2 * BLIST.C - Bitmap allocator/deallocator, using a radix tree with hinting
4 * Copyright (c) 1998,2004 The DragonFly Project. All rights reserved.
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon@backplane.com>
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * This module implements a general bitmap allocator/deallocator. The
38 * allocator eats around 2 bits per 'block'. The module does not
39 * try to interpret the meaning of a 'block' other then to return
40 * SWAPBLK_NONE on an allocation failure.
42 * A radix tree is used to maintain the bitmap. Two radix constants are
43 * involved: One for the bitmaps contained in the leaf nodes (typically
44 * 32), and one for the meta nodes (typically 16). Both meta and leaf
45 * nodes have a hint field. This field gives us a hint as to the largest
46 * free contiguous range of blocks under the node. It may contain a
47 * value that is too high, but will never contain a value that is too
48 * low. When the radix tree is searched, allocation failures in subtrees
51 * The radix tree also implements two collapsed states for meta nodes:
52 * the ALL-ALLOCATED state and the ALL-FREE state. If a meta node is
53 * in either of these two states, all information contained underneath
54 * the node is considered stale. These states are used to optimize
55 * allocation and freeing operations.
57 * The hinting greatly increases code efficiency for allocations while
58 * the general radix structure optimizes both allocations and frees. The
59 * radix tree should be able to operate well no matter how much
60 * fragmentation there is and no matter how large a bitmap is used.
62 * Unlike the rlist code, the blist code wires all necessary memory at
63 * creation time. Neither allocations nor frees require interaction with
64 * the memory subsystem. In contrast, the rlist code may allocate memory
65 * on an rlist_free() call. The non-blocking features of the blist code
66 * are used to great advantage in the swap code (vm/nswap_pager.c). The
67 * rlist code uses a little less overall memory then the blist code (but
68 * due to swap interleaving not all that much less), but the blist code
69 * scales much, much better.
71 * LAYOUT: The radix tree is layed out recursively using a
72 * linear array. Each meta node is immediately followed (layed out
73 * sequentially in memory) by BLIST_META_RADIX lower level nodes. This
74 * is a recursive structure but one that can be easily scanned through
75 * a very simple 'skip' calculation. In order to support large radixes,
76 * portions of the tree may reside outside our memory allocation. We
77 * handle this with an early-termination optimization (when bighint is
78 * set to -1) on the scan. The memory allocation is only large enough
79 * to cover the number of blocks requested at creation time even if it
80 * must be encompassed in larger root-node radix.
82 * NOTE: The allocator cannot currently allocate more then
83 * BLIST_BMAP_RADIX blocks per call. It will panic with 'allocation too
84 * large' if you try. This is an area that could use improvement. The
85 * radix is large enough that this restriction does not effect the swap
86 * system, though. Currently only the allocation code is effected by
87 * this algorithmic unfeature. The freeing code can handle arbitrary
90 * NOTE: The radix may exceed BLIST_BMAP_RADIX bits in order to support
91 * up to 2^(BLIST_BMAP_RADIX-1) blocks. The first divison will
92 * drop the radix down and fit it within a signed BLIST_BMAP_RADIX
95 * This code can be compiled stand-alone for debugging.
100 #include <sys/param.h>
101 #include <sys/systm.h>
102 #include <sys/lock.h>
103 #include <sys/kernel.h>
104 #include <sys/blist.h>
105 #include <sys/malloc.h>
109 #ifndef BLIST_NO_DEBUG
113 #define SWAPBLK_NONE ((swblk_t)-1)
115 #include <sys/types.h>
121 #define kmalloc(a,b,c) malloc(a)
122 #define kfree(a,b) free(a)
123 #define kprintf printf
124 #define KKASSERT(exp)
126 #include <sys/blist.h>
128 void panic(const char *ctl
, ...);
133 * static support functions
136 static swblk_t
blst_leaf_alloc(blmeta_t
*scan
, swblk_t blkat
,
137 swblk_t blk
, swblk_t count
);
138 static swblk_t
blst_meta_alloc(blmeta_t
*scan
, swblk_t blkat
,
139 swblk_t blk
, swblk_t count
,
140 int64_t radix
, swblk_t skip
);
141 static void blst_leaf_free(blmeta_t
*scan
, swblk_t relblk
, swblk_t count
);
142 static void blst_meta_free(blmeta_t
*scan
, swblk_t freeBlk
, swblk_t count
,
143 int64_t radix
, swblk_t skip
,
145 static swblk_t
blst_leaf_fill(blmeta_t
*scan
, swblk_t blk
, swblk_t count
);
146 static swblk_t
blst_meta_fill(blmeta_t
*scan
, swblk_t fillBlk
, swblk_t count
,
147 int64_t radix
, swblk_t skip
,
149 static void blst_copy(blmeta_t
*scan
, swblk_t blk
, int64_t radix
,
150 swblk_t skip
, blist_t dest
, swblk_t count
);
151 static swblk_t
blst_radix_init(blmeta_t
*scan
, int64_t radix
,
152 swblk_t skip
, swblk_t count
);
154 static void blst_radix_print(blmeta_t
*scan
, swblk_t blk
,
155 int64_t radix
, swblk_t skip
, int tab
);
159 static MALLOC_DEFINE(M_SWAP
, "SWAP", "Swap space");
163 * blist_create() - create a blist capable of handling up to the specified
166 * blocks must be greater then 0
168 * The smallest blist consists of a single leaf node capable of
169 * managing BLIST_BMAP_RADIX blocks.
173 blist_create(swblk_t blocks
)
180 * Calculate radix and skip field used for scanning.
182 * Radix can exceed BLIST_BMAP_RADIX bits even if swblk_t is limited
183 * to BLIST_BMAP_RADIX bits.
185 radix
= BLIST_BMAP_RADIX
;
187 while (radix
< blocks
) {
188 radix
*= BLIST_META_RADIX
;
189 skip
= (skip
+ 1) * BLIST_META_RADIX
;
193 bl
= kmalloc(sizeof(struct blist
), M_SWAP
, M_WAITOK
| M_ZERO
);
195 bl
->bl_blocks
= blocks
;
196 bl
->bl_radix
= radix
;
198 bl
->bl_rootblks
= 1 +
199 blst_radix_init(NULL
, bl
->bl_radix
, bl
->bl_skip
, blocks
);
200 bl
->bl_root
= kmalloc(sizeof(blmeta_t
) * bl
->bl_rootblks
,
203 #if defined(BLIST_DEBUG)
205 "BLIST representing %d blocks (%d MB of swap)"
206 ", requiring %dK of ram\n",
208 bl
->bl_blocks
* 4 / 1024,
209 (bl
->bl_rootblks
* sizeof(blmeta_t
) + 1023) / 1024
211 kprintf("BLIST raw radix tree contains %d records\n", bl
->bl_rootblks
);
213 blst_radix_init(bl
->bl_root
, bl
->bl_radix
, bl
->bl_skip
, blocks
);
219 blist_destroy(blist_t bl
)
221 kfree(bl
->bl_root
, M_SWAP
);
226 * blist_alloc() - reserve space in the block bitmap. Return the base
227 * of a contiguous region or SWAPBLK_NONE if space could
232 blist_alloc(blist_t bl
, swblk_t count
)
234 swblk_t blk
= SWAPBLK_NONE
;
237 if (bl
->bl_radix
== BLIST_BMAP_RADIX
)
238 blk
= blst_leaf_alloc(bl
->bl_root
, 0, 0, count
);
240 blk
= blst_meta_alloc(bl
->bl_root
, 0, 0, count
,
241 bl
->bl_radix
, bl
->bl_skip
);
242 if (blk
!= SWAPBLK_NONE
)
243 bl
->bl_free
-= count
;
249 blist_allocat(blist_t bl
, swblk_t count
, swblk_t blkat
)
251 swblk_t blk
= SWAPBLK_NONE
;
254 if (bl
->bl_radix
== BLIST_BMAP_RADIX
)
255 blk
= blst_leaf_alloc(bl
->bl_root
, blkat
, 0, count
);
257 blk
= blst_meta_alloc(bl
->bl_root
, blkat
, 0, count
,
258 bl
->bl_radix
, bl
->bl_skip
);
259 if (blk
!= SWAPBLK_NONE
)
260 bl
->bl_free
-= count
;
266 * blist_free() - free up space in the block bitmap. Return the base
267 * of a contiguous region. Panic if an inconsistancy is
272 blist_free(blist_t bl
, swblk_t blkno
, swblk_t count
)
275 if (bl
->bl_radix
== BLIST_BMAP_RADIX
)
276 blst_leaf_free(bl
->bl_root
, blkno
, count
);
278 blst_meta_free(bl
->bl_root
, blkno
, count
, bl
->bl_radix
, bl
->bl_skip
, 0);
279 bl
->bl_free
+= count
;
284 * blist_fill() - mark a region in the block bitmap as off-limits
285 * to the allocator (i.e. allocate it), ignoring any
286 * existing allocations. Return the number of blocks
287 * actually filled that were free before the call.
291 blist_fill(blist_t bl
, swblk_t blkno
, swblk_t count
)
296 if (bl
->bl_radix
== BLIST_BMAP_RADIX
) {
297 filled
= blst_leaf_fill(bl
->bl_root
, blkno
, count
);
299 filled
= blst_meta_fill(bl
->bl_root
, blkno
, count
,
300 bl
->bl_radix
, bl
->bl_skip
, 0);
302 bl
->bl_free
-= filled
;
310 * blist_resize() - resize an existing radix tree to handle the
311 * specified number of blocks. This will reallocate
312 * the tree and transfer the previous bitmap to the new
313 * one. When extending the tree you can specify whether
314 * the new blocks are to left allocated or freed.
318 blist_resize(blist_t
*pbl
, swblk_t count
, int freenew
)
320 blist_t newbl
= blist_create(count
);
324 if (count
> save
->bl_blocks
)
325 count
= save
->bl_blocks
;
326 blst_copy(save
->bl_root
, 0, save
->bl_radix
, save
->bl_skip
, newbl
, count
);
329 * If resizing upwards, should we free the new space or not?
331 if (freenew
&& count
< newbl
->bl_blocks
) {
332 blist_free(newbl
, count
, newbl
->bl_blocks
- count
);
340 * blist_print() - dump radix tree
344 blist_print(blist_t bl
)
346 kprintf("BLIST {\n");
347 blst_radix_print(bl
->bl_root
, 0, bl
->bl_radix
, bl
->bl_skip
, 4);
353 /************************************************************************
354 * ALLOCATION SUPPORT FUNCTIONS *
355 ************************************************************************
357 * These support functions do all the actual work. They may seem
358 * rather longish, but that's because I've commented them up. The
359 * actual code is straight forward.
364 * blist_leaf_alloc() - allocate at a leaf in the radix tree (a bitmap).
366 * This is the core of the allocator and is optimized for the 1 block
367 * and the BLIST_BMAP_RADIX block allocation cases. Other cases are
368 * somewhat slower. The 1 block allocation case is log2 and extremely
373 blst_leaf_alloc(blmeta_t
*scan
, swblk_t blkat __unused
, swblk_t blk
,
376 u_swblk_t orig
= scan
->u
.bmu_bitmap
;
380 * Optimize bitmap all-allocated case. Also, count = 1
381 * case assumes at least 1 bit is free in the bitmap, so
382 * we have to take care of this case here.
384 scan
->bm_bighint
= 0;
385 return(SWAPBLK_NONE
);
389 * Optimized code to allocate one bit out of the bitmap
392 int j
= BLIST_BMAP_RADIX
/2;
395 mask
= (u_swblk_t
)-1 >> (BLIST_BMAP_RADIX
/2);
398 if ((orig
& mask
) == 0) {
405 scan
->u
.bmu_bitmap
&= ~((swblk_t
)1 << r
);
408 if (count
<= BLIST_BMAP_RADIX
) {
410 * non-optimized code to allocate N bits out of the bitmap.
411 * The more bits, the faster the code runs. It will run
412 * the slowest allocating 2 bits, but since there aren't any
413 * memory ops in the core loop (or shouldn't be, anyway),
414 * you probably won't notice the difference.
417 int n
= (int)(BLIST_BMAP_RADIX
- count
);
420 mask
= (u_swblk_t
)-1 >> n
;
422 for (j
= 0; j
<= n
; ++j
) {
423 if ((orig
& mask
) == mask
) {
424 scan
->u
.bmu_bitmap
&= ~mask
;
432 * We couldn't allocate count in this subtree, update bighint.
434 scan
->bm_bighint
= count
- 1;
436 return(SWAPBLK_NONE
);
440 * blist_meta_alloc() - allocate at a meta in the radix tree.
442 * Attempt to allocate at a meta node. If we can't, we update
443 * bighint and return a failure. Updating bighint optimize future
444 * calls that hit this node. We have to check for our collapse cases
445 * and we have a few optimizations strewn in as well.
448 blst_meta_alloc(blmeta_t
*scan
, swblk_t blkat
,
449 swblk_t blk
, swblk_t count
,
450 int64_t radix
, swblk_t skip
)
452 int hintok
= (blk
>= blkat
);
453 swblk_t next_skip
= ((u_int
)skip
/ BLIST_META_RADIX
);
457 * ALL-ALLOCATED special case
459 if (scan
->u
.bmu_avail
== 0) {
460 scan
->bm_bighint
= 0;
461 return(SWAPBLK_NONE
);
465 * ALL-FREE special case, initialize uninitialized
468 * NOTE: radix may exceed 32 bits until first division.
470 if (scan
->u
.bmu_avail
== radix
) {
471 scan
->bm_bighint
= radix
;
473 radix
/= BLIST_META_RADIX
;
474 for (i
= 1; i
<= skip
; i
+= next_skip
) {
475 if (scan
[i
].bm_bighint
== (swblk_t
)-1)
477 if (next_skip
== 1) {
478 scan
[i
].u
.bmu_bitmap
= (u_swblk_t
)-1;
479 scan
[i
].bm_bighint
= BLIST_BMAP_RADIX
;
481 scan
[i
].bm_bighint
= (swblk_t
)radix
;
482 scan
[i
].u
.bmu_avail
= (swblk_t
)radix
;
486 radix
/= BLIST_META_RADIX
;
489 for (i
= 1; i
<= skip
; i
+= next_skip
) {
490 if (count
<= scan
[i
].bm_bighint
&&
491 blk
+ (swblk_t
)radix
> blkat
) {
493 * count fits in object
496 if (next_skip
== 1) {
497 r
= blst_leaf_alloc(&scan
[i
], blkat
,
500 r
= blst_meta_alloc(&scan
[i
], blkat
,
502 radix
, next_skip
- 1);
504 if (r
!= SWAPBLK_NONE
) {
505 scan
->u
.bmu_avail
-= count
;
506 if (scan
->bm_bighint
> scan
->u
.bmu_avail
)
507 scan
->bm_bighint
= scan
->u
.bmu_avail
;
510 /* bighint was updated by recursion */
511 } else if (scan
[i
].bm_bighint
== (swblk_t
)-1) {
516 } else if (count
> (swblk_t
)radix
) {
518 * count does not fit in object even if it were
521 panic("blist_meta_alloc: allocation too large");
523 blk
+= (swblk_t
)radix
;
527 * We couldn't allocate count in this subtree, update bighint.
529 if (hintok
&& scan
->bm_bighint
>= count
)
530 scan
->bm_bighint
= count
- 1;
531 return(SWAPBLK_NONE
);
535 * BLST_LEAF_FREE() - free allocated block from leaf bitmap
538 blst_leaf_free(blmeta_t
*scan
, swblk_t blk
, swblk_t count
)
541 * free some data in this bitmap
544 * 0000111111111110000
548 int n
= blk
& (BLIST_BMAP_RADIX
- 1);
551 mask
= ((u_swblk_t
)-1 << n
) &
552 ((u_swblk_t
)-1 >> (BLIST_BMAP_RADIX
- count
- n
));
554 if (scan
->u
.bmu_bitmap
& mask
)
555 panic("blst_radix_free: freeing free block");
556 scan
->u
.bmu_bitmap
|= mask
;
559 * We could probably do a better job here. We are required to make
560 * bighint at least as large as the biggest contiguous block of
561 * data. If we just shoehorn it, a little extra overhead will
562 * be incured on the next allocation (but only that one typically).
564 scan
->bm_bighint
= BLIST_BMAP_RADIX
;
568 * BLST_META_FREE() - free allocated blocks from radix tree meta info
570 * This support routine frees a range of blocks from the bitmap.
571 * The range must be entirely enclosed by this radix node. If a
572 * meta node, we break the range down recursively to free blocks
573 * in subnodes (which means that this code can free an arbitrary
574 * range whereas the allocation code cannot allocate an arbitrary
579 blst_meta_free(blmeta_t
*scan
, swblk_t freeBlk
, swblk_t count
,
580 int64_t radix
, swblk_t skip
, swblk_t blk
)
583 swblk_t next_skip
= ((u_int
)skip
/ BLIST_META_RADIX
);
586 kprintf("FREE (%x,%d) FROM (%x,%lld)\n",
588 blk
, (long long)radix
593 * ALL-ALLOCATED special case, initialize for recursion.
595 * We will short-cut the ALL-ALLOCATED -> ALL-FREE case.
597 if (scan
->u
.bmu_avail
== 0) {
598 scan
->u
.bmu_avail
= count
;
599 scan
->bm_bighint
= count
;
601 if (count
!= radix
) {
602 for (i
= 1; i
<= skip
; i
+= next_skip
) {
603 if (scan
[i
].bm_bighint
== (swblk_t
)-1)
605 scan
[i
].bm_bighint
= 0;
606 if (next_skip
== 1) {
607 scan
[i
].u
.bmu_bitmap
= 0;
609 scan
[i
].u
.bmu_avail
= 0;
615 scan
->u
.bmu_avail
+= count
;
616 /* scan->bm_bighint = radix; */
620 * ALL-FREE special case.
622 * Set bighint for higher levels to snoop.
624 if (scan
->u
.bmu_avail
== radix
) {
625 scan
->bm_bighint
= radix
;
630 * Break the free down into its components
632 if (scan
->u
.bmu_avail
> radix
) {
633 panic("blst_meta_free: freeing already "
634 "free blocks (%ld) %ld/%lld",
635 count
, (long)scan
->u
.bmu_avail
, (long long)radix
);
638 radix
/= BLIST_META_RADIX
;
640 i
= (freeBlk
- blk
) / (swblk_t
)radix
;
641 blk
+= i
* (swblk_t
)radix
;
642 i
= i
* next_skip
+ 1;
644 while (i
<= skip
&& blk
< freeBlk
+ count
) {
647 v
= blk
+ (swblk_t
)radix
- freeBlk
;
651 if (scan
->bm_bighint
== (swblk_t
)-1)
652 panic("blst_meta_free: freeing unexpected range");
654 if (next_skip
== 1) {
655 blst_leaf_free(&scan
[i
], freeBlk
, v
);
657 blst_meta_free(&scan
[i
], freeBlk
, v
,
658 radix
, next_skip
- 1, blk
);
662 * After having dealt with the becomes-all-free case any
663 * partial free will not be able to bring us to the
664 * becomes-all-free state.
666 * We can raise bighint to at least the sub-segment's
669 if (scan
->bm_bighint
< scan
[i
].bm_bighint
) {
670 scan
->bm_bighint
= scan
[i
].bm_bighint
;
674 blk
+= (swblk_t
)radix
;
680 * BLST_LEAF_FILL() - allocate specific blocks in leaf bitmap
682 * Allocates all blocks in the specified range regardless of
683 * any existing allocations in that range. Returns the number
684 * of blocks allocated by the call.
687 blst_leaf_fill(blmeta_t
*scan
, swblk_t blk
, swblk_t count
)
689 int n
= blk
& (BLIST_BMAP_RADIX
- 1);
691 u_swblk_t mask
, bitmap
;
693 mask
= ((u_swblk_t
)-1 << n
) &
694 ((u_swblk_t
)-1 >> (BLIST_BMAP_RADIX
- count
- n
));
696 /* Count the number of blocks we're about to allocate */
697 bitmap
= scan
->u
.bmu_bitmap
& mask
;
698 for (nblks
= 0; bitmap
!= 0; nblks
++)
699 bitmap
&= bitmap
- 1;
701 scan
->u
.bmu_bitmap
&= ~mask
;
706 * BLST_META_FILL() - allocate specific blocks at a meta node
708 * Allocates the specified range of blocks, regardless of
709 * any existing allocations in the range. The range must
710 * be within the extent of this node. Returns the number
711 * of blocks allocated by the call.
714 blst_meta_fill(blmeta_t
*scan
, swblk_t fillBlk
, swblk_t count
,
715 int64_t radix
, swblk_t skip
, swblk_t blk
)
718 swblk_t next_skip
= ((u_int
)skip
/ BLIST_META_RADIX
);
721 if (count
== radix
|| scan
->u
.bmu_avail
== 0) {
723 * ALL-ALLOCATED special case
725 nblks
= scan
->u
.bmu_avail
;
726 scan
->u
.bmu_avail
= 0;
727 scan
->bm_bighint
= count
;
731 if (scan
->u
.bmu_avail
== radix
) {
732 radix
/= BLIST_META_RADIX
;
735 * ALL-FREE special case, initialize sublevel
737 for (i
= 1; i
<= skip
; i
+= next_skip
) {
738 if (scan
[i
].bm_bighint
== (swblk_t
)-1)
740 if (next_skip
== 1) {
741 scan
[i
].u
.bmu_bitmap
= (u_swblk_t
)-1;
742 scan
[i
].bm_bighint
= BLIST_BMAP_RADIX
;
744 scan
[i
].bm_bighint
= (swblk_t
)radix
;
745 scan
[i
].u
.bmu_avail
= (swblk_t
)radix
;
749 radix
/= BLIST_META_RADIX
;
752 if (count
> (swblk_t
)radix
)
753 panic("blst_meta_fill: allocation too large");
755 i
= (fillBlk
- blk
) / (swblk_t
)radix
;
756 blk
+= i
* (swblk_t
)radix
;
757 i
= i
* next_skip
+ 1;
759 while (i
<= skip
&& blk
< fillBlk
+ count
) {
762 v
= blk
+ (swblk_t
)radix
- fillBlk
;
766 if (scan
->bm_bighint
== (swblk_t
)-1)
767 panic("blst_meta_fill: filling unexpected range");
769 if (next_skip
== 1) {
770 nblks
+= blst_leaf_fill(&scan
[i
], fillBlk
, v
);
772 nblks
+= blst_meta_fill(&scan
[i
], fillBlk
, v
,
773 radix
, next_skip
- 1, blk
);
777 blk
+= (swblk_t
)radix
;
780 scan
->u
.bmu_avail
-= nblks
;
785 * BLIST_RADIX_COPY() - copy one radix tree to another
787 * Locates free space in the source tree and frees it in the destination
788 * tree. The space may not already be free in the destination.
792 blst_copy(blmeta_t
*scan
, swblk_t blk
, int64_t radix
,
793 swblk_t skip
, blist_t dest
, swblk_t count
)
802 if (radix
== BLIST_BMAP_RADIX
) {
803 u_swblk_t v
= scan
->u
.bmu_bitmap
;
805 if (v
== (u_swblk_t
)-1) {
806 blist_free(dest
, blk
, count
);
810 for (i
= 0; i
< BLIST_BMAP_RADIX
&& i
< count
; ++i
) {
811 if (v
& ((swblk_t
)1 << i
))
812 blist_free(dest
, blk
+ i
, 1);
822 if (scan
->u
.bmu_avail
== 0) {
824 * Source all allocated, leave dest allocated
828 if (scan
->u
.bmu_avail
== radix
) {
830 * Source all free, free entire dest
833 blist_free(dest
, blk
, count
);
835 blist_free(dest
, blk
, (swblk_t
)radix
);
840 radix
/= BLIST_META_RADIX
;
841 next_skip
= ((u_swblk_t
)skip
/ BLIST_META_RADIX
);
843 for (i
= 1; count
&& i
<= skip
; i
+= next_skip
) {
844 if (scan
[i
].bm_bighint
== (swblk_t
)-1)
847 if (count
>= (swblk_t
)radix
) {
856 count
-= (swblk_t
)radix
;
870 blk
+= (swblk_t
)radix
;
875 * BLST_RADIX_INIT() - initialize radix tree
877 * Initialize our meta structures and bitmaps and calculate the exact
878 * amount of space required to manage 'count' blocks - this space may
879 * be considerably less then the calculated radix due to the large
880 * RADIX values we use.
884 blst_radix_init(blmeta_t
*scan
, int64_t radix
, swblk_t skip
, swblk_t count
)
888 swblk_t memindex
= 0;
894 if (radix
== BLIST_BMAP_RADIX
) {
896 scan
->bm_bighint
= 0;
897 scan
->u
.bmu_bitmap
= 0;
903 * Meta node. If allocating the entire object we can special
904 * case it. However, we need to figure out how much memory
905 * is required to manage 'count' blocks, so we continue on anyway.
909 scan
->bm_bighint
= 0;
910 scan
->u
.bmu_avail
= 0;
913 radix
/= BLIST_META_RADIX
;
914 next_skip
= ((u_swblk_t
)skip
/ BLIST_META_RADIX
);
916 for (i
= 1; i
<= skip
; i
+= next_skip
) {
917 if (count
>= (swblk_t
)radix
) {
919 * Allocate the entire object
921 memindex
= i
+ blst_radix_init(
922 ((scan
) ? &scan
[i
] : NULL
),
927 count
-= (swblk_t
)radix
;
928 } else if (count
> 0) {
930 * Allocate a partial object
932 memindex
= i
+ blst_radix_init(
933 ((scan
) ? &scan
[i
] : NULL
),
941 * Add terminator and break out
944 scan
[i
].bm_bighint
= (swblk_t
)-1;
956 blst_radix_print(blmeta_t
*scan
, swblk_t blk
, int64_t radix
, swblk_t skip
, int tab
)
961 if (radix
== BLIST_BMAP_RADIX
) {
963 "%*.*s(%04x,%lld): bitmap %08x big=%d\n",
965 blk
, (long long)radix
,
972 if (scan
->u
.bmu_avail
== 0) {
974 "%*.*s(%04x,%lld) ALL ALLOCATED\n",
981 if (scan
->u
.bmu_avail
== radix
) {
983 "%*.*s(%04x,%lld) ALL FREE\n",
992 "%*.*s(%04x,%lld): subtree (%d/%lld) big=%d {\n",
994 blk
, (long long)radix
,
1000 radix
/= BLIST_META_RADIX
;
1001 next_skip
= ((u_swblk_t
)skip
/ BLIST_META_RADIX
);
1004 for (i
= 1; i
<= skip
; i
+= next_skip
) {
1005 if (scan
[i
].bm_bighint
== (swblk_t
)-1) {
1007 "%*.*s(%04x,%lld): Terminator\n",
1009 blk
, (long long)radix
1020 blk
+= (swblk_t
)radix
;
1035 main(int ac
, char **av
)
1037 swblk_t size
= 1024;
1041 for (i
= 1; i
< ac
; ++i
) {
1042 const char *ptr
= av
[i
];
1044 size
= strtol(ptr
, NULL
, 0);
1048 fprintf(stderr
, "Bad option: %s\n", ptr
- 2);
1051 bl
= blist_create(size
);
1052 blist_free(bl
, 0, size
);
1061 kprintf("%d/%d/%lld> ",
1062 bl
->bl_free
, size
, (long long)bl
->bl_radix
);
1064 if (fgets(buf
, sizeof(buf
), stdin
) == NULL
)
1068 if (sscanf(buf
+ 1, "%d", &count
) == 1) {
1069 blist_resize(&bl
, count
, 1);
1078 if (sscanf(buf
+ 1, "%d %d", &count
, &blkat
) == 1) {
1079 swblk_t blk
= blist_alloc(bl
, count
);
1080 kprintf(" R=%04x\n", blk
);
1081 } else if (sscanf(buf
+ 1, "%d %d", &count
, &blkat
) == 2) {
1082 swblk_t blk
= blist_allocat(bl
, count
, blkat
);
1083 kprintf(" R=%04x\n", blk
);
1089 if (sscanf(buf
+ 1, "%x %d", &da
, &count
) == 2) {
1090 blist_free(bl
, da
, count
);
1096 if (sscanf(buf
+ 1, "%x %d", &da
, &count
) == 2) {
1098 blist_fill(bl
, da
, count
));
1123 panic(const char *ctl
, ...)
1127 __va_start(va
, ctl
);
1128 vfprintf(stderr
, ctl
, va
);
1129 fprintf(stderr
, "\n");