kernel - (mainly x86_64) - Fix a number of rare races
[dragonfly.git] / sys / platform / pc64 / x86_64 / machdep.c
blob32e3120adb6b7e034f7c6e0825e5c87c52c14075
1 /*-
2 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 2003 Peter Wemm.
5 * Copyright (c) 2008 The DragonFly Project.
6 * All rights reserved.
8 * This code is derived from software contributed to Berkeley by
9 * William Jolitz.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the University of
22 * California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
39 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
40 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
43 #include "use_ether.h"
44 //#include "use_npx.h"
45 #include "use_isa.h"
46 #include "opt_atalk.h"
47 #include "opt_compat.h"
48 #include "opt_cpu.h"
49 #include "opt_ddb.h"
50 #include "opt_directio.h"
51 #include "opt_inet.h"
52 #include "opt_ipx.h"
53 #include "opt_msgbuf.h"
54 #include "opt_swap.h"
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/sysproto.h>
59 #include <sys/signalvar.h>
60 #include <sys/kernel.h>
61 #include <sys/linker.h>
62 #include <sys/malloc.h>
63 #include <sys/proc.h>
64 #include <sys/priv.h>
65 #include <sys/buf.h>
66 #include <sys/reboot.h>
67 #include <sys/mbuf.h>
68 #include <sys/msgbuf.h>
69 #include <sys/sysent.h>
70 #include <sys/sysctl.h>
71 #include <sys/vmmeter.h>
72 #include <sys/bus.h>
73 #include <sys/upcall.h>
74 #include <sys/usched.h>
75 #include <sys/reg.h>
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_pager.h>
85 #include <vm/vm_extern.h>
87 #include <sys/thread2.h>
88 #include <sys/mplock2.h>
90 #include <sys/user.h>
91 #include <sys/exec.h>
92 #include <sys/cons.h>
94 #include <ddb/ddb.h>
96 #include <machine/cpu.h>
97 #include <machine/clock.h>
98 #include <machine/specialreg.h>
99 #if JG
100 #include <machine/bootinfo.h>
101 #endif
102 #include <machine/md_var.h>
103 #include <machine/metadata.h>
104 #include <machine/pc/bios.h>
105 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
106 #include <machine/globaldata.h> /* CPU_prvspace */
107 #include <machine/smp.h>
108 #ifdef PERFMON
109 #include <machine/perfmon.h>
110 #endif
111 #include <machine/cputypes.h>
113 #ifdef OLD_BUS_ARCH
114 #include <bus/isa/isa_device.h>
115 #endif
116 #include <machine_base/isa/intr_machdep.h>
117 #include <bus/isa/rtc.h>
118 #include <sys/random.h>
119 #include <sys/ptrace.h>
120 #include <machine/sigframe.h>
122 #define PHYSMAP_ENTRIES 10
124 extern void init386(int first);
125 extern void dblfault_handler(void);
126 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
128 extern void printcpuinfo(void); /* XXX header file */
129 extern void identify_cpu(void);
130 #if JG
131 extern void finishidentcpu(void);
132 #endif
133 extern void panicifcpuunsupported(void);
135 static void cpu_startup(void *);
136 #ifndef CPU_DISABLE_SSE
137 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
138 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
139 #endif /* CPU_DISABLE_SSE */
140 #ifdef DIRECTIO
141 extern void ffs_rawread_setup(void);
142 #endif /* DIRECTIO */
143 static void init_locks(void);
145 SYSINIT(cpu, SI_BOOT2_SMP, SI_ORDER_FIRST, cpu_startup, NULL)
147 #ifdef DDB
148 extern vm_offset_t ksym_start, ksym_end;
149 #endif
151 uint64_t SMPptpa;
152 pt_entry_t *SMPpt;
155 struct privatespace CPU_prvspace[MAXCPU];
157 int _udatasel, _ucodesel, _ucode32sel;
158 u_long atdevbase;
159 #ifdef SMP
160 int64_t tsc_offsets[MAXCPU];
161 #else
162 int64_t tsc_offsets[1];
163 #endif
165 #if defined(SWTCH_OPTIM_STATS)
166 extern int swtch_optim_stats;
167 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
168 CTLFLAG_RD, &swtch_optim_stats, 0, "");
169 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
170 CTLFLAG_RD, &tlb_flush_count, 0, "");
171 #endif
173 int physmem = 0;
175 u_long ebda_addr = 0;
177 static int
178 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
180 int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
181 return (error);
184 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
185 0, 0, sysctl_hw_physmem, "IU", "");
187 static int
188 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
190 int error = sysctl_handle_int(oidp, 0,
191 ctob(physmem - vmstats.v_wire_count), req);
192 return (error);
195 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
196 0, 0, sysctl_hw_usermem, "IU", "");
198 static int
199 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
201 int error = sysctl_handle_int(oidp, 0,
202 x86_64_btop(avail_end - avail_start), req);
203 return (error);
206 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
207 0, 0, sysctl_hw_availpages, "I", "");
209 vm_paddr_t Maxmem;
210 vm_paddr_t Realmem;
213 * The number of PHYSMAP entries must be one less than the number of
214 * PHYSSEG entries because the PHYSMAP entry that spans the largest
215 * physical address that is accessible by ISA DMA is split into two
216 * PHYSSEG entries.
218 #define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1))
220 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
221 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
223 /* must be 2 less so 0 0 can signal end of chunks */
224 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
225 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
227 static vm_offset_t buffer_sva, buffer_eva;
228 vm_offset_t clean_sva, clean_eva;
229 static vm_offset_t pager_sva, pager_eva;
230 static struct trapframe proc0_tf;
232 static void
233 cpu_startup(void *dummy)
235 caddr_t v;
236 vm_size_t size = 0;
237 vm_offset_t firstaddr;
239 if (boothowto & RB_VERBOSE)
240 bootverbose++;
243 * Good {morning,afternoon,evening,night}.
245 kprintf("%s", version);
246 startrtclock();
247 printcpuinfo();
248 panicifcpuunsupported();
249 #ifdef PERFMON
250 perfmon_init();
251 #endif
252 kprintf("real memory = %ju (%ju MB)\n",
253 (intmax_t)Realmem,
254 (intmax_t)Realmem / 1024 / 1024);
256 * Display any holes after the first chunk of extended memory.
258 if (bootverbose) {
259 int indx;
261 kprintf("Physical memory chunk(s):\n");
262 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
263 vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
265 kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
266 (intmax_t)phys_avail[indx],
267 (intmax_t)phys_avail[indx + 1] - 1,
268 (intmax_t)size1,
269 (intmax_t)(size1 / PAGE_SIZE));
274 * Allocate space for system data structures.
275 * The first available kernel virtual address is in "v".
276 * As pages of kernel virtual memory are allocated, "v" is incremented.
277 * As pages of memory are allocated and cleared,
278 * "firstaddr" is incremented.
279 * An index into the kernel page table corresponding to the
280 * virtual memory address maintained in "v" is kept in "mapaddr".
284 * Make two passes. The first pass calculates how much memory is
285 * needed and allocates it. The second pass assigns virtual
286 * addresses to the various data structures.
288 firstaddr = 0;
289 again:
290 v = (caddr_t)firstaddr;
292 #define valloc(name, type, num) \
293 (name) = (type *)v; v = (caddr_t)((name)+(num))
294 #define valloclim(name, type, num, lim) \
295 (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
298 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
299 * For the first 64MB of ram nominally allocate sufficient buffers to
300 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
301 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing
302 * the buffer cache we limit the eventual kva reservation to
303 * maxbcache bytes.
305 * factor represents the 1/4 x ram conversion.
307 if (nbuf == 0) {
308 int factor = 4 * BKVASIZE / 1024;
309 int kbytes = physmem * (PAGE_SIZE / 1024);
311 nbuf = 50;
312 if (kbytes > 4096)
313 nbuf += min((kbytes - 4096) / factor, 65536 / factor);
314 if (kbytes > 65536)
315 nbuf += (kbytes - 65536) * 2 / (factor * 5);
316 if (maxbcache && nbuf > maxbcache / BKVASIZE)
317 nbuf = maxbcache / BKVASIZE;
321 * Do not allow the buffer_map to be more then 1/2 the size of the
322 * kernel_map.
324 if (nbuf > (virtual_end - virtual_start) / (BKVASIZE * 2)) {
325 nbuf = (virtual_end - virtual_start) / (BKVASIZE * 2);
326 kprintf("Warning: nbufs capped at %d\n", nbuf);
329 nswbuf = max(min(nbuf/4, 256), 16);
330 #ifdef NSWBUF_MIN
331 if (nswbuf < NSWBUF_MIN)
332 nswbuf = NSWBUF_MIN;
333 #endif
334 #ifdef DIRECTIO
335 ffs_rawread_setup();
336 #endif
338 valloc(swbuf, struct buf, nswbuf);
339 valloc(buf, struct buf, nbuf);
342 * End of first pass, size has been calculated so allocate memory
344 if (firstaddr == 0) {
345 size = (vm_size_t)(v - firstaddr);
346 firstaddr = kmem_alloc(&kernel_map, round_page(size));
347 if (firstaddr == 0)
348 panic("startup: no room for tables");
349 goto again;
353 * End of second pass, addresses have been assigned
355 if ((vm_size_t)(v - firstaddr) != size)
356 panic("startup: table size inconsistency");
358 kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
359 (nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
360 kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
361 (nbuf*BKVASIZE));
362 buffer_map.system_map = 1;
363 kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
364 (nswbuf*MAXPHYS) + pager_map_size);
365 pager_map.system_map = 1;
367 #if defined(USERCONFIG)
368 userconfig();
369 cninit(); /* the preferred console may have changed */
370 #endif
372 kprintf("avail memory = %ju (%ju MB)\n",
373 (uintmax_t)ptoa(vmstats.v_free_count),
374 (uintmax_t)ptoa(vmstats.v_free_count) / 1024 / 1024);
377 * Set up buffers, so they can be used to read disk labels.
379 bufinit();
380 vm_pager_bufferinit();
382 #ifdef SMP
384 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
386 mp_start(); /* fire up the APs and APICs */
387 mp_announce();
388 #endif /* SMP */
389 cpu_setregs();
393 * Send an interrupt to process.
395 * Stack is set up to allow sigcode stored
396 * at top to call routine, followed by kcall
397 * to sigreturn routine below. After sigreturn
398 * resets the signal mask, the stack, and the
399 * frame pointer, it returns to the user
400 * specified pc, psl.
402 void
403 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
405 struct lwp *lp = curthread->td_lwp;
406 struct proc *p = lp->lwp_proc;
407 struct trapframe *regs;
408 struct sigacts *psp = p->p_sigacts;
409 struct sigframe sf, *sfp;
410 int oonstack;
411 char *sp;
413 regs = lp->lwp_md.md_regs;
414 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
416 /* Save user context */
417 bzero(&sf, sizeof(struct sigframe));
418 sf.sf_uc.uc_sigmask = *mask;
419 sf.sf_uc.uc_stack = lp->lwp_sigstk;
420 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
421 KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
422 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
424 /* Make the size of the saved context visible to userland */
425 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
427 /* Save mailbox pending state for syscall interlock semantics */
428 if (p->p_flag & P_MAILBOX)
429 sf.sf_uc.uc_mcontext.mc_xflags |= PGEX_MAILBOX;
431 /* Allocate and validate space for the signal handler context. */
432 if ((lp->lwp_flag & LWP_ALTSTACK) != 0 && !oonstack &&
433 SIGISMEMBER(psp->ps_sigonstack, sig)) {
434 sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
435 sizeof(struct sigframe));
436 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
437 } else {
438 /* We take red zone into account */
439 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
442 /* Align to 16 bytes */
443 sfp = (struct sigframe *)((intptr_t)sp & ~0xFUL);
445 /* Translate the signal is appropriate */
446 if (p->p_sysent->sv_sigtbl) {
447 if (sig <= p->p_sysent->sv_sigsize)
448 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
452 * Build the argument list for the signal handler.
454 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
456 regs->tf_rdi = sig; /* argument 1 */
457 regs->tf_rdx = (register_t)&sfp->sf_uc; /* argument 3 */
459 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
461 * Signal handler installed with SA_SIGINFO.
463 * action(signo, siginfo, ucontext)
465 regs->tf_rsi = (register_t)&sfp->sf_si; /* argument 2 */
466 regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
467 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
469 /* fill siginfo structure */
470 sf.sf_si.si_signo = sig;
471 sf.sf_si.si_code = code;
472 sf.sf_si.si_addr = (void *)regs->tf_addr;
473 } else {
475 * Old FreeBSD-style arguments.
477 * handler (signo, code, [uc], addr)
479 regs->tf_rsi = (register_t)code; /* argument 2 */
480 regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
481 sf.sf_ahu.sf_handler = catcher;
485 * If we're a vm86 process, we want to save the segment registers.
486 * We also change eflags to be our emulated eflags, not the actual
487 * eflags.
489 #if JG
490 if (regs->tf_eflags & PSL_VM) {
491 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
492 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
494 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
495 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
496 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
497 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
499 if (vm86->vm86_has_vme == 0)
500 sf.sf_uc.uc_mcontext.mc_eflags =
501 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
502 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
505 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
506 * syscalls made by the signal handler. This just avoids
507 * wasting time for our lazy fixup of such faults. PSL_NT
508 * does nothing in vm86 mode, but vm86 programs can set it
509 * almost legitimately in probes for old cpu types.
511 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
513 #endif
516 * Save the FPU state and reinit the FP unit
518 npxpush(&sf.sf_uc.uc_mcontext);
521 * Copy the sigframe out to the user's stack.
523 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
525 * Something is wrong with the stack pointer.
526 * ...Kill the process.
528 sigexit(lp, SIGILL);
531 regs->tf_rsp = (register_t)sfp;
532 regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
535 * i386 abi specifies that the direction flag must be cleared
536 * on function entry
538 regs->tf_rflags &= ~(PSL_T|PSL_D);
541 * 64 bit mode has a code and stack selector but
542 * no data or extra selector. %fs and %gs are not
543 * stored in-context.
545 regs->tf_cs = _ucodesel;
546 regs->tf_ss = _udatasel;
550 * Sanitize the trapframe for a virtual kernel passing control to a custom
551 * VM context. Remove any items that would otherwise create a privilage
552 * issue.
554 * XXX at the moment we allow userland to set the resume flag. Is this a
555 * bad idea?
558 cpu_sanitize_frame(struct trapframe *frame)
560 frame->tf_cs = _ucodesel;
561 frame->tf_ss = _udatasel;
562 /* XXX VM (8086) mode not supported? */
563 frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
564 frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
566 return(0);
570 * Sanitize the tls so loading the descriptor does not blow up
571 * on us. For x86_64 we don't have to do anything.
574 cpu_sanitize_tls(struct savetls *tls)
576 return(0);
580 * sigreturn(ucontext_t *sigcntxp)
582 * System call to cleanup state after a signal
583 * has been taken. Reset signal mask and
584 * stack state from context left by sendsig (above).
585 * Return to previous pc and psl as specified by
586 * context left by sendsig. Check carefully to
587 * make sure that the user has not modified the
588 * state to gain improper privileges.
590 * MPSAFE
592 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
593 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
596 sys_sigreturn(struct sigreturn_args *uap)
598 struct lwp *lp = curthread->td_lwp;
599 struct proc *p = lp->lwp_proc;
600 struct trapframe *regs;
601 ucontext_t uc;
602 ucontext_t *ucp;
603 register_t rflags;
604 int cs;
605 int error;
608 * We have to copy the information into kernel space so userland
609 * can't modify it while we are sniffing it.
611 regs = lp->lwp_md.md_regs;
612 error = copyin(uap->sigcntxp, &uc, sizeof(uc));
613 if (error)
614 return (error);
615 ucp = &uc;
616 rflags = ucp->uc_mcontext.mc_rflags;
618 /* VM (8086) mode not supported */
619 rflags &= ~PSL_VM_UNSUPP;
621 #if JG
622 if (eflags & PSL_VM) {
623 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
624 struct vm86_kernel *vm86;
627 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
628 * set up the vm86 area, and we can't enter vm86 mode.
630 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
631 return (EINVAL);
632 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
633 if (vm86->vm86_inited == 0)
634 return (EINVAL);
636 /* go back to user mode if both flags are set */
637 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
638 trapsignal(lp, SIGBUS, 0);
640 if (vm86->vm86_has_vme) {
641 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
642 (eflags & VME_USERCHANGE) | PSL_VM;
643 } else {
644 vm86->vm86_eflags = eflags; /* save VIF, VIP */
645 eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
646 (eflags & VM_USERCHANGE) | PSL_VM;
648 bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
649 tf->tf_eflags = eflags;
650 tf->tf_vm86_ds = tf->tf_ds;
651 tf->tf_vm86_es = tf->tf_es;
652 tf->tf_vm86_fs = tf->tf_fs;
653 tf->tf_vm86_gs = tf->tf_gs;
654 tf->tf_ds = _udatasel;
655 tf->tf_es = _udatasel;
656 tf->tf_fs = _udatasel;
657 tf->tf_gs = _udatasel;
658 } else
659 #endif
662 * Don't allow users to change privileged or reserved flags.
665 * XXX do allow users to change the privileged flag PSL_RF.
666 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
667 * should sometimes set it there too. tf_eflags is kept in
668 * the signal context during signal handling and there is no
669 * other place to remember it, so the PSL_RF bit may be
670 * corrupted by the signal handler without us knowing.
671 * Corruption of the PSL_RF bit at worst causes one more or
672 * one less debugger trap, so allowing it is fairly harmless.
674 if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
675 kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
676 return(EINVAL);
680 * Don't allow users to load a valid privileged %cs. Let the
681 * hardware check for invalid selectors, excess privilege in
682 * other selectors, invalid %eip's and invalid %esp's.
684 cs = ucp->uc_mcontext.mc_cs;
685 if (!CS_SECURE(cs)) {
686 kprintf("sigreturn: cs = 0x%x\n", cs);
687 trapsignal(lp, SIGBUS, T_PROTFLT);
688 return(EINVAL);
690 bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
694 * Restore the FPU state from the frame
696 crit_enter();
697 npxpop(&ucp->uc_mcontext);
700 * Merge saved signal mailbox pending flag to maintain interlock
701 * semantics against system calls.
703 if (ucp->uc_mcontext.mc_xflags & PGEX_MAILBOX)
704 p->p_flag |= P_MAILBOX;
706 if (ucp->uc_mcontext.mc_onstack & 1)
707 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
708 else
709 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
711 lp->lwp_sigmask = ucp->uc_sigmask;
712 SIG_CANTMASK(lp->lwp_sigmask);
713 crit_exit();
714 return(EJUSTRETURN);
718 * Stack frame on entry to function. %rax will contain the function vector,
719 * %rcx will contain the function data. flags, rcx, and rax will have
720 * already been pushed on the stack.
722 struct upc_frame {
723 register_t rax;
724 register_t rcx;
725 register_t rdx;
726 register_t flags;
727 register_t oldip;
730 void
731 sendupcall(struct vmupcall *vu, int morepending)
733 struct lwp *lp = curthread->td_lwp;
734 struct trapframe *regs;
735 struct upcall upcall;
736 struct upc_frame upc_frame;
737 int crit_count = 0;
740 * If we are a virtual kernel running an emulated user process
741 * context, switch back to the virtual kernel context before
742 * trying to post the signal.
744 if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
745 lp->lwp_md.md_regs->tf_trapno = 0;
746 vkernel_trap(lp, lp->lwp_md.md_regs);
750 * Get the upcall data structure
752 if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
753 copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
755 vu->vu_pending = 0;
756 kprintf("bad upcall address\n");
757 return;
761 * If the data structure is already marked pending or has a critical
762 * section count, mark the data structure as pending and return
763 * without doing an upcall. vu_pending is left set.
765 if (upcall.upc_pending || crit_count >= vu->vu_pending) {
766 if (upcall.upc_pending < vu->vu_pending) {
767 upcall.upc_pending = vu->vu_pending;
768 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
769 sizeof(upcall.upc_pending));
771 return;
775 * We can run this upcall now, clear vu_pending.
777 * Bump our critical section count and set or clear the
778 * user pending flag depending on whether more upcalls are
779 * pending. The user will be responsible for calling
780 * upc_dispatch(-1) to process remaining upcalls.
782 vu->vu_pending = 0;
783 upcall.upc_pending = morepending;
784 ++crit_count;
785 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
786 sizeof(upcall.upc_pending));
787 copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
788 sizeof(int));
791 * Construct a stack frame and issue the upcall
793 regs = lp->lwp_md.md_regs;
794 upc_frame.rax = regs->tf_rax;
795 upc_frame.rcx = regs->tf_rcx;
796 upc_frame.rdx = regs->tf_rdx;
797 upc_frame.flags = regs->tf_rflags;
798 upc_frame.oldip = regs->tf_rip;
799 if (copyout(&upc_frame, (void *)(regs->tf_rsp - sizeof(upc_frame)),
800 sizeof(upc_frame)) != 0) {
801 kprintf("bad stack on upcall\n");
802 } else {
803 regs->tf_rax = (register_t)vu->vu_func;
804 regs->tf_rcx = (register_t)vu->vu_data;
805 regs->tf_rdx = (register_t)lp->lwp_upcall;
806 regs->tf_rip = (register_t)vu->vu_ctx;
807 regs->tf_rsp -= sizeof(upc_frame);
812 * fetchupcall occurs in the context of a system call, which means that
813 * we have to return EJUSTRETURN in order to prevent eax and edx from
814 * being overwritten by the syscall return value.
816 * if vu is not NULL we return the new context in %edx, the new data in %ecx,
817 * and the function pointer in %eax.
820 fetchupcall(struct vmupcall *vu, int morepending, void *rsp)
822 struct upc_frame upc_frame;
823 struct lwp *lp = curthread->td_lwp;
824 struct trapframe *regs;
825 int error;
826 struct upcall upcall;
827 int crit_count;
829 regs = lp->lwp_md.md_regs;
831 error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
832 if (error == 0) {
833 if (vu) {
835 * This jumps us to the next ready context.
837 vu->vu_pending = 0;
838 error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
839 crit_count = 0;
840 if (error == 0)
841 error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
842 ++crit_count;
843 if (error == 0)
844 error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
845 regs->tf_rax = (register_t)vu->vu_func;
846 regs->tf_rcx = (register_t)vu->vu_data;
847 regs->tf_rdx = (register_t)lp->lwp_upcall;
848 regs->tf_rip = (register_t)vu->vu_ctx;
849 regs->tf_rsp = (register_t)rsp;
850 } else {
852 * This returns us to the originally interrupted code.
854 error = copyin(rsp, &upc_frame, sizeof(upc_frame));
855 regs->tf_rax = upc_frame.rax;
856 regs->tf_rcx = upc_frame.rcx;
857 regs->tf_rdx = upc_frame.rdx;
858 regs->tf_rflags = (regs->tf_rflags & ~PSL_USERCHANGE) |
859 (upc_frame.flags & PSL_USERCHANGE);
860 regs->tf_rip = upc_frame.oldip;
861 regs->tf_rsp = (register_t)((char *)rsp + sizeof(upc_frame));
864 if (error == 0)
865 error = EJUSTRETURN;
866 return(error);
870 * Machine dependent boot() routine
872 * I haven't seen anything to put here yet
873 * Possibly some stuff might be grafted back here from boot()
875 void
876 cpu_boot(int howto)
881 * Shutdown the CPU as much as possible
883 void
884 cpu_halt(void)
886 for (;;)
887 __asm__ __volatile("hlt");
891 * cpu_idle() represents the idle LWKT. You cannot return from this function
892 * (unless you want to blow things up!). Instead we look for runnable threads
893 * and loop or halt as appropriate. Giant is not held on entry to the thread.
895 * The main loop is entered with a critical section held, we must release
896 * the critical section before doing anything else. lwkt_switch() will
897 * check for pending interrupts due to entering and exiting its own
898 * critical section.
900 * Note on cpu_idle_hlt: On an SMP system we rely on a scheduler IPI
901 * to wake a HLTed cpu up. However, there are cases where the idlethread
902 * will be entered with the possibility that no IPI will occur and in such
903 * cases lwkt_switch() sets TDF_IDLE_NOHLT.
905 static int cpu_idle_hlt = 1;
906 static int cpu_idle_hltcnt;
907 static int cpu_idle_spincnt;
908 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
909 &cpu_idle_hlt, 0, "Idle loop HLT enable");
910 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
911 &cpu_idle_hltcnt, 0, "Idle loop entry halts");
912 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
913 &cpu_idle_spincnt, 0, "Idle loop entry spins");
915 static void
916 cpu_idle_default_hook(void)
919 * We must guarentee that hlt is exactly the instruction
920 * following the sti.
922 __asm __volatile("sti; hlt");
925 /* Other subsystems (e.g., ACPI) can hook this later. */
926 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
928 void
929 cpu_idle(void)
931 struct thread *td = curthread;
933 crit_exit();
934 KKASSERT(td->td_critcount == 0);
935 for (;;) {
937 * See if there are any LWKTs ready to go.
939 lwkt_switch();
942 * If we are going to halt call splz unconditionally after
943 * CLIing to catch any interrupt races. Note that we are
944 * at SPL0 and interrupts are enabled.
946 if (cpu_idle_hlt && !lwkt_runnable() &&
947 (td->td_flags & TDF_IDLE_NOHLT) == 0) {
948 __asm __volatile("cli");
949 splz();
950 if (!lwkt_runnable())
951 cpu_idle_hook();
952 #ifdef SMP
953 else
954 handle_cpu_contention_mask();
955 #endif
956 ++cpu_idle_hltcnt;
957 } else {
958 td->td_flags &= ~TDF_IDLE_NOHLT;
959 splz();
960 #ifdef SMP
961 __asm __volatile("sti");
962 handle_cpu_contention_mask();
963 #else
964 __asm __volatile("sti");
965 #endif
966 ++cpu_idle_spincnt;
971 #ifdef SMP
974 * This routine is called when the only runnable threads require
975 * the MP lock, and the scheduler couldn't get it. On a real cpu
976 * we let the scheduler spin.
978 void
979 handle_cpu_contention_mask(void)
981 cpumask_t mask;
983 mask = cpu_contention_mask;
984 cpu_ccfence();
985 if (mask && bsfl(mask) != mycpu->gd_cpuid)
986 DELAY(2);
990 * This routine is called if a spinlock has been held through the
991 * exponential backoff period and is seriously contested. On a real cpu
992 * we let it spin.
994 void
995 cpu_spinlock_contested(void)
997 cpu_pause();
1000 #endif
1003 * Clear registers on exec
1005 void
1006 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1008 struct thread *td = curthread;
1009 struct lwp *lp = td->td_lwp;
1010 struct pcb *pcb = td->td_pcb;
1011 struct trapframe *regs = lp->lwp_md.md_regs;
1013 /* was i386_user_cleanup() in NetBSD */
1014 user_ldt_free(pcb);
1016 bzero((char *)regs, sizeof(struct trapframe));
1017 regs->tf_rip = entry;
1018 regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1019 regs->tf_rdi = stack; /* argv */
1020 regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1021 regs->tf_ss = _udatasel;
1022 regs->tf_cs = _ucodesel;
1023 regs->tf_rbx = ps_strings;
1026 * Reset the hardware debug registers if they were in use.
1027 * They won't have any meaning for the newly exec'd process.
1029 if (pcb->pcb_flags & PCB_DBREGS) {
1030 pcb->pcb_dr0 = 0;
1031 pcb->pcb_dr1 = 0;
1032 pcb->pcb_dr2 = 0;
1033 pcb->pcb_dr3 = 0;
1034 pcb->pcb_dr6 = 0;
1035 pcb->pcb_dr7 = 0; /* JG set bit 10? */
1036 if (pcb == td->td_pcb) {
1038 * Clear the debug registers on the running
1039 * CPU, otherwise they will end up affecting
1040 * the next process we switch to.
1042 reset_dbregs();
1044 pcb->pcb_flags &= ~PCB_DBREGS;
1048 * Initialize the math emulator (if any) for the current process.
1049 * Actually, just clear the bit that says that the emulator has
1050 * been initialized. Initialization is delayed until the process
1051 * traps to the emulator (if it is done at all) mainly because
1052 * emulators don't provide an entry point for initialization.
1054 pcb->pcb_flags &= ~FP_SOFTFP;
1057 * NOTE: do not set CR0_TS here. npxinit() must do it after clearing
1058 * gd_npxthread. Otherwise a preemptive interrupt thread
1059 * may panic in npxdna().
1061 crit_enter();
1062 load_cr0(rcr0() | CR0_MP);
1065 * NOTE: The MSR values must be correct so we can return to
1066 * userland. gd_user_fs/gs must be correct so the switch
1067 * code knows what the current MSR values are.
1069 pcb->pcb_fsbase = 0; /* Values loaded from PCB on switch */
1070 pcb->pcb_gsbase = 0;
1071 mdcpu->gd_user_fs = 0; /* Cache of current MSR values */
1072 mdcpu->gd_user_gs = 0;
1073 wrmsr(MSR_FSBASE, 0); /* Set MSR values for return to userland */
1074 wrmsr(MSR_KGSBASE, 0);
1076 /* Initialize the npx (if any) for the current process. */
1077 npxinit(__INITIAL_NPXCW__);
1078 crit_exit();
1080 pcb->pcb_ds = _udatasel;
1081 pcb->pcb_es = _udatasel;
1082 pcb->pcb_fs = _udatasel;
1083 pcb->pcb_gs = _udatasel;
1086 void
1087 cpu_setregs(void)
1089 register_t cr0;
1091 cr0 = rcr0();
1092 cr0 |= CR0_NE; /* Done by npxinit() */
1093 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
1094 cr0 |= CR0_WP | CR0_AM;
1095 load_cr0(cr0);
1096 load_gs(_udatasel);
1099 static int
1100 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1102 int error;
1103 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1104 req);
1105 if (!error && req->newptr)
1106 resettodr();
1107 return (error);
1110 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1111 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1113 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1114 CTLFLAG_RW, &disable_rtc_set, 0, "");
1116 #if JG
1117 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1118 CTLFLAG_RD, &bootinfo, bootinfo, "");
1119 #endif
1121 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1122 CTLFLAG_RW, &wall_cmos_clock, 0, "");
1124 extern u_long bootdev; /* not a cdev_t - encoding is different */
1125 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1126 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1129 * Initialize 386 and configure to run kernel
1133 * Initialize segments & interrupt table
1136 int _default_ldt;
1137 struct user_segment_descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */
1138 static struct gate_descriptor idt0[NIDT];
1139 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
1140 #if JG
1141 union descriptor ldt[NLDT]; /* local descriptor table */
1142 #endif
1144 /* table descriptors - used to load tables by cpu */
1145 struct region_descriptor r_gdt, r_idt;
1147 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
1148 extern int has_f00f_bug;
1149 #endif
1151 static char dblfault_stack[PAGE_SIZE] __aligned(16);
1153 /* JG proc0paddr is a virtual address */
1154 void *proc0paddr;
1155 /* JG alignment? */
1156 char proc0paddr_buff[LWKT_THREAD_STACK];
1159 /* software prototypes -- in more palatable form */
1160 struct soft_segment_descriptor gdt_segs[] = {
1161 /* GNULL_SEL 0 Null Descriptor */
1162 { 0x0, /* segment base address */
1163 0x0, /* length */
1164 0, /* segment type */
1165 0, /* segment descriptor priority level */
1166 0, /* segment descriptor present */
1167 0, /* long */
1168 0, /* default 32 vs 16 bit size */
1169 0 /* limit granularity (byte/page units)*/ },
1170 /* GCODE_SEL 1 Code Descriptor for kernel */
1171 { 0x0, /* segment base address */
1172 0xfffff, /* length - all address space */
1173 SDT_MEMERA, /* segment type */
1174 SEL_KPL, /* segment descriptor priority level */
1175 1, /* segment descriptor present */
1176 1, /* long */
1177 0, /* default 32 vs 16 bit size */
1178 1 /* limit granularity (byte/page units)*/ },
1179 /* GDATA_SEL 2 Data Descriptor for kernel */
1180 { 0x0, /* segment base address */
1181 0xfffff, /* length - all address space */
1182 SDT_MEMRWA, /* segment type */
1183 SEL_KPL, /* segment descriptor priority level */
1184 1, /* segment descriptor present */
1185 1, /* long */
1186 0, /* default 32 vs 16 bit size */
1187 1 /* limit granularity (byte/page units)*/ },
1188 /* GUCODE32_SEL 3 32 bit Code Descriptor for user */
1189 { 0x0, /* segment base address */
1190 0xfffff, /* length - all address space */
1191 SDT_MEMERA, /* segment type */
1192 SEL_UPL, /* segment descriptor priority level */
1193 1, /* segment descriptor present */
1194 0, /* long */
1195 1, /* default 32 vs 16 bit size */
1196 1 /* limit granularity (byte/page units)*/ },
1197 /* GUDATA_SEL 4 32/64 bit Data Descriptor for user */
1198 { 0x0, /* segment base address */
1199 0xfffff, /* length - all address space */
1200 SDT_MEMRWA, /* segment type */
1201 SEL_UPL, /* segment descriptor priority level */
1202 1, /* segment descriptor present */
1203 0, /* long */
1204 1, /* default 32 vs 16 bit size */
1205 1 /* limit granularity (byte/page units)*/ },
1206 /* GUCODE_SEL 5 64 bit Code Descriptor for user */
1207 { 0x0, /* segment base address */
1208 0xfffff, /* length - all address space */
1209 SDT_MEMERA, /* segment type */
1210 SEL_UPL, /* segment descriptor priority level */
1211 1, /* segment descriptor present */
1212 1, /* long */
1213 0, /* default 32 vs 16 bit size */
1214 1 /* limit granularity (byte/page units)*/ },
1215 /* GPROC0_SEL 6 Proc 0 Tss Descriptor */
1217 0x0, /* segment base address */
1218 sizeof(struct x86_64tss)-1,/* length - all address space */
1219 SDT_SYSTSS, /* segment type */
1220 SEL_KPL, /* segment descriptor priority level */
1221 1, /* segment descriptor present */
1222 0, /* long */
1223 0, /* unused - default 32 vs 16 bit size */
1224 0 /* limit granularity (byte/page units)*/ },
1225 /* Actually, the TSS is a system descriptor which is double size */
1226 { 0x0, /* segment base address */
1227 0x0, /* length */
1228 0, /* segment type */
1229 0, /* segment descriptor priority level */
1230 0, /* segment descriptor present */
1231 0, /* long */
1232 0, /* default 32 vs 16 bit size */
1233 0 /* limit granularity (byte/page units)*/ },
1234 /* GUGS32_SEL 8 32 bit GS Descriptor for user */
1235 { 0x0, /* segment base address */
1236 0xfffff, /* length - all address space */
1237 SDT_MEMRWA, /* segment type */
1238 SEL_UPL, /* segment descriptor priority level */
1239 1, /* segment descriptor present */
1240 0, /* long */
1241 1, /* default 32 vs 16 bit size */
1242 1 /* limit granularity (byte/page units)*/ },
1245 void
1246 setidt(int idx, inthand_t *func, int typ, int dpl, int ist)
1248 struct gate_descriptor *ip;
1250 ip = idt + idx;
1251 ip->gd_looffset = (uintptr_t)func;
1252 ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1253 ip->gd_ist = ist;
1254 ip->gd_xx = 0;
1255 ip->gd_type = typ;
1256 ip->gd_dpl = dpl;
1257 ip->gd_p = 1;
1258 ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1261 #define IDTVEC(name) __CONCAT(X,name)
1263 extern inthand_t
1264 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1265 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1266 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1267 IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1268 IDTVEC(xmm), IDTVEC(dblfault),
1269 IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1271 #ifdef DEBUG_INTERRUPTS
1272 extern inthand_t *Xrsvdary[256];
1273 #endif
1275 void
1276 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1278 ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
1279 ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1280 ssd->ssd_type = sd->sd_type;
1281 ssd->ssd_dpl = sd->sd_dpl;
1282 ssd->ssd_p = sd->sd_p;
1283 ssd->ssd_def32 = sd->sd_def32;
1284 ssd->ssd_gran = sd->sd_gran;
1287 void
1288 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1291 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1292 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1293 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1294 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1295 sd->sd_type = ssd->ssd_type;
1296 sd->sd_dpl = ssd->ssd_dpl;
1297 sd->sd_p = ssd->ssd_p;
1298 sd->sd_long = ssd->ssd_long;
1299 sd->sd_def32 = ssd->ssd_def32;
1300 sd->sd_gran = ssd->ssd_gran;
1303 void
1304 ssdtosyssd(struct soft_segment_descriptor *ssd,
1305 struct system_segment_descriptor *sd)
1308 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1309 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1310 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1311 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1312 sd->sd_type = ssd->ssd_type;
1313 sd->sd_dpl = ssd->ssd_dpl;
1314 sd->sd_p = ssd->ssd_p;
1315 sd->sd_gran = ssd->ssd_gran;
1318 u_int basemem;
1321 * Populate the (physmap) array with base/bound pairs describing the
1322 * available physical memory in the system, then test this memory and
1323 * build the phys_avail array describing the actually-available memory.
1325 * If we cannot accurately determine the physical memory map, then use
1326 * value from the 0xE801 call, and failing that, the RTC.
1328 * Total memory size may be set by the kernel environment variable
1329 * hw.physmem or the compile-time define MAXMEM.
1331 * XXX first should be vm_paddr_t.
1333 static void
1334 getmemsize(caddr_t kmdp, u_int64_t first)
1336 int i, off, physmap_idx, pa_indx, da_indx;
1337 vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1338 u_long physmem_tunable;
1339 pt_entry_t *pte;
1340 struct bios_smap *smapbase, *smap, *smapend;
1341 u_int32_t smapsize;
1342 quad_t dcons_addr, dcons_size;
1344 bzero(physmap, sizeof(physmap));
1345 basemem = 0;
1346 physmap_idx = 0;
1349 * get memory map from INT 15:E820, kindly supplied by the loader.
1351 * subr_module.c says:
1352 * "Consumer may safely assume that size value precedes data."
1353 * ie: an int32_t immediately precedes smap.
1355 smapbase = (struct bios_smap *)preload_search_info(kmdp,
1356 MODINFO_METADATA | MODINFOMD_SMAP);
1357 if (smapbase == NULL)
1358 panic("No BIOS smap info from loader!");
1360 smapsize = *((u_int32_t *)smapbase - 1);
1361 smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1363 for (smap = smapbase; smap < smapend; smap++) {
1364 if (boothowto & RB_VERBOSE)
1365 kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1366 smap->type, smap->base, smap->length);
1368 if (smap->type != SMAP_TYPE_MEMORY)
1369 continue;
1371 if (smap->length == 0)
1372 continue;
1374 for (i = 0; i <= physmap_idx; i += 2) {
1375 if (smap->base < physmap[i + 1]) {
1376 if (boothowto & RB_VERBOSE) {
1377 kprintf("Overlapping or non-monotonic "
1378 "memory region, ignoring "
1379 "second region\n");
1381 continue;
1384 Realmem += smap->length;
1386 if (smap->base == physmap[physmap_idx + 1]) {
1387 physmap[physmap_idx + 1] += smap->length;
1388 continue;
1391 physmap_idx += 2;
1392 if (physmap_idx == PHYSMAP_SIZE) {
1393 kprintf("Too many segments in the physical "
1394 "address map, giving up\n");
1395 break;
1397 physmap[physmap_idx] = smap->base;
1398 physmap[physmap_idx + 1] = smap->base + smap->length;
1402 * Find the 'base memory' segment for SMP
1404 basemem = 0;
1405 for (i = 0; i <= physmap_idx; i += 2) {
1406 if (physmap[i] == 0x00000000) {
1407 basemem = physmap[i + 1] / 1024;
1408 break;
1411 if (basemem == 0)
1412 panic("BIOS smap did not include a basemem segment!");
1414 #ifdef SMP
1415 /* make hole for AP bootstrap code */
1416 physmap[1] = mp_bootaddress(physmap[1] / 1024);
1418 /* Save EBDA address, if any */
1419 ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1420 ebda_addr <<= 4;
1421 #endif
1424 * Maxmem isn't the "maximum memory", it's one larger than the
1425 * highest page of the physical address space. It should be
1426 * called something like "Maxphyspage". We may adjust this
1427 * based on ``hw.physmem'' and the results of the memory test.
1429 Maxmem = atop(physmap[physmap_idx + 1]);
1431 #ifdef MAXMEM
1432 Maxmem = MAXMEM / 4;
1433 #endif
1435 if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1436 Maxmem = atop(physmem_tunable);
1439 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1440 * in the system.
1442 if (Maxmem > atop(physmap[physmap_idx + 1]))
1443 Maxmem = atop(physmap[physmap_idx + 1]);
1445 if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1446 (boothowto & RB_VERBOSE))
1447 kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1449 /* call pmap initialization to make new kernel address space */
1450 pmap_bootstrap(&first);
1453 * Size up each available chunk of physical memory.
1455 physmap[0] = PAGE_SIZE; /* mask off page 0 */
1456 pa_indx = 0;
1457 da_indx = 1;
1458 phys_avail[pa_indx++] = physmap[0];
1459 phys_avail[pa_indx] = physmap[0];
1460 dump_avail[da_indx] = physmap[0];
1461 pte = CMAP1;
1464 * Get dcons buffer address
1466 if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1467 kgetenv_quad("dcons.size", &dcons_size) == 0)
1468 dcons_addr = 0;
1471 * physmap is in bytes, so when converting to page boundaries,
1472 * round up the start address and round down the end address.
1474 for (i = 0; i <= physmap_idx; i += 2) {
1475 vm_paddr_t end;
1477 end = ptoa((vm_paddr_t)Maxmem);
1478 if (physmap[i + 1] < end)
1479 end = trunc_page(physmap[i + 1]);
1480 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1481 int tmp, page_bad, full;
1482 int *ptr = (int *)CADDR1;
1484 full = FALSE;
1486 * block out kernel memory as not available.
1488 if (pa >= 0x100000 && pa < first)
1489 goto do_dump_avail;
1492 * block out dcons buffer
1494 if (dcons_addr > 0
1495 && pa >= trunc_page(dcons_addr)
1496 && pa < dcons_addr + dcons_size)
1497 goto do_dump_avail;
1499 page_bad = FALSE;
1502 * map page into kernel: valid, read/write,non-cacheable
1504 *pte = pa | PG_V | PG_RW | PG_N;
1505 cpu_invltlb();
1507 tmp = *(int *)ptr;
1509 * Test for alternating 1's and 0's
1511 *(volatile int *)ptr = 0xaaaaaaaa;
1512 if (*(volatile int *)ptr != 0xaaaaaaaa)
1513 page_bad = TRUE;
1515 * Test for alternating 0's and 1's
1517 *(volatile int *)ptr = 0x55555555;
1518 if (*(volatile int *)ptr != 0x55555555)
1519 page_bad = TRUE;
1521 * Test for all 1's
1523 *(volatile int *)ptr = 0xffffffff;
1524 if (*(volatile int *)ptr != 0xffffffff)
1525 page_bad = TRUE;
1527 * Test for all 0's
1529 *(volatile int *)ptr = 0x0;
1530 if (*(volatile int *)ptr != 0x0)
1531 page_bad = TRUE;
1533 * Restore original value.
1535 *(int *)ptr = tmp;
1538 * Adjust array of valid/good pages.
1540 if (page_bad == TRUE)
1541 continue;
1543 * If this good page is a continuation of the
1544 * previous set of good pages, then just increase
1545 * the end pointer. Otherwise start a new chunk.
1546 * Note that "end" points one higher than end,
1547 * making the range >= start and < end.
1548 * If we're also doing a speculative memory
1549 * test and we at or past the end, bump up Maxmem
1550 * so that we keep going. The first bad page
1551 * will terminate the loop.
1553 if (phys_avail[pa_indx] == pa) {
1554 phys_avail[pa_indx] += PAGE_SIZE;
1555 } else {
1556 pa_indx++;
1557 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1558 kprintf(
1559 "Too many holes in the physical address space, giving up\n");
1560 pa_indx--;
1561 full = TRUE;
1562 goto do_dump_avail;
1564 phys_avail[pa_indx++] = pa; /* start */
1565 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1567 physmem++;
1568 do_dump_avail:
1569 if (dump_avail[da_indx] == pa) {
1570 dump_avail[da_indx] += PAGE_SIZE;
1571 } else {
1572 da_indx++;
1573 if (da_indx == DUMP_AVAIL_ARRAY_END) {
1574 da_indx--;
1575 goto do_next;
1577 dump_avail[da_indx++] = pa; /* start */
1578 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1580 do_next:
1581 if (full)
1582 break;
1585 *pte = 0;
1586 cpu_invltlb();
1589 * XXX
1590 * The last chunk must contain at least one page plus the message
1591 * buffer to avoid complicating other code (message buffer address
1592 * calculation, etc.).
1594 while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1595 round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1596 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1597 phys_avail[pa_indx--] = 0;
1598 phys_avail[pa_indx--] = 0;
1601 Maxmem = atop(phys_avail[pa_indx]);
1603 /* Trim off space for the message buffer. */
1604 phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1606 avail_end = phys_avail[pa_indx];
1608 /* Map the message buffer. */
1609 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1610 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
1611 off);
1615 * IDT VECTORS:
1616 * 0 Divide by zero
1617 * 1 Debug
1618 * 2 NMI
1619 * 3 BreakPoint
1620 * 4 OverFlow
1621 * 5 Bound-Range
1622 * 6 Invalid OpCode
1623 * 7 Device Not Available (x87)
1624 * 8 Double-Fault
1625 * 9 Coprocessor Segment overrun (unsupported, reserved)
1626 * 10 Invalid-TSS
1627 * 11 Segment not present
1628 * 12 Stack
1629 * 13 General Protection
1630 * 14 Page Fault
1631 * 15 Reserved
1632 * 16 x87 FP Exception pending
1633 * 17 Alignment Check
1634 * 18 Machine Check
1635 * 19 SIMD floating point
1636 * 20-31 reserved
1637 * 32-255 INTn/external sources
1639 u_int64_t
1640 hammer_time(u_int64_t modulep, u_int64_t physfree)
1642 caddr_t kmdp;
1643 int gsel_tss, x;
1644 #if JG
1645 int metadata_missing, off;
1646 #endif
1647 struct mdglobaldata *gd;
1648 u_int64_t msr;
1651 * Prevent lowering of the ipl if we call tsleep() early.
1653 gd = &CPU_prvspace[0].mdglobaldata;
1654 bzero(gd, sizeof(*gd));
1657 * Note: on both UP and SMP curthread must be set non-NULL
1658 * early in the boot sequence because the system assumes
1659 * that 'curthread' is never NULL.
1662 gd->mi.gd_curthread = &thread0;
1663 thread0.td_gd = &gd->mi;
1665 atdevbase = ISA_HOLE_START + PTOV_OFFSET;
1667 #if JG
1668 metadata_missing = 0;
1669 if (bootinfo.bi_modulep) {
1670 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1671 preload_bootstrap_relocate(KERNBASE);
1672 } else {
1673 metadata_missing = 1;
1675 if (bootinfo.bi_envp)
1676 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1677 #endif
1679 preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
1680 preload_bootstrap_relocate(PTOV_OFFSET);
1681 kmdp = preload_search_by_type("elf kernel");
1682 if (kmdp == NULL)
1683 kmdp = preload_search_by_type("elf64 kernel");
1684 boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1685 kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
1686 #ifdef DDB
1687 ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1688 ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1689 #endif
1692 * start with one cpu. Note: with one cpu, ncpus2_shift, ncpus2_mask,
1693 * and ncpus_fit_mask remain 0.
1695 ncpus = 1;
1696 ncpus2 = 1;
1697 ncpus_fit = 1;
1698 /* Init basic tunables, hz etc */
1699 init_param1();
1702 * make gdt memory segments
1704 gdt_segs[GPROC0_SEL].ssd_base =
1705 (uintptr_t) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1707 gd->mi.gd_prvspace = &CPU_prvspace[0];
1709 for (x = 0; x < NGDT; x++) {
1710 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1711 ssdtosd(&gdt_segs[x], &gdt[x]);
1713 ssdtosyssd(&gdt_segs[GPROC0_SEL],
1714 (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1716 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1717 r_gdt.rd_base = (long) gdt;
1718 lgdt(&r_gdt);
1720 wrmsr(MSR_FSBASE, 0); /* User value */
1721 wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
1722 wrmsr(MSR_KGSBASE, 0); /* User value while in the kernel */
1724 mi_gdinit(&gd->mi, 0);
1725 cpu_gdinit(gd, 0);
1726 proc0paddr = proc0paddr_buff;
1727 mi_proc0init(&gd->mi, proc0paddr);
1728 safepri = TDPRI_MAX;
1730 /* spinlocks and the BGL */
1731 init_locks();
1733 /* exceptions */
1734 for (x = 0; x < NIDT; x++)
1735 setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1736 setidt(IDT_DE, &IDTVEC(div), SDT_SYSIGT, SEL_KPL, 0);
1737 setidt(IDT_DB, &IDTVEC(dbg), SDT_SYSIGT, SEL_KPL, 0);
1738 setidt(IDT_NMI, &IDTVEC(nmi), SDT_SYSIGT, SEL_KPL, 1);
1739 setidt(IDT_BP, &IDTVEC(bpt), SDT_SYSIGT, SEL_UPL, 0);
1740 setidt(IDT_OF, &IDTVEC(ofl), SDT_SYSIGT, SEL_KPL, 0);
1741 setidt(IDT_BR, &IDTVEC(bnd), SDT_SYSIGT, SEL_KPL, 0);
1742 setidt(IDT_UD, &IDTVEC(ill), SDT_SYSIGT, SEL_KPL, 0);
1743 setidt(IDT_NM, &IDTVEC(dna), SDT_SYSIGT, SEL_KPL, 0);
1744 setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1745 setidt(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYSIGT, SEL_KPL, 0);
1746 setidt(IDT_TS, &IDTVEC(tss), SDT_SYSIGT, SEL_KPL, 0);
1747 setidt(IDT_NP, &IDTVEC(missing), SDT_SYSIGT, SEL_KPL, 0);
1748 setidt(IDT_SS, &IDTVEC(stk), SDT_SYSIGT, SEL_KPL, 0);
1749 setidt(IDT_GP, &IDTVEC(prot), SDT_SYSIGT, SEL_KPL, 0);
1750 setidt(IDT_PF, &IDTVEC(page), SDT_SYSIGT, SEL_KPL, 0);
1751 setidt(IDT_MF, &IDTVEC(fpu), SDT_SYSIGT, SEL_KPL, 0);
1752 setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1753 setidt(IDT_MC, &IDTVEC(mchk), SDT_SYSIGT, SEL_KPL, 0);
1754 setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1756 r_idt.rd_limit = sizeof(idt0) - 1;
1757 r_idt.rd_base = (long) idt;
1758 lidt(&r_idt);
1761 * Initialize the console before we print anything out.
1763 cninit();
1765 #if JG
1766 if (metadata_missing)
1767 kprintf("WARNING: loader(8) metadata is missing!\n");
1768 #endif
1770 #if NISA >0
1771 isa_defaultirq();
1772 #endif
1773 rand_initialize();
1775 #ifdef DDB
1776 kdb_init();
1777 if (boothowto & RB_KDB)
1778 Debugger("Boot flags requested debugger");
1779 #endif
1781 #if JG
1782 finishidentcpu(); /* Final stage of CPU initialization */
1783 setidt(6, &IDTVEC(ill), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1784 setidt(13, &IDTVEC(prot), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1785 #endif
1786 identify_cpu(); /* Final stage of CPU initialization */
1787 initializecpu(); /* Initialize CPU registers */
1789 /* make an initial tss so cpu can get interrupt stack on syscall! */
1790 gd->gd_common_tss.tss_rsp0 =
1791 (register_t)(thread0.td_kstack +
1792 KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
1793 /* Ensure the stack is aligned to 16 bytes */
1794 gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
1795 gd->gd_rsp0 = gd->gd_common_tss.tss_rsp0;
1797 /* doublefault stack space, runs on ist1 */
1798 gd->gd_common_tss.tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1800 /* Set the IO permission bitmap (empty due to tss seg limit) */
1801 gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
1803 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1804 gd->gd_tss_gdt = &gdt[GPROC0_SEL];
1805 gd->gd_common_tssd = *gd->gd_tss_gdt;
1806 ltr(gsel_tss);
1808 /* Set up the fast syscall stuff */
1809 msr = rdmsr(MSR_EFER) | EFER_SCE;
1810 wrmsr(MSR_EFER, msr);
1811 wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1812 wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1813 msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1814 ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1815 wrmsr(MSR_STAR, msr);
1816 wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1818 getmemsize(kmdp, physfree);
1819 init_param2(physmem);
1821 /* now running on new page tables, configured,and u/iom is accessible */
1823 /* Map the message buffer. */
1824 #if JG
1825 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1826 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1827 #endif
1829 msgbufinit(msgbufp, MSGBUF_SIZE);
1832 /* transfer to user mode */
1834 _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1835 _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1836 _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1838 load_ds(_udatasel);
1839 load_es(_udatasel);
1840 load_fs(_udatasel);
1842 /* setup proc 0's pcb */
1843 thread0.td_pcb->pcb_flags = 0;
1844 thread0.td_pcb->pcb_cr3 = KPML4phys;
1845 thread0.td_pcb->pcb_ext = 0;
1846 lwp0.lwp_md.md_regs = &proc0_tf;
1848 /* Location of kernel stack for locore */
1849 return ((u_int64_t)thread0.td_pcb);
1853 * Initialize machine-dependant portions of the global data structure.
1854 * Note that the global data area and cpu0's idlestack in the private
1855 * data space were allocated in locore.
1857 * Note: the idlethread's cpl is 0
1859 * WARNING! Called from early boot, 'mycpu' may not work yet.
1861 void
1862 cpu_gdinit(struct mdglobaldata *gd, int cpu)
1864 if (cpu)
1865 gd->mi.gd_curthread = &gd->mi.gd_idlethread;
1867 lwkt_init_thread(&gd->mi.gd_idlethread,
1868 gd->mi.gd_prvspace->idlestack,
1869 sizeof(gd->mi.gd_prvspace->idlestack),
1870 0, &gd->mi);
1871 lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
1872 gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
1873 gd->mi.gd_idlethread.td_sp -= sizeof(void *);
1874 *(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
1878 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
1880 if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
1881 eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
1882 return (TRUE);
1884 return (FALSE);
1887 struct globaldata *
1888 globaldata_find(int cpu)
1890 KKASSERT(cpu >= 0 && cpu < ncpus);
1891 return(&CPU_prvspace[cpu].mdglobaldata.mi);
1894 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
1895 static void f00f_hack(void *unused);
1896 SYSINIT(f00f_hack, SI_BOOT2_BIOS, SI_ORDER_ANY, f00f_hack, NULL);
1898 static void
1899 f00f_hack(void *unused)
1901 struct gate_descriptor *new_idt;
1902 vm_offset_t tmp;
1904 if (!has_f00f_bug)
1905 return;
1907 kprintf("Intel Pentium detected, installing workaround for F00F bug\n");
1909 r_idt.rd_limit = sizeof(idt0) - 1;
1911 tmp = kmem_alloc(&kernel_map, PAGE_SIZE * 2);
1912 if (tmp == 0)
1913 panic("kmem_alloc returned 0");
1914 if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
1915 panic("kmem_alloc returned non-page-aligned memory");
1916 /* Put the first seven entries in the lower page */
1917 new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
1918 bcopy(idt, new_idt, sizeof(idt0));
1919 r_idt.rd_base = (int)new_idt;
1920 lidt(&r_idt);
1921 idt = new_idt;
1922 if (vm_map_protect(&kernel_map, tmp, tmp + PAGE_SIZE,
1923 VM_PROT_READ, FALSE) != KERN_SUCCESS)
1924 panic("vm_map_protect failed");
1925 return;
1927 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
1930 ptrace_set_pc(struct lwp *lp, unsigned long addr)
1932 lp->lwp_md.md_regs->tf_rip = addr;
1933 return (0);
1937 ptrace_single_step(struct lwp *lp)
1939 lp->lwp_md.md_regs->tf_rflags |= PSL_T;
1940 return (0);
1944 fill_regs(struct lwp *lp, struct reg *regs)
1946 struct trapframe *tp;
1948 tp = lp->lwp_md.md_regs;
1949 bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
1950 return (0);
1954 set_regs(struct lwp *lp, struct reg *regs)
1956 struct trapframe *tp;
1958 tp = lp->lwp_md.md_regs;
1959 if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
1960 !CS_SECURE(regs->r_cs))
1961 return (EINVAL);
1962 bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
1963 return (0);
1966 #ifndef CPU_DISABLE_SSE
1967 static void
1968 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
1970 struct env87 *penv_87 = &sv_87->sv_env;
1971 struct envxmm *penv_xmm = &sv_xmm->sv_env;
1972 int i;
1974 /* FPU control/status */
1975 penv_87->en_cw = penv_xmm->en_cw;
1976 penv_87->en_sw = penv_xmm->en_sw;
1977 penv_87->en_tw = penv_xmm->en_tw;
1978 penv_87->en_fip = penv_xmm->en_fip;
1979 penv_87->en_fcs = penv_xmm->en_fcs;
1980 penv_87->en_opcode = penv_xmm->en_opcode;
1981 penv_87->en_foo = penv_xmm->en_foo;
1982 penv_87->en_fos = penv_xmm->en_fos;
1984 /* FPU registers */
1985 for (i = 0; i < 8; ++i)
1986 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
1988 sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
1991 static void
1992 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
1994 struct env87 *penv_87 = &sv_87->sv_env;
1995 struct envxmm *penv_xmm = &sv_xmm->sv_env;
1996 int i;
1998 /* FPU control/status */
1999 penv_xmm->en_cw = penv_87->en_cw;
2000 penv_xmm->en_sw = penv_87->en_sw;
2001 penv_xmm->en_tw = penv_87->en_tw;
2002 penv_xmm->en_fip = penv_87->en_fip;
2003 penv_xmm->en_fcs = penv_87->en_fcs;
2004 penv_xmm->en_opcode = penv_87->en_opcode;
2005 penv_xmm->en_foo = penv_87->en_foo;
2006 penv_xmm->en_fos = penv_87->en_fos;
2008 /* FPU registers */
2009 for (i = 0; i < 8; ++i)
2010 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2012 sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
2014 #endif /* CPU_DISABLE_SSE */
2017 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2019 #ifndef CPU_DISABLE_SSE
2020 if (cpu_fxsr) {
2021 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2022 (struct save87 *)fpregs);
2023 return (0);
2025 #endif /* CPU_DISABLE_SSE */
2026 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2027 return (0);
2031 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2033 #ifndef CPU_DISABLE_SSE
2034 if (cpu_fxsr) {
2035 set_fpregs_xmm((struct save87 *)fpregs,
2036 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2037 return (0);
2039 #endif /* CPU_DISABLE_SSE */
2040 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2041 return (0);
2045 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2047 if (lp == NULL) {
2048 dbregs->dr[0] = rdr0();
2049 dbregs->dr[1] = rdr1();
2050 dbregs->dr[2] = rdr2();
2051 dbregs->dr[3] = rdr3();
2052 dbregs->dr[4] = rdr4();
2053 dbregs->dr[5] = rdr5();
2054 dbregs->dr[6] = rdr6();
2055 dbregs->dr[7] = rdr7();
2056 } else {
2057 struct pcb *pcb;
2059 pcb = lp->lwp_thread->td_pcb;
2060 dbregs->dr[0] = pcb->pcb_dr0;
2061 dbregs->dr[1] = pcb->pcb_dr1;
2062 dbregs->dr[2] = pcb->pcb_dr2;
2063 dbregs->dr[3] = pcb->pcb_dr3;
2064 dbregs->dr[4] = 0;
2065 dbregs->dr[5] = 0;
2066 dbregs->dr[6] = pcb->pcb_dr6;
2067 dbregs->dr[7] = pcb->pcb_dr7;
2069 return (0);
2073 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2075 if (lp == NULL) {
2076 load_dr0(dbregs->dr[0]);
2077 load_dr1(dbregs->dr[1]);
2078 load_dr2(dbregs->dr[2]);
2079 load_dr3(dbregs->dr[3]);
2080 load_dr4(dbregs->dr[4]);
2081 load_dr5(dbregs->dr[5]);
2082 load_dr6(dbregs->dr[6]);
2083 load_dr7(dbregs->dr[7]);
2084 } else {
2085 struct pcb *pcb;
2086 struct ucred *ucred;
2087 int i;
2088 uint64_t mask1, mask2;
2091 * Don't let an illegal value for dr7 get set. Specifically,
2092 * check for undefined settings. Setting these bit patterns
2093 * result in undefined behaviour and can lead to an unexpected
2094 * TRCTRAP.
2096 /* JG this loop looks unreadable */
2097 /* Check 4 2-bit fields for invalid patterns.
2098 * These fields are R/Wi, for i = 0..3
2100 /* Is 10 in LENi allowed when running in compatibility mode? */
2101 /* Pattern 10 in R/Wi might be used to indicate
2102 * breakpoint on I/O. Further analysis should be
2103 * carried to decide if it is safe and useful to
2104 * provide access to that capability
2106 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2107 i++, mask1 <<= 4, mask2 <<= 4)
2108 if ((dbregs->dr[7] & mask1) == mask2)
2109 return (EINVAL);
2111 pcb = lp->lwp_thread->td_pcb;
2112 ucred = lp->lwp_proc->p_ucred;
2115 * Don't let a process set a breakpoint that is not within the
2116 * process's address space. If a process could do this, it
2117 * could halt the system by setting a breakpoint in the kernel
2118 * (if ddb was enabled). Thus, we need to check to make sure
2119 * that no breakpoints are being enabled for addresses outside
2120 * process's address space, unless, perhaps, we were called by
2121 * uid 0.
2123 * XXX - what about when the watched area of the user's
2124 * address space is written into from within the kernel
2125 * ... wouldn't that still cause a breakpoint to be generated
2126 * from within kernel mode?
2129 if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2130 if (dbregs->dr[7] & 0x3) {
2131 /* dr0 is enabled */
2132 if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2133 return (EINVAL);
2136 if (dbregs->dr[7] & (0x3<<2)) {
2137 /* dr1 is enabled */
2138 if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2139 return (EINVAL);
2142 if (dbregs->dr[7] & (0x3<<4)) {
2143 /* dr2 is enabled */
2144 if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2145 return (EINVAL);
2148 if (dbregs->dr[7] & (0x3<<6)) {
2149 /* dr3 is enabled */
2150 if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2151 return (EINVAL);
2155 pcb->pcb_dr0 = dbregs->dr[0];
2156 pcb->pcb_dr1 = dbregs->dr[1];
2157 pcb->pcb_dr2 = dbregs->dr[2];
2158 pcb->pcb_dr3 = dbregs->dr[3];
2159 pcb->pcb_dr6 = dbregs->dr[6];
2160 pcb->pcb_dr7 = dbregs->dr[7];
2162 pcb->pcb_flags |= PCB_DBREGS;
2165 return (0);
2169 * Return > 0 if a hardware breakpoint has been hit, and the
2170 * breakpoint was in user space. Return 0, otherwise.
2173 user_dbreg_trap(void)
2175 u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2176 u_int64_t bp; /* breakpoint bits extracted from dr6 */
2177 int nbp; /* number of breakpoints that triggered */
2178 caddr_t addr[4]; /* breakpoint addresses */
2179 int i;
2181 dr7 = rdr7();
2182 if ((dr7 & 0xff) == 0) {
2184 * all GE and LE bits in the dr7 register are zero,
2185 * thus the trap couldn't have been caused by the
2186 * hardware debug registers
2188 return 0;
2191 nbp = 0;
2192 dr6 = rdr6();
2193 bp = dr6 & 0xf;
2195 if (bp == 0) {
2197 * None of the breakpoint bits are set meaning this
2198 * trap was not caused by any of the debug registers
2200 return 0;
2204 * at least one of the breakpoints were hit, check to see
2205 * which ones and if any of them are user space addresses
2208 if (bp & 0x01) {
2209 addr[nbp++] = (caddr_t)rdr0();
2211 if (bp & 0x02) {
2212 addr[nbp++] = (caddr_t)rdr1();
2214 if (bp & 0x04) {
2215 addr[nbp++] = (caddr_t)rdr2();
2217 if (bp & 0x08) {
2218 addr[nbp++] = (caddr_t)rdr3();
2221 for (i=0; i<nbp; i++) {
2222 if (addr[i] <
2223 (caddr_t)VM_MAX_USER_ADDRESS) {
2225 * addr[i] is in user space
2227 return nbp;
2232 * None of the breakpoints are in user space.
2234 return 0;
2238 #ifndef DDB
2239 void
2240 Debugger(const char *msg)
2242 kprintf("Debugger(\"%s\") called.\n", msg);
2244 #endif /* no DDB */
2246 #ifdef DDB
2249 * Provide inb() and outb() as functions. They are normally only
2250 * available as macros calling inlined functions, thus cannot be
2251 * called inside DDB.
2253 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2256 #undef inb
2257 #undef outb
2259 /* silence compiler warnings */
2260 u_char inb(u_int);
2261 void outb(u_int, u_char);
2263 u_char
2264 inb(u_int port)
2266 u_char data;
2268 * We use %%dx and not %1 here because i/o is done at %dx and not at
2269 * %edx, while gcc generates inferior code (movw instead of movl)
2270 * if we tell it to load (u_short) port.
2272 __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2273 return (data);
2276 void
2277 outb(u_int port, u_char data)
2279 u_char al;
2281 * Use an unnecessary assignment to help gcc's register allocator.
2282 * This make a large difference for gcc-1.40 and a tiny difference
2283 * for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
2284 * best results. gcc-2.6.0 can't handle this.
2286 al = data;
2287 __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2290 #endif /* DDB */
2294 #include "opt_cpu.h"
2298 * initialize all the SMP locks
2301 /* critical region when masking or unmasking interupts */
2302 struct spinlock_deprecated imen_spinlock;
2304 /* critical region for old style disable_intr/enable_intr */
2305 struct spinlock_deprecated mpintr_spinlock;
2307 /* critical region around INTR() routines */
2308 struct spinlock_deprecated intr_spinlock;
2310 /* lock region used by kernel profiling */
2311 struct spinlock_deprecated mcount_spinlock;
2313 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2314 struct spinlock_deprecated com_spinlock;
2316 /* lock regions around the clock hardware */
2317 struct spinlock_deprecated clock_spinlock;
2319 static void
2320 init_locks(void)
2323 * mp_lock = 0; BSP already owns the MP lock
2326 * Get the initial mp_lock with a count of 1 for the BSP.
2327 * This uses a LOGICAL cpu ID, ie BSP == 0.
2329 #ifdef SMP
2330 cpu_get_initial_mplock();
2331 #endif
2332 /* DEPRECATED */
2333 spin_lock_init(&mcount_spinlock);
2334 spin_lock_init(&intr_spinlock);
2335 spin_lock_init(&mpintr_spinlock);
2336 spin_lock_init(&imen_spinlock);
2337 spin_lock_init(&com_spinlock);
2338 spin_lock_init(&clock_spinlock);
2340 /* our token pool needs to work early */
2341 lwkt_token_pool_init();