 0, req);
5227 if (error || req->newptr == NULL)
5228 return error;
5230 ifnet_serialize_all(ifp);
5231 for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
5232 sc->bnx_tx_ring[i].bnx_tx_wreg = tx_wreg;
5233 ifnet_deserialize_all(ifp);
5235 return 0;
5238 static int
5239 bnx_create_rx_ret_ring(struct bnx_rx_ret_ring *ret)
5241 int error;
5243 lwkt_serialize_init(&ret->bnx_rx_ret_serialize);
5246 * Create DMA stuffs for RX return ring.
5248 error = bnx_dma_block_alloc(ret->bnx_sc,
5249 BGE_RX_RTN_RING_SZ(BNX_RETURN_RING_CNT),
5250 &ret->bnx_rx_ret_ring_tag,
5251 &ret->bnx_rx_ret_ring_map,
5252 (void *)&ret->bnx_rx_ret_ring,
5253 &ret->bnx_rx_ret_ring_paddr);
5254 if (error) {
5255 device_printf(ret->bnx_sc->bnx_dev,
5256 "could not create RX ret ring\n");
5257 return error;
5260 /* Shadow standard ring's RX mbuf DMA tag */
5261 ret->bnx_rx_mtag = ret->bnx_std->bnx_rx_mtag;
5264 * Create tmp DMA map for RX mbufs.
5266 error = bus_dmamap_create(ret->bnx_rx_mtag, BUS_DMA_WAITOK,
5267 &ret->bnx_rx_tmpmap);
5268 if (error) {
5269 device_printf(ret->bnx_sc->bnx_dev,
5270 "could not create tmp RX mbuf DMA map\n");
5271 ret->bnx_rx_mtag = NULL;
5272 return error;
5274 return 0;
5277 static void
5278 bnx_destroy_rx_ret_ring(struct bnx_rx_ret_ring *ret)
5280 /* Destroy tmp RX mbuf DMA map */
5281 if (ret->bnx_rx_mtag != NULL)
5282 bus_dmamap_destroy(ret->bnx_rx_mtag, ret->bnx_rx_tmpmap);
5284 /* Destroy RX return ring */
5285 bnx_dma_block_free(ret->bnx_rx_ret_ring_tag,
5286 ret->bnx_rx_ret_ring_map, ret->bnx_rx_ret_ring);
5289 static int
5290 bnx_alloc_intr(struct bnx_softc *sc)
5292 struct bnx_intr_data *intr;
5293 u_int intr_flags;
5294 int error;
5296 if (sc->bnx_intr_cnt > 1) {
5297 error = bnx_alloc_msix(sc);
5298 if (error)
5299 return error;
5300 KKASSERT(sc->bnx_intr_type == PCI_INTR_TYPE_MSIX);
5301 return 0;
5304 KKASSERT(sc->bnx_intr_cnt == 1);
5306 intr = &sc->bnx_intr_data[0];
5307 intr->bnx_ret = &sc->bnx_rx_ret_ring[0];
5308 intr->bnx_txr = &sc->bnx_tx_ring[0];
5309 intr->bnx_intr_serialize = &sc->bnx_main_serialize;
5310 intr->bnx_intr_check = bnx_check_intr_rxtx;
5311 intr->bnx_saved_status_tag = &intr->bnx_ret->bnx_saved_status_tag;
5313 sc->bnx_intr_type = pci_alloc_1intr(sc->bnx_dev, bnx_msi_enable,
5314 &intr->bnx_intr_rid, &intr_flags);
5316 intr->bnx_intr_res = bus_alloc_resource_any(sc->bnx_dev, SYS_RES_IRQ,
5317 &intr->bnx_intr_rid, intr_flags);
5318 if (intr->bnx_intr_res == NULL) {
5319 device_printf(sc->bnx_dev, "could not alloc interrupt\n");
5320 return ENXIO;
5323 if (sc->bnx_intr_type == PCI_INTR_TYPE_MSI) {
5324 bnx_enable_msi(sc, FALSE);
5325 intr->bnx_intr_func = bnx_msi;
5326 if (bootverbose)
5327 device_printf(sc->bnx_dev, "oneshot MSI\n");
5328 } else {
5329 intr->bnx_intr_func = bnx_intr_legacy;
5331 intr->bnx_intr_arg = sc;
5332 intr->bnx_intr_cpuid = rman_get_cpuid(intr->bnx_intr_res);
5334 intr->bnx_txr->bnx_tx_cpuid = intr->bnx_intr_cpuid;
5336 return 0;
5339 static int
5340 bnx_setup_intr(struct bnx_softc *sc)
5342 int error, i;
5344 for (i = 0; i < sc->bnx_intr_cnt; ++i) {
5345 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
5347 error = bus_setup_intr_descr(sc->bnx_dev, intr->bnx_intr_res,
5348 INTR_MPSAFE, intr->bnx_intr_func, intr->bnx_intr_arg,
5349 &intr->bnx_intr_hand, intr->bnx_intr_serialize,
5350 intr->bnx_intr_desc);
5351 if (error) {
5352 device_printf(sc->bnx_dev,
5353 "could not set up %dth intr\n", i);
5354 bnx_teardown_intr(sc, i);
5355 return error;
5358 return 0;
5361 static void
5362 bnx_teardown_intr(struct bnx_softc *sc, int cnt)
5364 int i;
5366 for (i = 0; i < cnt; ++i) {
5367 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
5369 bus_teardown_intr(sc->bnx_dev, intr->bnx_intr_res,
5370 intr->bnx_intr_hand);
5374 static void
5375 bnx_free_intr(struct bnx_softc *sc)
5377 if (sc->bnx_intr_type != PCI_INTR_TYPE_MSIX) {
5378 struct bnx_intr_data *intr;
5380 KKASSERT(sc->bnx_intr_cnt <= 1);
5381 intr = &sc->bnx_intr_data[0];
5383 if (intr->bnx_intr_res != NULL) {
5384 bus_release_resource(sc->bnx_dev, SYS_RES_IRQ,
5385 intr->bnx_intr_rid, intr->bnx_intr_res);
5387 if (sc->bnx_intr_type == PCI_INTR_TYPE_MSI)
5388 pci_release_msi(sc->bnx_dev);
5389 } else {
5390 bnx_free_msix(sc, TRUE);
5394 static void
5395 bnx_setup_serialize(struct bnx_softc *sc)
5397 int i, j;
5400 * Allocate serializer array
5403 /* Main + RX STD + TX + RX RET */
5404 sc->bnx_serialize_cnt = 1 + 1 + sc->bnx_tx_ringcnt + sc->bnx_rx_retcnt;
5406 sc->bnx_serialize =
5407 kmalloc(sc->bnx_serialize_cnt * sizeof(struct lwkt_serialize *),
5408 M_DEVBUF, M_WAITOK | M_ZERO);
5411 * Setup serializers
5413 * NOTE: Order is critical
5416 i = 0;
5418 KKASSERT(i < sc->bnx_serialize_cnt);
5419 sc->bnx_serialize[i++] = &sc->bnx_main_serialize;
5421 KKASSERT(i < sc->bnx_serialize_cnt);
5422 sc->bnx_serialize[i++] = &sc->bnx_rx_std_ring.bnx_rx_std_serialize;
5424 for (j = 0; j < sc->bnx_rx_retcnt; ++j) {
5425 KKASSERT(i < sc->bnx_serialize_cnt);
5426 sc->bnx_serialize[i++] =
5427 &sc->bnx_rx_ret_ring[j].bnx_rx_ret_serialize;
5430 for (j = 0; j < sc->bnx_tx_ringcnt; ++j) {
5431 KKASSERT(i < sc->bnx_serialize_cnt);
5432 sc->bnx_serialize[i++] =
5433 &sc->bnx_tx_ring[j].bnx_tx_serialize;
5436 KKASSERT(i == sc->bnx_serialize_cnt);
5439 static void
5440 bnx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
5442 struct bnx_softc *sc = ifp->if_softc;
5444 ifnet_serialize_array_enter(sc->bnx_serialize,
5445 sc->bnx_serialize_cnt, slz);
5448 static void
5449 bnx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
5451 struct bnx_softc *sc = ifp->if_softc;
5453 ifnet_serialize_array_exit(sc->bnx_serialize,
5454 sc->bnx_serialize_cnt, slz);
5457 static int
5458 bnx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
5460 struct bnx_softc *sc = ifp->if_softc;
5462 return ifnet_serialize_array_try(sc->bnx_serialize,
5463 sc->bnx_serialize_cnt, slz);
5466 #ifdef INVARIANTS
5468 static void
5469 bnx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
5470 boolean_t serialized)
5472 struct bnx_softc *sc = ifp->if_softc;
5474 ifnet_serialize_array_assert(sc->bnx_serialize, sc->bnx_serialize_cnt,
5475 slz, serialized);
5478 #endif /* INVARIANTS */
5480 static void
5481 bnx_set_tick_cpuid(struct bnx_softc *sc, boolean_t polling)
5483 if (polling)
5484 sc->bnx_tick_cpuid = 0; /* XXX */
5485 else
5486 sc->bnx_tick_cpuid = sc->bnx_intr_data[0].bnx_intr_cpuid;
5489 static void
5490 bnx_rx_std_refill_ithread(void *xstd)
5492 struct bnx_rx_std_ring *std = xstd;
5493 struct globaldata *gd = mycpu;
5495 crit_enter_gd(gd);
5497 while (!std->bnx_rx_std_stop) {
5498 if (std->bnx_rx_std_refill) {
5499 lwkt_serialize_handler_call(
5500 &std->bnx_rx_std_serialize,
5501 bnx_rx_std_refill, std, NULL);
5504 crit_exit_gd(gd);
5505 crit_enter_gd(gd);
5507 atomic_poll_release_int(&std->bnx_rx_std_running);
5508 cpu_mfence();
5510 if (!std->bnx_rx_std_refill && !std->bnx_rx_std_stop) {
5511 lwkt_deschedule_self(gd->gd_curthread);
5512 lwkt_switch();
5516 crit_exit_gd(gd);
5518 wakeup(std);
5520 lwkt_exit();
5523 static void
5524 bnx_rx_std_refill(void *xstd, void *frame __unused)
5526 struct bnx_rx_std_ring *std = xstd;
5527 int cnt, refill_mask;
5529 again:
5530 cnt = 0;
5532 cpu_lfence();
5533 refill_mask = std->bnx_rx_std_refill;
5534 atomic_clear_int(&std->bnx_rx_std_refill, refill_mask);
5536 while (refill_mask) {
5537 uint16_t check_idx = std->bnx_rx_std;
5538 int ret_idx;
5540 ret_idx = bsfl(refill_mask);
5541 for (;;) {
5542 struct bnx_rx_buf *rb;
5543 int refilled;
5545 BNX_INC(check_idx, BGE_STD_RX_RING_CNT);
5546 rb = &std->bnx_rx_std_buf[check_idx];
5547 refilled = rb->bnx_rx_refilled;
5548 cpu_lfence();
5549 if (refilled) {
5550 bnx_setup_rxdesc_std(std, check_idx);
5551 std->bnx_rx_std = check_idx;
5552 ++cnt;
5553 if (cnt >= 8) {
5554 atomic_subtract_int(
5555 &std->bnx_rx_std_used, cnt);
5556 bnx_writembx(std->bnx_sc,
5557 BGE_MBX_RX_STD_PROD_LO,
5558 std->bnx_rx_std);
5559 cnt = 0;
5561 } else {
5562 break;
5565 refill_mask &= ~(1 << ret_idx);
5568 if (cnt) {
5569 atomic_subtract_int(&std->bnx_rx_std_used, cnt);
5570 bnx_writembx(std->bnx_sc, BGE_MBX_RX_STD_PROD_LO,
5571 std->bnx_rx_std);
5574 if (std->bnx_rx_std_refill)
5575 goto again;
5577 atomic_poll_release_int(&std->bnx_rx_std_running);
5578 cpu_mfence();
5580 if (std->bnx_rx_std_refill)
5581 goto again;
5584 static int
5585 bnx_sysctl_std_refill(SYSCTL_HANDLER_ARGS)
5587 struct bnx_softc *sc = (void *)arg1;
5588 struct ifnet *ifp = &sc->arpcom.ac_if;
5589 struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[0];
5590 int error, cntmax, i;
5592 cntmax = ret->bnx_rx_cntmax;
5593 error = sysctl_handle_int(oidp, &cntmax, 0, req);
5594 if (error || req->newptr == NULL)
5595 return error;
5597 ifnet_serialize_all(ifp);
5599 if ((cntmax * sc->bnx_rx_retcnt) >= BGE_STD_RX_RING_CNT / 2) {
5600 error = EINVAL;
5601 goto back;
5604 for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
5605 sc->bnx_rx_ret_ring[i].bnx_rx_cntmax = cntmax;
5606 error = 0;
5608 back:
5609 ifnet_deserialize_all(ifp);
5611 return error;
5614 static void
5615 bnx_init_rss(struct bnx_softc *sc)
5617 uint8_t key[BGE_RSS_KEYREG_CNT * BGE_RSS_KEYREG_SIZE];
5618 int i, j, r;
5620 KKASSERT(BNX_RSS_ENABLED(sc));
5623 * Configure RSS redirect table.
5625 if_ringmap_rdrtable(sc->bnx_rx_rmap, sc->bnx_rdr_table,
5626 BNX_RDRTABLE_SIZE);
5627 r = 0;
5628 for (j = 0; j < BGE_RSS_INDIR_TBL_CNT; ++j) {
5629 uint32_t tbl = 0;
5631 for (i = 0; i < BGE_RSS_INDIR_TBLENT_CNT; ++i) {
5632 uint32_t q;
5634 q = sc->bnx_rdr_table[r];
5635 tbl |= q << (BGE_RSS_INDIR_TBLENT_SHIFT *
5636 (BGE_RSS_INDIR_TBLENT_CNT - i - 1));
5637 ++r;
5640 BNX_RSS_DPRINTF(sc, 1, "tbl%d %08x\n", j, tbl);
5641 CSR_WRITE_4(sc, BGE_RSS_INDIR_TBL(j), tbl);
5644 toeplitz_get_key(key, sizeof(key));
5645 for (i = 0; i < BGE_RSS_KEYREG_CNT; ++i) {
5646 uint32_t keyreg;
5648 keyreg = BGE_RSS_KEYREG_VAL(key, i);
5650 BNX_RSS_DPRINTF(sc, 1, "key%d %08x\n", i, keyreg);
5651 CSR_WRITE_4(sc, BGE_RSS_KEYREG(i), keyreg);
5655 static void
5656 bnx_setup_ring_cnt(struct bnx_softc *sc)
5658 int msix_enable, msix_cnt, msix_ring, ring_max, ring_cnt;
5660 /* One RX ring. */
5661 sc->bnx_rx_rmap = if_ringmap_alloc(sc->bnx_dev, 1, 1);
5663 if (netisr_ncpus == 1)
5664 goto skip_rx;
5666 msix_enable = device_getenv_int(sc->bnx_dev, "msix.enable",
5667 bnx_msix_enable);
5668 if (!msix_enable)
5669 goto skip_rx;
5672 * One MSI-X vector is dedicated to status or single TX queue,
5673 * so make sure that there are enough MSI-X vectors.
5675 msix_cnt = pci_msix_count(sc->bnx_dev);
5676 if (msix_cnt <= 1)
5677 goto skip_rx;
5678 if (bootverbose)
5679 device_printf(sc->bnx_dev, "MSI-X count %d\n", msix_cnt);
5680 msix_ring = msix_cnt - 1;
5683 * Setup RX ring count
5685 ring_max = BNX_RX_RING_MAX;
5686 if (ring_max > msix_ring)
5687 ring_max = msix_ring;
5688 ring_cnt = device_getenv_int(sc->bnx_dev, "rx_rings", bnx_rx_rings);
5690 if_ringmap_free(sc->bnx_rx_rmap);
5691 sc->bnx_rx_rmap = if_ringmap_alloc(sc->bnx_dev, ring_cnt, ring_max);
5693 skip_rx:
5694 sc->bnx_rx_retcnt = if_ringmap_count(sc->bnx_rx_rmap);
5697 * Setup TX ring count
5699 * Currently only BCM5719 and BCM5720 support multiple TX rings
5700 * and the TX ring count must be less than the RX ring count.
5702 if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 ||
5703 sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
5704 ring_max = BNX_TX_RING_MAX;
5705 if (ring_max > sc->bnx_rx_retcnt)
5706 ring_max = sc->bnx_rx_retcnt;
5707 ring_cnt = device_getenv_int(sc->bnx_dev, "tx_rings",
5708 bnx_tx_rings);
5709 } else {
5710 ring_max = 1;
5711 ring_cnt = 1;
5713 sc->bnx_tx_rmap = if_ringmap_alloc(sc->bnx_dev, ring_cnt, ring_max);
5714 if_ringmap_align(sc->bnx_dev, sc->bnx_rx_rmap, sc->bnx_tx_rmap);
5716 sc->bnx_tx_ringcnt = if_ringmap_count(sc->bnx_tx_rmap);
5717 KASSERT(sc->bnx_tx_ringcnt <= sc->bnx_rx_retcnt,
5718 ("invalid TX ring count %d and RX ring count %d",
5719 sc->bnx_tx_ringcnt, sc->bnx_rx_retcnt));
5722 * Setup interrupt count.
5724 if (sc->bnx_rx_retcnt == 1) {
5725 sc->bnx_intr_cnt = 1;
5726 } else {
5728 * We need one extra MSI-X vector for link status or
5729 * TX ring (if only one TX ring is enabled).
5731 sc->bnx_intr_cnt = sc->bnx_rx_retcnt + 1;
5733 KKASSERT(sc->bnx_intr_cnt <= BNX_INTR_MAX);
5735 if (bootverbose) {
5736 device_printf(sc->bnx_dev, "intr count %d, "
5737 "RX ring %d, TX ring %d\n", sc->bnx_intr_cnt,
5738 sc->bnx_rx_retcnt, sc->bnx_tx_ringcnt);
5742 static int
5743 bnx_alloc_msix(struct bnx_softc *sc)
5745 struct bnx_intr_data *intr;
5746 boolean_t setup = FALSE;
5747 int error, i;
5749 KKASSERT(sc->bnx_intr_cnt > 1);
5750 KKASSERT(sc->bnx_intr_cnt == sc->bnx_rx_retcnt + 1);
5752 if (sc->bnx_flags & BNX_FLAG_RXTX_BUNDLE) {
5754 * Link status
5756 intr = &sc->bnx_intr_data[0];
5758 intr->bnx_intr_serialize = &sc->bnx_main_serialize;
5759 intr->bnx_saved_status_tag = &sc->bnx_saved_status_tag;
5761 intr->bnx_intr_func = bnx_msix_status;
5762 intr->bnx_intr_arg = sc;
5763 intr->bnx_intr_cpuid = 0; /* XXX */
5765 ksnprintf(intr->bnx_intr_desc0, sizeof(intr->bnx_intr_desc0),
5766 "%s sts", device_get_nameunit(sc->bnx_dev));
5767 intr->bnx_intr_desc = intr->bnx_intr_desc0;
5770 * RX/TX rings
5772 for (i = 1; i < sc->bnx_intr_cnt; ++i) {
5773 int idx = i - 1;
5775 intr = &sc->bnx_intr_data[i];
5777 KKASSERT(idx < sc->bnx_rx_retcnt);
5778 intr->bnx_ret = &sc->bnx_rx_ret_ring[idx];
5779 if (idx < sc->bnx_tx_ringcnt) {
5780 intr->bnx_txr = &sc->bnx_tx_ring[idx];
5781 intr->bnx_ret->bnx_txr = intr->bnx_txr;
5784 intr->bnx_intr_serialize =
5785 &intr->bnx_ret->bnx_rx_ret_serialize;
5786 intr->bnx_saved_status_tag =
5787 &intr->bnx_ret->bnx_saved_status_tag;
5789 intr->bnx_intr_arg = intr->bnx_ret;
5790 intr->bnx_intr_cpuid =
5791 if_ringmap_cpumap(sc->bnx_rx_rmap, idx);
5792 KKASSERT(intr->bnx_intr_cpuid < netisr_ncpus);
5794 if (intr->bnx_txr == NULL) {
5795 intr->bnx_intr_check = bnx_check_intr_rx;
5796 intr->bnx_intr_func = bnx_msix_rx;
5797 ksnprintf(intr->bnx_intr_desc0,
5798 sizeof(intr->bnx_intr_desc0), "%s rx%d",
5799 device_get_nameunit(sc->bnx_dev), idx);
5800 } else {
5801 #ifdef INVARIANTS
5802 int tx_cpuid;
5803 #endif
5805 intr->bnx_intr_check = bnx_check_intr_rxtx;
5806 intr->bnx_intr_func = bnx_msix_rxtx;
5807 ksnprintf(intr->bnx_intr_desc0,
5808 sizeof(intr->bnx_intr_desc0), "%s rxtx%d",
5809 device_get_nameunit(sc->bnx_dev), idx);
5811 #ifdef INVARIANTS
5812 tx_cpuid = if_ringmap_cpumap(sc->bnx_tx_rmap,
5813 idx);
5814 KASSERT(intr->bnx_intr_cpuid == tx_cpuid,
5815 ("RX intr cpu%d, TX intr cpu%d, mismatch",
5816 intr->bnx_intr_cpuid, tx_cpuid));
5817 #endif
5818 intr->bnx_txr->bnx_tx_cpuid =
5819 intr->bnx_intr_cpuid;
5821 intr->bnx_intr_desc = intr->bnx_intr_desc0;
5823 intr->bnx_ret->bnx_msix_mbx = intr->bnx_intr_mbx;
5825 } else {
5827 * TX ring0 and link status
5829 intr = &sc->bnx_intr_data[0];
5831 intr->bnx_txr = &sc->bnx_tx_ring[0];
5832 intr->bnx_intr_serialize = &sc->bnx_main_serialize;
5833 intr->bnx_intr_check = bnx_check_intr_tx;
5834 intr->bnx_saved_status_tag =
5835 &intr->bnx_txr->bnx_saved_status_tag;
5837 intr->bnx_intr_func = bnx_msix_tx_status;
5838 intr->bnx_intr_arg = intr->bnx_txr;
5839 intr->bnx_intr_cpuid = if_ringmap_cpumap(sc->bnx_tx_rmap, 0);
5840 KKASSERT(intr->bnx_intr_cpuid < netisr_ncpus);
5842 ksnprintf(intr->bnx_intr_desc0, sizeof(intr->bnx_intr_desc0),
5843 "%s ststx", device_get_nameunit(sc->bnx_dev));
5844 intr->bnx_intr_desc = intr->bnx_intr_desc0;
5846 intr->bnx_txr->bnx_tx_cpuid = intr->bnx_intr_cpuid;
5849 * RX rings
5851 for (i = 1; i < sc->bnx_intr_cnt; ++i) {
5852 int idx = i - 1;
5854 intr = &sc->bnx_intr_data[i];
5856 KKASSERT(idx < sc->bnx_rx_retcnt);
5857 intr->bnx_ret = &sc->bnx_rx_ret_ring[idx];
5858 intr->bnx_intr_serialize =
5859 &intr->bnx_ret->bnx_rx_ret_serialize;
5860 intr->bnx_intr_check = bnx_check_intr_rx;
5861 intr->bnx_saved_status_tag =
5862 &intr->bnx_ret->bnx_saved_status_tag;
5864 intr->bnx_intr_func = bnx_msix_rx;
5865 intr->bnx_intr_arg = intr->bnx_ret;
5866 intr->bnx_intr_cpuid =
5867 if_ringmap_cpumap(sc->bnx_rx_rmap, idx);
5868 KKASSERT(intr->bnx_intr_cpuid < netisr_ncpus);
5870 ksnprintf(intr->bnx_intr_desc0,
5871 sizeof(intr->bnx_intr_desc0), "%s rx%d",
5872 device_get_nameunit(sc->bnx_dev), idx);
5873 intr->bnx_intr_desc = intr->bnx_intr_desc0;
5875 intr->bnx_ret->bnx_msix_mbx = intr->bnx_intr_mbx;
5879 if (BNX_IS_5717_PLUS(sc)) {
5880 sc->bnx_msix_mem_rid = PCIR_BAR(4);
5881 } else {
5882 if (sc->bnx_res2 == NULL)
5883 sc->bnx_msix_mem_rid = PCIR_BAR(2);
5885 if (sc->bnx_msix_mem_rid != 0) {
5886 sc->bnx_msix_mem_res = bus_alloc_resource_any(sc->bnx_dev,
5887 SYS_RES_MEMORY, &sc->bnx_msix_mem_rid, RF_ACTIVE);
5888 if (sc->bnx_msix_mem_res == NULL) {
5889 device_printf(sc->bnx_dev,
5890 "could not alloc MSI-X table\n");
5891 return ENXIO;
5895 bnx_enable_msi(sc, TRUE);
5897 error = pci_setup_msix(sc->bnx_dev);
5898 if (error) {
5899 device_printf(sc->bnx_dev, "could not setup MSI-X\n");
5900 goto back;
5902 setup = TRUE;
5904 for (i = 0; i < sc->bnx_intr_cnt; ++i) {
5905 intr = &sc->bnx_intr_data[i];
5907 error = pci_alloc_msix_vector(sc->bnx_dev, i,
5908 &intr->bnx_intr_rid, intr->bnx_intr_cpuid);
5909 if (error) {
5910 device_printf(sc->bnx_dev,
5911 "could not alloc MSI-X %d on cpu%d\n",
5912 i, intr->bnx_intr_cpuid);
5913 goto back;
5916 intr->bnx_intr_res = bus_alloc_resource_any(sc->bnx_dev,
5917 SYS_RES_IRQ, &intr->bnx_intr_rid, RF_ACTIVE);
5918 if (intr->bnx_intr_res == NULL) {
5919 device_printf(sc->bnx_dev,
5920 "could not alloc MSI-X %d resource\n", i);
5921 error = ENXIO;
5922 goto back;
5926 pci_enable_msix(sc->bnx_dev);
5927 sc->bnx_intr_type = PCI_INTR_TYPE_MSIX;
5928 back:
5929 if (error)
5930 bnx_free_msix(sc, setup);
5931 return error;
5934 static void
5935 bnx_free_msix(struct bnx_softc *sc, boolean_t setup)
5937 int i;
5939 KKASSERT(sc->bnx_intr_cnt > 1);
5941 for (i = 0; i < sc->bnx_intr_cnt; ++i) {
5942 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
5944 if (intr->bnx_intr_res != NULL) {
5945 bus_release_resource(sc->bnx_dev, SYS_RES_IRQ,
5946 intr->bnx_intr_rid, intr->bnx_intr_res);
5948 if (intr->bnx_intr_rid >= 0) {
5949 pci_release_msix_vector(sc->bnx_dev,
5950 intr->bnx_intr_rid);
5953 if (setup)
5954 pci_teardown_msix(sc->bnx_dev);
5957 static void
5958 bnx_rx_std_refill_sched_ipi(void *xret)
5960 struct bnx_rx_ret_ring *ret = xret;
5961 struct bnx_rx_std_ring *std = ret->bnx_std;
5962 struct globaldata *gd = mycpu;
5964 crit_enter_gd(gd);
5966 atomic_set_int(&std->bnx_rx_std_refill, ret->bnx_rx_mask);
5967 cpu_sfence();
5969 KKASSERT(std->bnx_rx_std_ithread->td_gd == gd);
5970 lwkt_schedule(std->bnx_rx_std_ithread);
5972 crit_exit_gd(gd);
5975 static void
5976 bnx_rx_std_refill_stop(void *xstd)
5978 struct bnx_rx_std_ring *std = xstd;
5979 struct globaldata *gd = mycpu;
5981 crit_enter_gd(gd);
5983 std->bnx_rx_std_stop = 1;
5984 cpu_sfence();
5986 KKASSERT(std->bnx_rx_std_ithread->td_gd == gd);
5987 lwkt_schedule(std->bnx_rx_std_ithread);
5989 crit_exit_gd(gd);
5992 static void
5993 bnx_serialize_skipmain(struct bnx_softc *sc)
5995 lwkt_serialize_array_enter(sc->bnx_serialize,
5996 sc->bnx_serialize_cnt, 1);
5999 static void
6000 bnx_deserialize_skipmain(struct bnx_softc *sc)
6002 lwkt_serialize_array_exit(sc->bnx_serialize,
6003 sc->bnx_serialize_cnt, 1);
6006 static void
6007 bnx_rx_std_refill_sched(struct bnx_rx_ret_ring *ret,
6008 struct bnx_rx_std_ring *std)
6010 struct globaldata *gd = mycpu;
6012 ret->bnx_rx_cnt = 0;
6013 cpu_sfence();
6015 crit_enter_gd(gd);
6017 atomic_set_int(&std->bnx_rx_std_refill, ret->bnx_rx_mask);
6018 cpu_sfence();
6019 if (atomic_poll_acquire_int(&std->bnx_rx_std_running)) {
6020 if (std->bnx_rx_std_ithread->td_gd == gd) {
6021 lwkt_schedule(std->bnx_rx_std_ithread);
6022 } else {
6023 lwkt_send_ipiq(std->bnx_rx_std_ithread->td_gd,
6024 bnx_rx_std_refill_sched_ipi, ret);
6028 crit_exit_gd(gd);
6031 static struct pktinfo *
6032 bnx_rss_info(struct pktinfo *pi, const struct bge_rx_bd *cur_rx)
6034 /* Don't pick up IPv6 packet */
6035 if (cur_rx->bge_flags & BGE_RXBDFLAG_IPV6)
6036 return NULL;
6038 /* Don't pick up IP packet w/o IP checksum */
6039 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) == 0 ||
6040 (cur_rx->bge_error_flag & BGE_RXERRFLAG_IP_CSUM_NOK))
6041 return NULL;
6043 /* Don't pick up IP packet w/o TCP/UDP checksum */
6044 if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) == 0)
6045 return NULL;
6047 /* May be IP fragment */
6048 if (cur_rx->bge_tcp_udp_csum != 0xffff)
6049 return NULL;
6051 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_IS_TCP)
6052 pi->pi_l3proto = IPPROTO_TCP;
6053 else
6054 pi->pi_l3proto = IPPROTO_UDP;
6055 pi->pi_netisr = NETISR_IP;
6056 pi->pi_flags = 0;
6058 return pi;
6061 static void
6062 bnx_sig_pre_reset(struct bnx_softc *sc, int type)
6064 if (type == BNX_RESET_START || type == BNX_RESET_SUSPEND)
6065 bnx_ape_driver_state_change(sc, type);
6068 static void
6069 bnx_sig_post_reset(struct bnx_softc *sc, int type)
6071 if (type == BNX_RESET_SHUTDOWN)
6072 bnx_ape_driver_state_change(sc, type);
6076 * Clear all stale locks and select the lock for this driver instance.
6078 static void
6079 bnx_ape_lock_init(struct bnx_softc *sc)
6081 uint32_t bit, regbase;
6082 int i;
6084 regbase = BGE_APE_PER_LOCK_GRANT;
6086 /* Clear any stale locks. */
6087 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
6088 switch (i) {
6089 case BGE_APE_LOCK_PHY0:
6090 case BGE_APE_LOCK_PHY1:
6091 case BGE_APE_LOCK_PHY2:
6092 case BGE_APE_LOCK_PHY3:
6093 bit = BGE_APE_LOCK_GRANT_DRIVER0;
6094 break;
6096 default:
6097 if (sc->bnx_func_addr == 0)
6098 bit = BGE_APE_LOCK_GRANT_DRIVER0;
6099 else
6100 bit = 1 << sc->bnx_func_addr;
6101 break;
6103 APE_WRITE_4(sc, regbase + 4 * i, bit);
6106 /* Select the PHY lock based on the device's function number. */
6107 switch (sc->bnx_func_addr) {
6108 case 0:
6109 sc->bnx_phy_ape_lock = BGE_APE_LOCK_PHY0;
6110 break;
6112 case 1:
6113 sc->bnx_phy_ape_lock = BGE_APE_LOCK_PHY1;
6114 break;
6116 case 2:
6117 sc->bnx_phy_ape_lock = BGE_APE_LOCK_PHY2;
6118 break;
6120 case 3:
6121 sc->bnx_phy_ape_lock = BGE_APE_LOCK_PHY3;
6122 break;
6124 default:
6125 device_printf(sc->bnx_dev,
6126 "PHY lock not supported on this function\n");
6127 break;
6132 * Check for APE firmware, set flags, and print version info.
6134 static void
6135 bnx_ape_read_fw_ver(struct bnx_softc *sc)
6137 const char *fwtype;
6138 uint32_t apedata, features;
6140 /* Check for a valid APE signature in shared memory. */
6141 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
6142 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
6143 device_printf(sc->bnx_dev, "no APE signature\n");
6144 sc->bnx_mfw_flags &= ~BNX_MFW_ON_APE;
6145 return;
6148 /* Check if APE firmware is running. */
6149 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
6150 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
6151 device_printf(sc->bnx_dev, "APE signature found "
6152 "but FW status not ready! 0x%08x\n", apedata);
6153 return;
6156 sc->bnx_mfw_flags |= BNX_MFW_ON_APE;
6158 /* Fetch the APE firwmare type and version. */
6159 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
6160 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
6161 if (features & BGE_APE_FW_FEATURE_NCSI) {
6162 sc->bnx_mfw_flags |= BNX_MFW_TYPE_NCSI;
6163 fwtype = "NCSI";
6164 } else if (features & BGE_APE_FW_FEATURE_DASH) {
6165 sc->bnx_mfw_flags |= BNX_MFW_TYPE_DASH;
6166 fwtype = "DASH";
6167 } else {
6168 fwtype = "UNKN";
6171 /* Print the APE firmware version. */
6172 device_printf(sc->bnx_dev, "APE FW version: %s v%d.%d.%d.%d\n",
6173 fwtype,
6174 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
6175 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
6176 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
6177 (apedata & BGE_APE_FW_VERSION_BLDMSK));
6180 static int
6181 bnx_ape_lock(struct bnx_softc *sc, int locknum)
6183 uint32_t bit, gnt, req, status;
6184 int i, off;
6186 if ((sc->bnx_mfw_flags & BNX_MFW_ON_APE) == 0)
6187 return 0;
6189 /* Lock request/grant registers have different bases. */
6190 req = BGE_APE_PER_LOCK_REQ;
6191 gnt = BGE_APE_PER_LOCK_GRANT;
6193 off = 4 * locknum;
6195 switch (locknum) {
6196 case BGE_APE_LOCK_GPIO:
6197 /* Lock required when using GPIO. */
6198 if (sc->bnx_func_addr == 0)
6199 bit = BGE_APE_LOCK_REQ_DRIVER0;
6200 else
6201 bit = 1 << sc->bnx_func_addr;
6202 break;
6204 case BGE_APE_LOCK_GRC:
6205 /* Lock required to reset the device. */
6206 if (sc->bnx_func_addr == 0)
6207 bit = BGE_APE_LOCK_REQ_DRIVER0;
6208 else
6209 bit = 1 << sc->bnx_func_addr;
6210 break;
6212 case BGE_APE_LOCK_MEM:
6213 /* Lock required when accessing certain APE memory. */
6214 if (sc->bnx_func_addr == 0)
6215 bit = BGE_APE_LOCK_REQ_DRIVER0;
6216 else
6217 bit = 1 << sc->bnx_func_addr;
6218 break;
6220 case BGE_APE_LOCK_PHY0:
6221 case BGE_APE_LOCK_PHY1:
6222 case BGE_APE_LOCK_PHY2:
6223 case BGE_APE_LOCK_PHY3:
6224 /* Lock required when accessing PHYs. */
6225 bit = BGE_APE_LOCK_REQ_DRIVER0;
6226 break;
6228 default:
6229 return EINVAL;
6232 /* Request a lock. */
6233 APE_WRITE_4(sc, req + off, bit);
6235 /* Wait up to 1 second to acquire lock. */
6236 for (i = 0; i < 20000; i++) {
6237 status = APE_READ_4(sc, gnt + off);
6238 if (status == bit)
6239 break;
6240 DELAY(50);
6243 /* Handle any errors. */
6244 if (status != bit) {
6245 if_printf(&sc->arpcom.ac_if, "APE lock %d request failed! "
6246 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
6247 locknum, req + off, bit & 0xFFFF, gnt + off,
6248 status & 0xFFFF);
6249 /* Revoke the lock request. */
6250 APE_WRITE_4(sc, gnt + off, bit);
6251 return EBUSY;
6254 return 0;
6257 static void
6258 bnx_ape_unlock(struct bnx_softc *sc, int locknum)
6260 uint32_t bit, gnt;
6261 int off;
6263 if ((sc->bnx_mfw_flags & BNX_MFW_ON_APE) == 0)
6264 return;
6266 gnt = BGE_APE_PER_LOCK_GRANT;
6268 off = 4 * locknum;
6270 switch (locknum) {
6271 case BGE_APE_LOCK_GPIO:
6272 if (sc->bnx_func_addr == 0)
6273 bit = BGE_APE_LOCK_GRANT_DRIVER0;
6274 else
6275 bit = 1 << sc->bnx_func_addr;
6276 break;
6278 case BGE_APE_LOCK_GRC:
6279 if (sc->bnx_func_addr == 0)
6280 bit = BGE_APE_LOCK_GRANT_DRIVER0;
6281 else
6282 bit = 1 << sc->bnx_func_addr;
6283 break;
6285 case BGE_APE_LOCK_MEM:
6286 if (sc->bnx_func_addr == 0)
6287 bit = BGE_APE_LOCK_GRANT_DRIVER0;
6288 else
6289 bit = 1 << sc->bnx_func_addr;
6290 break;
6292 case BGE_APE_LOCK_PHY0:
6293 case BGE_APE_LOCK_PHY1:
6294 case BGE_APE_LOCK_PHY2:
6295 case BGE_APE_LOCK_PHY3:
6296 bit = BGE_APE_LOCK_GRANT_DRIVER0;
6297 break;
6299 default:
6300 return;
6303 APE_WRITE_4(sc, gnt + off, bit);
6307 * Send an event to the APE firmware.
6309 static void
6310 bnx_ape_send_event(struct bnx_softc *sc, uint32_t event)
6312 uint32_t apedata;
6313 int i;
6315 /* NCSI does not support APE events. */
6316 if ((sc->bnx_mfw_flags & BNX_MFW_ON_APE) == 0)
6317 return;
6319 /* Wait up to 1ms for APE to service previous event. */
6320 for (i = 10; i > 0; i--) {
6321 if (bnx_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
6322 break;
6323 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
6324 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
6325 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
6326 BGE_APE_EVENT_STATUS_EVENT_PENDING);
6327 bnx_ape_unlock(sc, BGE_APE_LOCK_MEM);
6328 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
6329 break;
6331 bnx_ape_unlock(sc, BGE_APE_LOCK_MEM);
6332 DELAY(100);
6334 if (i == 0) {
6335 if_printf(&sc->arpcom.ac_if,
6336 "APE event 0x%08x send timed out\n", event);
6340 static void
6341 bnx_ape_driver_state_change(struct bnx_softc *sc, int kind)
6343 uint32_t apedata, event;
6345 if ((sc->bnx_mfw_flags & BNX_MFW_ON_APE) == 0)
6346 return;
6348 switch (kind) {
6349 case BNX_RESET_START:
6350 /* If this is the first load, clear the load counter. */
6351 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
6352 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC) {
6353 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
6354 } else {
6355 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
6356 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
6358 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
6359 BGE_APE_HOST_SEG_SIG_MAGIC);
6360 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
6361 BGE_APE_HOST_SEG_LEN_MAGIC);
6363 /* Add some version info if bnx(4) supports it. */
6364 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
6365 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
6366 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
6367 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
6368 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
6369 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
6370 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
6371 BGE_APE_HOST_DRVR_STATE_START);
6372 event = BGE_APE_EVENT_STATUS_STATE_START;
6373 break;
6375 case BNX_RESET_SHUTDOWN:
6376 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
6377 BGE_APE_HOST_DRVR_STATE_UNLOAD);
6378 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
6379 break;
6381 case BNX_RESET_SUSPEND:
6382 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
6383 break;
6385 default:
6386 return;
6389 bnx_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
6390 BGE_APE_EVENT_STATUS_STATE_CHNGE);