kernel - Get rid of old KDSETRAD keyboard ioctl, and some __i386__ kbd code.
[dragonfly.git] / sys / dev / sound / pcm / feeder_rate.c
blobaba2abfbfdec4a55e5b15b64399481a9bd9524d0
1 /*-
2 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
28 * feeder_rate: (Codename: Z Resampler), which means any effort to create
29 * future replacement for this resampler are simply absurd unless
30 * the world decide to add new alphabet after Z.
32 * FreeBSD bandlimited sinc interpolator, technically based on
33 * "Digital Audio Resampling" by Julius O. Smith III
34 * - http://ccrma.stanford.edu/~jos/resample/
36 * The Good:
37 * + all out fixed point integer operations, no soft-float or anything like
38 * that.
39 * + classic polyphase converters with high quality coefficient's polynomial
40 * interpolators.
41 * + fast, faster, or the fastest of its kind.
42 * + compile time configurable.
43 * + etc etc..
45 * The Bad:
46 * - The z, z_, and Z_ . Due to mental block (or maybe just 0x7a69), I
47 * couldn't think of anything simpler than that (feeder_rate_xxx is just
48 * too long). Expect possible clashes with other zitizens (any?).
51 #ifdef _KERNEL
52 #ifdef HAVE_KERNEL_OPTION_HEADERS
53 #include "opt_snd.h"
54 #endif
55 #include <dev/sound/pcm/sound.h>
56 #include <dev/sound/pcm/pcm.h>
57 #include "feeder_if.h"
59 #define SND_USE_FXDIV
60 #include "snd_fxdiv_gen.h"
62 SND_DECLARE_FILE("$FreeBSD: head/sys/dev/sound/pcm/feeder_rate.c 267992 2014-06-28 03:56:17Z hselasky $");
63 #endif
65 #include "feeder_rate_gen.h"
67 #if !defined(_KERNEL) && defined(SND_DIAGNOSTIC)
68 #undef Z_DIAGNOSTIC
69 #define Z_DIAGNOSTIC 1
70 #elif defined(_KERNEL)
71 #undef Z_DIAGNOSTIC
72 #endif
74 #ifndef Z_QUALITY_DEFAULT
75 #define Z_QUALITY_DEFAULT Z_QUALITY_LINEAR
76 #endif
78 #define Z_RESERVOIR 2048
79 #define Z_RESERVOIR_MAX 131072
81 #define Z_SINC_MAX 0x3fffff
82 #define Z_SINC_DOWNMAX 48 /* 384000 / 8000 */
84 #ifdef _KERNEL
85 #define Z_POLYPHASE_MAX 183040 /* 286 taps, 640 phases */
86 #else
87 #define Z_POLYPHASE_MAX 1464320 /* 286 taps, 5120 phases */
88 #endif
90 #define Z_RATE_DEFAULT 48000
92 #define Z_RATE_MIN FEEDRATE_RATEMIN
93 #define Z_RATE_MAX FEEDRATE_RATEMAX
94 #define Z_ROUNDHZ FEEDRATE_ROUNDHZ
95 #define Z_ROUNDHZ_MIN FEEDRATE_ROUNDHZ_MIN
96 #define Z_ROUNDHZ_MAX FEEDRATE_ROUNDHZ_MAX
98 #define Z_RATE_SRC FEEDRATE_SRC
99 #define Z_RATE_DST FEEDRATE_DST
100 #define Z_RATE_QUALITY FEEDRATE_QUALITY
101 #define Z_RATE_CHANNELS FEEDRATE_CHANNELS
103 #define Z_PARANOID 1
105 #define Z_MULTIFORMAT 1
107 #ifdef _KERNEL
108 #undef Z_USE_ALPHADRIFT
109 #define Z_USE_ALPHADRIFT 1
110 #endif
112 #define Z_FACTOR_MIN 1
113 #define Z_FACTOR_MAX Z_MASK
114 #define Z_FACTOR_SAFE(v) (!((v) < Z_FACTOR_MIN || (v) > Z_FACTOR_MAX))
116 struct z_info;
118 typedef void (*z_resampler_t)(struct z_info *, uint8_t *);
120 struct z_info {
121 int32_t rsrc, rdst; /* original source / destination rates */
122 int32_t src, dst; /* rounded source / destination rates */
123 int32_t channels; /* total channels */
124 int32_t bps; /* bytes-per-sample */
125 int32_t quality; /* resampling quality */
127 int32_t z_gx, z_gy; /* interpolation / decimation ratio */
128 int32_t z_alpha; /* output sample time phase / drift */
129 uint8_t *z_delay; /* FIR delay line / linear buffer */
130 int32_t *z_coeff; /* FIR coefficients */
131 int32_t *z_dcoeff; /* FIR coefficients differences */
132 int32_t *z_pcoeff; /* FIR polyphase coefficients */
133 int32_t z_scale; /* output scaling */
134 int32_t z_dx; /* input sample drift increment */
135 int32_t z_dy; /* output sample drift increment */
136 #ifdef Z_USE_ALPHADRIFT
137 int32_t z_alphadrift; /* alpha drift rate */
138 int32_t z_startdrift; /* buffer start position drift rate */
139 #endif
140 int32_t z_mask; /* delay line full length mask */
141 int32_t z_size; /* half width of FIR taps */
142 int32_t z_full; /* full size of delay line */
143 int32_t z_alloc; /* largest allocated full size of delay line */
144 int32_t z_start; /* buffer processing start position */
145 int32_t z_pos; /* current position for the next feed */
146 #ifdef Z_DIAGNOSTIC
147 uint32_t z_cycle; /* output cycle, purely for statistical */
148 #endif
149 int32_t z_maxfeed; /* maximum feed to avoid 32bit overflow */
151 z_resampler_t z_resample;
154 int feeder_rate_min = Z_RATE_MIN;
155 int feeder_rate_max = Z_RATE_MAX;
156 int feeder_rate_round = Z_ROUNDHZ;
157 int feeder_rate_quality = Z_QUALITY_DEFAULT;
159 static int feeder_rate_polyphase_max = Z_POLYPHASE_MAX;
161 #ifdef _KERNEL
162 static char feeder_rate_presets[] = FEEDER_RATE_PRESETS;
163 SYSCTL_STRING(_hw_snd, OID_AUTO, feeder_rate_presets, CTLFLAG_RD,
164 &feeder_rate_presets, 0, "compile-time rate presets");
166 TUNABLE_INT("hw.snd.feeder_rate_min", &feeder_rate_min);
167 TUNABLE_INT("hw.snd.feeder_rate_max", &feeder_rate_max);
168 TUNABLE_INT("hw.snd.feeder_rate_round", &feeder_rate_round);
169 TUNABLE_INT("hw.snd.feeder_rate_quality", &feeder_rate_quality);
171 TUNABLE_INT("hw.snd.feeder_rate_polyphase_max", &feeder_rate_polyphase_max);
172 SYSCTL_INT(_hw_snd, OID_AUTO, feeder_rate_polyphase_max, CTLFLAG_RW,
173 &feeder_rate_polyphase_max, 0, "maximum allowable polyphase entries");
175 static int
176 sysctl_hw_snd_feeder_rate_min(SYSCTL_HANDLER_ARGS)
178 int err, val;
180 val = feeder_rate_min;
181 err = sysctl_handle_int(oidp, &val, 0, req);
183 if (err != 0 || req->newptr == NULL || val == feeder_rate_min)
184 return (err);
186 if (!(Z_FACTOR_SAFE(val) && val < feeder_rate_max))
187 return (EINVAL);
189 feeder_rate_min = val;
191 return (0);
193 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_min, CTLTYPE_INT | CTLFLAG_RW,
194 0, sizeof(int), sysctl_hw_snd_feeder_rate_min, "I",
195 "minimum allowable rate");
197 static int
198 sysctl_hw_snd_feeder_rate_max(SYSCTL_HANDLER_ARGS)
200 int err, val;
202 val = feeder_rate_max;
203 err = sysctl_handle_int(oidp, &val, 0, req);
205 if (err != 0 || req->newptr == NULL || val == feeder_rate_max)
206 return (err);
208 if (!(Z_FACTOR_SAFE(val) && val > feeder_rate_min))
209 return (EINVAL);
211 feeder_rate_max = val;
213 return (0);
215 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_max, CTLTYPE_INT | CTLFLAG_RW,
216 0, sizeof(int), sysctl_hw_snd_feeder_rate_max, "I",
217 "maximum allowable rate");
219 static int
220 sysctl_hw_snd_feeder_rate_round(SYSCTL_HANDLER_ARGS)
222 int err, val;
224 val = feeder_rate_round;
225 err = sysctl_handle_int(oidp, &val, 0, req);
227 if (err != 0 || req->newptr == NULL || val == feeder_rate_round)
228 return (err);
230 if (val < Z_ROUNDHZ_MIN || val > Z_ROUNDHZ_MAX)
231 return (EINVAL);
233 feeder_rate_round = val - (val % Z_ROUNDHZ);
235 return (0);
237 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_round, CTLTYPE_INT | CTLFLAG_RW,
238 0, sizeof(int), sysctl_hw_snd_feeder_rate_round, "I",
239 "sample rate converter rounding threshold");
241 static int
242 sysctl_hw_snd_feeder_rate_quality(SYSCTL_HANDLER_ARGS)
244 struct snddev_info *d;
245 struct pcm_channel *c;
246 struct pcm_feeder *f;
247 int i, err, val;
249 val = feeder_rate_quality;
250 err = sysctl_handle_int(oidp, &val, 0, req);
252 if (err != 0 || req->newptr == NULL || val == feeder_rate_quality)
253 return (err);
255 if (val < Z_QUALITY_MIN || val > Z_QUALITY_MAX)
256 return (EINVAL);
258 feeder_rate_quality = val;
261 * Traverse all available channels on each device and try to
262 * set resampler quality if and only if it is exist as
263 * part of feeder chains and the channel is idle.
265 for (i = 0; pcm_devclass != NULL &&
266 i < devclass_get_maxunit(pcm_devclass); i++) {
267 d = devclass_get_softc(pcm_devclass, i);
268 if (!PCM_REGISTERED(d))
269 continue;
270 PCM_LOCK(d);
271 PCM_WAIT(d);
272 PCM_ACQUIRE(d);
273 CHN_FOREACH(c, d, channels.pcm) {
274 CHN_LOCK(c);
275 f = chn_findfeeder(c, FEEDER_RATE);
276 if (f == NULL || f->data == NULL || CHN_STARTED(c)) {
277 CHN_UNLOCK(c);
278 continue;
280 (void)FEEDER_SET(f, FEEDRATE_QUALITY, val);
281 CHN_UNLOCK(c);
283 PCM_RELEASE(d);
284 PCM_UNLOCK(d);
287 return (0);
289 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_quality, CTLTYPE_INT | CTLFLAG_RW,
290 0, sizeof(int), sysctl_hw_snd_feeder_rate_quality, "I",
291 "sample rate converter quality ("__XSTRING(Z_QUALITY_MIN)"=low .. "
292 __XSTRING(Z_QUALITY_MAX)"=high)");
293 #endif /* _KERNEL */
297 * Resampler type.
299 #define Z_IS_ZOH(i) ((i)->quality == Z_QUALITY_ZOH)
300 #define Z_IS_LINEAR(i) ((i)->quality == Z_QUALITY_LINEAR)
301 #define Z_IS_SINC(i) ((i)->quality > Z_QUALITY_LINEAR)
304 * Macroses for accurate sample time drift calculations.
306 * gy2gx : given the amount of output, return the _exact_ required amount of
307 * input.
308 * gx2gy : given the amount of input, return the _maximum_ amount of output
309 * that will be generated.
310 * drift : given the amount of input and output, return the elapsed
311 * sample-time.
313 #define _Z_GCAST(x) ((uint64_t)(x))
315 #if defined(__GNUCLIKE_ASM) && defined(__i386__)
317 * This is where i386 being beaten to a pulp. Fortunately this function is
318 * rarely being called and if it is, it will decide the best (hopefully)
319 * fastest way to do the division. If we can ensure that everything is dword
320 * aligned, letting the compiler to call udivdi3 to do the division can be
321 * faster compared to this.
323 * amd64 is the clear winner here, no question about it.
325 static __inline uint32_t
326 Z_DIV(uint64_t v, uint32_t d)
328 uint32_t hi, lo, quo, rem;
330 hi = v >> 32;
331 lo = v & 0xffffffff;
334 * As much as we can, try to avoid long division like a plague.
336 if (hi == 0)
337 quo = lo / d;
338 else
339 __asm("divl %2"
340 : "=a" (quo), "=d" (rem)
341 : "r" (d), "0" (lo), "1" (hi));
343 return (quo);
345 #else
346 #define Z_DIV(x, y) ((x) / (y))
347 #endif
349 #define _Z_GY2GX(i, a, v) \
350 Z_DIV(((_Z_GCAST((i)->z_gx) * (v)) + ((i)->z_gy - (a) - 1)), \
351 (i)->z_gy)
353 #define _Z_GX2GY(i, a, v) \
354 Z_DIV(((_Z_GCAST((i)->z_gy) * (v)) + (a)), (i)->z_gx)
356 #define _Z_DRIFT(i, x, y) \
357 ((_Z_GCAST((i)->z_gy) * (x)) - (_Z_GCAST((i)->z_gx) * (y)))
359 #define z_gy2gx(i, v) _Z_GY2GX(i, (i)->z_alpha, v)
360 #define z_gx2gy(i, v) _Z_GX2GY(i, (i)->z_alpha, v)
361 #define z_drift(i, x, y) _Z_DRIFT(i, x, y)
364 * Macroses for SINC coefficients table manipulations.. whatever.
366 #define Z_SINC_COEFF_IDX(i) ((i)->quality - Z_QUALITY_LINEAR - 1)
368 #define Z_SINC_LEN(i) \
369 ((int32_t)(((uint64_t)z_coeff_tab[Z_SINC_COEFF_IDX(i)].len << \
370 Z_SHIFT) / (i)->z_dy))
372 #define Z_SINC_BASE_LEN(i) \
373 ((z_coeff_tab[Z_SINC_COEFF_IDX(i)].len - 1) >> (Z_DRIFT_SHIFT - 1))
376 * Macroses for linear delay buffer operations. Alignment is not
377 * really necessary since we're not using true circular buffer, but it
378 * will help us guard against possible trespasser. To be honest,
379 * the linear block operations does not need guarding at all due to
380 * accurate drifting!
382 #define z_align(i, v) ((v) & (i)->z_mask)
383 #define z_next(i, o, v) z_align(i, (o) + (v))
384 #define z_prev(i, o, v) z_align(i, (o) - (v))
385 #define z_fetched(i) (z_align(i, (i)->z_pos - (i)->z_start) - 1)
386 #define z_free(i) ((i)->z_full - (i)->z_pos)
389 * Macroses for Bla Bla .. :)
391 #define z_copy(src, dst, sz) (void)memcpy(dst, src, sz)
392 #define z_feed(...) FEEDER_FEED(__VA_ARGS__)
394 static __inline uint32_t
395 z_min(uint32_t x, uint32_t y)
398 return ((x < y) ? x : y);
401 static int32_t
402 z_gcd(int32_t x, int32_t y)
404 int32_t w;
406 while (y != 0) {
407 w = x % y;
408 x = y;
409 y = w;
412 return (x);
415 static int32_t
416 z_roundpow2(int32_t v)
418 int32_t i;
420 i = 1;
423 * Let it overflow at will..
425 while (i > 0 && i < v)
426 i <<= 1;
428 return (i);
432 * Zero Order Hold, the worst of the worst, an insult against quality,
433 * but super fast.
435 static void
436 z_feed_zoh(struct z_info *info, uint8_t *dst)
438 #if 0
439 z_copy(info->z_delay +
440 (info->z_start * info->channels * info->bps), dst,
441 info->channels * info->bps);
442 #else
443 uint32_t cnt;
444 uint8_t *src;
446 cnt = info->channels * info->bps;
447 src = info->z_delay + (info->z_start * cnt);
450 * This is a bit faster than doing bcopy() since we're dealing
451 * with possible unaligned samples.
453 do {
454 *dst++ = *src++;
455 } while (--cnt != 0);
456 #endif
460 * Linear Interpolation. This at least sounds better (perceptually) and fast,
461 * but without any proper filtering which means aliasing still exist and
462 * could become worst with a right sample. Interpolation centered within
463 * Z_LINEAR_ONE between the present and previous sample and everything is
464 * done with simple 32bit scaling arithmetic.
466 #define Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN) \
467 static void \
468 z_feed_linear_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \
470 int32_t z; \
471 intpcm_t x, y; \
472 uint32_t ch; \
473 uint8_t *sx, *sy; \
475 z = ((uint32_t)info->z_alpha * info->z_dx) >> Z_LINEAR_UNSHIFT; \
477 sx = info->z_delay + (info->z_start * info->channels * \
478 PCM_##BIT##_BPS); \
479 sy = sx - (info->channels * PCM_##BIT##_BPS); \
481 ch = info->channels; \
483 do { \
484 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(sx); \
485 y = _PCM_READ_##SIGN##BIT##_##ENDIAN(sy); \
486 x = Z_LINEAR_INTERPOLATE_##BIT(z, x, y); \
487 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x); \
488 sx += PCM_##BIT##_BPS; \
489 sy += PCM_##BIT##_BPS; \
490 dst += PCM_##BIT##_BPS; \
491 } while (--ch != 0); \
495 * Userland clipping diagnostic check, not enabled in kernel compilation.
496 * While doing sinc interpolation, unrealistic samples like full scale sine
497 * wav will clip, but for other things this will not make any noise at all.
498 * Everybody should learn how to normalized perceived loudness of their own
499 * music/sounds/samples (hint: ReplayGain).
501 #ifdef Z_DIAGNOSTIC
502 #define Z_CLIP_CHECK(v, BIT) do { \
503 if ((v) > PCM_S##BIT##_MAX) { \
504 fprintf(stderr, "Overflow: v=%jd, max=%jd\n", \
505 (intmax_t)(v), (intmax_t)PCM_S##BIT##_MAX); \
506 } else if ((v) < PCM_S##BIT##_MIN) { \
507 fprintf(stderr, "Underflow: v=%jd, min=%jd\n", \
508 (intmax_t)(v), (intmax_t)PCM_S##BIT##_MIN); \
510 } while (0)
511 #else
512 #define Z_CLIP_CHECK(...)
513 #endif
515 #define Z_CLAMP(v, BIT) \
516 (((v) > PCM_S##BIT##_MAX) ? PCM_S##BIT##_MAX : \
517 (((v) < PCM_S##BIT##_MIN) ? PCM_S##BIT##_MIN : (v)))
520 * Sine Cardinal (SINC) Interpolation. Scaling is done in 64 bit, so
521 * there's no point to hold the plate any longer. All samples will be
522 * shifted to a full 32 bit, scaled and restored during write for
523 * maximum dynamic range (only for downsampling).
525 #define _Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, adv) \
526 c += z >> Z_SHIFT; \
527 z &= Z_MASK; \
528 coeff = Z_COEFF_INTERPOLATE(z, z_coeff[c], z_dcoeff[c]); \
529 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \
530 v += Z_NORM_##BIT((intpcm64_t)x * coeff); \
531 z += info->z_dy; \
532 p adv##= info->channels * PCM_##BIT##_BPS
535 * XXX GCC4 optimization is such a !@#$%, need manual unrolling.
537 #if defined(__GNUC__) && __GNUC__ >= 4
538 #define Z_SINC_ACCUMULATE(...) do { \
539 _Z_SINC_ACCUMULATE(__VA_ARGS__); \
540 _Z_SINC_ACCUMULATE(__VA_ARGS__); \
541 } while (0)
542 #define Z_SINC_ACCUMULATE_DECR 2
543 #else
544 #define Z_SINC_ACCUMULATE(...) do { \
545 _Z_SINC_ACCUMULATE(__VA_ARGS__); \
546 } while (0)
547 #define Z_SINC_ACCUMULATE_DECR 1
548 #endif
550 #define Z_DECLARE_SINC(SIGN, BIT, ENDIAN) \
551 static void \
552 z_feed_sinc_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \
554 intpcm64_t v; \
555 intpcm_t x; \
556 uint8_t *p; \
557 int32_t coeff, z, *z_coeff, *z_dcoeff; \
558 uint32_t c, center, ch, i; \
560 z_coeff = info->z_coeff; \
561 z_dcoeff = info->z_dcoeff; \
562 center = z_prev(info, info->z_start, info->z_size); \
563 ch = info->channels * PCM_##BIT##_BPS; \
564 dst += ch; \
566 do { \
567 dst -= PCM_##BIT##_BPS; \
568 ch -= PCM_##BIT##_BPS; \
569 v = 0; \
570 z = info->z_alpha * info->z_dx; \
571 c = 0; \
572 p = info->z_delay + (z_next(info, center, 1) * \
573 info->channels * PCM_##BIT##_BPS) + ch; \
574 for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) \
575 Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, +); \
576 z = info->z_dy - (info->z_alpha * info->z_dx); \
577 c = 0; \
578 p = info->z_delay + (center * info->channels * \
579 PCM_##BIT##_BPS) + ch; \
580 for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) \
581 Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, -); \
582 if (info->z_scale != Z_ONE) \
583 v = Z_SCALE_##BIT(v, info->z_scale); \
584 else \
585 v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT; \
586 Z_CLIP_CHECK(v, BIT); \
587 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT)); \
588 } while (ch != 0); \
591 #define Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN) \
592 static void \
593 z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \
595 intpcm64_t v; \
596 intpcm_t x; \
597 uint8_t *p; \
598 int32_t ch, i, start, *z_pcoeff; \
600 ch = info->channels * PCM_##BIT##_BPS; \
601 dst += ch; \
602 start = z_prev(info, info->z_start, (info->z_size << 1) - 1) * ch; \
604 do { \
605 dst -= PCM_##BIT##_BPS; \
606 ch -= PCM_##BIT##_BPS; \
607 v = 0; \
608 p = info->z_delay + start + ch; \
609 z_pcoeff = info->z_pcoeff + \
610 ((info->z_alpha * info->z_size) << 1); \
611 for (i = info->z_size; i != 0; i--) { \
612 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \
613 v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff); \
614 z_pcoeff++; \
615 p += info->channels * PCM_##BIT##_BPS; \
616 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \
617 v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff); \
618 z_pcoeff++; \
619 p += info->channels * PCM_##BIT##_BPS; \
621 if (info->z_scale != Z_ONE) \
622 v = Z_SCALE_##BIT(v, info->z_scale); \
623 else \
624 v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT; \
625 Z_CLIP_CHECK(v, BIT); \
626 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT)); \
627 } while (ch != 0); \
630 #define Z_DECLARE(SIGN, BIT, ENDIAN) \
631 Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN) \
632 Z_DECLARE_SINC(SIGN, BIT, ENDIAN) \
633 Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN)
635 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
636 Z_DECLARE(S, 16, LE)
637 Z_DECLARE(S, 32, LE)
638 #endif
639 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
640 Z_DECLARE(S, 16, BE)
641 Z_DECLARE(S, 32, BE)
642 #endif
643 #ifdef SND_FEEDER_MULTIFORMAT
644 Z_DECLARE(S, 8, NE)
645 Z_DECLARE(S, 24, LE)
646 Z_DECLARE(S, 24, BE)
647 Z_DECLARE(U, 8, NE)
648 Z_DECLARE(U, 16, LE)
649 Z_DECLARE(U, 24, LE)
650 Z_DECLARE(U, 32, LE)
651 Z_DECLARE(U, 16, BE)
652 Z_DECLARE(U, 24, BE)
653 Z_DECLARE(U, 32, BE)
654 #endif
656 enum {
657 Z_RESAMPLER_ZOH,
658 Z_RESAMPLER_LINEAR,
659 Z_RESAMPLER_SINC,
660 Z_RESAMPLER_SINC_POLYPHASE,
661 Z_RESAMPLER_LAST
664 #define Z_RESAMPLER_IDX(i) \
665 (Z_IS_SINC(i) ? Z_RESAMPLER_SINC : (i)->quality)
667 #define Z_RESAMPLER_ENTRY(SIGN, BIT, ENDIAN) \
669 AFMT_##SIGN##BIT##_##ENDIAN, \
671 [Z_RESAMPLER_ZOH] = z_feed_zoh, \
672 [Z_RESAMPLER_LINEAR] = z_feed_linear_##SIGN##BIT##ENDIAN, \
673 [Z_RESAMPLER_SINC] = z_feed_sinc_##SIGN##BIT##ENDIAN, \
674 [Z_RESAMPLER_SINC_POLYPHASE] = \
675 z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN \
679 static const struct {
680 uint32_t format;
681 z_resampler_t resampler[Z_RESAMPLER_LAST];
682 } z_resampler_tab[] = {
683 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
684 Z_RESAMPLER_ENTRY(S, 16, LE),
685 Z_RESAMPLER_ENTRY(S, 32, LE),
686 #endif
687 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
688 Z_RESAMPLER_ENTRY(S, 16, BE),
689 Z_RESAMPLER_ENTRY(S, 32, BE),
690 #endif
691 #ifdef SND_FEEDER_MULTIFORMAT
692 Z_RESAMPLER_ENTRY(S, 8, NE),
693 Z_RESAMPLER_ENTRY(S, 24, LE),
694 Z_RESAMPLER_ENTRY(S, 24, BE),
695 Z_RESAMPLER_ENTRY(U, 8, NE),
696 Z_RESAMPLER_ENTRY(U, 16, LE),
697 Z_RESAMPLER_ENTRY(U, 24, LE),
698 Z_RESAMPLER_ENTRY(U, 32, LE),
699 Z_RESAMPLER_ENTRY(U, 16, BE),
700 Z_RESAMPLER_ENTRY(U, 24, BE),
701 Z_RESAMPLER_ENTRY(U, 32, BE),
702 #endif
705 #define Z_RESAMPLER_TAB_SIZE \
706 ((int32_t)(sizeof(z_resampler_tab) / sizeof(z_resampler_tab[0])))
708 static void
709 z_resampler_reset(struct z_info *info)
712 info->src = info->rsrc - (info->rsrc % ((feeder_rate_round > 0 &&
713 info->rsrc > feeder_rate_round) ? feeder_rate_round : 1));
714 info->dst = info->rdst - (info->rdst % ((feeder_rate_round > 0 &&
715 info->rdst > feeder_rate_round) ? feeder_rate_round : 1));
716 info->z_gx = 1;
717 info->z_gy = 1;
718 info->z_alpha = 0;
719 info->z_resample = NULL;
720 info->z_size = 1;
721 info->z_coeff = NULL;
722 info->z_dcoeff = NULL;
723 if (info->z_pcoeff != NULL) {
724 kfree(info->z_pcoeff, M_DEVBUF);
725 info->z_pcoeff = NULL;
727 info->z_scale = Z_ONE;
728 info->z_dx = Z_FULL_ONE;
729 info->z_dy = Z_FULL_ONE;
730 #ifdef Z_DIAGNOSTIC
731 info->z_cycle = 0;
732 #endif
733 if (info->quality < Z_QUALITY_MIN)
734 info->quality = Z_QUALITY_MIN;
735 else if (info->quality > Z_QUALITY_MAX)
736 info->quality = Z_QUALITY_MAX;
739 #ifdef Z_PARANOID
740 static int32_t
741 z_resampler_sinc_len(struct z_info *info)
743 int32_t c, z, len, lmax;
745 if (!Z_IS_SINC(info))
746 return (1);
749 * A rather careful (or useless) way to calculate filter length.
750 * Z_SINC_LEN() itself is accurate enough to do its job. Extra
751 * sanity checking is not going to hurt though..
753 c = 0;
754 z = info->z_dy;
755 len = 0;
756 lmax = z_coeff_tab[Z_SINC_COEFF_IDX(info)].len;
758 do {
759 c += z >> Z_SHIFT;
760 z &= Z_MASK;
761 z += info->z_dy;
762 } while (c < lmax && ++len > 0);
764 if (len != Z_SINC_LEN(info)) {
765 #ifdef _KERNEL
766 kprintf("%s(): sinc l=%d != Z_SINC_LEN=%d\n",
767 __func__, len, Z_SINC_LEN(info));
768 #else
769 fprintf(stderr, "%s(): sinc l=%d != Z_SINC_LEN=%d\n",
770 __func__, len, Z_SINC_LEN(info));
771 return (-1);
772 #endif
775 return (len);
777 #else
778 #define z_resampler_sinc_len(i) (Z_IS_SINC(i) ? Z_SINC_LEN(i) : 1)
779 #endif
781 #define Z_POLYPHASE_COEFF_SHIFT 0
784 * Pick suitable polynomial interpolators based on filter oversampled ratio
785 * (2 ^ Z_DRIFT_SHIFT).
787 #if !(defined(Z_COEFF_INTERP_ZOH) || defined(Z_COEFF_INTERP_LINEAR) || \
788 defined(Z_COEFF_INTERP_QUADRATIC) || defined(Z_COEFF_INTERP_HERMITE) || \
789 defined(Z_COEFF_INTER_BSPLINE) || defined(Z_COEFF_INTERP_OPT32X) || \
790 defined(Z_COEFF_INTERP_OPT16X) || defined(Z_COEFF_INTERP_OPT8X) || \
791 defined(Z_COEFF_INTERP_OPT4X) || defined(Z_COEFF_INTERP_OPT2X))
792 #if Z_DRIFT_SHIFT >= 6
793 #define Z_COEFF_INTERP_BSPLINE 1
794 #elif Z_DRIFT_SHIFT >= 5
795 #define Z_COEFF_INTERP_OPT32X 1
796 #elif Z_DRIFT_SHIFT == 4
797 #define Z_COEFF_INTERP_OPT16X 1
798 #elif Z_DRIFT_SHIFT == 3
799 #define Z_COEFF_INTERP_OPT8X 1
800 #elif Z_DRIFT_SHIFT == 2
801 #define Z_COEFF_INTERP_OPT4X 1
802 #elif Z_DRIFT_SHIFT == 1
803 #define Z_COEFF_INTERP_OPT2X 1
804 #else
805 #error "Z_DRIFT_SHIFT screwed!"
806 #endif
807 #endif
810 * In classic polyphase mode, the actual coefficients for each phases need to
811 * be calculated based on default prototype filters. For highly oversampled
812 * filter, linear or quadradatic interpolator should be enough. Anything less
813 * than that require 'special' interpolators to reduce interpolation errors.
815 * "Polynomial Interpolators for High-Quality Resampling of Oversampled Audio"
816 * by Olli Niemitalo
817 * - http://www.student.oulu.fi/~oniemita/dsp/deip.pdf
820 static int32_t
821 z_coeff_interpolate(int32_t z, int32_t *z_coeff)
823 int32_t coeff;
824 #if defined(Z_COEFF_INTERP_ZOH)
826 /* 1-point, 0th-order (Zero Order Hold) */
827 z = z;
828 coeff = z_coeff[0];
829 #elif defined(Z_COEFF_INTERP_LINEAR)
830 int32_t zl0, zl1;
832 /* 2-point, 1st-order Linear */
833 zl0 = z_coeff[0];
834 zl1 = z_coeff[1] - z_coeff[0];
836 coeff = Z_RSHIFT((int64_t)zl1 * z, Z_SHIFT) + zl0;
837 #elif defined(Z_COEFF_INTERP_QUADRATIC)
838 int32_t zq0, zq1, zq2;
840 /* 3-point, 2nd-order Quadratic */
841 zq0 = z_coeff[0];
842 zq1 = z_coeff[1] - z_coeff[-1];
843 zq2 = z_coeff[1] + z_coeff[-1] - (z_coeff[0] << 1);
845 coeff = Z_RSHIFT((Z_RSHIFT((int64_t)zq2 * z, Z_SHIFT) +
846 zq1) * z, Z_SHIFT + 1) + zq0;
847 #elif defined(Z_COEFF_INTERP_HERMITE)
848 int32_t zh0, zh1, zh2, zh3;
850 /* 4-point, 3rd-order Hermite */
851 zh0 = z_coeff[0];
852 zh1 = z_coeff[1] - z_coeff[-1];
853 zh2 = (z_coeff[-1] << 1) - (z_coeff[0] * 5) + (z_coeff[1] << 2) -
854 z_coeff[2];
855 zh3 = z_coeff[2] - z_coeff[-1] + ((z_coeff[0] - z_coeff[1]) * 3);
857 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zh3 * z, Z_SHIFT) +
858 zh2) * z, Z_SHIFT) + zh1) * z, Z_SHIFT + 1) + zh0;
859 #elif defined(Z_COEFF_INTERP_BSPLINE)
860 int32_t zb0, zb1, zb2, zb3;
862 /* 4-point, 3rd-order B-Spline */
863 zb0 = Z_RSHIFT(0x15555555LL * (((int64_t)z_coeff[0] << 2) +
864 z_coeff[-1] + z_coeff[1]), 30);
865 zb1 = z_coeff[1] - z_coeff[-1];
866 zb2 = z_coeff[-1] + z_coeff[1] - (z_coeff[0] << 1);
867 zb3 = Z_RSHIFT(0x15555555LL * (((z_coeff[0] - z_coeff[1]) * 3) +
868 z_coeff[2] - z_coeff[-1]), 30);
870 coeff = (Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zb3 * z, Z_SHIFT) +
871 zb2) * z, Z_SHIFT) + zb1) * z, Z_SHIFT) + zb0 + 1) >> 1;
872 #elif defined(Z_COEFF_INTERP_OPT32X)
873 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
874 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
876 /* 6-point, 5th-order Optimal 32x */
877 zoz = z - (Z_ONE >> 1);
878 zoe1 = z_coeff[1] + z_coeff[0];
879 zoe2 = z_coeff[2] + z_coeff[-1];
880 zoe3 = z_coeff[3] + z_coeff[-2];
881 zoo1 = z_coeff[1] - z_coeff[0];
882 zoo2 = z_coeff[2] - z_coeff[-1];
883 zoo3 = z_coeff[3] - z_coeff[-2];
885 zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) +
886 (0x00170c29LL * zoe3), 30);
887 zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) +
888 (0x008cd4dcLL * zoo3), 30);
889 zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) +
890 (0x0160b5d0LL * zoe3), 30);
891 zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) +
892 (0x01cfe914LL * zoo3), 30);
893 zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) +
894 (0x015508ddLL * zoe3), 30);
895 zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) +
896 (0x0082d81aLL * zoo3), 30);
898 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
899 (int64_t)zoc5 * zoz, Z_SHIFT) +
900 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
901 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
902 #elif defined(Z_COEFF_INTERP_OPT16X)
903 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
904 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
906 /* 6-point, 5th-order Optimal 16x */
907 zoz = z - (Z_ONE >> 1);
908 zoe1 = z_coeff[1] + z_coeff[0];
909 zoe2 = z_coeff[2] + z_coeff[-1];
910 zoe3 = z_coeff[3] + z_coeff[-2];
911 zoo1 = z_coeff[1] - z_coeff[0];
912 zoo2 = z_coeff[2] - z_coeff[-1];
913 zoo3 = z_coeff[3] - z_coeff[-2];
915 zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) +
916 (0x00170c29LL * zoe3), 30);
917 zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) +
918 (0x008cd4dcLL * zoo3), 30);
919 zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) +
920 (0x0160b5d0LL * zoe3), 30);
921 zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) +
922 (0x01cfe914LL * zoo3), 30);
923 zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) +
924 (0x015508ddLL * zoe3), 30);
925 zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) +
926 (0x0082d81aLL * zoo3), 30);
928 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
929 (int64_t)zoc5 * zoz, Z_SHIFT) +
930 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
931 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
932 #elif defined(Z_COEFF_INTERP_OPT8X)
933 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
934 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
936 /* 6-point, 5th-order Optimal 8x */
937 zoz = z - (Z_ONE >> 1);
938 zoe1 = z_coeff[1] + z_coeff[0];
939 zoe2 = z_coeff[2] + z_coeff[-1];
940 zoe3 = z_coeff[3] + z_coeff[-2];
941 zoo1 = z_coeff[1] - z_coeff[0];
942 zoo2 = z_coeff[2] - z_coeff[-1];
943 zoo3 = z_coeff[3] - z_coeff[-2];
945 zoc0 = Z_RSHIFT((0x1aa9b47dLL * zoe1) + (0x053d9944LL * zoe2) +
946 (0x0018b23fLL * zoe3), 30);
947 zoc1 = Z_RSHIFT((0x14a104d1LL * zoo1) + (0x0d7d2504LL * zoo2) +
948 (0x0094b599LL * zoo3), 30);
949 zoc2 = Z_RSHIFT((-0x0d22530bLL * zoe1) + (0x0bb37a2cLL * zoe2) +
950 (0x016ed8e0LL * zoe3), 30);
951 zoc3 = Z_RSHIFT((-0x0d744b1cLL * zoo1) + (0x01649591LL * zoo2) +
952 (0x01dae93aLL * zoo3), 30);
953 zoc4 = Z_RSHIFT((0x02a7ee1bLL * zoe1) + (-0x03fbdb24LL * zoe2) +
954 (0x0153ed07LL * zoe3), 30);
955 zoc5 = Z_RSHIFT((0x04cf9b6cLL * zoo1) + (-0x0266b378LL * zoo2) +
956 (0x007a7c26LL * zoo3), 30);
958 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
959 (int64_t)zoc5 * zoz, Z_SHIFT) +
960 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
961 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
962 #elif defined(Z_COEFF_INTERP_OPT4X)
963 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
964 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
966 /* 6-point, 5th-order Optimal 4x */
967 zoz = z - (Z_ONE >> 1);
968 zoe1 = z_coeff[1] + z_coeff[0];
969 zoe2 = z_coeff[2] + z_coeff[-1];
970 zoe3 = z_coeff[3] + z_coeff[-2];
971 zoo1 = z_coeff[1] - z_coeff[0];
972 zoo2 = z_coeff[2] - z_coeff[-1];
973 zoo3 = z_coeff[3] - z_coeff[-2];
975 zoc0 = Z_RSHIFT((0x1a8eda43LL * zoe1) + (0x0556ee38LL * zoe2) +
976 (0x001a3784LL * zoe3), 30);
977 zoc1 = Z_RSHIFT((0x143d863eLL * zoo1) + (0x0d910e36LL * zoo2) +
978 (0x009ca889LL * zoo3), 30);
979 zoc2 = Z_RSHIFT((-0x0d026821LL * zoe1) + (0x0b837773LL * zoe2) +
980 (0x017ef0c6LL * zoe3), 30);
981 zoc3 = Z_RSHIFT((-0x0cef1502LL * zoo1) + (0x01207a8eLL * zoo2) +
982 (0x01e936dbLL * zoo3), 30);
983 zoc4 = Z_RSHIFT((0x029fe643LL * zoe1) + (-0x03ef3fc8LL * zoe2) +
984 (0x014f5923LL * zoe3), 30);
985 zoc5 = Z_RSHIFT((0x043a9d08LL * zoo1) + (-0x02154febLL * zoo2) +
986 (0x00670dbdLL * zoo3), 30);
988 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
989 (int64_t)zoc5 * zoz, Z_SHIFT) +
990 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
991 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
992 #elif defined(Z_COEFF_INTERP_OPT2X)
993 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
994 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
996 /* 6-point, 5th-order Optimal 2x */
997 zoz = z - (Z_ONE >> 1);
998 zoe1 = z_coeff[1] + z_coeff[0];
999 zoe2 = z_coeff[2] + z_coeff[-1];
1000 zoe3 = z_coeff[3] + z_coeff[-2];
1001 zoo1 = z_coeff[1] - z_coeff[0];
1002 zoo2 = z_coeff[2] - z_coeff[-1];
1003 zoo3 = z_coeff[3] - z_coeff[-2];
1005 zoc0 = Z_RSHIFT((0x19edb6fdLL * zoe1) + (0x05ebd062LL * zoe2) +
1006 (0x00267881LL * zoe3), 30);
1007 zoc1 = Z_RSHIFT((0x1223af76LL * zoo1) + (0x0de3dd6bLL * zoo2) +
1008 (0x00d683cdLL * zoo3), 30);
1009 zoc2 = Z_RSHIFT((-0x0c3ee068LL * zoe1) + (0x0a5c3769LL * zoe2) +
1010 (0x01e2aceaLL * zoe3), 30);
1011 zoc3 = Z_RSHIFT((-0x0a8ab614LL * zoo1) + (-0x0019522eLL * zoo2) +
1012 (0x022cefc7LL * zoo3), 30);
1013 zoc4 = Z_RSHIFT((0x0276187dLL * zoe1) + (-0x03a801e8LL * zoe2) +
1014 (0x0131d935LL * zoe3), 30);
1015 zoc5 = Z_RSHIFT((0x02c373f5LL * zoo1) + (-0x01275f83LL * zoo2) +
1016 (0x0018ee79LL * zoo3), 30);
1018 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
1019 (int64_t)zoc5 * zoz, Z_SHIFT) +
1020 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
1021 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
1022 #else
1023 #error "Interpolation type screwed!"
1024 #endif
1026 #if Z_POLYPHASE_COEFF_SHIFT > 0
1027 coeff = Z_RSHIFT(coeff, Z_POLYPHASE_COEFF_SHIFT);
1028 #endif
1029 return (coeff);
1032 static int
1033 z_resampler_build_polyphase(struct z_info *info)
1035 int32_t alpha, c, i, z, idx;
1037 /* Let this be here first. */
1038 if (info->z_pcoeff != NULL) {
1039 kfree(info->z_pcoeff, M_DEVBUF);
1040 info->z_pcoeff = NULL;
1043 if (feeder_rate_polyphase_max < 1)
1044 return (ENOTSUP);
1046 if (((int64_t)info->z_size * info->z_gy * 2) >
1047 feeder_rate_polyphase_max) {
1048 #ifndef _KERNEL
1049 fprintf(stderr, "Polyphase entries exceed: [%d/%d] %jd > %d\n",
1050 info->z_gx, info->z_gy,
1051 (intmax_t)info->z_size * info->z_gy * 2,
1052 feeder_rate_polyphase_max);
1053 #endif
1054 return (E2BIG);
1057 info->z_pcoeff = kmalloc(sizeof(int32_t) *
1058 info->z_size * info->z_gy * 2, M_DEVBUF, M_WAITOK | M_ZERO);
1059 if (info->z_pcoeff == NULL)
1060 return (ENOMEM);
1062 for (alpha = 0; alpha < info->z_gy; alpha++) {
1063 z = alpha * info->z_dx;
1064 c = 0;
1065 for (i = info->z_size; i != 0; i--) {
1066 c += z >> Z_SHIFT;
1067 z &= Z_MASK;
1068 idx = (alpha * info->z_size * 2) +
1069 (info->z_size * 2) - i;
1070 info->z_pcoeff[idx] =
1071 z_coeff_interpolate(z, info->z_coeff + c);
1072 z += info->z_dy;
1074 z = info->z_dy - (alpha * info->z_dx);
1075 c = 0;
1076 for (i = info->z_size; i != 0; i--) {
1077 c += z >> Z_SHIFT;
1078 z &= Z_MASK;
1079 idx = (alpha * info->z_size * 2) + i - 1;
1080 info->z_pcoeff[idx] =
1081 z_coeff_interpolate(z, info->z_coeff + c);
1082 z += info->z_dy;
1086 #ifndef _KERNEL
1087 fprintf(stderr, "Polyphase: [%d/%d] %d entries\n",
1088 info->z_gx, info->z_gy, info->z_size * info->z_gy * 2);
1089 #endif
1091 return (0);
1094 static int
1095 z_resampler_setup(struct pcm_feeder *f)
1097 struct z_info *info;
1098 int64_t gy2gx_max, gx2gy_max;
1099 uint32_t format;
1100 int32_t align, i, z_scale;
1101 int adaptive;
1103 info = f->data;
1104 z_resampler_reset(info);
1106 if (info->src == info->dst)
1107 return (0);
1109 /* Shrink by greatest common divisor. */
1110 i = z_gcd(info->src, info->dst);
1111 info->z_gx = info->src / i;
1112 info->z_gy = info->dst / i;
1114 /* Too big, or too small. Bail out. */
1115 if (!(Z_FACTOR_SAFE(info->z_gx) && Z_FACTOR_SAFE(info->z_gy)))
1116 return (EINVAL);
1118 format = f->desc->in;
1119 adaptive = 0;
1120 z_scale = 0;
1123 * Setup everything: filter length, conversion factor, etc.
1125 if (Z_IS_SINC(info)) {
1127 * Downsampling, or upsampling scaling factor. As long as the
1128 * factor can be represented by a fraction of 1 << Z_SHIFT,
1129 * we're pretty much in business. Scaling is not needed for
1130 * upsampling, so we just slap Z_ONE there.
1132 if (info->z_gx > info->z_gy)
1134 * If the downsampling ratio is beyond sanity,
1135 * enable semi-adaptive mode. Although handling
1136 * extreme ratio is possible, the result of the
1137 * conversion is just pointless, unworthy,
1138 * nonsensical noises, etc.
1140 if ((info->z_gx / info->z_gy) > Z_SINC_DOWNMAX)
1141 z_scale = Z_ONE / Z_SINC_DOWNMAX;
1142 else
1143 z_scale = ((uint64_t)info->z_gy << Z_SHIFT) /
1144 info->z_gx;
1145 else
1146 z_scale = Z_ONE;
1149 * This is actually impossible, unless anything above
1150 * overflow.
1152 if (z_scale < 1)
1153 return (E2BIG);
1156 * Calculate sample time/coefficients index drift. It is
1157 * a constant for upsampling, but downsampling require
1158 * heavy duty filtering with possible too long filters.
1159 * If anything goes wrong, revisit again and enable
1160 * adaptive mode.
1162 z_setup_adaptive_sinc:
1163 if (info->z_pcoeff != NULL) {
1164 kfree(info->z_pcoeff, M_DEVBUF);
1165 info->z_pcoeff = NULL;
1168 if (adaptive == 0) {
1169 info->z_dy = z_scale << Z_DRIFT_SHIFT;
1170 if (info->z_dy < 1)
1171 return (E2BIG);
1172 info->z_scale = z_scale;
1173 } else {
1174 info->z_dy = Z_FULL_ONE;
1175 info->z_scale = Z_ONE;
1178 #if 0
1179 #define Z_SCALE_DIV 10000
1180 #define Z_SCALE_LIMIT(s, v) \
1181 ((((uint64_t)(s) * (v)) + (Z_SCALE_DIV >> 1)) / Z_SCALE_DIV)
1183 info->z_scale = Z_SCALE_LIMIT(info->z_scale, 9780);
1184 #endif
1186 /* Smallest drift increment. */
1187 info->z_dx = info->z_dy / info->z_gy;
1190 * Overflow or underflow. Try adaptive, let it continue and
1191 * retry.
1193 if (info->z_dx < 1) {
1194 if (adaptive == 0) {
1195 adaptive = 1;
1196 goto z_setup_adaptive_sinc;
1198 return (E2BIG);
1202 * Round back output drift.
1204 info->z_dy = info->z_dx * info->z_gy;
1206 for (i = 0; i < Z_COEFF_TAB_SIZE; i++) {
1207 if (Z_SINC_COEFF_IDX(info) != i)
1208 continue;
1210 * Calculate required filter length and guard
1211 * against possible abusive result. Note that
1212 * this represents only 1/2 of the entire filter
1213 * length.
1215 info->z_size = z_resampler_sinc_len(info);
1218 * Multiple of 2 rounding, for better accumulator
1219 * performance.
1221 info->z_size &= ~1;
1223 if (info->z_size < 2 || info->z_size > Z_SINC_MAX) {
1224 if (adaptive == 0) {
1225 adaptive = 1;
1226 goto z_setup_adaptive_sinc;
1228 return (E2BIG);
1230 info->z_coeff = z_coeff_tab[i].coeff + Z_COEFF_OFFSET;
1231 info->z_dcoeff = z_coeff_tab[i].dcoeff;
1232 break;
1235 if (info->z_coeff == NULL || info->z_dcoeff == NULL)
1236 return (EINVAL);
1237 } else if (Z_IS_LINEAR(info)) {
1239 * Don't put much effort if we're doing linear interpolation.
1240 * Just center the interpolation distance within Z_LINEAR_ONE,
1241 * and be happy about it.
1243 info->z_dx = Z_LINEAR_FULL_ONE / info->z_gy;
1247 * We're safe for now, lets continue.. Look for our resampler
1248 * depending on configured format and quality.
1250 for (i = 0; i < Z_RESAMPLER_TAB_SIZE; i++) {
1251 int ridx;
1253 if (AFMT_ENCODING(format) != z_resampler_tab[i].format)
1254 continue;
1255 if (Z_IS_SINC(info) && adaptive == 0 &&
1256 z_resampler_build_polyphase(info) == 0)
1257 ridx = Z_RESAMPLER_SINC_POLYPHASE;
1258 else
1259 ridx = Z_RESAMPLER_IDX(info);
1260 info->z_resample = z_resampler_tab[i].resampler[ridx];
1261 break;
1264 if (info->z_resample == NULL)
1265 return (EINVAL);
1267 info->bps = AFMT_BPS(format);
1268 align = info->channels * info->bps;
1271 * Calculate largest value that can be fed into z_gy2gx() and
1272 * z_gx2gy() without causing (signed) 32bit overflow. z_gy2gx() will
1273 * be called early during feeding process to determine how much input
1274 * samples that is required to generate requested output, while
1275 * z_gx2gy() will be called just before samples filtering /
1276 * accumulation process based on available samples that has been
1277 * calculated using z_gx2gy().
1279 * Now that is damn confusing, I guess ;-) .
1281 gy2gx_max = (((uint64_t)info->z_gy * INT32_MAX) - info->z_gy + 1) /
1282 info->z_gx;
1284 if ((gy2gx_max * align) > SND_FXDIV_MAX)
1285 gy2gx_max = SND_FXDIV_MAX / align;
1287 if (gy2gx_max < 1)
1288 return (E2BIG);
1290 gx2gy_max = (((uint64_t)info->z_gx * INT32_MAX) - info->z_gy) /
1291 info->z_gy;
1293 if (gx2gy_max > INT32_MAX)
1294 gx2gy_max = INT32_MAX;
1296 if (gx2gy_max < 1)
1297 return (E2BIG);
1300 * Ensure that z_gy2gx() at its largest possible calculated value
1301 * (alpha = 0) will not cause overflow further late during z_gx2gy()
1302 * stage.
1304 if (z_gy2gx(info, gy2gx_max) > _Z_GCAST(gx2gy_max))
1305 return (E2BIG);
1307 info->z_maxfeed = gy2gx_max * align;
1309 #ifdef Z_USE_ALPHADRIFT
1310 info->z_startdrift = z_gy2gx(info, 1);
1311 info->z_alphadrift = z_drift(info, info->z_startdrift, 1);
1312 #endif
1314 i = z_gy2gx(info, 1);
1315 info->z_full = z_roundpow2((info->z_size << 1) + i);
1318 * Too big to be true, and overflowing left and right like mad ..
1320 if ((info->z_full * align) < 1) {
1321 if (adaptive == 0 && Z_IS_SINC(info)) {
1322 adaptive = 1;
1323 goto z_setup_adaptive_sinc;
1325 return (E2BIG);
1329 * Increase full buffer size if its too small to reduce cyclic
1330 * buffer shifting in main conversion/feeder loop.
1332 while (info->z_full < Z_RESERVOIR_MAX &&
1333 (info->z_full - (info->z_size << 1)) < Z_RESERVOIR)
1334 info->z_full <<= 1;
1336 /* Initialize buffer position. */
1337 info->z_mask = info->z_full - 1;
1338 info->z_start = z_prev(info, info->z_size << 1, 1);
1339 info->z_pos = z_next(info, info->z_start, 1);
1342 * Allocate or reuse delay line buffer, whichever makes sense.
1344 i = info->z_full * align;
1345 if (i < 1)
1346 return (E2BIG);
1348 if (info->z_delay == NULL || info->z_alloc < i ||
1349 i <= (info->z_alloc >> 1)) {
1350 if (info->z_delay != NULL)
1351 kfree(info->z_delay, M_DEVBUF);
1352 info->z_delay = kmalloc(i, M_DEVBUF, M_WAITOK | M_ZERO);
1353 if (info->z_delay == NULL)
1354 return (ENOMEM);
1355 info->z_alloc = i;
1359 * Zero out head of buffer to avoid pops and clicks.
1361 memset(info->z_delay, sndbuf_zerodata(f->desc->out),
1362 info->z_pos * align);
1364 #ifdef Z_DIAGNOSTIC
1366 * XXX Debuging mess !@#$%^
1368 #define dumpz(x) fprintf(stderr, "\t%12s = %10u : %-11d\n", \
1369 "z_"__STRING(x), (uint32_t)info->z_##x, \
1370 (int32_t)info->z_##x)
1371 fprintf(stderr, "\n%s():\n", __func__);
1372 fprintf(stderr, "\tchannels=%d, bps=%d, format=0x%08x, quality=%d\n",
1373 info->channels, info->bps, format, info->quality);
1374 fprintf(stderr, "\t%d (%d) -> %d (%d), ",
1375 info->src, info->rsrc, info->dst, info->rdst);
1376 fprintf(stderr, "[%d/%d]\n", info->z_gx, info->z_gy);
1377 fprintf(stderr, "\tminreq=%d, ", z_gy2gx(info, 1));
1378 if (adaptive != 0)
1379 z_scale = Z_ONE;
1380 fprintf(stderr, "factor=0x%08x/0x%08x (%f)\n",
1381 z_scale, Z_ONE, (double)z_scale / Z_ONE);
1382 fprintf(stderr, "\tbase_length=%d, ", Z_SINC_BASE_LEN(info));
1383 fprintf(stderr, "adaptive=%s\n", (adaptive != 0) ? "YES" : "NO");
1384 dumpz(size);
1385 dumpz(alloc);
1386 if (info->z_alloc < 1024)
1387 fprintf(stderr, "\t%15s%10d Bytes\n",
1388 "", info->z_alloc);
1389 else if (info->z_alloc < (1024 << 10))
1390 fprintf(stderr, "\t%15s%10d KBytes\n",
1391 "", info->z_alloc >> 10);
1392 else if (info->z_alloc < (1024 << 20))
1393 fprintf(stderr, "\t%15s%10d MBytes\n",
1394 "", info->z_alloc >> 20);
1395 else
1396 fprintf(stderr, "\t%15s%10d GBytes\n",
1397 "", info->z_alloc >> 30);
1398 fprintf(stderr, "\t%12s %10d (min output samples)\n",
1400 (int32_t)z_gx2gy(info, info->z_full - (info->z_size << 1)));
1401 fprintf(stderr, "\t%12s %10d (min allocated output samples)\n",
1403 (int32_t)z_gx2gy(info, (info->z_alloc / align) -
1404 (info->z_size << 1)));
1405 fprintf(stderr, "\t%12s = %10d\n",
1406 "z_gy2gx()", (int32_t)z_gy2gx(info, 1));
1407 fprintf(stderr, "\t%12s = %10d -> z_gy2gx() -> %d\n",
1408 "Max", (int32_t)gy2gx_max, (int32_t)z_gy2gx(info, gy2gx_max));
1409 fprintf(stderr, "\t%12s = %10d\n",
1410 "z_gx2gy()", (int32_t)z_gx2gy(info, 1));
1411 fprintf(stderr, "\t%12s = %10d -> z_gx2gy() -> %d\n",
1412 "Max", (int32_t)gx2gy_max, (int32_t)z_gx2gy(info, gx2gy_max));
1413 dumpz(maxfeed);
1414 dumpz(full);
1415 dumpz(start);
1416 dumpz(pos);
1417 dumpz(scale);
1418 fprintf(stderr, "\t%12s %10f\n", "",
1419 (double)info->z_scale / Z_ONE);
1420 dumpz(dx);
1421 fprintf(stderr, "\t%12s %10f\n", "",
1422 (double)info->z_dx / info->z_dy);
1423 dumpz(dy);
1424 fprintf(stderr, "\t%12s %10d (drift step)\n", "",
1425 info->z_dy >> Z_SHIFT);
1426 fprintf(stderr, "\t%12s %10d (scaling differences)\n", "",
1427 (z_scale << Z_DRIFT_SHIFT) - info->z_dy);
1428 fprintf(stderr, "\t%12s = %u bytes\n",
1429 "intpcm32_t", sizeof(intpcm32_t));
1430 fprintf(stderr, "\t%12s = 0x%08x, smallest=%.16lf\n",
1431 "Z_ONE", Z_ONE, (double)1.0 / (double)Z_ONE);
1432 #endif
1434 return (0);
1437 static int
1438 z_resampler_set(struct pcm_feeder *f, int what, int32_t value)
1440 struct z_info *info;
1441 int32_t oquality;
1443 info = f->data;
1445 switch (what) {
1446 case Z_RATE_SRC:
1447 if (value < feeder_rate_min || value > feeder_rate_max)
1448 return (E2BIG);
1449 if (value == info->rsrc)
1450 return (0);
1451 info->rsrc = value;
1452 break;
1453 case Z_RATE_DST:
1454 if (value < feeder_rate_min || value > feeder_rate_max)
1455 return (E2BIG);
1456 if (value == info->rdst)
1457 return (0);
1458 info->rdst = value;
1459 break;
1460 case Z_RATE_QUALITY:
1461 if (value < Z_QUALITY_MIN || value > Z_QUALITY_MAX)
1462 return (EINVAL);
1463 if (value == info->quality)
1464 return (0);
1466 * If we failed to set the requested quality, restore
1467 * the old one. We cannot afford leaving it broken since
1468 * passive feeder chains like vchans never reinitialize
1469 * itself.
1471 oquality = info->quality;
1472 info->quality = value;
1473 if (z_resampler_setup(f) == 0)
1474 return (0);
1475 info->quality = oquality;
1476 break;
1477 case Z_RATE_CHANNELS:
1478 if (value < SND_CHN_MIN || value > SND_CHN_MAX)
1479 return (EINVAL);
1480 if (value == info->channels)
1481 return (0);
1482 info->channels = value;
1483 break;
1484 default:
1485 return (EINVAL);
1486 break;
1489 return (z_resampler_setup(f));
1492 static int
1493 z_resampler_get(struct pcm_feeder *f, int what)
1495 struct z_info *info;
1497 info = f->data;
1499 switch (what) {
1500 case Z_RATE_SRC:
1501 return (info->rsrc);
1502 break;
1503 case Z_RATE_DST:
1504 return (info->rdst);
1505 break;
1506 case Z_RATE_QUALITY:
1507 return (info->quality);
1508 break;
1509 case Z_RATE_CHANNELS:
1510 return (info->channels);
1511 break;
1512 default:
1513 break;
1516 return (-1);
1519 static int
1520 z_resampler_init(struct pcm_feeder *f)
1522 struct z_info *info;
1523 int ret;
1525 if (f->desc->in != f->desc->out)
1526 return (EINVAL);
1528 info = kmalloc(sizeof(*info), M_DEVBUF, M_WAITOK | M_ZERO);
1529 if (info == NULL)
1530 return (ENOMEM);
1532 info->rsrc = Z_RATE_DEFAULT;
1533 info->rdst = Z_RATE_DEFAULT;
1534 info->quality = feeder_rate_quality;
1535 info->channels = AFMT_CHANNEL(f->desc->in);
1537 f->data = info;
1539 ret = z_resampler_setup(f);
1540 if (ret != 0) {
1541 if (info->z_pcoeff != NULL)
1542 kfree(info->z_pcoeff, M_DEVBUF);
1543 if (info->z_delay != NULL)
1544 kfree(info->z_delay, M_DEVBUF);
1545 kfree(info, M_DEVBUF);
1546 f->data = NULL;
1549 return (ret);
1552 static int
1553 z_resampler_free(struct pcm_feeder *f)
1555 struct z_info *info;
1557 info = f->data;
1558 if (info != NULL) {
1559 if (info->z_pcoeff != NULL)
1560 kfree(info->z_pcoeff, M_DEVBUF);
1561 if (info->z_delay != NULL)
1562 kfree(info->z_delay, M_DEVBUF);
1563 kfree(info, M_DEVBUF);
1566 f->data = NULL;
1568 return (0);
1571 static uint32_t
1572 z_resampler_feed_internal(struct pcm_feeder *f, struct pcm_channel *c,
1573 uint8_t *b, uint32_t count, void *source)
1575 struct z_info *info;
1576 int32_t alphadrift, startdrift, reqout, ocount, reqin, align;
1577 int32_t fetch, fetched, start, cp;
1578 uint8_t *dst;
1580 info = f->data;
1581 if (info->z_resample == NULL)
1582 return (z_feed(f->source, c, b, count, source));
1585 * Calculate sample size alignment and amount of sample output.
1586 * We will do everything in sample domain, but at the end we
1587 * will jump back to byte domain.
1589 align = info->channels * info->bps;
1590 ocount = SND_FXDIV(count, align);
1591 if (ocount == 0)
1592 return (0);
1595 * Calculate amount of input samples that is needed to generate
1596 * exact amount of output.
1598 reqin = z_gy2gx(info, ocount) - z_fetched(info);
1600 #ifdef Z_USE_ALPHADRIFT
1601 startdrift = info->z_startdrift;
1602 alphadrift = info->z_alphadrift;
1603 #else
1604 startdrift = _Z_GY2GX(info, 0, 1);
1605 alphadrift = z_drift(info, startdrift, 1);
1606 #endif
1608 dst = b;
1610 do {
1611 if (reqin != 0) {
1612 fetch = z_min(z_free(info), reqin);
1613 if (fetch == 0) {
1615 * No more free spaces, so wind enough
1616 * samples back to the head of delay line
1617 * in byte domain.
1619 fetched = z_fetched(info);
1620 start = z_prev(info, info->z_start,
1621 (info->z_size << 1) - 1);
1622 cp = (info->z_size << 1) + fetched;
1623 z_copy(info->z_delay + (start * align),
1624 info->z_delay, cp * align);
1625 info->z_start =
1626 z_prev(info, info->z_size << 1, 1);
1627 info->z_pos =
1628 z_next(info, info->z_start, fetched + 1);
1629 fetch = z_min(z_free(info), reqin);
1630 #ifdef Z_DIAGNOSTIC
1631 if (1) {
1632 static uint32_t kk = 0;
1633 fprintf(stderr,
1634 "Buffer Move: "
1635 "start=%d fetched=%d cp=%d "
1636 "cycle=%u [%u]\r",
1637 start, fetched, cp, info->z_cycle,
1638 ++kk);
1640 info->z_cycle = 0;
1641 #endif
1643 if (fetch != 0) {
1645 * Fetch in byte domain and jump back
1646 * to sample domain.
1648 fetched = SND_FXDIV(z_feed(f->source, c,
1649 info->z_delay + (info->z_pos * align),
1650 fetch * align, source), align);
1652 * Prepare to convert fetched buffer,
1653 * or mark us done if we cannot fulfill
1654 * the request.
1656 reqin -= fetched;
1657 info->z_pos += fetched;
1658 if (fetched != fetch)
1659 reqin = 0;
1663 reqout = z_min(z_gx2gy(info, z_fetched(info)), ocount);
1664 if (reqout != 0) {
1665 ocount -= reqout;
1668 * Drift.. drift.. drift..
1670 * Notice that there are 2 methods of doing the drift
1671 * operations: The former is much cleaner (in a sense
1672 * of mathematical readings of my eyes), but slower
1673 * due to integer division in z_gy2gx(). Nevertheless,
1674 * both should give the same exact accurate drifting
1675 * results, so the later is favourable.
1677 do {
1678 info->z_resample(info, dst);
1679 #if 0
1680 startdrift = z_gy2gx(info, 1);
1681 alphadrift = z_drift(info, startdrift, 1);
1682 info->z_start += startdrift;
1683 info->z_alpha += alphadrift;
1684 #else
1685 info->z_alpha += alphadrift;
1686 if (info->z_alpha < info->z_gy)
1687 info->z_start += startdrift;
1688 else {
1689 info->z_start += startdrift - 1;
1690 info->z_alpha -= info->z_gy;
1692 #endif
1693 dst += align;
1694 #ifdef Z_DIAGNOSTIC
1695 info->z_cycle++;
1696 #endif
1697 } while (--reqout != 0);
1699 } while (reqin != 0 && ocount != 0);
1702 * Back to byte domain..
1704 return (dst - b);
1707 static int
1708 z_resampler_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
1709 uint32_t count, void *source)
1711 uint32_t feed, maxfeed, left;
1714 * Split count to smaller chunks to avoid possible 32bit overflow.
1716 maxfeed = ((struct z_info *)(f->data))->z_maxfeed;
1717 left = count;
1719 do {
1720 feed = z_resampler_feed_internal(f, c, b,
1721 z_min(maxfeed, left), source);
1722 b += feed;
1723 left -= feed;
1724 } while (left != 0 && feed != 0);
1726 return (count - left);
1729 static struct pcm_feederdesc feeder_rate_desc[] = {
1730 { FEEDER_RATE, 0, 0, 0, 0 },
1731 { 0, 0, 0, 0, 0 },
1734 static kobj_method_t feeder_rate_methods[] = {
1735 KOBJMETHOD(feeder_init, z_resampler_init),
1736 KOBJMETHOD(feeder_free, z_resampler_free),
1737 KOBJMETHOD(feeder_set, z_resampler_set),
1738 KOBJMETHOD(feeder_get, z_resampler_get),
1739 KOBJMETHOD(feeder_feed, z_resampler_feed),
1740 KOBJMETHOD_END
1743 FEEDER_DECLARE(feeder_rate, NULL);