getdevpath.3: Fix reference and sort.
[dragonfly.git] / sys / kern / kern_synch.c
blob055c38d4f4ad46328d199b299dda76c443f1b3db
1 /*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
39 * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40 * $DragonFly: src/sys/kern/kern_synch.c,v 1.91 2008/09/09 04:06:13 dillon Exp $
43 #include "opt_ktrace.h"
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/signal2.h>
51 #include <sys/resourcevar.h>
52 #include <sys/vmmeter.h>
53 #include <sys/sysctl.h>
54 #include <sys/lock.h>
55 #ifdef KTRACE
56 #include <sys/uio.h>
57 #include <sys/ktrace.h>
58 #endif
59 #include <sys/xwait.h>
60 #include <sys/ktr.h>
62 #include <sys/thread2.h>
63 #include <sys/spinlock2.h>
64 #include <sys/mutex2.h>
65 #include <sys/serialize.h>
67 #include <machine/cpu.h>
68 #include <machine/smp.h>
70 TAILQ_HEAD(tslpque, thread);
72 static void sched_setup (void *dummy);
73 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
75 int hogticks;
76 int lbolt;
77 int lbolt_syncer;
78 int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
79 int ncpus;
80 int ncpus2, ncpus2_shift, ncpus2_mask;
81 int ncpus_fit, ncpus_fit_mask;
82 int safepri;
83 int tsleep_now_works;
85 static struct callout loadav_callout;
86 static struct callout schedcpu_callout;
87 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
89 #if !defined(KTR_TSLEEP)
90 #define KTR_TSLEEP KTR_ALL
91 #endif
92 KTR_INFO_MASTER(tsleep);
93 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", sizeof(void *));
94 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit", 0);
95 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", sizeof(void *));
96 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit", 0);
97 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail, 4, "interlock failed %p", sizeof(void *));
99 #define logtsleep1(name) KTR_LOG(tsleep_ ## name)
100 #define logtsleep2(name, val) KTR_LOG(tsleep_ ## name, val)
102 struct loadavg averunnable =
103 { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */
105 * Constants for averages over 1, 5, and 15 minutes
106 * when sampling at 5 second intervals.
108 static fixpt_t cexp[3] = {
109 0.9200444146293232 * FSCALE, /* exp(-1/12) */
110 0.9834714538216174 * FSCALE, /* exp(-1/60) */
111 0.9944598480048967 * FSCALE, /* exp(-1/180) */
114 static void endtsleep (void *);
115 static void tsleep_wakeup(struct thread *td);
116 static void loadav (void *arg);
117 static void schedcpu (void *arg);
120 * Adjust the scheduler quantum. The quantum is specified in microseconds.
121 * Note that 'tick' is in microseconds per tick.
123 static int
124 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
126 int error, new_val;
128 new_val = sched_quantum * tick;
129 error = sysctl_handle_int(oidp, &new_val, 0, req);
130 if (error != 0 || req->newptr == NULL)
131 return (error);
132 if (new_val < tick)
133 return (EINVAL);
134 sched_quantum = new_val / tick;
135 hogticks = 2 * sched_quantum;
136 return (0);
139 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
140 0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
143 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
144 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
145 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
147 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
148 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
150 * If you don't want to bother with the faster/more-accurate formula, you
151 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
152 * (more general) method of calculating the %age of CPU used by a process.
154 * decay 95% of `lwp_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
156 #define CCPU_SHIFT 11
158 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
159 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
162 * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
164 int fscale __unused = FSCALE; /* exported to systat */
165 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
168 * Recompute process priorities, once a second.
170 * Since the userland schedulers are typically event oriented, if the
171 * estcpu calculation at wakeup() time is not sufficient to make a
172 * process runnable relative to other processes in the system we have
173 * a 1-second recalc to help out.
175 * This code also allows us to store sysclock_t data in the process structure
176 * without fear of an overrun, since sysclock_t are guarenteed to hold
177 * several seconds worth of count.
179 * WARNING! callouts can preempt normal threads. However, they will not
180 * preempt a thread holding a spinlock so we *can* safely use spinlocks.
182 static int schedcpu_stats(struct proc *p, void *data __unused);
183 static int schedcpu_resource(struct proc *p, void *data __unused);
185 static void
186 schedcpu(void *arg)
188 allproc_scan(schedcpu_stats, NULL);
189 allproc_scan(schedcpu_resource, NULL);
190 wakeup((caddr_t)&lbolt);
191 wakeup((caddr_t)&lbolt_syncer);
192 callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
196 * General process statistics once a second
198 static int
199 schedcpu_stats(struct proc *p, void *data __unused)
201 struct lwp *lp;
203 crit_enter();
204 p->p_swtime++;
205 FOREACH_LWP_IN_PROC(lp, p) {
206 if (lp->lwp_stat == LSSLEEP)
207 lp->lwp_slptime++;
210 * Only recalculate processes that are active or have slept
211 * less then 2 seconds. The schedulers understand this.
213 if (lp->lwp_slptime <= 1) {
214 p->p_usched->recalculate(lp);
215 } else {
216 lp->lwp_pctcpu = (lp->lwp_pctcpu * ccpu) >> FSHIFT;
219 crit_exit();
220 return(0);
224 * Resource checks. XXX break out since ksignal/killproc can block,
225 * limiting us to one process killed per second. There is probably
226 * a better way.
228 static int
229 schedcpu_resource(struct proc *p, void *data __unused)
231 u_int64_t ttime;
232 struct lwp *lp;
234 crit_enter();
235 if (p->p_stat == SIDL ||
236 p->p_stat == SZOMB ||
237 p->p_limit == NULL
239 crit_exit();
240 return(0);
243 ttime = 0;
244 FOREACH_LWP_IN_PROC(lp, p) {
246 * We may have caught an lp in the middle of being
247 * created, lwp_thread can be NULL.
249 if (lp->lwp_thread) {
250 ttime += lp->lwp_thread->td_sticks;
251 ttime += lp->lwp_thread->td_uticks;
255 switch(plimit_testcpulimit(p->p_limit, ttime)) {
256 case PLIMIT_TESTCPU_KILL:
257 killproc(p, "exceeded maximum CPU limit");
258 break;
259 case PLIMIT_TESTCPU_XCPU:
260 if ((p->p_flag & P_XCPU) == 0) {
261 p->p_flag |= P_XCPU;
262 ksignal(p, SIGXCPU);
264 break;
265 default:
266 break;
268 crit_exit();
269 return(0);
273 * This is only used by ps. Generate a cpu percentage use over
274 * a period of one second.
276 * MPSAFE
278 void
279 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
281 fixpt_t acc;
282 int remticks;
284 acc = (cpticks << FSHIFT) / ttlticks;
285 if (ttlticks >= ESTCPUFREQ) {
286 lp->lwp_pctcpu = acc;
287 } else {
288 remticks = ESTCPUFREQ - ttlticks;
289 lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
290 ESTCPUFREQ;
295 * tsleep/wakeup hash table parameters. Try to find the sweet spot for
296 * like addresses being slept on.
298 #define TABLESIZE 1024
299 #define LOOKUP(x) (((intptr_t)(x) >> 6) & (TABLESIZE - 1))
301 static cpumask_t slpque_cpumasks[TABLESIZE];
304 * General scheduler initialization. We force a reschedule 25 times
305 * a second by default. Note that cpu0 is initialized in early boot and
306 * cannot make any high level calls.
308 * Each cpu has its own sleep queue.
310 void
311 sleep_gdinit(globaldata_t gd)
313 static struct tslpque slpque_cpu0[TABLESIZE];
314 int i;
316 if (gd->gd_cpuid == 0) {
317 sched_quantum = (hz + 24) / 25;
318 hogticks = 2 * sched_quantum;
320 gd->gd_tsleep_hash = slpque_cpu0;
321 } else {
322 gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
323 M_TSLEEP, M_WAITOK | M_ZERO);
325 for (i = 0; i < TABLESIZE; ++i)
326 TAILQ_INIT(&gd->gd_tsleep_hash[i]);
330 * This is a dandy function that allows us to interlock tsleep/wakeup
331 * operations with unspecified upper level locks, such as lockmgr locks,
332 * simply by holding a critical section. The sequence is:
334 * (acquire upper level lock)
335 * tsleep_interlock(blah)
336 * (release upper level lock)
337 * tsleep(blah, ...)
339 * Basically this functions queues us on the tsleep queue without actually
340 * descheduling us. When tsleep() is later called with PINTERLOCK it
341 * assumes the thread was already queued, otherwise it queues it there.
343 * Thus it is possible to receive the wakeup prior to going to sleep and
344 * the race conditions are covered.
346 static __inline void
347 _tsleep_interlock(globaldata_t gd, void *ident, int flags)
349 thread_t td = gd->gd_curthread;
350 int id;
352 crit_enter_quick(td);
353 if (td->td_flags & TDF_TSLEEPQ) {
354 id = LOOKUP(td->td_wchan);
355 TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
356 if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
357 atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
358 } else {
359 td->td_flags |= TDF_TSLEEPQ;
361 id = LOOKUP(ident);
362 TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_sleepq);
363 atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
364 td->td_wchan = ident;
365 td->td_wdomain = flags & PDOMAIN_MASK;
366 crit_exit_quick(td);
369 void
370 tsleep_interlock(void *ident, int flags)
372 _tsleep_interlock(mycpu, ident, flags);
376 * Remove thread from sleepq. Must be called with a critical section held.
378 static __inline void
379 _tsleep_remove(thread_t td)
381 globaldata_t gd = mycpu;
382 int id;
384 KKASSERT(td->td_gd == gd);
385 if (td->td_flags & TDF_TSLEEPQ) {
386 td->td_flags &= ~TDF_TSLEEPQ;
387 id = LOOKUP(td->td_wchan);
388 TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
389 if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
390 atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
391 td->td_wchan = NULL;
392 td->td_wdomain = 0;
396 void
397 tsleep_remove(thread_t td)
399 _tsleep_remove(td);
403 * This function removes a thread from the tsleep queue and schedules
404 * it. This function may act asynchronously. The target thread may be
405 * sleeping on a different cpu.
407 * This function mus be called while in a critical section but if the
408 * target thread is sleeping on a different cpu we cannot safely probe
409 * td_flags.
411 static __inline
412 void
413 _tsleep_wakeup(struct thread *td)
415 #ifdef SMP
416 globaldata_t gd = mycpu;
418 if (td->td_gd != gd) {
419 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)tsleep_wakeup, td);
420 return;
422 #endif
423 _tsleep_remove(td);
424 if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
425 td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
426 lwkt_schedule(td);
430 static
431 void
432 tsleep_wakeup(struct thread *td)
434 _tsleep_wakeup(td);
439 * General sleep call. Suspends the current process until a wakeup is
440 * performed on the specified identifier. The process will then be made
441 * runnable with the specified priority. Sleeps at most timo/hz seconds
442 * (0 means no timeout). If flags includes PCATCH flag, signals are checked
443 * before and after sleeping, else signals are not checked. Returns 0 if
444 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
445 * signal needs to be delivered, ERESTART is returned if the current system
446 * call should be restarted if possible, and EINTR is returned if the system
447 * call should be interrupted by the signal (return EINTR).
449 * Note that if we are a process, we release_curproc() before messing with
450 * the LWKT scheduler.
452 * During autoconfiguration or after a panic, a sleep will simply
453 * lower the priority briefly to allow interrupts, then return.
456 tsleep(void *ident, int flags, const char *wmesg, int timo)
458 struct thread *td = curthread;
459 struct lwp *lp = td->td_lwp;
460 struct proc *p = td->td_proc; /* may be NULL */
461 globaldata_t gd;
462 int sig;
463 int catch;
464 int id;
465 int error;
466 int oldpri;
467 struct callout thandle;
470 * NOTE: removed KTRPOINT, it could cause races due to blocking
471 * even in stable. Just scrap it for now.
473 if (tsleep_now_works == 0 || panicstr) {
475 * After a panic, or before we actually have an operational
476 * softclock, just give interrupts a chance, then just return;
478 * don't run any other procs or panic below,
479 * in case this is the idle process and already asleep.
481 splz();
482 oldpri = td->td_pri & TDPRI_MASK;
483 lwkt_setpri_self(safepri);
484 lwkt_switch();
485 lwkt_setpri_self(oldpri);
486 return (0);
488 logtsleep2(tsleep_beg, ident);
489 gd = td->td_gd;
490 KKASSERT(td != &gd->gd_idlethread); /* you must be kidding! */
493 * NOTE: all of this occurs on the current cpu, including any
494 * callout-based wakeups, so a critical section is a sufficient
495 * interlock.
497 * The entire sequence through to where we actually sleep must
498 * run without breaking the critical section.
500 catch = flags & PCATCH;
501 error = 0;
502 sig = 0;
504 crit_enter_quick(td);
506 KASSERT(ident != NULL, ("tsleep: no ident"));
507 KASSERT(lp == NULL ||
508 lp->lwp_stat == LSRUN || /* Obvious */
509 lp->lwp_stat == LSSTOP, /* Set in tstop */
510 ("tsleep %p %s %d",
511 ident, wmesg, lp->lwp_stat));
514 * Setup for the current process (if this is a process).
516 if (lp) {
517 if (catch) {
519 * Early termination if PCATCH was set and a
520 * signal is pending, interlocked with the
521 * critical section.
523 * Early termination only occurs when tsleep() is
524 * entered while in a normal LSRUN state.
526 if ((sig = CURSIG(lp)) != 0)
527 goto resume;
530 * Early termination if PCATCH was set and a
531 * mailbox signal was possibly delivered prior to
532 * the system call even being made, in order to
533 * allow the user to interlock without having to
534 * make additional system calls.
536 if (p->p_flag & P_MAILBOX)
537 goto resume;
540 * Causes ksignal to wake us up when.
542 lp->lwp_flag |= LWP_SINTR;
547 * We interlock the sleep queue if the caller has not already done
548 * it for us.
550 if ((flags & PINTERLOCKED) == 0) {
551 id = LOOKUP(ident);
552 _tsleep_interlock(gd, ident, flags);
557 * If no interlock was set we do an integrated interlock here.
558 * Make sure the current process has been untangled from
559 * the userland scheduler and initialize slptime to start
560 * counting. We must interlock the sleep queue before doing
561 * this to avoid wakeup/process-ipi races which can occur under
562 * heavy loads.
564 if (lp) {
565 p->p_usched->release_curproc(lp);
566 lp->lwp_slptime = 0;
570 * If the interlocked flag is set but our cpu bit in the slpqueue
571 * is no longer set, then a wakeup was processed inbetween the
572 * tsleep_interlock() (ours or the callers), and here. This can
573 * occur under numerous circumstances including when we release the
574 * current process.
576 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
577 * to process incoming IPIs, thus draining incoming wakeups.
579 if ((td->td_flags & TDF_TSLEEPQ) == 0) {
580 logtsleep2(ilockfail, ident);
581 goto resume;
585 * scheduling is blocked while in a critical section. Coincide
586 * the descheduled-by-tsleep flag with the descheduling of the
587 * lwkt.
589 lwkt_deschedule_self(td);
590 td->td_flags |= TDF_TSLEEP_DESCHEDULED;
591 td->td_wmesg = wmesg;
594 * Setup the timeout, if any
596 if (timo) {
597 callout_init(&thandle);
598 callout_reset(&thandle, timo, endtsleep, td);
602 * Beddy bye bye.
604 if (lp) {
606 * Ok, we are sleeping. Place us in the SSLEEP state.
608 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
610 * tstop() sets LSSTOP, so don't fiddle with that.
612 if (lp->lwp_stat != LSSTOP)
613 lp->lwp_stat = LSSLEEP;
614 lp->lwp_ru.ru_nvcsw++;
615 lwkt_switch();
618 * And when we are woken up, put us back in LSRUN. If we
619 * slept for over a second, recalculate our estcpu.
621 lp->lwp_stat = LSRUN;
622 if (lp->lwp_slptime)
623 p->p_usched->recalculate(lp);
624 lp->lwp_slptime = 0;
625 } else {
626 lwkt_switch();
630 * Make sure we haven't switched cpus while we were asleep. It's
631 * not supposed to happen. Cleanup our temporary flags.
633 KKASSERT(gd == td->td_gd);
636 * Cleanup the timeout.
638 if (timo) {
639 if (td->td_flags & TDF_TIMEOUT) {
640 td->td_flags &= ~TDF_TIMEOUT;
641 error = EWOULDBLOCK;
642 } else {
643 callout_stop(&thandle);
648 * Make sure we have been removed from the sleepq. This should
649 * have been done for us already.
651 _tsleep_remove(td);
652 td->td_wmesg = NULL;
653 if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
654 td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
655 kprintf("td %p (%s) unexpectedly rescheduled\n",
656 td, td->td_comm);
660 * Figure out the correct error return. If interrupted by a
661 * signal we want to return EINTR or ERESTART.
663 * If P_MAILBOX is set no automatic system call restart occurs
664 * and we return EINTR. P_MAILBOX is meant to be used as an
665 * interlock, the user must poll it prior to any system call
666 * that it wishes to interlock a mailbox signal against since
667 * the flag is cleared on *any* system call that sleeps.
669 resume:
670 if (p) {
671 if (catch && error == 0) {
672 if ((p->p_flag & P_MAILBOX) && sig == 0) {
673 error = EINTR;
674 } else if (sig != 0 || (sig = CURSIG(lp))) {
675 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
676 error = EINTR;
677 else
678 error = ERESTART;
681 lp->lwp_flag &= ~(LWP_BREAKTSLEEP | LWP_SINTR);
682 p->p_flag &= ~P_MAILBOX;
684 logtsleep1(tsleep_end);
685 crit_exit_quick(td);
686 return (error);
690 * Interlocked spinlock sleep. An exclusively held spinlock must
691 * be passed to ssleep(). The function will atomically release the
692 * spinlock and tsleep on the ident, then reacquire the spinlock and
693 * return.
695 * This routine is fairly important along the critical path, so optimize it
696 * heavily.
699 ssleep(void *ident, struct spinlock *spin, int flags,
700 const char *wmesg, int timo)
702 globaldata_t gd = mycpu;
703 int error;
705 _tsleep_interlock(gd, ident, flags);
706 spin_unlock_wr_quick(gd, spin);
707 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
708 spin_lock_wr_quick(gd, spin);
710 return (error);
714 * Interlocked mutex sleep. An exclusively held mutex must be passed
715 * to mtxsleep(). The function will atomically release the mutex
716 * and tsleep on the ident, then reacquire the mutex and return.
719 mtxsleep(void *ident, struct mtx *mtx, int flags,
720 const char *wmesg, int timo)
722 globaldata_t gd = mycpu;
723 int error;
725 _tsleep_interlock(gd, ident, flags);
726 mtx_unlock(mtx);
727 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
728 mtx_lock_ex_quick(mtx, wmesg);
730 return (error);
734 * Interlocked serializer sleep. An exclusively held serializer must
735 * be passed to zsleep(). The function will atomically release
736 * the serializer and tsleep on the ident, then reacquire the serializer
737 * and return.
740 zsleep(void *ident, struct lwkt_serialize *slz, int flags,
741 const char *wmesg, int timo)
743 globaldata_t gd = mycpu;
744 int ret;
746 ASSERT_SERIALIZED(slz);
748 _tsleep_interlock(gd, ident, flags);
749 lwkt_serialize_exit(slz);
750 ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
751 lwkt_serialize_enter(slz);
753 return ret;
757 * Directly block on the LWKT thread by descheduling it. This
758 * is much faster then tsleep(), but the only legal way to wake
759 * us up is to directly schedule the thread.
761 * Setting TDF_SINTR will cause new signals to directly schedule us.
763 * This routine must be called while in a critical section.
766 lwkt_sleep(const char *wmesg, int flags)
768 thread_t td = curthread;
769 int sig;
771 if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
772 td->td_flags |= TDF_BLOCKED;
773 td->td_wmesg = wmesg;
774 lwkt_deschedule_self(td);
775 lwkt_switch();
776 td->td_wmesg = NULL;
777 td->td_flags &= ~TDF_BLOCKED;
778 return(0);
780 if ((sig = CURSIG(td->td_lwp)) != 0) {
781 if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
782 return(EINTR);
783 else
784 return(ERESTART);
787 td->td_flags |= TDF_BLOCKED | TDF_SINTR;
788 td->td_wmesg = wmesg;
789 lwkt_deschedule_self(td);
790 lwkt_switch();
791 td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
792 td->td_wmesg = NULL;
793 return(0);
797 * Implement the timeout for tsleep.
799 * We set LWP_BREAKTSLEEP to indicate that an event has occured, but
800 * we only call setrunnable if the process is not stopped.
802 * This type of callout timeout is scheduled on the same cpu the process
803 * is sleeping on. Also, at the moment, the MP lock is held.
805 static void
806 endtsleep(void *arg)
808 thread_t td = arg;
809 struct lwp *lp;
811 ASSERT_MP_LOCK_HELD(curthread);
812 crit_enter();
815 * cpu interlock. Thread flags are only manipulated on
816 * the cpu owning the thread. proc flags are only manipulated
817 * by the older of the MP lock. We have both.
819 if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
820 td->td_flags |= TDF_TIMEOUT;
822 if ((lp = td->td_lwp) != NULL) {
823 lp->lwp_flag |= LWP_BREAKTSLEEP;
824 if (lp->lwp_proc->p_stat != SSTOP)
825 setrunnable(lp);
826 } else {
827 _tsleep_wakeup(td);
830 crit_exit();
834 * Make all processes sleeping on the specified identifier runnable.
835 * count may be zero or one only.
837 * The domain encodes the sleep/wakeup domain AND the first cpu to check
838 * (which is always the current cpu). As we iterate across cpus
840 * This call may run without the MP lock held. We can only manipulate thread
841 * state on the cpu owning the thread. We CANNOT manipulate process state
842 * at all.
844 static void
845 _wakeup(void *ident, int domain)
847 struct tslpque *qp;
848 struct thread *td;
849 struct thread *ntd;
850 globaldata_t gd;
851 #ifdef SMP
852 cpumask_t mask;
853 #endif
854 int id;
856 crit_enter();
857 logtsleep2(wakeup_beg, ident);
858 gd = mycpu;
859 id = LOOKUP(ident);
860 qp = &gd->gd_tsleep_hash[id];
861 restart:
862 for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
863 ntd = TAILQ_NEXT(td, td_sleepq);
864 if (td->td_wchan == ident &&
865 td->td_wdomain == (domain & PDOMAIN_MASK)
867 KKASSERT(td->td_gd == gd);
868 _tsleep_remove(td);
869 if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
870 td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
871 lwkt_schedule(td);
872 if (domain & PWAKEUP_ONE)
873 goto done;
875 goto restart;
879 #ifdef SMP
881 * We finished checking the current cpu but there still may be
882 * more work to do. Either wakeup_one was requested and no matching
883 * thread was found, or a normal wakeup was requested and we have
884 * to continue checking cpus.
886 * It should be noted that this scheme is actually less expensive then
887 * the old scheme when waking up multiple threads, since we send
888 * only one IPI message per target candidate which may then schedule
889 * multiple threads. Before we could have wound up sending an IPI
890 * message for each thread on the target cpu (!= current cpu) that
891 * needed to be woken up.
893 * NOTE: Wakeups occuring on remote cpus are asynchronous. This
894 * should be ok since we are passing idents in the IPI rather then
895 * thread pointers.
897 if ((domain & PWAKEUP_MYCPU) == 0 &&
898 (mask = slpque_cpumasks[id] & gd->gd_other_cpus) != 0) {
899 lwkt_send_ipiq2_mask(mask, _wakeup, ident,
900 domain | PWAKEUP_MYCPU);
902 #endif
903 done:
904 logtsleep1(wakeup_end);
905 crit_exit();
909 * Wakeup all threads tsleep()ing on the specified ident, on all cpus
911 void
912 wakeup(void *ident)
914 _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
918 * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
920 void
921 wakeup_one(void *ident)
923 /* XXX potentially round-robin the first responding cpu */
924 _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
928 * Wakeup threads tsleep()ing on the specified ident on the current cpu
929 * only.
931 void
932 wakeup_mycpu(void *ident)
934 _wakeup(ident, PWAKEUP_MYCPU);
938 * Wakeup one thread tsleep()ing on the specified ident on the current cpu
939 * only.
941 void
942 wakeup_mycpu_one(void *ident)
944 /* XXX potentially round-robin the first responding cpu */
945 _wakeup(ident, PWAKEUP_MYCPU|PWAKEUP_ONE);
949 * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
950 * only.
952 void
953 wakeup_oncpu(globaldata_t gd, void *ident)
955 #ifdef SMP
956 if (gd == mycpu) {
957 _wakeup(ident, PWAKEUP_MYCPU);
958 } else {
959 lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU);
961 #else
962 _wakeup(ident, PWAKEUP_MYCPU);
963 #endif
967 * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
968 * only.
970 void
971 wakeup_oncpu_one(globaldata_t gd, void *ident)
973 #ifdef SMP
974 if (gd == mycpu) {
975 _wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
976 } else {
977 lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
979 #else
980 _wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
981 #endif
985 * Wakeup all threads waiting on the specified ident that slept using
986 * the specified domain, on all cpus.
988 void
989 wakeup_domain(void *ident, int domain)
991 _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
995 * Wakeup one thread waiting on the specified ident that slept using
996 * the specified domain, on any cpu.
998 void
999 wakeup_domain_one(void *ident, int domain)
1001 /* XXX potentially round-robin the first responding cpu */
1002 _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1006 * setrunnable()
1008 * Make a process runnable. The MP lock must be held on call. This only
1009 * has an effect if we are in SSLEEP. We only break out of the
1010 * tsleep if LWP_BREAKTSLEEP is set, otherwise we just fix-up the state.
1012 * NOTE: With the MP lock held we can only safely manipulate the process
1013 * structure. We cannot safely manipulate the thread structure.
1015 void
1016 setrunnable(struct lwp *lp)
1018 crit_enter();
1019 ASSERT_MP_LOCK_HELD(curthread);
1020 if (lp->lwp_stat == LSSTOP)
1021 lp->lwp_stat = LSSLEEP;
1022 if (lp->lwp_stat == LSSLEEP && (lp->lwp_flag & LWP_BREAKTSLEEP))
1023 _tsleep_wakeup(lp->lwp_thread);
1024 crit_exit();
1028 * The process is stopped due to some condition, usually because p_stat is
1029 * set to SSTOP, but also possibly due to being traced.
1031 * NOTE! If the caller sets SSTOP, the caller must also clear P_WAITED
1032 * because the parent may check the child's status before the child actually
1033 * gets to this routine.
1035 * This routine is called with the current lwp only, typically just
1036 * before returning to userland.
1038 * Setting LWP_BREAKTSLEEP before entering the tsleep will cause a passive
1039 * SIGCONT to break out of the tsleep.
1041 void
1042 tstop(void)
1044 struct lwp *lp = curthread->td_lwp;
1045 struct proc *p = lp->lwp_proc;
1047 crit_enter();
1049 * If LWP_WSTOP is set, we were sleeping
1050 * while our process was stopped. At this point
1051 * we were already counted as stopped.
1053 if ((lp->lwp_flag & LWP_WSTOP) == 0) {
1055 * If we're the last thread to stop, signal
1056 * our parent.
1058 p->p_nstopped++;
1059 lp->lwp_flag |= LWP_WSTOP;
1060 wakeup(&p->p_nstopped);
1061 if (p->p_nstopped == p->p_nthreads) {
1062 p->p_flag &= ~P_WAITED;
1063 wakeup(p->p_pptr);
1064 if ((p->p_pptr->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1065 ksignal(p->p_pptr, SIGCHLD);
1068 while (p->p_stat == SSTOP) {
1069 lp->lwp_flag |= LWP_BREAKTSLEEP;
1070 lp->lwp_stat = LSSTOP;
1071 tsleep(p, 0, "stop", 0);
1073 p->p_nstopped--;
1074 lp->lwp_flag &= ~LWP_WSTOP;
1075 crit_exit();
1079 * Yield / synchronous reschedule. This is a bit tricky because the trap
1080 * code might have set a lazy release on the switch function. Setting
1081 * P_PASSIVE_ACQ will ensure that the lazy release executes when we call
1082 * switch, and that we are given a greater chance of affinity with our
1083 * current cpu.
1085 * We call lwkt_setpri_self() to rotate our thread to the end of the lwkt
1086 * run queue. lwkt_switch() will also execute any assigned passive release
1087 * (which usually calls release_curproc()), allowing a same/higher priority
1088 * process to be designated as the current process.
1090 * While it is possible for a lower priority process to be designated,
1091 * it's call to lwkt_maybe_switch() in acquire_curproc() will likely
1092 * round-robin back to us and we will be able to re-acquire the current
1093 * process designation.
1095 void
1096 uio_yield(void)
1098 struct thread *td = curthread;
1099 struct proc *p = td->td_proc;
1101 lwkt_setpri_self(td->td_pri & TDPRI_MASK);
1102 if (p) {
1103 p->p_flag |= P_PASSIVE_ACQ;
1104 lwkt_switch();
1105 p->p_flag &= ~P_PASSIVE_ACQ;
1106 } else {
1107 lwkt_switch();
1112 * Compute a tenex style load average of a quantity on
1113 * 1, 5 and 15 minute intervals.
1115 static int loadav_count_runnable(struct lwp *p, void *data);
1117 static void
1118 loadav(void *arg)
1120 struct loadavg *avg;
1121 int i, nrun;
1123 nrun = 0;
1124 alllwp_scan(loadav_count_runnable, &nrun);
1125 avg = &averunnable;
1126 for (i = 0; i < 3; i++) {
1127 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1128 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1132 * Schedule the next update to occur after 5 seconds, but add a
1133 * random variation to avoid synchronisation with processes that
1134 * run at regular intervals.
1136 callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1137 loadav, NULL);
1140 static int
1141 loadav_count_runnable(struct lwp *lp, void *data)
1143 int *nrunp = data;
1144 thread_t td;
1146 switch (lp->lwp_stat) {
1147 case LSRUN:
1148 if ((td = lp->lwp_thread) == NULL)
1149 break;
1150 if (td->td_flags & TDF_BLOCKED)
1151 break;
1152 ++*nrunp;
1153 break;
1154 default:
1155 break;
1157 return(0);
1160 /* ARGSUSED */
1161 static void
1162 sched_setup(void *dummy)
1164 callout_init(&loadav_callout);
1165 callout_init(&schedcpu_callout);
1167 /* Kick off timeout driven events by calling first time. */
1168 schedcpu(NULL);
1169 loadav(NULL);