2 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * feeder_rate: (Codename: Z Resampler), which means any effort to create
29 * future replacement for this resampler are simply absurd unless
30 * the world decide to add new alphabet after Z.
32 * FreeBSD bandlimited sinc interpolator, technically based on
33 * "Digital Audio Resampling" by Julius O. Smith III
34 * - http://ccrma.stanford.edu/~jos/resample/
37 * + all out fixed point integer operations, no soft-float or anything like
39 * + classic polyphase converters with high quality coefficient's polynomial
41 * + fast, faster, or the fastest of its kind.
42 * + compile time configurable.
46 * - The z, z_, and Z_ . Due to mental block (or maybe just 0x7a69), I
47 * couldn't think of anything simpler than that (feeder_rate_xxx is just
48 * too long). Expect possible clashes with other zitizens (any?).
52 #ifdef HAVE_KERNEL_OPTION_HEADERS
55 #include <dev/sound/pcm/sound.h>
56 #include <dev/sound/pcm/pcm.h>
57 #include "feeder_if.h"
60 #include "snd_fxdiv_gen.h"
62 SND_DECLARE_FILE("$FreeBSD: head/sys/dev/sound/pcm/feeder_rate.c 267992 2014-06-28 03:56:17Z hselasky $");
65 #include "feeder_rate_gen.h"
67 #if !defined(_KERNEL) && defined(SND_DIAGNOSTIC)
69 #define Z_DIAGNOSTIC 1
70 #elif defined(_KERNEL)
74 #ifndef Z_QUALITY_DEFAULT
75 #define Z_QUALITY_DEFAULT Z_QUALITY_LINEAR
78 #define Z_RESERVOIR 2048
79 #define Z_RESERVOIR_MAX 131072
81 #define Z_SINC_MAX 0x3fffff
82 #define Z_SINC_DOWNMAX 48 /* 384000 / 8000 */
85 #define Z_POLYPHASE_MAX 183040 /* 286 taps, 640 phases */
87 #define Z_POLYPHASE_MAX 1464320 /* 286 taps, 5120 phases */
90 #define Z_RATE_DEFAULT 48000
92 #define Z_RATE_MIN FEEDRATE_RATEMIN
93 #define Z_RATE_MAX FEEDRATE_RATEMAX
94 #define Z_ROUNDHZ FEEDRATE_ROUNDHZ
95 #define Z_ROUNDHZ_MIN FEEDRATE_ROUNDHZ_MIN
96 #define Z_ROUNDHZ_MAX FEEDRATE_ROUNDHZ_MAX
98 #define Z_RATE_SRC FEEDRATE_SRC
99 #define Z_RATE_DST FEEDRATE_DST
100 #define Z_RATE_QUALITY FEEDRATE_QUALITY
101 #define Z_RATE_CHANNELS FEEDRATE_CHANNELS
105 #define Z_MULTIFORMAT 1
108 #undef Z_USE_ALPHADRIFT
109 #define Z_USE_ALPHADRIFT 1
112 #define Z_FACTOR_MIN 1
113 #define Z_FACTOR_MAX Z_MASK
114 #define Z_FACTOR_SAFE(v) (!((v) < Z_FACTOR_MIN || (v) > Z_FACTOR_MAX))
118 typedef void (*z_resampler_t
)(struct z_info
*, uint8_t *);
121 int32_t rsrc
, rdst
; /* original source / destination rates */
122 int32_t src
, dst
; /* rounded source / destination rates */
123 int32_t channels
; /* total channels */
124 int32_t bps
; /* bytes-per-sample */
125 int32_t quality
; /* resampling quality */
127 int32_t z_gx
, z_gy
; /* interpolation / decimation ratio */
128 int32_t z_alpha
; /* output sample time phase / drift */
129 uint8_t *z_delay
; /* FIR delay line / linear buffer */
130 int32_t *z_coeff
; /* FIR coefficients */
131 int32_t *z_dcoeff
; /* FIR coefficients differences */
132 int32_t *z_pcoeff
; /* FIR polyphase coefficients */
133 int32_t z_scale
; /* output scaling */
134 int32_t z_dx
; /* input sample drift increment */
135 int32_t z_dy
; /* output sample drift increment */
136 #ifdef Z_USE_ALPHADRIFT
137 int32_t z_alphadrift
; /* alpha drift rate */
138 int32_t z_startdrift
; /* buffer start position drift rate */
140 int32_t z_mask
; /* delay line full length mask */
141 int32_t z_size
; /* half width of FIR taps */
142 int32_t z_full
; /* full size of delay line */
143 int32_t z_alloc
; /* largest allocated full size of delay line */
144 int32_t z_start
; /* buffer processing start position */
145 int32_t z_pos
; /* current position for the next feed */
147 uint32_t z_cycle
; /* output cycle, purely for statistical */
149 int32_t z_maxfeed
; /* maximum feed to avoid 32bit overflow */
151 z_resampler_t z_resample
;
154 int feeder_rate_min
= Z_RATE_MIN
;
155 int feeder_rate_max
= Z_RATE_MAX
;
156 int feeder_rate_round
= Z_ROUNDHZ
;
157 int feeder_rate_quality
= Z_QUALITY_DEFAULT
;
159 static int feeder_rate_polyphase_max
= Z_POLYPHASE_MAX
;
162 static char feeder_rate_presets
[] = FEEDER_RATE_PRESETS
;
163 SYSCTL_STRING(_hw_snd
, OID_AUTO
, feeder_rate_presets
, CTLFLAG_RD
,
164 &feeder_rate_presets
, 0, "compile-time rate presets");
166 TUNABLE_INT("hw.snd.feeder_rate_min", &feeder_rate_min
);
167 TUNABLE_INT("hw.snd.feeder_rate_max", &feeder_rate_max
);
168 TUNABLE_INT("hw.snd.feeder_rate_round", &feeder_rate_round
);
169 TUNABLE_INT("hw.snd.feeder_rate_quality", &feeder_rate_quality
);
171 TUNABLE_INT("hw.snd.feeder_rate_polyphase_max", &feeder_rate_polyphase_max
);
172 SYSCTL_INT(_hw_snd
, OID_AUTO
, feeder_rate_polyphase_max
, CTLFLAG_RW
,
173 &feeder_rate_polyphase_max
, 0, "maximum allowable polyphase entries");
176 sysctl_hw_snd_feeder_rate_min(SYSCTL_HANDLER_ARGS
)
180 val
= feeder_rate_min
;
181 err
= sysctl_handle_int(oidp
, &val
, 0, req
);
183 if (err
!= 0 || req
->newptr
== NULL
|| val
== feeder_rate_min
)
186 if (!(Z_FACTOR_SAFE(val
) && val
< feeder_rate_max
))
189 feeder_rate_min
= val
;
193 SYSCTL_PROC(_hw_snd
, OID_AUTO
, feeder_rate_min
, CTLTYPE_INT
| CTLFLAG_RW
,
194 0, sizeof(int), sysctl_hw_snd_feeder_rate_min
, "I",
195 "minimum allowable rate");
198 sysctl_hw_snd_feeder_rate_max(SYSCTL_HANDLER_ARGS
)
202 val
= feeder_rate_max
;
203 err
= sysctl_handle_int(oidp
, &val
, 0, req
);
205 if (err
!= 0 || req
->newptr
== NULL
|| val
== feeder_rate_max
)
208 if (!(Z_FACTOR_SAFE(val
) && val
> feeder_rate_min
))
211 feeder_rate_max
= val
;
215 SYSCTL_PROC(_hw_snd
, OID_AUTO
, feeder_rate_max
, CTLTYPE_INT
| CTLFLAG_RW
,
216 0, sizeof(int), sysctl_hw_snd_feeder_rate_max
, "I",
217 "maximum allowable rate");
220 sysctl_hw_snd_feeder_rate_round(SYSCTL_HANDLER_ARGS
)
224 val
= feeder_rate_round
;
225 err
= sysctl_handle_int(oidp
, &val
, 0, req
);
227 if (err
!= 0 || req
->newptr
== NULL
|| val
== feeder_rate_round
)
230 if (val
< Z_ROUNDHZ_MIN
|| val
> Z_ROUNDHZ_MAX
)
233 feeder_rate_round
= val
- (val
% Z_ROUNDHZ
);
237 SYSCTL_PROC(_hw_snd
, OID_AUTO
, feeder_rate_round
, CTLTYPE_INT
| CTLFLAG_RW
,
238 0, sizeof(int), sysctl_hw_snd_feeder_rate_round
, "I",
239 "sample rate converter rounding threshold");
242 sysctl_hw_snd_feeder_rate_quality(SYSCTL_HANDLER_ARGS
)
244 struct snddev_info
*d
;
245 struct pcm_channel
*c
;
246 struct pcm_feeder
*f
;
249 val
= feeder_rate_quality
;
250 err
= sysctl_handle_int(oidp
, &val
, 0, req
);
252 if (err
!= 0 || req
->newptr
== NULL
|| val
== feeder_rate_quality
)
255 if (val
< Z_QUALITY_MIN
|| val
> Z_QUALITY_MAX
)
258 feeder_rate_quality
= val
;
261 * Traverse all available channels on each device and try to
262 * set resampler quality if and only if it is exist as
263 * part of feeder chains and the channel is idle.
265 for (i
= 0; pcm_devclass
!= NULL
&&
266 i
< devclass_get_maxunit(pcm_devclass
); i
++) {
267 d
= devclass_get_softc(pcm_devclass
, i
);
268 if (!PCM_REGISTERED(d
))
273 CHN_FOREACH(c
, d
, channels
.pcm
) {
275 f
= chn_findfeeder(c
, FEEDER_RATE
);
276 if (f
== NULL
|| f
->data
== NULL
|| CHN_STARTED(c
)) {
280 (void)FEEDER_SET(f
, FEEDRATE_QUALITY
, val
);
289 SYSCTL_PROC(_hw_snd
, OID_AUTO
, feeder_rate_quality
, CTLTYPE_INT
| CTLFLAG_RW
,
290 0, sizeof(int), sysctl_hw_snd_feeder_rate_quality
, "I",
291 "sample rate converter quality ("__XSTRING(Z_QUALITY_MIN
)"=low .. "
292 __XSTRING(Z_QUALITY_MAX
)"=high)");
299 #define Z_IS_ZOH(i) ((i)->quality == Z_QUALITY_ZOH)
300 #define Z_IS_LINEAR(i) ((i)->quality == Z_QUALITY_LINEAR)
301 #define Z_IS_SINC(i) ((i)->quality > Z_QUALITY_LINEAR)
304 * Macroses for accurate sample time drift calculations.
306 * gy2gx : given the amount of output, return the _exact_ required amount of
308 * gx2gy : given the amount of input, return the _maximum_ amount of output
309 * that will be generated.
310 * drift : given the amount of input and output, return the elapsed
313 #define _Z_GCAST(x) ((uint64_t)(x))
315 #if defined(__GNUCLIKE_ASM) && defined(__i386__)
317 * This is where i386 being beaten to a pulp. Fortunately this function is
318 * rarely being called and if it is, it will decide the best (hopefully)
319 * fastest way to do the division. If we can ensure that everything is dword
320 * aligned, letting the compiler to call udivdi3 to do the division can be
321 * faster compared to this.
323 * amd64 is the clear winner here, no question about it.
325 static __inline
uint32_t
326 Z_DIV(uint64_t v
, uint32_t d
)
328 uint32_t hi
, lo
, quo
, rem
;
334 * As much as we can, try to avoid long division like a plague.
340 : "=a" (quo
), "=d" (rem
)
341 : "r" (d
), "0" (lo
), "1" (hi
));
346 #define Z_DIV(x, y) ((x) / (y))
349 #define _Z_GY2GX(i, a, v) \
350 Z_DIV(((_Z_GCAST((i)->z_gx) * (v)) + ((i)->z_gy - (a) - 1)), \
353 #define _Z_GX2GY(i, a, v) \
354 Z_DIV(((_Z_GCAST((i)->z_gy) * (v)) + (a)), (i)->z_gx)
356 #define _Z_DRIFT(i, x, y) \
357 ((_Z_GCAST((i)->z_gy) * (x)) - (_Z_GCAST((i)->z_gx) * (y)))
359 #define z_gy2gx(i, v) _Z_GY2GX(i, (i)->z_alpha, v)
360 #define z_gx2gy(i, v) _Z_GX2GY(i, (i)->z_alpha, v)
361 #define z_drift(i, x, y) _Z_DRIFT(i, x, y)
364 * Macroses for SINC coefficients table manipulations.. whatever.
366 #define Z_SINC_COEFF_IDX(i) ((i)->quality - Z_QUALITY_LINEAR - 1)
368 #define Z_SINC_LEN(i) \
369 ((int32_t)(((uint64_t)z_coeff_tab[Z_SINC_COEFF_IDX(i)].len << \
370 Z_SHIFT) / (i)->z_dy))
372 #define Z_SINC_BASE_LEN(i) \
373 ((z_coeff_tab[Z_SINC_COEFF_IDX(i)].len - 1) >> (Z_DRIFT_SHIFT - 1))
376 * Macroses for linear delay buffer operations. Alignment is not
377 * really necessary since we're not using true circular buffer, but it
378 * will help us guard against possible trespasser. To be honest,
379 * the linear block operations does not need guarding at all due to
382 #define z_align(i, v) ((v) & (i)->z_mask)
383 #define z_next(i, o, v) z_align(i, (o) + (v))
384 #define z_prev(i, o, v) z_align(i, (o) - (v))
385 #define z_fetched(i) (z_align(i, (i)->z_pos - (i)->z_start) - 1)
386 #define z_free(i) ((i)->z_full - (i)->z_pos)
389 * Macroses for Bla Bla .. :)
391 #define z_copy(src, dst, sz) (void)memcpy(dst, src, sz)
392 #define z_feed(...) FEEDER_FEED(__VA_ARGS__)
394 static __inline
uint32_t
395 z_min(uint32_t x
, uint32_t y
)
398 return ((x
< y
) ? x
: y
);
402 z_gcd(int32_t x
, int32_t y
)
416 z_roundpow2(int32_t v
)
423 * Let it overflow at will..
425 while (i
> 0 && i
< v
)
432 * Zero Order Hold, the worst of the worst, an insult against quality,
436 z_feed_zoh(struct z_info
*info
, uint8_t *dst
)
439 z_copy(info
->z_delay
+
440 (info
->z_start
* info
->channels
* info
->bps
), dst
,
441 info
->channels
* info
->bps
);
446 cnt
= info
->channels
* info
->bps
;
447 src
= info
->z_delay
+ (info
->z_start
* cnt
);
450 * This is a bit faster than doing bcopy() since we're dealing
451 * with possible unaligned samples.
455 } while (--cnt
!= 0);
460 * Linear Interpolation. This at least sounds better (perceptually) and fast,
461 * but without any proper filtering which means aliasing still exist and
462 * could become worst with a right sample. Interpolation centered within
463 * Z_LINEAR_ONE between the present and previous sample and everything is
464 * done with simple 32bit scaling arithmetic.
466 #define Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN) \
468 z_feed_linear_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \
475 z = ((uint32_t)info->z_alpha * info->z_dx) >> Z_LINEAR_UNSHIFT; \
477 sx = info->z_delay + (info->z_start * info->channels * \
479 sy = sx - (info->channels * PCM_##BIT##_BPS); \
481 ch = info->channels; \
484 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(sx); \
485 y = _PCM_READ_##SIGN##BIT##_##ENDIAN(sy); \
486 x = Z_LINEAR_INTERPOLATE_##BIT(z, x, y); \
487 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x); \
488 sx += PCM_##BIT##_BPS; \
489 sy += PCM_##BIT##_BPS; \
490 dst += PCM_##BIT##_BPS; \
491 } while (--ch != 0); \
495 * Userland clipping diagnostic check, not enabled in kernel compilation.
496 * While doing sinc interpolation, unrealistic samples like full scale sine
497 * wav will clip, but for other things this will not make any noise at all.
498 * Everybody should learn how to normalized perceived loudness of their own
499 * music/sounds/samples (hint: ReplayGain).
502 #define Z_CLIP_CHECK(v, BIT) do { \
503 if ((v) > PCM_S##BIT##_MAX) { \
504 fprintf(stderr, "Overflow: v=%jd, max=%jd\n", \
505 (intmax_t)(v), (intmax_t)PCM_S##BIT##_MAX); \
506 } else if ((v) < PCM_S##BIT##_MIN) { \
507 fprintf(stderr, "Underflow: v=%jd, min=%jd\n", \
508 (intmax_t)(v), (intmax_t)PCM_S##BIT##_MIN); \
512 #define Z_CLIP_CHECK(...)
515 #define Z_CLAMP(v, BIT) \
516 (((v) > PCM_S##BIT##_MAX) ? PCM_S##BIT##_MAX : \
517 (((v) < PCM_S##BIT##_MIN) ? PCM_S##BIT##_MIN : (v)))
520 * Sine Cardinal (SINC) Interpolation. Scaling is done in 64 bit, so
521 * there's no point to hold the plate any longer. All samples will be
522 * shifted to a full 32 bit, scaled and restored during write for
523 * maximum dynamic range (only for downsampling).
525 #define _Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, adv) \
528 coeff = Z_COEFF_INTERPOLATE(z, z_coeff[c], z_dcoeff[c]); \
529 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \
530 v += Z_NORM_##BIT((intpcm64_t)x * coeff); \
532 p adv##= info->channels * PCM_##BIT##_BPS
535 * XXX GCC4 optimization is such a !@#$%, need manual unrolling.
537 #if defined(__GNUC__) && __GNUC__ >= 4
538 #define Z_SINC_ACCUMULATE(...) do { \
539 _Z_SINC_ACCUMULATE(__VA_ARGS__); \
540 _Z_SINC_ACCUMULATE(__VA_ARGS__); \
542 #define Z_SINC_ACCUMULATE_DECR 2
544 #define Z_SINC_ACCUMULATE(...) do { \
545 _Z_SINC_ACCUMULATE(__VA_ARGS__); \
547 #define Z_SINC_ACCUMULATE_DECR 1
550 #define Z_DECLARE_SINC(SIGN, BIT, ENDIAN) \
552 z_feed_sinc_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \
557 int32_t coeff, z, *z_coeff, *z_dcoeff; \
558 uint32_t c, center, ch, i; \
560 z_coeff = info->z_coeff; \
561 z_dcoeff = info->z_dcoeff; \
562 center = z_prev(info, info->z_start, info->z_size); \
563 ch = info->channels * PCM_##BIT##_BPS; \
567 dst -= PCM_##BIT##_BPS; \
568 ch -= PCM_##BIT##_BPS; \
570 z = info->z_alpha * info->z_dx; \
572 p = info->z_delay + (z_next(info, center, 1) * \
573 info->channels * PCM_##BIT##_BPS) + ch; \
574 for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) \
575 Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, +); \
576 z = info->z_dy - (info->z_alpha * info->z_dx); \
578 p = info->z_delay + (center * info->channels * \
579 PCM_##BIT##_BPS) + ch; \
580 for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) \
581 Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, -); \
582 if (info->z_scale != Z_ONE) \
583 v = Z_SCALE_##BIT(v, info->z_scale); \
585 v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT; \
586 Z_CLIP_CHECK(v, BIT); \
587 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT)); \
591 #define Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN) \
593 z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \
598 int32_t ch, i, start, *z_pcoeff; \
600 ch = info->channels * PCM_##BIT##_BPS; \
602 start = z_prev(info, info->z_start, (info->z_size << 1) - 1) * ch; \
605 dst -= PCM_##BIT##_BPS; \
606 ch -= PCM_##BIT##_BPS; \
608 p = info->z_delay + start + ch; \
609 z_pcoeff = info->z_pcoeff + \
610 ((info->z_alpha * info->z_size) << 1); \
611 for (i = info->z_size; i != 0; i--) { \
612 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \
613 v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff); \
615 p += info->channels * PCM_##BIT##_BPS; \
616 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \
617 v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff); \
619 p += info->channels * PCM_##BIT##_BPS; \
621 if (info->z_scale != Z_ONE) \
622 v = Z_SCALE_##BIT(v, info->z_scale); \
624 v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT; \
625 Z_CLIP_CHECK(v, BIT); \
626 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT)); \
630 #define Z_DECLARE(SIGN, BIT, ENDIAN) \
631 Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN) \
632 Z_DECLARE_SINC(SIGN, BIT, ENDIAN) \
633 Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN)
635 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
639 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
643 #ifdef SND_FEEDER_MULTIFORMAT
660 Z_RESAMPLER_SINC_POLYPHASE
,
664 #define Z_RESAMPLER_IDX(i) \
665 (Z_IS_SINC(i) ? Z_RESAMPLER_SINC : (i)->quality)
667 #define Z_RESAMPLER_ENTRY(SIGN, BIT, ENDIAN) \
669 AFMT_##SIGN##BIT##_##ENDIAN, \
671 [Z_RESAMPLER_ZOH] = z_feed_zoh, \
672 [Z_RESAMPLER_LINEAR] = z_feed_linear_##SIGN##BIT##ENDIAN, \
673 [Z_RESAMPLER_SINC] = z_feed_sinc_##SIGN##BIT##ENDIAN, \
674 [Z_RESAMPLER_SINC_POLYPHASE] = \
675 z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN \
679 static const struct {
681 z_resampler_t resampler
[Z_RESAMPLER_LAST
];
682 } z_resampler_tab
[] = {
683 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
684 Z_RESAMPLER_ENTRY(S
, 16, LE
),
685 Z_RESAMPLER_ENTRY(S
, 32, LE
),
687 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
688 Z_RESAMPLER_ENTRY(S
, 16, BE
),
689 Z_RESAMPLER_ENTRY(S
, 32, BE
),
691 #ifdef SND_FEEDER_MULTIFORMAT
692 Z_RESAMPLER_ENTRY(S
, 8, NE
),
693 Z_RESAMPLER_ENTRY(S
, 24, LE
),
694 Z_RESAMPLER_ENTRY(S
, 24, BE
),
695 Z_RESAMPLER_ENTRY(U
, 8, NE
),
696 Z_RESAMPLER_ENTRY(U
, 16, LE
),
697 Z_RESAMPLER_ENTRY(U
, 24, LE
),
698 Z_RESAMPLER_ENTRY(U
, 32, LE
),
699 Z_RESAMPLER_ENTRY(U
, 16, BE
),
700 Z_RESAMPLER_ENTRY(U
, 24, BE
),
701 Z_RESAMPLER_ENTRY(U
, 32, BE
),
705 #define Z_RESAMPLER_TAB_SIZE \
706 ((int32_t)(sizeof(z_resampler_tab) / sizeof(z_resampler_tab[0])))
709 z_resampler_reset(struct z_info
*info
)
712 info
->src
= info
->rsrc
- (info
->rsrc
% ((feeder_rate_round
> 0 &&
713 info
->rsrc
> feeder_rate_round
) ? feeder_rate_round
: 1));
714 info
->dst
= info
->rdst
- (info
->rdst
% ((feeder_rate_round
> 0 &&
715 info
->rdst
> feeder_rate_round
) ? feeder_rate_round
: 1));
719 info
->z_resample
= NULL
;
721 info
->z_coeff
= NULL
;
722 info
->z_dcoeff
= NULL
;
723 if (info
->z_pcoeff
!= NULL
) {
724 kfree(info
->z_pcoeff
, M_DEVBUF
);
725 info
->z_pcoeff
= NULL
;
727 info
->z_scale
= Z_ONE
;
728 info
->z_dx
= Z_FULL_ONE
;
729 info
->z_dy
= Z_FULL_ONE
;
733 if (info
->quality
< Z_QUALITY_MIN
)
734 info
->quality
= Z_QUALITY_MIN
;
735 else if (info
->quality
> Z_QUALITY_MAX
)
736 info
->quality
= Z_QUALITY_MAX
;
741 z_resampler_sinc_len(struct z_info
*info
)
743 int32_t c
, z
, len
, lmax
;
745 if (!Z_IS_SINC(info
))
749 * A rather careful (or useless) way to calculate filter length.
750 * Z_SINC_LEN() itself is accurate enough to do its job. Extra
751 * sanity checking is not going to hurt though..
756 lmax
= z_coeff_tab
[Z_SINC_COEFF_IDX(info
)].len
;
762 } while (c
< lmax
&& ++len
> 0);
764 if (len
!= Z_SINC_LEN(info
)) {
766 kprintf("%s(): sinc l=%d != Z_SINC_LEN=%d\n",
767 __func__
, len
, Z_SINC_LEN(info
));
769 fprintf(stderr
, "%s(): sinc l=%d != Z_SINC_LEN=%d\n",
770 __func__
, len
, Z_SINC_LEN(info
));
778 #define z_resampler_sinc_len(i) (Z_IS_SINC(i) ? Z_SINC_LEN(i) : 1)
781 #define Z_POLYPHASE_COEFF_SHIFT 0
784 * Pick suitable polynomial interpolators based on filter oversampled ratio
785 * (2 ^ Z_DRIFT_SHIFT).
787 #if !(defined(Z_COEFF_INTERP_ZOH) || defined(Z_COEFF_INTERP_LINEAR) || \
788 defined(Z_COEFF_INTERP_QUADRATIC) || defined(Z_COEFF_INTERP_HERMITE) || \
789 defined(Z_COEFF_INTER_BSPLINE) || defined(Z_COEFF_INTERP_OPT32X) || \
790 defined(Z_COEFF_INTERP_OPT16X) || defined(Z_COEFF_INTERP_OPT8X) || \
791 defined(Z_COEFF_INTERP_OPT4X) || defined(Z_COEFF_INTERP_OPT2X))
792 #if Z_DRIFT_SHIFT >= 6
793 #define Z_COEFF_INTERP_BSPLINE 1
794 #elif Z_DRIFT_SHIFT >= 5
795 #define Z_COEFF_INTERP_OPT32X 1
796 #elif Z_DRIFT_SHIFT == 4
797 #define Z_COEFF_INTERP_OPT16X 1
798 #elif Z_DRIFT_SHIFT == 3
799 #define Z_COEFF_INTERP_OPT8X 1
800 #elif Z_DRIFT_SHIFT == 2
801 #define Z_COEFF_INTERP_OPT4X 1
802 #elif Z_DRIFT_SHIFT == 1
803 #define Z_COEFF_INTERP_OPT2X 1
805 #error "Z_DRIFT_SHIFT screwed!"
810 * In classic polyphase mode, the actual coefficients for each phases need to
811 * be calculated based on default prototype filters. For highly oversampled
812 * filter, linear or quadradatic interpolator should be enough. Anything less
813 * than that require 'special' interpolators to reduce interpolation errors.
815 * "Polynomial Interpolators for High-Quality Resampling of Oversampled Audio"
817 * - http://www.student.oulu.fi/~oniemita/dsp/deip.pdf
821 z_coeff_interpolate(int32_t z
, int32_t *z_coeff
)
824 #if defined(Z_COEFF_INTERP_ZOH)
826 /* 1-point, 0th-order (Zero Order Hold) */
829 #elif defined(Z_COEFF_INTERP_LINEAR)
832 /* 2-point, 1st-order Linear */
834 zl1
= z_coeff
[1] - z_coeff
[0];
836 coeff
= Z_RSHIFT((int64_t)zl1
* z
, Z_SHIFT
) + zl0
;
837 #elif defined(Z_COEFF_INTERP_QUADRATIC)
838 int32_t zq0
, zq1
, zq2
;
840 /* 3-point, 2nd-order Quadratic */
842 zq1
= z_coeff
[1] - z_coeff
[-1];
843 zq2
= z_coeff
[1] + z_coeff
[-1] - (z_coeff
[0] << 1);
845 coeff
= Z_RSHIFT((Z_RSHIFT((int64_t)zq2
* z
, Z_SHIFT
) +
846 zq1
) * z
, Z_SHIFT
+ 1) + zq0
;
847 #elif defined(Z_COEFF_INTERP_HERMITE)
848 int32_t zh0
, zh1
, zh2
, zh3
;
850 /* 4-point, 3rd-order Hermite */
852 zh1
= z_coeff
[1] - z_coeff
[-1];
853 zh2
= (z_coeff
[-1] << 1) - (z_coeff
[0] * 5) + (z_coeff
[1] << 2) -
855 zh3
= z_coeff
[2] - z_coeff
[-1] + ((z_coeff
[0] - z_coeff
[1]) * 3);
857 coeff
= Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zh3
* z
, Z_SHIFT
) +
858 zh2
) * z
, Z_SHIFT
) + zh1
) * z
, Z_SHIFT
+ 1) + zh0
;
859 #elif defined(Z_COEFF_INTERP_BSPLINE)
860 int32_t zb0
, zb1
, zb2
, zb3
;
862 /* 4-point, 3rd-order B-Spline */
863 zb0
= Z_RSHIFT(0x15555555LL
* (((int64_t)z_coeff
[0] << 2) +
864 z_coeff
[-1] + z_coeff
[1]), 30);
865 zb1
= z_coeff
[1] - z_coeff
[-1];
866 zb2
= z_coeff
[-1] + z_coeff
[1] - (z_coeff
[0] << 1);
867 zb3
= Z_RSHIFT(0x15555555LL
* (((z_coeff
[0] - z_coeff
[1]) * 3) +
868 z_coeff
[2] - z_coeff
[-1]), 30);
870 coeff
= (Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zb3
* z
, Z_SHIFT
) +
871 zb2
) * z
, Z_SHIFT
) + zb1
) * z
, Z_SHIFT
) + zb0
+ 1) >> 1;
872 #elif defined(Z_COEFF_INTERP_OPT32X)
873 int32_t zoz
, zoe1
, zoe2
, zoe3
, zoo1
, zoo2
, zoo3
;
874 int32_t zoc0
, zoc1
, zoc2
, zoc3
, zoc4
, zoc5
;
876 /* 6-point, 5th-order Optimal 32x */
877 zoz
= z
- (Z_ONE
>> 1);
878 zoe1
= z_coeff
[1] + z_coeff
[0];
879 zoe2
= z_coeff
[2] + z_coeff
[-1];
880 zoe3
= z_coeff
[3] + z_coeff
[-2];
881 zoo1
= z_coeff
[1] - z_coeff
[0];
882 zoo2
= z_coeff
[2] - z_coeff
[-1];
883 zoo3
= z_coeff
[3] - z_coeff
[-2];
885 zoc0
= Z_RSHIFT((0x1ac2260dLL
* zoe1
) + (0x0526cdcaLL
* zoe2
) +
886 (0x00170c29LL
* zoe3
), 30);
887 zoc1
= Z_RSHIFT((0x14f8a49aLL
* zoo1
) + (0x0d6d1109LL
* zoo2
) +
888 (0x008cd4dcLL
* zoo3
), 30);
889 zoc2
= Z_RSHIFT((-0x0d3e94a4LL
* zoe1
) + (0x0bddded4LL
* zoe2
) +
890 (0x0160b5d0LL
* zoe3
), 30);
891 zoc3
= Z_RSHIFT((-0x0de10cc4LL
* zoo1
) + (0x019b2a7dLL
* zoo2
) +
892 (0x01cfe914LL
* zoo3
), 30);
893 zoc4
= Z_RSHIFT((0x02aa12d7LL
* zoe1
) + (-0x03ff1bb3LL
* zoe2
) +
894 (0x015508ddLL
* zoe3
), 30);
895 zoc5
= Z_RSHIFT((0x051d29e5LL
* zoo1
) + (-0x028e7647LL
* zoo2
) +
896 (0x0082d81aLL
* zoo3
), 30);
898 coeff
= Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
899 (int64_t)zoc5
* zoz
, Z_SHIFT
) +
900 zoc4
) * zoz
, Z_SHIFT
) + zoc3
) * zoz
, Z_SHIFT
) +
901 zoc2
) * zoz
, Z_SHIFT
) + zoc1
) * zoz
, Z_SHIFT
) + zoc0
;
902 #elif defined(Z_COEFF_INTERP_OPT16X)
903 int32_t zoz
, zoe1
, zoe2
, zoe3
, zoo1
, zoo2
, zoo3
;
904 int32_t zoc0
, zoc1
, zoc2
, zoc3
, zoc4
, zoc5
;
906 /* 6-point, 5th-order Optimal 16x */
907 zoz
= z
- (Z_ONE
>> 1);
908 zoe1
= z_coeff
[1] + z_coeff
[0];
909 zoe2
= z_coeff
[2] + z_coeff
[-1];
910 zoe3
= z_coeff
[3] + z_coeff
[-2];
911 zoo1
= z_coeff
[1] - z_coeff
[0];
912 zoo2
= z_coeff
[2] - z_coeff
[-1];
913 zoo3
= z_coeff
[3] - z_coeff
[-2];
915 zoc0
= Z_RSHIFT((0x1ac2260dLL
* zoe1
) + (0x0526cdcaLL
* zoe2
) +
916 (0x00170c29LL
* zoe3
), 30);
917 zoc1
= Z_RSHIFT((0x14f8a49aLL
* zoo1
) + (0x0d6d1109LL
* zoo2
) +
918 (0x008cd4dcLL
* zoo3
), 30);
919 zoc2
= Z_RSHIFT((-0x0d3e94a4LL
* zoe1
) + (0x0bddded4LL
* zoe2
) +
920 (0x0160b5d0LL
* zoe3
), 30);
921 zoc3
= Z_RSHIFT((-0x0de10cc4LL
* zoo1
) + (0x019b2a7dLL
* zoo2
) +
922 (0x01cfe914LL
* zoo3
), 30);
923 zoc4
= Z_RSHIFT((0x02aa12d7LL
* zoe1
) + (-0x03ff1bb3LL
* zoe2
) +
924 (0x015508ddLL
* zoe3
), 30);
925 zoc5
= Z_RSHIFT((0x051d29e5LL
* zoo1
) + (-0x028e7647LL
* zoo2
) +
926 (0x0082d81aLL
* zoo3
), 30);
928 coeff
= Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
929 (int64_t)zoc5
* zoz
, Z_SHIFT
) +
930 zoc4
) * zoz
, Z_SHIFT
) + zoc3
) * zoz
, Z_SHIFT
) +
931 zoc2
) * zoz
, Z_SHIFT
) + zoc1
) * zoz
, Z_SHIFT
) + zoc0
;
932 #elif defined(Z_COEFF_INTERP_OPT8X)
933 int32_t zoz
, zoe1
, zoe2
, zoe3
, zoo1
, zoo2
, zoo3
;
934 int32_t zoc0
, zoc1
, zoc2
, zoc3
, zoc4
, zoc5
;
936 /* 6-point, 5th-order Optimal 8x */
937 zoz
= z
- (Z_ONE
>> 1);
938 zoe1
= z_coeff
[1] + z_coeff
[0];
939 zoe2
= z_coeff
[2] + z_coeff
[-1];
940 zoe3
= z_coeff
[3] + z_coeff
[-2];
941 zoo1
= z_coeff
[1] - z_coeff
[0];
942 zoo2
= z_coeff
[2] - z_coeff
[-1];
943 zoo3
= z_coeff
[3] - z_coeff
[-2];
945 zoc0
= Z_RSHIFT((0x1aa9b47dLL
* zoe1
) + (0x053d9944LL
* zoe2
) +
946 (0x0018b23fLL
* zoe3
), 30);
947 zoc1
= Z_RSHIFT((0x14a104d1LL
* zoo1
) + (0x0d7d2504LL
* zoo2
) +
948 (0x0094b599LL
* zoo3
), 30);
949 zoc2
= Z_RSHIFT((-0x0d22530bLL
* zoe1
) + (0x0bb37a2cLL
* zoe2
) +
950 (0x016ed8e0LL
* zoe3
), 30);
951 zoc3
= Z_RSHIFT((-0x0d744b1cLL
* zoo1
) + (0x01649591LL
* zoo2
) +
952 (0x01dae93aLL
* zoo3
), 30);
953 zoc4
= Z_RSHIFT((0x02a7ee1bLL
* zoe1
) + (-0x03fbdb24LL
* zoe2
) +
954 (0x0153ed07LL
* zoe3
), 30);
955 zoc5
= Z_RSHIFT((0x04cf9b6cLL
* zoo1
) + (-0x0266b378LL
* zoo2
) +
956 (0x007a7c26LL
* zoo3
), 30);
958 coeff
= Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
959 (int64_t)zoc5
* zoz
, Z_SHIFT
) +
960 zoc4
) * zoz
, Z_SHIFT
) + zoc3
) * zoz
, Z_SHIFT
) +
961 zoc2
) * zoz
, Z_SHIFT
) + zoc1
) * zoz
, Z_SHIFT
) + zoc0
;
962 #elif defined(Z_COEFF_INTERP_OPT4X)
963 int32_t zoz
, zoe1
, zoe2
, zoe3
, zoo1
, zoo2
, zoo3
;
964 int32_t zoc0
, zoc1
, zoc2
, zoc3
, zoc4
, zoc5
;
966 /* 6-point, 5th-order Optimal 4x */
967 zoz
= z
- (Z_ONE
>> 1);
968 zoe1
= z_coeff
[1] + z_coeff
[0];
969 zoe2
= z_coeff
[2] + z_coeff
[-1];
970 zoe3
= z_coeff
[3] + z_coeff
[-2];
971 zoo1
= z_coeff
[1] - z_coeff
[0];
972 zoo2
= z_coeff
[2] - z_coeff
[-1];
973 zoo3
= z_coeff
[3] - z_coeff
[-2];
975 zoc0
= Z_RSHIFT((0x1a8eda43LL
* zoe1
) + (0x0556ee38LL
* zoe2
) +
976 (0x001a3784LL
* zoe3
), 30);
977 zoc1
= Z_RSHIFT((0x143d863eLL
* zoo1
) + (0x0d910e36LL
* zoo2
) +
978 (0x009ca889LL
* zoo3
), 30);
979 zoc2
= Z_RSHIFT((-0x0d026821LL
* zoe1
) + (0x0b837773LL
* zoe2
) +
980 (0x017ef0c6LL
* zoe3
), 30);
981 zoc3
= Z_RSHIFT((-0x0cef1502LL
* zoo1
) + (0x01207a8eLL
* zoo2
) +
982 (0x01e936dbLL
* zoo3
), 30);
983 zoc4
= Z_RSHIFT((0x029fe643LL
* zoe1
) + (-0x03ef3fc8LL
* zoe2
) +
984 (0x014f5923LL
* zoe3
), 30);
985 zoc5
= Z_RSHIFT((0x043a9d08LL
* zoo1
) + (-0x02154febLL
* zoo2
) +
986 (0x00670dbdLL
* zoo3
), 30);
988 coeff
= Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
989 (int64_t)zoc5
* zoz
, Z_SHIFT
) +
990 zoc4
) * zoz
, Z_SHIFT
) + zoc3
) * zoz
, Z_SHIFT
) +
991 zoc2
) * zoz
, Z_SHIFT
) + zoc1
) * zoz
, Z_SHIFT
) + zoc0
;
992 #elif defined(Z_COEFF_INTERP_OPT2X)
993 int32_t zoz
, zoe1
, zoe2
, zoe3
, zoo1
, zoo2
, zoo3
;
994 int32_t zoc0
, zoc1
, zoc2
, zoc3
, zoc4
, zoc5
;
996 /* 6-point, 5th-order Optimal 2x */
997 zoz
= z
- (Z_ONE
>> 1);
998 zoe1
= z_coeff
[1] + z_coeff
[0];
999 zoe2
= z_coeff
[2] + z_coeff
[-1];
1000 zoe3
= z_coeff
[3] + z_coeff
[-2];
1001 zoo1
= z_coeff
[1] - z_coeff
[0];
1002 zoo2
= z_coeff
[2] - z_coeff
[-1];
1003 zoo3
= z_coeff
[3] - z_coeff
[-2];
1005 zoc0
= Z_RSHIFT((0x19edb6fdLL
* zoe1
) + (0x05ebd062LL
* zoe2
) +
1006 (0x00267881LL
* zoe3
), 30);
1007 zoc1
= Z_RSHIFT((0x1223af76LL
* zoo1
) + (0x0de3dd6bLL
* zoo2
) +
1008 (0x00d683cdLL
* zoo3
), 30);
1009 zoc2
= Z_RSHIFT((-0x0c3ee068LL
* zoe1
) + (0x0a5c3769LL
* zoe2
) +
1010 (0x01e2aceaLL
* zoe3
), 30);
1011 zoc3
= Z_RSHIFT((-0x0a8ab614LL
* zoo1
) + (-0x0019522eLL
* zoo2
) +
1012 (0x022cefc7LL
* zoo3
), 30);
1013 zoc4
= Z_RSHIFT((0x0276187dLL
* zoe1
) + (-0x03a801e8LL
* zoe2
) +
1014 (0x0131d935LL
* zoe3
), 30);
1015 zoc5
= Z_RSHIFT((0x02c373f5LL
* zoo1
) + (-0x01275f83LL
* zoo2
) +
1016 (0x0018ee79LL
* zoo3
), 30);
1018 coeff
= Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
1019 (int64_t)zoc5
* zoz
, Z_SHIFT
) +
1020 zoc4
) * zoz
, Z_SHIFT
) + zoc3
) * zoz
, Z_SHIFT
) +
1021 zoc2
) * zoz
, Z_SHIFT
) + zoc1
) * zoz
, Z_SHIFT
) + zoc0
;
1023 #error "Interpolation type screwed!"
1026 #if Z_POLYPHASE_COEFF_SHIFT > 0
1027 coeff
= Z_RSHIFT(coeff
, Z_POLYPHASE_COEFF_SHIFT
);
1033 z_resampler_build_polyphase(struct z_info
*info
)
1035 int32_t alpha
, c
, i
, z
, idx
;
1037 /* Let this be here first. */
1038 if (info
->z_pcoeff
!= NULL
) {
1039 kfree(info
->z_pcoeff
, M_DEVBUF
);
1040 info
->z_pcoeff
= NULL
;
1043 if (feeder_rate_polyphase_max
< 1)
1046 if (((int64_t)info
->z_size
* info
->z_gy
* 2) >
1047 feeder_rate_polyphase_max
) {
1049 fprintf(stderr
, "Polyphase entries exceed: [%d/%d] %jd > %d\n",
1050 info
->z_gx
, info
->z_gy
,
1051 (intmax_t)info
->z_size
* info
->z_gy
* 2,
1052 feeder_rate_polyphase_max
);
1057 info
->z_pcoeff
= kmalloc(sizeof(int32_t) *
1058 info
->z_size
* info
->z_gy
* 2, M_DEVBUF
, M_WAITOK
| M_ZERO
);
1059 if (info
->z_pcoeff
== NULL
)
1062 for (alpha
= 0; alpha
< info
->z_gy
; alpha
++) {
1063 z
= alpha
* info
->z_dx
;
1065 for (i
= info
->z_size
; i
!= 0; i
--) {
1068 idx
= (alpha
* info
->z_size
* 2) +
1069 (info
->z_size
* 2) - i
;
1070 info
->z_pcoeff
[idx
] =
1071 z_coeff_interpolate(z
, info
->z_coeff
+ c
);
1074 z
= info
->z_dy
- (alpha
* info
->z_dx
);
1076 for (i
= info
->z_size
; i
!= 0; i
--) {
1079 idx
= (alpha
* info
->z_size
* 2) + i
- 1;
1080 info
->z_pcoeff
[idx
] =
1081 z_coeff_interpolate(z
, info
->z_coeff
+ c
);
1087 fprintf(stderr
, "Polyphase: [%d/%d] %d entries\n",
1088 info
->z_gx
, info
->z_gy
, info
->z_size
* info
->z_gy
* 2);
1095 z_resampler_setup(struct pcm_feeder
*f
)
1097 struct z_info
*info
;
1098 int64_t gy2gx_max
, gx2gy_max
;
1100 int32_t align
, i
, z_scale
;
1104 z_resampler_reset(info
);
1106 if (info
->src
== info
->dst
)
1109 /* Shrink by greatest common divisor. */
1110 i
= z_gcd(info
->src
, info
->dst
);
1111 info
->z_gx
= info
->src
/ i
;
1112 info
->z_gy
= info
->dst
/ i
;
1114 /* Too big, or too small. Bail out. */
1115 if (!(Z_FACTOR_SAFE(info
->z_gx
) && Z_FACTOR_SAFE(info
->z_gy
)))
1118 format
= f
->desc
->in
;
1123 * Setup everything: filter length, conversion factor, etc.
1125 if (Z_IS_SINC(info
)) {
1127 * Downsampling, or upsampling scaling factor. As long as the
1128 * factor can be represented by a fraction of 1 << Z_SHIFT,
1129 * we're pretty much in business. Scaling is not needed for
1130 * upsampling, so we just slap Z_ONE there.
1132 if (info
->z_gx
> info
->z_gy
)
1134 * If the downsampling ratio is beyond sanity,
1135 * enable semi-adaptive mode. Although handling
1136 * extreme ratio is possible, the result of the
1137 * conversion is just pointless, unworthy,
1138 * nonsensical noises, etc.
1140 if ((info
->z_gx
/ info
->z_gy
) > Z_SINC_DOWNMAX
)
1141 z_scale
= Z_ONE
/ Z_SINC_DOWNMAX
;
1143 z_scale
= ((uint64_t)info
->z_gy
<< Z_SHIFT
) /
1149 * This is actually impossible, unless anything above
1156 * Calculate sample time/coefficients index drift. It is
1157 * a constant for upsampling, but downsampling require
1158 * heavy duty filtering with possible too long filters.
1159 * If anything goes wrong, revisit again and enable
1162 z_setup_adaptive_sinc
:
1163 if (info
->z_pcoeff
!= NULL
) {
1164 kfree(info
->z_pcoeff
, M_DEVBUF
);
1165 info
->z_pcoeff
= NULL
;
1168 if (adaptive
== 0) {
1169 info
->z_dy
= z_scale
<< Z_DRIFT_SHIFT
;
1172 info
->z_scale
= z_scale
;
1174 info
->z_dy
= Z_FULL_ONE
;
1175 info
->z_scale
= Z_ONE
;
1179 #define Z_SCALE_DIV 10000
1180 #define Z_SCALE_LIMIT(s, v) \
1181 ((((uint64_t)(s) * (v)) + (Z_SCALE_DIV >> 1)) / Z_SCALE_DIV)
1183 info
->z_scale
= Z_SCALE_LIMIT(info
->z_scale
, 9780);
1186 /* Smallest drift increment. */
1187 info
->z_dx
= info
->z_dy
/ info
->z_gy
;
1190 * Overflow or underflow. Try adaptive, let it continue and
1193 if (info
->z_dx
< 1) {
1194 if (adaptive
== 0) {
1196 goto z_setup_adaptive_sinc
;
1202 * Round back output drift.
1204 info
->z_dy
= info
->z_dx
* info
->z_gy
;
1206 for (i
= 0; i
< Z_COEFF_TAB_SIZE
; i
++) {
1207 if (Z_SINC_COEFF_IDX(info
) != i
)
1210 * Calculate required filter length and guard
1211 * against possible abusive result. Note that
1212 * this represents only 1/2 of the entire filter
1215 info
->z_size
= z_resampler_sinc_len(info
);
1218 * Multiple of 2 rounding, for better accumulator
1223 if (info
->z_size
< 2 || info
->z_size
> Z_SINC_MAX
) {
1224 if (adaptive
== 0) {
1226 goto z_setup_adaptive_sinc
;
1230 info
->z_coeff
= z_coeff_tab
[i
].coeff
+ Z_COEFF_OFFSET
;
1231 info
->z_dcoeff
= z_coeff_tab
[i
].dcoeff
;
1235 if (info
->z_coeff
== NULL
|| info
->z_dcoeff
== NULL
)
1237 } else if (Z_IS_LINEAR(info
)) {
1239 * Don't put much effort if we're doing linear interpolation.
1240 * Just center the interpolation distance within Z_LINEAR_ONE,
1241 * and be happy about it.
1243 info
->z_dx
= Z_LINEAR_FULL_ONE
/ info
->z_gy
;
1247 * We're safe for now, lets continue.. Look for our resampler
1248 * depending on configured format and quality.
1250 for (i
= 0; i
< Z_RESAMPLER_TAB_SIZE
; i
++) {
1253 if (AFMT_ENCODING(format
) != z_resampler_tab
[i
].format
)
1255 if (Z_IS_SINC(info
) && adaptive
== 0 &&
1256 z_resampler_build_polyphase(info
) == 0)
1257 ridx
= Z_RESAMPLER_SINC_POLYPHASE
;
1259 ridx
= Z_RESAMPLER_IDX(info
);
1260 info
->z_resample
= z_resampler_tab
[i
].resampler
[ridx
];
1264 if (info
->z_resample
== NULL
)
1267 info
->bps
= AFMT_BPS(format
);
1268 align
= info
->channels
* info
->bps
;
1271 * Calculate largest value that can be fed into z_gy2gx() and
1272 * z_gx2gy() without causing (signed) 32bit overflow. z_gy2gx() will
1273 * be called early during feeding process to determine how much input
1274 * samples that is required to generate requested output, while
1275 * z_gx2gy() will be called just before samples filtering /
1276 * accumulation process based on available samples that has been
1277 * calculated using z_gx2gy().
1279 * Now that is damn confusing, I guess ;-) .
1281 gy2gx_max
= (((uint64_t)info
->z_gy
* INT32_MAX
) - info
->z_gy
+ 1) /
1284 if ((gy2gx_max
* align
) > SND_FXDIV_MAX
)
1285 gy2gx_max
= SND_FXDIV_MAX
/ align
;
1290 gx2gy_max
= (((uint64_t)info
->z_gx
* INT32_MAX
) - info
->z_gy
) /
1293 if (gx2gy_max
> INT32_MAX
)
1294 gx2gy_max
= INT32_MAX
;
1300 * Ensure that z_gy2gx() at its largest possible calculated value
1301 * (alpha = 0) will not cause overflow further late during z_gx2gy()
1304 if (z_gy2gx(info
, gy2gx_max
) > _Z_GCAST(gx2gy_max
))
1307 info
->z_maxfeed
= gy2gx_max
* align
;
1309 #ifdef Z_USE_ALPHADRIFT
1310 info
->z_startdrift
= z_gy2gx(info
, 1);
1311 info
->z_alphadrift
= z_drift(info
, info
->z_startdrift
, 1);
1314 i
= z_gy2gx(info
, 1);
1315 info
->z_full
= z_roundpow2((info
->z_size
<< 1) + i
);
1318 * Too big to be true, and overflowing left and right like mad ..
1320 if ((info
->z_full
* align
) < 1) {
1321 if (adaptive
== 0 && Z_IS_SINC(info
)) {
1323 goto z_setup_adaptive_sinc
;
1329 * Increase full buffer size if its too small to reduce cyclic
1330 * buffer shifting in main conversion/feeder loop.
1332 while (info
->z_full
< Z_RESERVOIR_MAX
&&
1333 (info
->z_full
- (info
->z_size
<< 1)) < Z_RESERVOIR
)
1336 /* Initialize buffer position. */
1337 info
->z_mask
= info
->z_full
- 1;
1338 info
->z_start
= z_prev(info
, info
->z_size
<< 1, 1);
1339 info
->z_pos
= z_next(info
, info
->z_start
, 1);
1342 * Allocate or reuse delay line buffer, whichever makes sense.
1344 i
= info
->z_full
* align
;
1348 if (info
->z_delay
== NULL
|| info
->z_alloc
< i
||
1349 i
<= (info
->z_alloc
>> 1)) {
1350 if (info
->z_delay
!= NULL
)
1351 kfree(info
->z_delay
, M_DEVBUF
);
1352 info
->z_delay
= kmalloc(i
, M_DEVBUF
, M_WAITOK
| M_ZERO
);
1353 if (info
->z_delay
== NULL
)
1359 * Zero out head of buffer to avoid pops and clicks.
1361 memset(info
->z_delay
, sndbuf_zerodata(f
->desc
->out
),
1362 info
->z_pos
* align
);
1366 * XXX Debuging mess !@#$%^
1368 #define dumpz(x) fprintf(stderr, "\t%12s = %10u : %-11d\n", \
1369 "z_"__STRING(x), (uint32_t)info->z_##x, \
1370 (int32_t)info->z_##x)
1371 fprintf(stderr
, "\n%s():\n", __func__
);
1372 fprintf(stderr
, "\tchannels=%d, bps=%d, format=0x%08x, quality=%d\n",
1373 info
->channels
, info
->bps
, format
, info
->quality
);
1374 fprintf(stderr
, "\t%d (%d) -> %d (%d), ",
1375 info
->src
, info
->rsrc
, info
->dst
, info
->rdst
);
1376 fprintf(stderr
, "[%d/%d]\n", info
->z_gx
, info
->z_gy
);
1377 fprintf(stderr
, "\tminreq=%d, ", z_gy2gx(info
, 1));
1380 fprintf(stderr
, "factor=0x%08x/0x%08x (%f)\n",
1381 z_scale
, Z_ONE
, (double)z_scale
/ Z_ONE
);
1382 fprintf(stderr
, "\tbase_length=%d, ", Z_SINC_BASE_LEN(info
));
1383 fprintf(stderr
, "adaptive=%s\n", (adaptive
!= 0) ? "YES" : "NO");
1386 if (info
->z_alloc
< 1024)
1387 fprintf(stderr
, "\t%15s%10d Bytes\n",
1389 else if (info
->z_alloc
< (1024 << 10))
1390 fprintf(stderr
, "\t%15s%10d KBytes\n",
1391 "", info
->z_alloc
>> 10);
1392 else if (info
->z_alloc
< (1024 << 20))
1393 fprintf(stderr
, "\t%15s%10d MBytes\n",
1394 "", info
->z_alloc
>> 20);
1396 fprintf(stderr
, "\t%15s%10d GBytes\n",
1397 "", info
->z_alloc
>> 30);
1398 fprintf(stderr
, "\t%12s %10d (min output samples)\n",
1400 (int32_t)z_gx2gy(info
, info
->z_full
- (info
->z_size
<< 1)));
1401 fprintf(stderr
, "\t%12s %10d (min allocated output samples)\n",
1403 (int32_t)z_gx2gy(info
, (info
->z_alloc
/ align
) -
1404 (info
->z_size
<< 1)));
1405 fprintf(stderr
, "\t%12s = %10d\n",
1406 "z_gy2gx()", (int32_t)z_gy2gx(info
, 1));
1407 fprintf(stderr
, "\t%12s = %10d -> z_gy2gx() -> %d\n",
1408 "Max", (int32_t)gy2gx_max
, (int32_t)z_gy2gx(info
, gy2gx_max
));
1409 fprintf(stderr
, "\t%12s = %10d\n",
1410 "z_gx2gy()", (int32_t)z_gx2gy(info
, 1));
1411 fprintf(stderr
, "\t%12s = %10d -> z_gx2gy() -> %d\n",
1412 "Max", (int32_t)gx2gy_max
, (int32_t)z_gx2gy(info
, gx2gy_max
));
1418 fprintf(stderr
, "\t%12s %10f\n", "",
1419 (double)info
->z_scale
/ Z_ONE
);
1421 fprintf(stderr
, "\t%12s %10f\n", "",
1422 (double)info
->z_dx
/ info
->z_dy
);
1424 fprintf(stderr
, "\t%12s %10d (drift step)\n", "",
1425 info
->z_dy
>> Z_SHIFT
);
1426 fprintf(stderr
, "\t%12s %10d (scaling differences)\n", "",
1427 (z_scale
<< Z_DRIFT_SHIFT
) - info
->z_dy
);
1428 fprintf(stderr
, "\t%12s = %u bytes\n",
1429 "intpcm32_t", sizeof(intpcm32_t
));
1430 fprintf(stderr
, "\t%12s = 0x%08x, smallest=%.16lf\n",
1431 "Z_ONE", Z_ONE
, (double)1.0 / (double)Z_ONE
);
1438 z_resampler_set(struct pcm_feeder
*f
, int what
, int32_t value
)
1440 struct z_info
*info
;
1447 if (value
< feeder_rate_min
|| value
> feeder_rate_max
)
1449 if (value
== info
->rsrc
)
1454 if (value
< feeder_rate_min
|| value
> feeder_rate_max
)
1456 if (value
== info
->rdst
)
1460 case Z_RATE_QUALITY
:
1461 if (value
< Z_QUALITY_MIN
|| value
> Z_QUALITY_MAX
)
1463 if (value
== info
->quality
)
1466 * If we failed to set the requested quality, restore
1467 * the old one. We cannot afford leaving it broken since
1468 * passive feeder chains like vchans never reinitialize
1471 oquality
= info
->quality
;
1472 info
->quality
= value
;
1473 if (z_resampler_setup(f
) == 0)
1475 info
->quality
= oquality
;
1477 case Z_RATE_CHANNELS
:
1478 if (value
< SND_CHN_MIN
|| value
> SND_CHN_MAX
)
1480 if (value
== info
->channels
)
1482 info
->channels
= value
;
1489 return (z_resampler_setup(f
));
1493 z_resampler_get(struct pcm_feeder
*f
, int what
)
1495 struct z_info
*info
;
1501 return (info
->rsrc
);
1504 return (info
->rdst
);
1506 case Z_RATE_QUALITY
:
1507 return (info
->quality
);
1509 case Z_RATE_CHANNELS
:
1510 return (info
->channels
);
1520 z_resampler_init(struct pcm_feeder
*f
)
1522 struct z_info
*info
;
1525 if (f
->desc
->in
!= f
->desc
->out
)
1528 info
= kmalloc(sizeof(*info
), M_DEVBUF
, M_WAITOK
| M_ZERO
);
1532 info
->rsrc
= Z_RATE_DEFAULT
;
1533 info
->rdst
= Z_RATE_DEFAULT
;
1534 info
->quality
= feeder_rate_quality
;
1535 info
->channels
= AFMT_CHANNEL(f
->desc
->in
);
1539 ret
= z_resampler_setup(f
);
1541 if (info
->z_pcoeff
!= NULL
)
1542 kfree(info
->z_pcoeff
, M_DEVBUF
);
1543 if (info
->z_delay
!= NULL
)
1544 kfree(info
->z_delay
, M_DEVBUF
);
1545 kfree(info
, M_DEVBUF
);
1553 z_resampler_free(struct pcm_feeder
*f
)
1555 struct z_info
*info
;
1559 if (info
->z_pcoeff
!= NULL
)
1560 kfree(info
->z_pcoeff
, M_DEVBUF
);
1561 if (info
->z_delay
!= NULL
)
1562 kfree(info
->z_delay
, M_DEVBUF
);
1563 kfree(info
, M_DEVBUF
);
1572 z_resampler_feed_internal(struct pcm_feeder
*f
, struct pcm_channel
*c
,
1573 uint8_t *b
, uint32_t count
, void *source
)
1575 struct z_info
*info
;
1576 int32_t alphadrift
, startdrift
, reqout
, ocount
, reqin
, align
;
1577 int32_t fetch
, fetched
, start
, cp
;
1581 if (info
->z_resample
== NULL
)
1582 return (z_feed(f
->source
, c
, b
, count
, source
));
1585 * Calculate sample size alignment and amount of sample output.
1586 * We will do everything in sample domain, but at the end we
1587 * will jump back to byte domain.
1589 align
= info
->channels
* info
->bps
;
1590 ocount
= SND_FXDIV(count
, align
);
1595 * Calculate amount of input samples that is needed to generate
1596 * exact amount of output.
1598 reqin
= z_gy2gx(info
, ocount
) - z_fetched(info
);
1600 #ifdef Z_USE_ALPHADRIFT
1601 startdrift
= info
->z_startdrift
;
1602 alphadrift
= info
->z_alphadrift
;
1604 startdrift
= _Z_GY2GX(info
, 0, 1);
1605 alphadrift
= z_drift(info
, startdrift
, 1);
1612 fetch
= z_min(z_free(info
), reqin
);
1615 * No more free spaces, so wind enough
1616 * samples back to the head of delay line
1619 fetched
= z_fetched(info
);
1620 start
= z_prev(info
, info
->z_start
,
1621 (info
->z_size
<< 1) - 1);
1622 cp
= (info
->z_size
<< 1) + fetched
;
1623 z_copy(info
->z_delay
+ (start
* align
),
1624 info
->z_delay
, cp
* align
);
1626 z_prev(info
, info
->z_size
<< 1, 1);
1628 z_next(info
, info
->z_start
, fetched
+ 1);
1629 fetch
= z_min(z_free(info
), reqin
);
1632 static uint32_t kk
= 0;
1635 "start=%d fetched=%d cp=%d "
1637 start
, fetched
, cp
, info
->z_cycle
,
1645 * Fetch in byte domain and jump back
1648 fetched
= SND_FXDIV(z_feed(f
->source
, c
,
1649 info
->z_delay
+ (info
->z_pos
* align
),
1650 fetch
* align
, source
), align
);
1652 * Prepare to convert fetched buffer,
1653 * or mark us done if we cannot fulfill
1657 info
->z_pos
+= fetched
;
1658 if (fetched
!= fetch
)
1663 reqout
= z_min(z_gx2gy(info
, z_fetched(info
)), ocount
);
1668 * Drift.. drift.. drift..
1670 * Notice that there are 2 methods of doing the drift
1671 * operations: The former is much cleaner (in a sense
1672 * of mathematical readings of my eyes), but slower
1673 * due to integer division in z_gy2gx(). Nevertheless,
1674 * both should give the same exact accurate drifting
1675 * results, so the later is favourable.
1678 info
->z_resample(info
, dst
);
1680 startdrift
= z_gy2gx(info
, 1);
1681 alphadrift
= z_drift(info
, startdrift
, 1);
1682 info
->z_start
+= startdrift
;
1683 info
->z_alpha
+= alphadrift
;
1685 info
->z_alpha
+= alphadrift
;
1686 if (info
->z_alpha
< info
->z_gy
)
1687 info
->z_start
+= startdrift
;
1689 info
->z_start
+= startdrift
- 1;
1690 info
->z_alpha
-= info
->z_gy
;
1697 } while (--reqout
!= 0);
1699 } while (reqin
!= 0 && ocount
!= 0);
1702 * Back to byte domain..
1708 z_resampler_feed(struct pcm_feeder
*f
, struct pcm_channel
*c
, uint8_t *b
,
1709 uint32_t count
, void *source
)
1711 uint32_t feed
, maxfeed
, left
;
1714 * Split count to smaller chunks to avoid possible 32bit overflow.
1716 maxfeed
= ((struct z_info
*)(f
->data
))->z_maxfeed
;
1720 feed
= z_resampler_feed_internal(f
, c
, b
,
1721 z_min(maxfeed
, left
), source
);
1724 } while (left
!= 0 && feed
!= 0);
1726 return (count
- left
);
1729 static struct pcm_feederdesc feeder_rate_desc
[] = {
1730 { FEEDER_RATE
, 0, 0, 0, 0 },
1734 static kobj_method_t feeder_rate_methods
[] = {
1735 KOBJMETHOD(feeder_init
, z_resampler_init
),
1736 KOBJMETHOD(feeder_free
, z_resampler_free
),
1737 KOBJMETHOD(feeder_set
, z_resampler_set
),
1738 KOBJMETHOD(feeder_get
, z_resampler_get
),
1739 KOBJMETHOD(feeder_feed
, z_resampler_feed
),
1743 FEEDER_DECLARE(feeder_rate
, NULL
);