Remove advertising clause from all that isn't contrib or userland bin.
[dragonfly.git] / sys / vfs / ufs / ffs_alloc.c
blobe73c6e3b5565231d8dd08dad2c0d8ca54643e02a
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95
30 * $FreeBSD: src/sys/ufs/ffs/ffs_alloc.c,v 1.64.2.2 2001/09/21 19:15:21 dillon Exp $
33 #include "opt_quota.h"
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/buf.h>
38 #include <sys/conf.h>
39 #include <sys/proc.h>
40 #include <sys/vnode.h>
41 #include <sys/mount.h>
42 #include <sys/kernel.h>
43 #include <sys/sysctl.h>
44 #include <sys/syslog.h>
46 #include <sys/taskqueue.h>
47 #include <machine/inttypes.h>
49 #include <sys/buf2.h>
51 #include "quota.h"
52 #include "inode.h"
53 #include "ufs_extern.h"
54 #include "ufsmount.h"
56 #include "fs.h"
57 #include "ffs_extern.h"
59 typedef ufs_daddr_t allocfcn_t (struct inode *ip, int cg, ufs_daddr_t bpref,
60 int size);
62 static ufs_daddr_t ffs_alloccg (struct inode *, int, ufs_daddr_t, int);
63 static ufs_daddr_t
64 ffs_alloccgblk (struct inode *, struct buf *, ufs_daddr_t);
65 static void ffs_blkfree_cg(struct fs *, struct vnode *, cdev_t , ino_t,
66 uint32_t , ufs_daddr_t, long );
67 #ifdef DIAGNOSTIC
68 static int ffs_checkblk (struct inode *, ufs_daddr_t, long);
69 #endif
70 static void ffs_clusteracct (struct fs *, struct cg *, ufs_daddr_t,
71 int);
72 static ufs_daddr_t ffs_clusteralloc (struct inode *, int, ufs_daddr_t,
73 int);
74 static ino_t ffs_dirpref (struct inode *);
75 static ufs_daddr_t ffs_fragextend (struct inode *, int, long, int, int);
76 static void ffs_fserr (struct fs *, uint, char *);
77 static u_long ffs_hashalloc
78 (struct inode *, int, long, int, allocfcn_t *);
79 static ino_t ffs_nodealloccg (struct inode *, int, ufs_daddr_t, int);
80 static ufs_daddr_t ffs_mapsearch (struct fs *, struct cg *, ufs_daddr_t,
81 int);
84 * Allocate a block in the filesystem.
86 * The size of the requested block is given, which must be some
87 * multiple of fs_fsize and <= fs_bsize.
88 * A preference may be optionally specified. If a preference is given
89 * the following hierarchy is used to allocate a block:
90 * 1) allocate the requested block.
91 * 2) allocate a rotationally optimal block in the same cylinder.
92 * 3) allocate a block in the same cylinder group.
93 * 4) quadradically rehash into other cylinder groups, until an
94 * available block is located.
95 * If no block preference is given the following heirarchy is used
96 * to allocate a block:
97 * 1) allocate a block in the cylinder group that contains the
98 * inode for the file.
99 * 2) quadradically rehash into other cylinder groups, until an
100 * available block is located.
103 ffs_alloc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t bpref, int size,
104 struct ucred *cred, ufs_daddr_t *bnp)
106 struct fs *fs;
107 ufs_daddr_t bno;
108 int cg;
109 #ifdef QUOTA
110 int error;
111 #endif
113 *bnp = 0;
114 fs = ip->i_fs;
115 #ifdef DIAGNOSTIC
116 if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) {
117 kprintf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
118 devtoname(ip->i_dev), (long)fs->fs_bsize, size,
119 fs->fs_fsmnt);
120 panic("ffs_alloc: bad size");
122 if (cred == NOCRED)
123 panic("ffs_alloc: missing credential");
124 #endif /* DIAGNOSTIC */
125 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
126 goto nospace;
127 if (cred->cr_uid != 0 &&
128 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
129 goto nospace;
130 #ifdef QUOTA
131 error = ufs_chkdq(ip, (long)btodb(size), cred, 0);
132 if (error)
133 return (error);
134 #endif
135 if (bpref >= fs->fs_size)
136 bpref = 0;
137 if (bpref == 0)
138 cg = ino_to_cg(fs, ip->i_number);
139 else
140 cg = dtog(fs, bpref);
141 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
142 ffs_alloccg);
143 if (bno > 0) {
144 ip->i_blocks += btodb(size);
145 ip->i_flag |= IN_CHANGE | IN_UPDATE;
146 *bnp = bno;
147 return (0);
149 #ifdef QUOTA
151 * Restore user's disk quota because allocation failed.
153 (void) ufs_chkdq(ip, (long)-btodb(size), cred, FORCE);
154 #endif
155 nospace:
156 ffs_fserr(fs, cred->cr_uid, "filesystem full");
157 uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
158 return (ENOSPC);
162 * Reallocate a fragment to a bigger size
164 * The number and size of the old block is given, and a preference
165 * and new size is also specified. The allocator attempts to extend
166 * the original block. Failing that, the regular block allocator is
167 * invoked to get an appropriate block.
170 ffs_realloccg(struct inode *ip, ufs_daddr_t lbprev, ufs_daddr_t bpref,
171 int osize, int nsize, struct ucred *cred, struct buf **bpp)
173 struct fs *fs;
174 struct buf *bp;
175 int cg, request, error;
176 ufs_daddr_t bprev, bno;
178 *bpp = NULL;
179 fs = ip->i_fs;
180 #ifdef DIAGNOSTIC
181 if ((uint)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
182 (uint)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
183 kprintf(
184 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
185 devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
186 nsize, fs->fs_fsmnt);
187 panic("ffs_realloccg: bad size");
189 if (cred == NOCRED)
190 panic("ffs_realloccg: missing credential");
191 #endif /* DIAGNOSTIC */
192 if (cred->cr_uid != 0 &&
193 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0)
194 goto nospace;
195 if ((bprev = ip->i_db[lbprev]) == 0) {
196 kprintf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n",
197 devtoname(ip->i_dev), (long)fs->fs_bsize, (long)bprev,
198 fs->fs_fsmnt);
199 panic("ffs_realloccg: bad bprev");
202 * Allocate the extra space in the buffer.
204 error = bread(ITOV(ip), lblktodoff(fs, lbprev), osize, &bp);
205 if (error) {
206 brelse(bp);
207 return (error);
210 if(bp->b_bio2.bio_offset == NOOFFSET) {
211 if( lbprev >= NDADDR)
212 panic("ffs_realloccg: lbprev out of range");
213 bp->b_bio2.bio_offset = fsbtodoff(fs, bprev);
216 #ifdef QUOTA
217 error = ufs_chkdq(ip, (long)btodb(nsize - osize), cred, 0);
218 if (error) {
219 brelse(bp);
220 return (error);
222 #endif
224 * Check for extension in the existing location.
226 cg = dtog(fs, bprev);
227 bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
228 if (bno) {
229 if (bp->b_bio2.bio_offset != fsbtodoff(fs, bno))
230 panic("ffs_realloccg: bad blockno");
231 ip->i_blocks += btodb(nsize - osize);
232 ip->i_flag |= IN_CHANGE | IN_UPDATE;
233 allocbuf(bp, nsize);
234 bzero((char *)bp->b_data + osize, (uint)nsize - osize);
235 *bpp = bp;
236 return (0);
239 * Allocate a new disk location.
241 if (bpref >= fs->fs_size)
242 bpref = 0;
243 switch ((int)fs->fs_optim) {
244 case FS_OPTSPACE:
246 * Allocate an exact sized fragment. Although this makes
247 * best use of space, we will waste time relocating it if
248 * the file continues to grow. If the fragmentation is
249 * less than half of the minimum free reserve, we choose
250 * to begin optimizing for time.
252 request = nsize;
253 if (fs->fs_minfree <= 5 ||
254 fs->fs_cstotal.cs_nffree >
255 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
256 break;
257 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
258 fs->fs_fsmnt);
259 fs->fs_optim = FS_OPTTIME;
260 break;
261 case FS_OPTTIME:
263 * At this point we have discovered a file that is trying to
264 * grow a small fragment to a larger fragment. To save time,
265 * we allocate a full sized block, then free the unused portion.
266 * If the file continues to grow, the `ffs_fragextend' call
267 * above will be able to grow it in place without further
268 * copying. If aberrant programs cause disk fragmentation to
269 * grow within 2% of the free reserve, we choose to begin
270 * optimizing for space.
272 request = fs->fs_bsize;
273 if (fs->fs_cstotal.cs_nffree <
274 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
275 break;
276 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
277 fs->fs_fsmnt);
278 fs->fs_optim = FS_OPTSPACE;
279 break;
280 default:
281 kprintf("dev = %s, optim = %ld, fs = %s\n",
282 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
283 panic("ffs_realloccg: bad optim");
284 /* NOTREACHED */
286 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
287 ffs_alloccg);
288 if (bno > 0) {
289 bp->b_bio2.bio_offset = fsbtodoff(fs, bno);
290 if (!DOINGSOFTDEP(ITOV(ip)))
291 ffs_blkfree(ip, bprev, (long)osize);
292 if (nsize < request)
293 ffs_blkfree(ip, bno + numfrags(fs, nsize),
294 (long)(request - nsize));
295 ip->i_blocks += btodb(nsize - osize);
296 ip->i_flag |= IN_CHANGE | IN_UPDATE;
297 allocbuf(bp, nsize);
298 bzero((char *)bp->b_data + osize, (uint)nsize - osize);
299 *bpp = bp;
300 return (0);
302 #ifdef QUOTA
304 * Restore user's disk quota because allocation failed.
306 (void) ufs_chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
307 #endif
308 brelse(bp);
309 nospace:
311 * no space available
313 ffs_fserr(fs, cred->cr_uid, "filesystem full");
314 uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
315 return (ENOSPC);
318 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
321 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
323 * The vnode and an array of buffer pointers for a range of sequential
324 * logical blocks to be made contiguous is given. The allocator attempts
325 * to find a range of sequential blocks starting as close as possible to
326 * an fs_rotdelay offset from the end of the allocation for the logical
327 * block immediately preceeding the current range. If successful, the
328 * physical block numbers in the buffer pointers and in the inode are
329 * changed to reflect the new allocation. If unsuccessful, the allocation
330 * is left unchanged. The success in doing the reallocation is returned.
331 * Note that the error return is not reflected back to the user. Rather
332 * the previous block allocation will be used.
334 static int doasyncfree = 1;
335 SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
337 static int doreallocblks = 1;
338 SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
340 #ifdef DEBUG
341 static volatile int prtrealloc = 0;
342 #endif
345 * ffs_reallocblks(struct vnode *a_vp, struct cluster_save *a_buflist)
348 ffs_reallocblks(struct vop_reallocblks_args *ap)
350 struct fs *fs;
351 struct inode *ip;
352 struct vnode *vp;
353 struct buf *sbp, *ebp;
354 ufs_daddr_t *bap, *sbap, *ebap = NULL;
355 struct cluster_save *buflist;
356 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
357 #ifdef DIAGNOSTIC
358 off_t boffset;
359 #endif
360 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
361 int i, len, slen, start_lvl, end_lvl, pref, ssize;
363 if (doreallocblks == 0)
364 return (ENOSPC);
365 vp = ap->a_vp;
366 ip = VTOI(vp);
367 fs = ip->i_fs;
368 if (fs->fs_contigsumsize <= 0)
369 return (ENOSPC);
370 buflist = ap->a_buflist;
371 len = buflist->bs_nchildren;
372 start_lbn = lblkno(fs, buflist->bs_children[0]->b_loffset);
373 end_lbn = start_lbn + len - 1;
374 #ifdef DIAGNOSTIC
375 for (i = 0; i < len; i++)
376 if (!ffs_checkblk(ip,
377 dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
378 panic("ffs_reallocblks: unallocated block 1");
379 for (i = 1; i < len; i++) {
380 if (buflist->bs_children[i]->b_loffset != lblktodoff(fs, start_lbn) + lblktodoff(fs, i))
381 panic("ffs_reallocblks: non-logical cluster");
383 boffset = buflist->bs_children[0]->b_bio2.bio_offset;
384 ssize = (int)fsbtodoff(fs, fs->fs_frag);
385 for (i = 1; i < len - 1; i++)
386 if (buflist->bs_children[i]->b_bio2.bio_offset != boffset + (i * ssize))
387 panic("ffs_reallocblks: non-physical cluster %d", i);
388 #endif
390 * If the latest allocation is in a new cylinder group, assume that
391 * the filesystem has decided to move and do not force it back to
392 * the previous cylinder group.
394 if (dtog(fs, dofftofsb(fs, buflist->bs_children[0]->b_bio2.bio_offset)) !=
395 dtog(fs, dofftofsb(fs, buflist->bs_children[len - 1]->b_bio2.bio_offset)))
396 return (ENOSPC);
397 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
398 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
399 return (ENOSPC);
401 * Get the starting offset and block map for the first block and
402 * the number of blocks that will fit into sbap starting at soff.
404 if (start_lvl == 0) {
405 sbap = &ip->i_db[0];
406 soff = start_lbn;
407 slen = NDADDR - soff;
408 } else {
409 idp = &start_ap[start_lvl - 1];
410 if (bread(vp, lblktodoff(fs, idp->in_lbn), (int)fs->fs_bsize, &sbp)) {
411 brelse(sbp);
412 return (ENOSPC);
414 sbap = (ufs_daddr_t *)sbp->b_data;
415 soff = idp->in_off;
416 slen = fs->fs_nindir - soff;
419 * Find the preferred location for the cluster.
421 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
424 * If the block range spans two block maps, get the second map.
426 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
427 ssize = len;
428 } else {
429 #ifdef DIAGNOSTIC
430 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
431 panic("ffs_reallocblk: start == end");
432 #endif
433 ssize = len - (idp->in_off + 1);
434 if (bread(vp, lblktodoff(fs, idp->in_lbn), (int)fs->fs_bsize, &ebp))
435 goto fail;
436 ebap = (ufs_daddr_t *)ebp->b_data;
440 * Make sure we aren't spanning more then two blockmaps. ssize is
441 * our calculation of the span we have to scan in the first blockmap,
442 * while slen is our calculation of the number of entries available
443 * in the first blockmap (from soff).
445 if (ssize > slen) {
446 panic("ffs_reallocblks: range spans more then two blockmaps!"
447 " start_lbn %ld len %d (%d/%d)",
448 (long)start_lbn, len, slen, ssize);
451 * Search the block map looking for an allocation of the desired size.
453 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
454 len, ffs_clusteralloc)) == 0)
455 goto fail;
457 * We have found a new contiguous block.
459 * First we have to replace the old block pointers with the new
460 * block pointers in the inode and indirect blocks associated
461 * with the file.
463 #ifdef DEBUG
464 if (prtrealloc)
465 kprintf("realloc: ino %ju, lbns %d-%d\n\told:",
466 (uintmax_t)ip->i_number, start_lbn, end_lbn);
467 #endif
468 blkno = newblk;
469 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
470 if (i == ssize) {
471 bap = ebap;
472 soff = -i;
474 #ifdef DIAGNOSTIC
475 if (!ffs_checkblk(ip,
476 dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
477 panic("ffs_reallocblks: unallocated block 2");
478 if (dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset) != *bap)
479 panic("ffs_reallocblks: alloc mismatch");
480 #endif
481 #ifdef DEBUG
482 if (prtrealloc)
483 kprintf(" %d,", *bap);
484 #endif
485 if (DOINGSOFTDEP(vp)) {
486 if (sbap == &ip->i_db[0] && i < ssize)
487 softdep_setup_allocdirect(ip, start_lbn + i,
488 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
489 buflist->bs_children[i]);
490 else
491 softdep_setup_allocindir_page(ip, start_lbn + i,
492 i < ssize ? sbp : ebp, soff + i, blkno,
493 *bap, buflist->bs_children[i]);
495 *bap++ = blkno;
498 * Next we must write out the modified inode and indirect blocks.
499 * For strict correctness, the writes should be synchronous since
500 * the old block values may have been written to disk. In practise
501 * they are almost never written, but if we are concerned about
502 * strict correctness, the `doasyncfree' flag should be set to zero.
504 * The test on `doasyncfree' should be changed to test a flag
505 * that shows whether the associated buffers and inodes have
506 * been written. The flag should be set when the cluster is
507 * started and cleared whenever the buffer or inode is flushed.
508 * We can then check below to see if it is set, and do the
509 * synchronous write only when it has been cleared.
511 if (sbap != &ip->i_db[0]) {
512 if (doasyncfree)
513 bdwrite(sbp);
514 else
515 bwrite(sbp);
516 } else {
517 ip->i_flag |= IN_CHANGE | IN_UPDATE;
518 if (!doasyncfree)
519 ffs_update(vp, 1);
521 if (ssize < len) {
522 if (doasyncfree)
523 bdwrite(ebp);
524 else
525 bwrite(ebp);
528 * Last, free the old blocks and assign the new blocks to the buffers.
530 #ifdef DEBUG
531 if (prtrealloc)
532 kprintf("\n\tnew:");
533 #endif
534 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
535 if (!DOINGSOFTDEP(vp))
536 ffs_blkfree(ip,
537 dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset),
538 fs->fs_bsize);
539 buflist->bs_children[i]->b_bio2.bio_offset = fsbtodoff(fs, blkno);
540 #ifdef DIAGNOSTIC
541 if (!ffs_checkblk(ip,
542 dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
543 panic("ffs_reallocblks: unallocated block 3");
544 #endif
545 #ifdef DEBUG
546 if (prtrealloc)
547 kprintf(" %d,", blkno);
548 #endif
550 #ifdef DEBUG
551 if (prtrealloc) {
552 prtrealloc--;
553 kprintf("\n");
555 #endif
556 return (0);
558 fail:
559 if (ssize < len)
560 brelse(ebp);
561 if (sbap != &ip->i_db[0])
562 brelse(sbp);
563 return (ENOSPC);
567 * Allocate an inode in the filesystem.
569 * If allocating a directory, use ffs_dirpref to select the inode.
570 * If allocating in a directory, the following hierarchy is followed:
571 * 1) allocate the preferred inode.
572 * 2) allocate an inode in the same cylinder group.
573 * 3) quadradically rehash into other cylinder groups, until an
574 * available inode is located.
575 * If no inode preference is given the following heirarchy is used
576 * to allocate an inode:
577 * 1) allocate an inode in cylinder group 0.
578 * 2) quadradically rehash into other cylinder groups, until an
579 * available inode is located.
582 ffs_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp)
584 struct inode *pip;
585 struct fs *fs;
586 struct inode *ip;
587 ino_t ino, ipref;
588 int cg, error;
590 *vpp = NULL;
591 pip = VTOI(pvp);
592 fs = pip->i_fs;
593 if (fs->fs_cstotal.cs_nifree == 0)
594 goto noinodes;
596 if ((mode & IFMT) == IFDIR)
597 ipref = ffs_dirpref(pip);
598 else
599 ipref = pip->i_number;
600 if (ipref >= fs->fs_ncg * fs->fs_ipg)
601 ipref = 0;
602 cg = ino_to_cg(fs, ipref);
604 * Track number of dirs created one after another
605 * in a same cg without intervening by files.
607 if ((mode & IFMT) == IFDIR) {
608 if (fs->fs_contigdirs[cg] < 255)
609 fs->fs_contigdirs[cg]++;
610 } else {
611 if (fs->fs_contigdirs[cg] > 0)
612 fs->fs_contigdirs[cg]--;
614 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode,
615 (allocfcn_t *)ffs_nodealloccg);
616 if (ino == 0)
617 goto noinodes;
618 error = VFS_VGET(pvp->v_mount, NULL, ino, vpp);
619 if (error) {
620 ffs_vfree(pvp, ino, mode);
621 return (error);
623 ip = VTOI(*vpp);
624 if (ip->i_mode) {
625 kprintf("mode = 0%o, inum = %lu, fs = %s\n",
626 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
627 panic("ffs_valloc: dup alloc");
629 if (ip->i_blocks) { /* XXX */
630 kprintf("free inode %s/%lu had %ld blocks\n",
631 fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks);
632 ip->i_blocks = 0;
634 ip->i_flags = 0;
636 * Set up a new generation number for this inode.
638 if (ip->i_gen == 0 || ++ip->i_gen == 0)
639 ip->i_gen = krandom() / 2 + 1;
640 return (0);
641 noinodes:
642 ffs_fserr(fs, cred->cr_uid, "out of inodes");
643 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
644 return (ENOSPC);
648 * Find a cylinder group to place a directory.
650 * The policy implemented by this algorithm is to allocate a
651 * directory inode in the same cylinder group as its parent
652 * directory, but also to reserve space for its files inodes
653 * and data. Restrict the number of directories which may be
654 * allocated one after another in the same cylinder group
655 * without intervening allocation of files.
657 * If we allocate a first level directory then force allocation
658 * in another cylinder group.
660 static ino_t
661 ffs_dirpref(struct inode *pip)
663 struct fs *fs;
664 int cg, prefcg, dirsize, cgsize;
665 int64_t dirsize64;
666 int avgifree, avgbfree, avgndir, curdirsize;
667 int minifree, minbfree, maxndir;
668 int mincg, minndir;
669 int maxcontigdirs;
671 fs = pip->i_fs;
673 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
674 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
675 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
678 * Force allocation in another cg if creating a first level dir.
680 if (ITOV(pip)->v_flag & VROOT) {
681 prefcg = karc4random() % fs->fs_ncg;
682 mincg = prefcg;
683 minndir = fs->fs_ipg;
684 for (cg = prefcg; cg < fs->fs_ncg; cg++)
685 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
686 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
687 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
688 mincg = cg;
689 minndir = fs->fs_cs(fs, cg).cs_ndir;
691 for (cg = 0; cg < prefcg; cg++)
692 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
693 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
694 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
695 mincg = cg;
696 minndir = fs->fs_cs(fs, cg).cs_ndir;
698 return ((ino_t)(fs->fs_ipg * mincg));
702 * Count various limits which used for
703 * optimal allocation of a directory inode.
705 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
706 minifree = avgifree - avgifree / 4;
707 if (minifree < 1)
708 minifree = 1;
709 minbfree = avgbfree - avgbfree / 4;
710 if (minbfree < 1)
711 minbfree = 1;
712 cgsize = fs->fs_fsize * fs->fs_fpg;
715 * fs_avgfilesize and fs_avgfpdir are user-settable entities and
716 * multiplying them may overflow a 32 bit integer.
718 dirsize64 = fs->fs_avgfilesize * (int64_t)fs->fs_avgfpdir;
719 if (dirsize64 > 0x7fffffff) {
720 maxcontigdirs = 1;
721 } else {
722 dirsize = (int)dirsize64;
723 curdirsize = avgndir ?
724 (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
725 if (dirsize < curdirsize)
726 dirsize = curdirsize;
727 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
728 if (fs->fs_avgfpdir > 0)
729 maxcontigdirs = min(maxcontigdirs,
730 fs->fs_ipg / fs->fs_avgfpdir);
731 if (maxcontigdirs == 0)
732 maxcontigdirs = 1;
736 * Limit number of dirs in one cg and reserve space for
737 * regular files, but only if we have no deficit in
738 * inodes or space.
740 prefcg = ino_to_cg(fs, pip->i_number);
741 for (cg = prefcg; cg < fs->fs_ncg; cg++)
742 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
743 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
744 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
745 if (fs->fs_contigdirs[cg] < maxcontigdirs)
746 return ((ino_t)(fs->fs_ipg * cg));
748 for (cg = 0; cg < prefcg; cg++)
749 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
750 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
751 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
752 if (fs->fs_contigdirs[cg] < maxcontigdirs)
753 return ((ino_t)(fs->fs_ipg * cg));
756 * This is a backstop when we have deficit in space.
758 for (cg = prefcg; cg < fs->fs_ncg; cg++)
759 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
760 return ((ino_t)(fs->fs_ipg * cg));
761 for (cg = 0; cg < prefcg; cg++)
762 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
763 break;
764 return ((ino_t)(fs->fs_ipg * cg));
768 * Select the desired position for the next block in a file. The file is
769 * logically divided into sections. The first section is composed of the
770 * direct blocks. Each additional section contains fs_maxbpg blocks.
772 * If no blocks have been allocated in the first section, the policy is to
773 * request a block in the same cylinder group as the inode that describes
774 * the file. If no blocks have been allocated in any other section, the
775 * policy is to place the section in a cylinder group with a greater than
776 * average number of free blocks. An appropriate cylinder group is found
777 * by using a rotor that sweeps the cylinder groups. When a new group of
778 * blocks is needed, the sweep begins in the cylinder group following the
779 * cylinder group from which the previous allocation was made. The sweep
780 * continues until a cylinder group with greater than the average number
781 * of free blocks is found. If the allocation is for the first block in an
782 * indirect block, the information on the previous allocation is unavailable;
783 * here a best guess is made based upon the logical block number being
784 * allocated.
786 * If a section is already partially allocated, the policy is to
787 * contiguously allocate fs_maxcontig blocks. The end of one of these
788 * contiguous blocks and the beginning of the next is physically separated
789 * so that the disk head will be in transit between them for at least
790 * fs_rotdelay milliseconds. This is to allow time for the processor to
791 * schedule another I/O transfer.
793 ufs_daddr_t
794 ffs_blkpref(struct inode *ip, ufs_daddr_t lbn, int indx, ufs_daddr_t *bap)
796 struct fs *fs;
797 int cg;
798 int avgbfree, startcg;
799 ufs_daddr_t nextblk;
801 fs = ip->i_fs;
802 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
803 if (lbn < NDADDR + NINDIR(fs)) {
804 cg = ino_to_cg(fs, ip->i_number);
805 return (fs->fs_fpg * cg + fs->fs_frag);
808 * Find a cylinder with greater than average number of
809 * unused data blocks.
811 if (indx == 0 || bap[indx - 1] == 0)
812 startcg =
813 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
814 else
815 startcg = dtog(fs, bap[indx - 1]) + 1;
816 startcg %= fs->fs_ncg;
817 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
818 for (cg = startcg; cg < fs->fs_ncg; cg++)
819 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
820 fs->fs_cgrotor = cg;
821 return (fs->fs_fpg * cg + fs->fs_frag);
823 for (cg = 0; cg <= startcg; cg++)
824 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
825 fs->fs_cgrotor = cg;
826 return (fs->fs_fpg * cg + fs->fs_frag);
828 return (0);
831 * One or more previous blocks have been laid out. If less
832 * than fs_maxcontig previous blocks are contiguous, the
833 * next block is requested contiguously, otherwise it is
834 * requested rotationally delayed by fs_rotdelay milliseconds.
836 nextblk = bap[indx - 1] + fs->fs_frag;
837 if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
838 bap[indx - fs->fs_maxcontig] +
839 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
840 return (nextblk);
842 * Here we convert ms of delay to frags as:
843 * (frags) = (ms) * (rev/sec) * (sect/rev) /
844 * ((sect/frag) * (ms/sec))
845 * then round up to the next block.
847 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
848 (NSPF(fs) * 1000), fs->fs_frag);
849 return (nextblk);
853 * Implement the cylinder overflow algorithm.
855 * The policy implemented by this algorithm is:
856 * 1) allocate the block in its requested cylinder group.
857 * 2) quadradically rehash on the cylinder group number.
858 * 3) brute force search for a free block.
860 /*VARARGS5*/
861 static u_long
862 ffs_hashalloc(struct inode *ip, int cg, long pref,
863 int size, /* size for data blocks, mode for inodes */
864 allocfcn_t *allocator)
866 struct fs *fs;
867 long result; /* XXX why not same type as we return? */
868 int i, icg = cg;
870 fs = ip->i_fs;
872 * 1: preferred cylinder group
874 result = (*allocator)(ip, cg, pref, size);
875 if (result)
876 return (result);
878 * 2: quadratic rehash
880 for (i = 1; i < fs->fs_ncg; i *= 2) {
881 cg += i;
882 if (cg >= fs->fs_ncg)
883 cg -= fs->fs_ncg;
884 result = (*allocator)(ip, cg, 0, size);
885 if (result)
886 return (result);
889 * 3: brute force search
890 * Note that we start at i == 2, since 0 was checked initially,
891 * and 1 is always checked in the quadratic rehash.
893 cg = (icg + 2) % fs->fs_ncg;
894 for (i = 2; i < fs->fs_ncg; i++) {
895 result = (*allocator)(ip, cg, 0, size);
896 if (result)
897 return (result);
898 cg++;
899 if (cg == fs->fs_ncg)
900 cg = 0;
902 return (0);
906 * Determine whether a fragment can be extended.
908 * Check to see if the necessary fragments are available, and
909 * if they are, allocate them.
911 static ufs_daddr_t
912 ffs_fragextend(struct inode *ip, int cg, long bprev, int osize, int nsize)
914 struct fs *fs;
915 struct cg *cgp;
916 struct buf *bp;
917 long bno;
918 int frags, bbase;
919 int i, error;
920 uint8_t *blksfree;
922 fs = ip->i_fs;
923 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
924 return (0);
925 frags = numfrags(fs, nsize);
926 bbase = fragnum(fs, bprev);
927 if (bbase > fragnum(fs, (bprev + frags - 1))) {
928 /* cannot extend across a block boundary */
929 return (0);
931 KKASSERT(blknum(fs, bprev) == blknum(fs, bprev + frags - 1));
932 error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
933 (int)fs->fs_cgsize, &bp);
934 if (error) {
935 brelse(bp);
936 return (0);
938 cgp = (struct cg *)bp->b_data;
939 if (!cg_chkmagic(cgp)) {
940 brelse(bp);
941 return (0);
943 cgp->cg_time = time_second;
944 bno = dtogd(fs, bprev);
945 blksfree = cg_blksfree(cgp);
946 for (i = numfrags(fs, osize); i < frags; i++) {
947 if (isclr(blksfree, bno + i)) {
948 brelse(bp);
949 return (0);
954 * the current fragment can be extended
955 * deduct the count on fragment being extended into
956 * increase the count on the remaining fragment (if any)
957 * allocate the extended piece
959 * ---oooooooooonnnnnnn111----
960 * [-----frags-----]
961 * ^ ^
962 * bbase fs_frag
964 for (i = frags; i < fs->fs_frag - bbase; i++) {
965 if (isclr(blksfree, bno + i))
966 break;
970 * Size of original free frag is [i - numfrags(fs, osize)]
971 * Size of remaining free frag is [i - frags]
973 cgp->cg_frsum[i - numfrags(fs, osize)]--;
974 if (i != frags)
975 cgp->cg_frsum[i - frags]++;
976 for (i = numfrags(fs, osize); i < frags; i++) {
977 clrbit(blksfree, bno + i);
978 cgp->cg_cs.cs_nffree--;
979 fs->fs_cstotal.cs_nffree--;
980 fs->fs_cs(fs, cg).cs_nffree--;
982 fs->fs_fmod = 1;
983 if (DOINGSOFTDEP(ITOV(ip)))
984 softdep_setup_blkmapdep(bp, fs, bprev);
985 bdwrite(bp);
986 return (bprev);
990 * Determine whether a block can be allocated.
992 * Check to see if a block of the appropriate size is available,
993 * and if it is, allocate it.
995 static ufs_daddr_t
996 ffs_alloccg(struct inode *ip, int cg, ufs_daddr_t bpref, int size)
998 struct fs *fs;
999 struct cg *cgp;
1000 struct buf *bp;
1001 int i;
1002 ufs_daddr_t bno, blkno;
1003 int allocsiz, error, frags;
1004 uint8_t *blksfree;
1006 fs = ip->i_fs;
1007 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1008 return (0);
1009 error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1010 (int)fs->fs_cgsize, &bp);
1011 if (error) {
1012 brelse(bp);
1013 return (0);
1015 cgp = (struct cg *)bp->b_data;
1016 if (!cg_chkmagic(cgp) ||
1017 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1018 brelse(bp);
1019 return (0);
1021 cgp->cg_time = time_second;
1022 if (size == fs->fs_bsize) {
1023 bno = ffs_alloccgblk(ip, bp, bpref);
1024 bdwrite(bp);
1025 return (bno);
1028 * Check to see if any fragments of sufficient size are already
1029 * available. Fit the data into a larger fragment if necessary,
1030 * before allocating a whole new block.
1032 blksfree = cg_blksfree(cgp);
1033 frags = numfrags(fs, size);
1034 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) {
1035 if (cgp->cg_frsum[allocsiz] != 0)
1036 break;
1038 if (allocsiz == fs->fs_frag) {
1040 * No fragments were available, allocate a whole block and
1041 * cut the requested fragment (of size frags) out of it.
1043 if (cgp->cg_cs.cs_nbfree == 0) {
1044 brelse(bp);
1045 return (0);
1047 bno = ffs_alloccgblk(ip, bp, bpref);
1048 bpref = dtogd(fs, bno);
1049 for (i = frags; i < fs->fs_frag; i++)
1050 setbit(blksfree, bpref + i);
1053 * Calculate the number of free frags still remaining after
1054 * we have cut out the requested allocation. Indicate that
1055 * a fragment of that size is now available for future
1056 * allocation.
1058 i = fs->fs_frag - frags;
1059 cgp->cg_cs.cs_nffree += i;
1060 fs->fs_cstotal.cs_nffree += i;
1061 fs->fs_cs(fs, cg).cs_nffree += i;
1062 fs->fs_fmod = 1;
1063 cgp->cg_frsum[i]++;
1064 bdwrite(bp);
1065 return (bno);
1069 * cg_frsum[] has told us that a free fragment of allocsiz size is
1070 * available. Find it, then clear the bitmap bits associated with
1071 * the size we want.
1073 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1074 if (bno < 0) {
1075 brelse(bp);
1076 return (0);
1078 for (i = 0; i < frags; i++)
1079 clrbit(blksfree, bno + i);
1080 cgp->cg_cs.cs_nffree -= frags;
1081 fs->fs_cstotal.cs_nffree -= frags;
1082 fs->fs_cs(fs, cg).cs_nffree -= frags;
1083 fs->fs_fmod = 1;
1086 * Account for the allocation. The original searched size that we
1087 * found is no longer available. If we cut out a smaller piece then
1088 * a smaller fragment is now available.
1090 cgp->cg_frsum[allocsiz]--;
1091 if (frags != allocsiz)
1092 cgp->cg_frsum[allocsiz - frags]++;
1093 blkno = cg * fs->fs_fpg + bno;
1094 if (DOINGSOFTDEP(ITOV(ip)))
1095 softdep_setup_blkmapdep(bp, fs, blkno);
1096 bdwrite(bp);
1097 return ((u_long)blkno);
1101 * Allocate a block in a cylinder group.
1103 * This algorithm implements the following policy:
1104 * 1) allocate the requested block.
1105 * 2) allocate a rotationally optimal block in the same cylinder.
1106 * 3) allocate the next available block on the block rotor for the
1107 * specified cylinder group.
1108 * Note that this routine only allocates fs_bsize blocks; these
1109 * blocks may be fragmented by the routine that allocates them.
1111 static ufs_daddr_t
1112 ffs_alloccgblk(struct inode *ip, struct buf *bp, ufs_daddr_t bpref)
1114 struct fs *fs;
1115 struct cg *cgp;
1116 ufs_daddr_t bno, blkno;
1117 int cylno, pos, delta;
1118 short *cylbp;
1119 int i;
1120 uint8_t *blksfree;
1122 fs = ip->i_fs;
1123 cgp = (struct cg *)bp->b_data;
1124 blksfree = cg_blksfree(cgp);
1125 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1126 bpref = cgp->cg_rotor;
1127 goto norot;
1129 bpref = blknum(fs, bpref);
1130 bpref = dtogd(fs, bpref);
1132 * if the requested block is available, use it
1134 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bpref))) {
1135 bno = bpref;
1136 goto gotit;
1138 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1140 * Block layout information is not available.
1141 * Leaving bpref unchanged means we take the
1142 * next available free block following the one
1143 * we just allocated. Hopefully this will at
1144 * least hit a track cache on drives of unknown
1145 * geometry (e.g. SCSI).
1147 goto norot;
1150 * check for a block available on the same cylinder
1152 cylno = cbtocylno(fs, bpref);
1153 if (cg_blktot(cgp)[cylno] == 0)
1154 goto norot;
1156 * check the summary information to see if a block is
1157 * available in the requested cylinder starting at the
1158 * requested rotational position and proceeding around.
1160 cylbp = cg_blks(fs, cgp, cylno);
1161 pos = cbtorpos(fs, bpref);
1162 for (i = pos; i < fs->fs_nrpos; i++)
1163 if (cylbp[i] > 0)
1164 break;
1165 if (i == fs->fs_nrpos)
1166 for (i = 0; i < pos; i++)
1167 if (cylbp[i] > 0)
1168 break;
1169 if (cylbp[i] > 0) {
1171 * found a rotational position, now find the actual
1172 * block. A panic if none is actually there.
1174 pos = cylno % fs->fs_cpc;
1175 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1176 if (fs_postbl(fs, pos)[i] == -1) {
1177 kprintf("pos = %d, i = %d, fs = %s\n",
1178 pos, i, fs->fs_fsmnt);
1179 panic("ffs_alloccgblk: cyl groups corrupted");
1181 for (i = fs_postbl(fs, pos)[i];; ) {
1182 if (ffs_isblock(fs, blksfree, bno + i)) {
1183 bno = blkstofrags(fs, (bno + i));
1184 goto gotit;
1186 delta = fs_rotbl(fs)[i];
1187 if (delta <= 0 ||
1188 delta + i > fragstoblks(fs, fs->fs_fpg))
1189 break;
1190 i += delta;
1192 kprintf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1193 panic("ffs_alloccgblk: can't find blk in cyl");
1195 norot:
1197 * no blocks in the requested cylinder, so take next
1198 * available one in this cylinder group.
1200 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1201 if (bno < 0)
1202 return (0);
1203 cgp->cg_rotor = bno;
1204 gotit:
1205 blkno = fragstoblks(fs, bno);
1206 ffs_clrblock(fs, blksfree, (long)blkno);
1207 ffs_clusteracct(fs, cgp, blkno, -1);
1208 cgp->cg_cs.cs_nbfree--;
1209 fs->fs_cstotal.cs_nbfree--;
1210 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1211 cylno = cbtocylno(fs, bno);
1212 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1213 cg_blktot(cgp)[cylno]--;
1214 fs->fs_fmod = 1;
1215 blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1216 if (DOINGSOFTDEP(ITOV(ip)))
1217 softdep_setup_blkmapdep(bp, fs, blkno);
1218 return (blkno);
1222 * Determine whether a cluster can be allocated.
1224 * We do not currently check for optimal rotational layout if there
1225 * are multiple choices in the same cylinder group. Instead we just
1226 * take the first one that we find following bpref.
1228 static ufs_daddr_t
1229 ffs_clusteralloc(struct inode *ip, int cg, ufs_daddr_t bpref, int len)
1231 struct fs *fs;
1232 struct cg *cgp;
1233 struct buf *bp;
1234 int i, got, run, bno, bit, map;
1235 u_char *mapp;
1236 int32_t *lp;
1237 uint8_t *blksfree;
1239 fs = ip->i_fs;
1240 if (fs->fs_maxcluster[cg] < len)
1241 return (0);
1242 if (bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1243 (int)fs->fs_cgsize, &bp)) {
1244 goto fail;
1246 cgp = (struct cg *)bp->b_data;
1247 if (!cg_chkmagic(cgp))
1248 goto fail;
1251 * Check to see if a cluster of the needed size (or bigger) is
1252 * available in this cylinder group.
1254 lp = &cg_clustersum(cgp)[len];
1255 for (i = len; i <= fs->fs_contigsumsize; i++)
1256 if (*lp++ > 0)
1257 break;
1258 if (i > fs->fs_contigsumsize) {
1260 * This is the first time looking for a cluster in this
1261 * cylinder group. Update the cluster summary information
1262 * to reflect the true maximum sized cluster so that
1263 * future cluster allocation requests can avoid reading
1264 * the cylinder group map only to find no clusters.
1266 lp = &cg_clustersum(cgp)[len - 1];
1267 for (i = len - 1; i > 0; i--)
1268 if (*lp-- > 0)
1269 break;
1270 fs->fs_maxcluster[cg] = i;
1271 goto fail;
1274 * Search the cluster map to find a big enough cluster.
1275 * We take the first one that we find, even if it is larger
1276 * than we need as we prefer to get one close to the previous
1277 * block allocation. We do not search before the current
1278 * preference point as we do not want to allocate a block
1279 * that is allocated before the previous one (as we will
1280 * then have to wait for another pass of the elevator
1281 * algorithm before it will be read). We prefer to fail and
1282 * be recalled to try an allocation in the next cylinder group.
1284 if (dtog(fs, bpref) != cg)
1285 bpref = 0;
1286 else
1287 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1288 mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1289 map = *mapp++;
1290 bit = 1 << (bpref % NBBY);
1291 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1292 if ((map & bit) == 0) {
1293 run = 0;
1294 } else {
1295 run++;
1296 if (run == len)
1297 break;
1299 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1300 bit <<= 1;
1301 } else {
1302 map = *mapp++;
1303 bit = 1;
1306 if (got >= cgp->cg_nclusterblks)
1307 goto fail;
1309 * Allocate the cluster that we have found.
1311 blksfree = cg_blksfree(cgp);
1312 for (i = 1; i <= len; i++) {
1313 if (!ffs_isblock(fs, blksfree, got - run + i))
1314 panic("ffs_clusteralloc: map mismatch");
1316 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1317 if (dtog(fs, bno) != cg)
1318 panic("ffs_clusteralloc: allocated out of group");
1319 len = blkstofrags(fs, len);
1320 for (i = 0; i < len; i += fs->fs_frag) {
1321 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1322 panic("ffs_clusteralloc: lost block");
1324 bdwrite(bp);
1325 return (bno);
1327 fail:
1328 brelse(bp);
1329 return (0);
1333 * Determine whether an inode can be allocated.
1335 * Check to see if an inode is available, and if it is,
1336 * allocate it using the following policy:
1337 * 1) allocate the requested inode.
1338 * 2) allocate the next available inode after the requested
1339 * inode in the specified cylinder group.
1340 * 3) the inode must not already be in the inode hash table. We
1341 * can encounter such a case because the vnode reclamation sequence
1342 * frees the bit
1343 * 3) the inode must not already be in the inode hash, otherwise it
1344 * may be in the process of being deallocated. This can occur
1345 * because the bitmap is updated before the inode is removed from
1346 * hash. If we were to reallocate the inode the caller could wind
1347 * up returning a vnode/inode combination which is in an indeterminate
1348 * state.
1350 static ino_t
1351 ffs_nodealloccg(struct inode *ip, int cg, ufs_daddr_t ipref, int mode)
1353 struct ufsmount *ump;
1354 struct fs *fs;
1355 struct cg *cgp;
1356 struct buf *bp;
1357 uint8_t *inosused;
1358 uint8_t map;
1359 int error, len, arraysize, i;
1360 int icheckmiss;
1361 ufs_daddr_t ibase;
1362 struct vnode *vp;
1364 vp = ITOV(ip);
1365 ump = VFSTOUFS(vp->v_mount);
1366 fs = ip->i_fs;
1367 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1368 return (0);
1369 error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1370 (int)fs->fs_cgsize, &bp);
1371 if (error) {
1372 brelse(bp);
1373 return (0);
1375 cgp = (struct cg *)bp->b_data;
1376 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1377 brelse(bp);
1378 return (0);
1380 inosused = cg_inosused(cgp);
1381 icheckmiss = 0;
1384 * Quick check, reuse the most recently free inode or continue
1385 * a scan from where we left off the last time.
1387 ibase = cg * fs->fs_ipg;
1388 if (ipref) {
1389 ipref %= fs->fs_ipg;
1390 if (isclr(inosused, ipref)) {
1391 if (ufs_ihashcheck(ump, ip->i_dev, ibase + ipref) == 0)
1392 goto gotit;
1397 * Scan the inode bitmap starting at irotor, be sure to handle
1398 * the edge case by going back to the beginning of the array.
1400 * If the number of inodes is not byte-aligned, the unused bits
1401 * should be set to 1. This will be sanity checked in gotit. Note
1402 * that we have to be sure not to overlap the beginning and end
1403 * when irotor is in the middle of a byte as this will cause the
1404 * same bitmap byte to be checked twice. To solve this problem we
1405 * just convert everything to a byte index for the loop.
1407 ipref = (cgp->cg_irotor % fs->fs_ipg) >> 3; /* byte index */
1408 len = (fs->fs_ipg + 7) >> 3; /* byte size */
1409 arraysize = len;
1411 while (len > 0) {
1412 map = inosused[ipref];
1413 if (map != 255) {
1414 for (i = 0; i < NBBY; ++i) {
1416 * If we find a free bit we have to make sure
1417 * that the inode is not in the middle of
1418 * being destroyed. The inode should not exist
1419 * in the inode hash.
1421 * Adjust the rotor to try to hit the
1422 * quick-check up above.
1424 if ((map & (1 << i)) == 0) {
1425 if (ufs_ihashcheck(ump, ip->i_dev, ibase + (ipref << 3) + i) == 0) {
1426 ipref = (ipref << 3) + i;
1427 cgp->cg_irotor = (ipref + 1) % fs->fs_ipg;
1428 goto gotit;
1430 ++icheckmiss;
1436 * Setup for the next byte, start at the beginning again if
1437 * we hit the end of the array.
1439 if (++ipref == arraysize)
1440 ipref = 0;
1441 --len;
1443 if (icheckmiss == cgp->cg_cs.cs_nifree) {
1444 brelse(bp);
1445 return(0);
1447 kprintf("fs = %s\n", fs->fs_fsmnt);
1448 panic("ffs_nodealloccg: block not in map, icheckmiss/nfree %d/%d",
1449 icheckmiss, cgp->cg_cs.cs_nifree);
1450 /* NOTREACHED */
1453 * ipref is a bit index as of the gotit label.
1455 gotit:
1456 KKASSERT(ipref >= 0 && ipref < fs->fs_ipg);
1457 cgp->cg_time = time_second;
1458 if (DOINGSOFTDEP(ITOV(ip)))
1459 softdep_setup_inomapdep(bp, ip, ibase + ipref);
1460 setbit(inosused, ipref);
1461 cgp->cg_cs.cs_nifree--;
1462 fs->fs_cstotal.cs_nifree--;
1463 fs->fs_cs(fs, cg).cs_nifree--;
1464 fs->fs_fmod = 1;
1465 if ((mode & IFMT) == IFDIR) {
1466 cgp->cg_cs.cs_ndir++;
1467 fs->fs_cstotal.cs_ndir++;
1468 fs->fs_cs(fs, cg).cs_ndir++;
1470 bdwrite(bp);
1471 return (ibase + ipref);
1475 * Free a block or fragment.
1477 * The specified block or fragment is placed back in the
1478 * free map. If a fragment is deallocated, a possible
1479 * block reassembly is checked.
1481 void
1482 ffs_blkfree_cg(struct fs * fs, struct vnode * i_devvp, cdev_t i_dev, ino_t i_number,
1483 uint32_t i_din_uid, ufs_daddr_t bno, long size)
1485 struct cg *cgp;
1486 struct buf *bp;
1487 ufs_daddr_t blkno;
1488 int i, error, cg, blk, frags, bbase;
1489 uint8_t *blksfree;
1491 VOP_FREEBLKS(i_devvp, fsbtodoff(fs, bno), size);
1492 if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1493 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1494 kprintf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n",
1495 devtoname(i_dev), (long)bno, (long)fs->fs_bsize, size,
1496 fs->fs_fsmnt);
1497 panic("ffs_blkfree: bad size");
1499 cg = dtog(fs, bno);
1500 if ((uint)bno >= fs->fs_size) {
1501 kprintf("bad block %ld, ino %lu\n",
1502 (long)bno, (u_long)i_number);
1503 ffs_fserr(fs, i_din_uid, "bad block");
1504 return;
1508 * Load the cylinder group
1510 error = bread(i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1511 (int)fs->fs_cgsize, &bp);
1512 if (error) {
1513 brelse(bp);
1514 return;
1516 cgp = (struct cg *)bp->b_data;
1517 if (!cg_chkmagic(cgp)) {
1518 brelse(bp);
1519 return;
1521 cgp->cg_time = time_second;
1522 bno = dtogd(fs, bno);
1523 blksfree = cg_blksfree(cgp);
1525 if (size == fs->fs_bsize) {
1527 * Free a whole block
1529 blkno = fragstoblks(fs, bno);
1530 if (!ffs_isfreeblock(fs, blksfree, blkno)) {
1531 kprintf("dev = %s, block = %ld, fs = %s\n",
1532 devtoname(i_dev), (long)bno, fs->fs_fsmnt);
1533 panic("ffs_blkfree: freeing free block");
1535 ffs_setblock(fs, blksfree, blkno);
1536 ffs_clusteracct(fs, cgp, blkno, 1);
1537 cgp->cg_cs.cs_nbfree++;
1538 fs->fs_cstotal.cs_nbfree++;
1539 fs->fs_cs(fs, cg).cs_nbfree++;
1540 i = cbtocylno(fs, bno);
1541 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1542 cg_blktot(cgp)[i]++;
1543 } else {
1545 * Free a fragment within a block.
1547 * bno is the starting block number of the fragment being
1548 * freed.
1550 * bbase is the starting block number for the filesystem
1551 * block containing the fragment.
1553 * blk is the current bitmap for the fragments within the
1554 * filesystem block containing the fragment.
1556 * frags is the number of fragments being freed
1558 * Call ffs_fragacct() to account for the removal of all
1559 * current fragments, then adjust the bitmap to free the
1560 * requested fragment, and finally call ffs_fragacct() again
1561 * to regenerate the accounting.
1563 bbase = bno - fragnum(fs, bno);
1564 blk = blkmap(fs, blksfree, bbase);
1565 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1566 frags = numfrags(fs, size);
1567 for (i = 0; i < frags; i++) {
1568 if (isset(blksfree, bno + i)) {
1569 kprintf("dev = %s, block = %ld, fs = %s\n",
1570 devtoname(i_dev), (long)(bno + i),
1571 fs->fs_fsmnt);
1572 panic("ffs_blkfree: freeing free frag");
1574 setbit(blksfree, bno + i);
1576 cgp->cg_cs.cs_nffree += i;
1577 fs->fs_cstotal.cs_nffree += i;
1578 fs->fs_cs(fs, cg).cs_nffree += i;
1581 * Add back in counts associated with the new frags
1583 blk = blkmap(fs, blksfree, bbase);
1584 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1587 * If a complete block has been reassembled, account for it
1589 blkno = fragstoblks(fs, bbase);
1590 if (ffs_isblock(fs, blksfree, blkno)) {
1591 cgp->cg_cs.cs_nffree -= fs->fs_frag;
1592 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1593 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1594 ffs_clusteracct(fs, cgp, blkno, 1);
1595 cgp->cg_cs.cs_nbfree++;
1596 fs->fs_cstotal.cs_nbfree++;
1597 fs->fs_cs(fs, cg).cs_nbfree++;
1598 i = cbtocylno(fs, bbase);
1599 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1600 cg_blktot(cgp)[i]++;
1603 fs->fs_fmod = 1;
1604 bdwrite(bp);
1607 struct ffs_blkfree_trim_params {
1608 struct task task;
1609 ufs_daddr_t bno;
1610 long size;
1613 * With TRIM, inode pointer is gone in the callback but we still need
1614 * the following fields for ffs_blkfree_cg()
1616 struct vnode *i_devvp;
1617 struct fs *i_fs;
1618 cdev_t i_dev;
1619 ino_t i_number;
1620 uint32_t i_din_uid;
1624 static void
1625 ffs_blkfree_trim_task(void *ctx, int pending)
1627 struct ffs_blkfree_trim_params *tp;
1629 tp = ctx;
1630 ffs_blkfree_cg(tp->i_fs, tp->i_devvp, tp->i_dev, tp->i_number,
1631 tp->i_din_uid, tp->bno, tp->size);
1632 kfree(tp, M_TEMP);
1637 static void
1638 ffs_blkfree_trim_completed(struct bio *biop)
1640 struct buf *bp = biop->bio_buf;
1641 struct ffs_blkfree_trim_params *tp;
1643 tp = bp->b_bio1.bio_caller_info1.ptr;
1644 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
1645 tp = biop->bio_caller_info1.ptr;
1646 taskqueue_enqueue(taskqueue_swi, &tp->task);
1647 biodone(biop);
1652 * If TRIM is enabled, we TRIM the blocks first then free them. We do this
1653 * after TRIM is finished and the callback handler is called. The logic here
1654 * is that we free the blocks before updating the bitmap so that we don't
1655 * reuse a block before we actually trim it, which would result in trimming
1656 * a valid block.
1658 void
1659 ffs_blkfree(struct inode *ip, ufs_daddr_t bno, long size)
1661 struct mount *mp = ip->i_devvp->v_mount;
1662 struct ffs_blkfree_trim_params *tp;
1664 if (!(mp->mnt_flag & MNT_TRIM)) {
1665 ffs_blkfree_cg(ip->i_fs, ip->i_devvp,ip->i_dev,ip->i_number,
1666 ip->i_uid, bno, size);
1667 return;
1670 struct buf *bp;
1672 tp = kmalloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK);
1673 tp->bno = bno;
1674 tp->i_fs= ip->i_fs;
1675 tp->i_devvp = ip->i_devvp;
1676 tp->i_dev = ip->i_dev;
1677 tp->i_din_uid = ip->i_uid;
1678 tp->i_number = ip->i_number;
1679 tp->size = size;
1681 bp = getnewbuf(0,0,0,1);
1682 BUF_KERNPROC(bp);
1683 bp->b_cmd = BUF_CMD_FREEBLKS;
1684 bp->b_bio1.bio_offset = fsbtodoff(ip->i_fs, bno);
1685 bp->b_bcount = size;
1686 bp->b_bio1.bio_caller_info1.ptr = tp;
1687 bp->b_bio1.bio_done = ffs_blkfree_trim_completed;
1688 vn_strategy(ip->i_devvp, &bp->b_bio1);
1691 #ifdef DIAGNOSTIC
1693 * Verify allocation of a block or fragment. Returns true if block or
1694 * fragment is allocated, false if it is free.
1696 static int
1697 ffs_checkblk(struct inode *ip, ufs_daddr_t bno, long size)
1699 struct fs *fs;
1700 struct cg *cgp;
1701 struct buf *bp;
1702 int i, error, frags, free;
1703 uint8_t *blksfree;
1705 fs = ip->i_fs;
1706 if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1707 kprintf("bsize = %ld, size = %ld, fs = %s\n",
1708 (long)fs->fs_bsize, size, fs->fs_fsmnt);
1709 panic("ffs_checkblk: bad size");
1711 if ((uint)bno >= fs->fs_size)
1712 panic("ffs_checkblk: bad block %d", bno);
1713 error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, dtog(fs, bno))),
1714 (int)fs->fs_cgsize, &bp);
1715 if (error)
1716 panic("ffs_checkblk: cg bread failed");
1717 cgp = (struct cg *)bp->b_data;
1718 if (!cg_chkmagic(cgp))
1719 panic("ffs_checkblk: cg magic mismatch");
1720 blksfree = cg_blksfree(cgp);
1721 bno = dtogd(fs, bno);
1722 if (size == fs->fs_bsize) {
1723 free = ffs_isblock(fs, blksfree, fragstoblks(fs, bno));
1724 } else {
1725 frags = numfrags(fs, size);
1726 for (free = 0, i = 0; i < frags; i++)
1727 if (isset(blksfree, bno + i))
1728 free++;
1729 if (free != 0 && free != frags)
1730 panic("ffs_checkblk: partially free fragment");
1732 brelse(bp);
1733 return (!free);
1735 #endif /* DIAGNOSTIC */
1738 * Free an inode.
1741 ffs_vfree(struct vnode *pvp, ino_t ino, int mode)
1743 if (DOINGSOFTDEP(pvp)) {
1744 softdep_freefile(pvp, ino, mode);
1745 return (0);
1747 return (ffs_freefile(pvp, ino, mode));
1751 * Do the actual free operation.
1752 * The specified inode is placed back in the free map.
1755 ffs_freefile(struct vnode *pvp, ino_t ino, int mode)
1757 struct fs *fs;
1758 struct cg *cgp;
1759 struct inode *pip;
1760 struct buf *bp;
1761 int error, cg;
1762 uint8_t *inosused;
1764 pip = VTOI(pvp);
1765 fs = pip->i_fs;
1766 if ((uint)ino >= fs->fs_ipg * fs->fs_ncg)
1767 panic("ffs_vfree: range: dev = (%d,%d), ino = %"PRId64", fs = %s",
1768 major(pip->i_dev), minor(pip->i_dev), ino, fs->fs_fsmnt);
1769 cg = ino_to_cg(fs, ino);
1770 error = bread(pip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1771 (int)fs->fs_cgsize, &bp);
1772 if (error) {
1773 brelse(bp);
1774 return (error);
1776 cgp = (struct cg *)bp->b_data;
1777 if (!cg_chkmagic(cgp)) {
1778 brelse(bp);
1779 return (0);
1781 cgp->cg_time = time_second;
1782 inosused = cg_inosused(cgp);
1783 ino %= fs->fs_ipg;
1784 if (isclr(inosused, ino)) {
1785 kprintf("dev = %s, ino = %lu, fs = %s\n",
1786 devtoname(pip->i_dev), (u_long)ino, fs->fs_fsmnt);
1787 if (fs->fs_ronly == 0)
1788 panic("ffs_vfree: freeing free inode");
1790 clrbit(inosused, ino);
1791 if (ino < cgp->cg_irotor)
1792 cgp->cg_irotor = ino;
1793 cgp->cg_cs.cs_nifree++;
1794 fs->fs_cstotal.cs_nifree++;
1795 fs->fs_cs(fs, cg).cs_nifree++;
1796 if ((mode & IFMT) == IFDIR) {
1797 cgp->cg_cs.cs_ndir--;
1798 fs->fs_cstotal.cs_ndir--;
1799 fs->fs_cs(fs, cg).cs_ndir--;
1801 fs->fs_fmod = 1;
1802 bdwrite(bp);
1803 return (0);
1807 * Find a block of the specified size in the specified cylinder group.
1809 * It is a panic if a request is made to find a block if none are
1810 * available.
1812 static ufs_daddr_t
1813 ffs_mapsearch(struct fs *fs, struct cg *cgp, ufs_daddr_t bpref, int allocsiz)
1815 ufs_daddr_t bno;
1816 int start, len, loc, i;
1817 int blk, field, subfield, pos;
1818 uint8_t *blksfree;
1821 * find the fragment by searching through the free block
1822 * map for an appropriate bit pattern.
1824 if (bpref)
1825 start = dtogd(fs, bpref) / NBBY;
1826 else
1827 start = cgp->cg_frotor / NBBY;
1828 blksfree = cg_blksfree(cgp);
1829 len = howmany(fs->fs_fpg, NBBY) - start;
1830 loc = scanc((uint)len, (u_char *)&blksfree[start],
1831 (u_char *)fragtbl[fs->fs_frag],
1832 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1833 if (loc == 0) {
1834 len = start + 1; /* XXX why overlap here? */
1835 start = 0;
1836 loc = scanc((uint)len, (u_char *)&blksfree[0],
1837 (u_char *)fragtbl[fs->fs_frag],
1838 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1839 if (loc == 0) {
1840 kprintf("start = %d, len = %d, fs = %s\n",
1841 start, len, fs->fs_fsmnt);
1842 panic("ffs_alloccg: map corrupted");
1843 /* NOTREACHED */
1846 bno = (start + len - loc) * NBBY;
1847 cgp->cg_frotor = bno;
1849 * found the byte in the map
1850 * sift through the bits to find the selected frag
1852 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1853 blk = blkmap(fs, blksfree, bno);
1854 blk <<= 1;
1855 field = around[allocsiz];
1856 subfield = inside[allocsiz];
1857 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1858 if ((blk & field) == subfield)
1859 return (bno + pos);
1860 field <<= 1;
1861 subfield <<= 1;
1864 kprintf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1865 panic("ffs_alloccg: block not in map");
1866 return (-1);
1870 * Update the cluster map because of an allocation or free.
1872 * Cnt == 1 means free; cnt == -1 means allocating.
1874 static void
1875 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs_daddr_t blkno, int cnt)
1877 int32_t *sump;
1878 int32_t *lp;
1879 u_char *freemapp, *mapp;
1880 int i, start, end, forw, back, map, bit;
1882 if (fs->fs_contigsumsize <= 0)
1883 return;
1884 freemapp = cg_clustersfree(cgp);
1885 sump = cg_clustersum(cgp);
1887 * Allocate or clear the actual block.
1889 if (cnt > 0)
1890 setbit(freemapp, blkno);
1891 else
1892 clrbit(freemapp, blkno);
1894 * Find the size of the cluster going forward.
1896 start = blkno + 1;
1897 end = start + fs->fs_contigsumsize;
1898 if (end >= cgp->cg_nclusterblks)
1899 end = cgp->cg_nclusterblks;
1900 mapp = &freemapp[start / NBBY];
1901 map = *mapp++;
1902 bit = 1 << (start % NBBY);
1903 for (i = start; i < end; i++) {
1904 if ((map & bit) == 0)
1905 break;
1906 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1907 bit <<= 1;
1908 } else {
1909 map = *mapp++;
1910 bit = 1;
1913 forw = i - start;
1915 * Find the size of the cluster going backward.
1917 start = blkno - 1;
1918 end = start - fs->fs_contigsumsize;
1919 if (end < 0)
1920 end = -1;
1921 mapp = &freemapp[start / NBBY];
1922 map = *mapp--;
1923 bit = 1 << (start % NBBY);
1924 for (i = start; i > end; i--) {
1925 if ((map & bit) == 0)
1926 break;
1927 if ((i & (NBBY - 1)) != 0) {
1928 bit >>= 1;
1929 } else {
1930 map = *mapp--;
1931 bit = 1 << (NBBY - 1);
1934 back = start - i;
1936 * Account for old cluster and the possibly new forward and
1937 * back clusters.
1939 i = back + forw + 1;
1940 if (i > fs->fs_contigsumsize)
1941 i = fs->fs_contigsumsize;
1942 sump[i] += cnt;
1943 if (back > 0)
1944 sump[back] -= cnt;
1945 if (forw > 0)
1946 sump[forw] -= cnt;
1948 * Update cluster summary information.
1950 lp = &sump[fs->fs_contigsumsize];
1951 for (i = fs->fs_contigsumsize; i > 0; i--)
1952 if (*lp-- > 0)
1953 break;
1954 fs->fs_maxcluster[cgp->cg_cgx] = i;
1958 * Fserr prints the name of a filesystem with an error diagnostic.
1960 * The form of the error message is:
1961 * fs: error message
1963 static void
1964 ffs_fserr(struct fs *fs, uint uid, char *cp)
1966 struct thread *td = curthread;
1967 struct proc *p;
1969 if ((p = td->td_proc) != NULL) {
1970 log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1,
1971 p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp);
1972 } else {
1973 log(LOG_ERR, "system thread %p, uid %d on %s: %s\n",
1974 td, uid, fs->fs_fsmnt, cp);