Remove advertising clause from all that isn't contrib or userland bin.
[dragonfly.git] / sys / vfs / nfs / nfs_socket.c
blob2e178650fb724b5a7db476bcca852336f1b98b56
1 /*
2 * Copyright (c) 1989, 1991, 1993, 1995
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
32 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
33 * $FreeBSD: src/sys/nfs/nfs_socket.c,v 1.60.2.6 2003/03/26 01:44:46 alfred Exp $
37 * Socket operations for use by nfs
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/malloc.h>
44 #include <sys/mount.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/vnode.h>
48 #include <sys/fcntl.h>
49 #include <sys/protosw.h>
50 #include <sys/resourcevar.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/socketops.h>
54 #include <sys/syslog.h>
55 #include <sys/thread.h>
56 #include <sys/tprintf.h>
57 #include <sys/sysctl.h>
58 #include <sys/signalvar.h>
60 #include <sys/signal2.h>
61 #include <sys/mutex2.h>
62 #include <sys/socketvar2.h>
64 #include <netinet/in.h>
65 #include <netinet/tcp.h>
66 #include <sys/thread2.h>
68 #include "rpcv2.h"
69 #include "nfsproto.h"
70 #include "nfs.h"
71 #include "xdr_subs.h"
72 #include "nfsm_subs.h"
73 #include "nfsmount.h"
74 #include "nfsnode.h"
75 #include "nfsrtt.h"
77 #define TRUE 1
78 #define FALSE 0
81 * RTT calculations are scaled by 256 (8 bits). A proper fractional
82 * RTT will still be calculated even with a slow NFS timer.
84 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum]]
85 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum]]
86 #define NFS_RTT_SCALE_BITS 8 /* bits */
87 #define NFS_RTT_SCALE 256 /* value */
90 * Defines which timer to use for the procnum.
91 * 0 - default
92 * 1 - getattr
93 * 2 - lookup
94 * 3 - read
95 * 4 - write
97 static int proct[NFS_NPROCS] = {
98 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, /* 00-09 */
99 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, /* 10-19 */
100 0, 5, 0, 0, 0, 0, /* 20-29 */
103 static int multt[NFS_NPROCS] = {
104 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 00-09 */
105 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 10-19 */
106 1, 2, 1, 1, 1, 1, /* 20-29 */
109 static int nfs_backoff[8] = { 2, 3, 5, 8, 13, 21, 34, 55 };
110 static int nfs_realign_test;
111 static int nfs_realign_count;
112 static int nfs_showrtt;
113 static int nfs_showrexmit;
114 int nfs_maxasyncbio = NFS_MAXASYNCBIO;
116 SYSCTL_DECL(_vfs_nfs);
118 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0,
119 "Number of times mbufs have been tested for bad alignment");
120 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0,
121 "Number of realignments for badly aligned mbuf data");
122 SYSCTL_INT(_vfs_nfs, OID_AUTO, showrtt, CTLFLAG_RW, &nfs_showrtt, 0,
123 "Show round trip time output");
124 SYSCTL_INT(_vfs_nfs, OID_AUTO, showrexmit, CTLFLAG_RW, &nfs_showrexmit, 0,
125 "Show retransmits info");
126 SYSCTL_INT(_vfs_nfs, OID_AUTO, maxasyncbio, CTLFLAG_RW, &nfs_maxasyncbio, 0,
127 "Max number of asynchronous bio's");
129 static int nfs_request_setup(nfsm_info_t info);
130 static int nfs_request_auth(struct nfsreq *rep);
131 static int nfs_request_try(struct nfsreq *rep);
132 static int nfs_request_waitreply(struct nfsreq *rep);
133 static int nfs_request_processreply(nfsm_info_t info, int);
135 int nfsrtton = 0;
136 struct nfsrtt nfsrtt;
137 struct callout nfs_timer_handle;
139 static int nfs_msg (struct thread *,char *,char *);
140 static int nfs_rcvlock (struct nfsmount *nmp, struct nfsreq *myreq);
141 static void nfs_rcvunlock (struct nfsmount *nmp);
142 static void nfs_realign (struct mbuf **pm, int hsiz);
143 static int nfs_receive (struct nfsmount *nmp, struct nfsreq *rep,
144 struct sockaddr **aname, struct mbuf **mp);
145 static void nfs_softterm (struct nfsreq *rep, int islocked);
146 static void nfs_hardterm (struct nfsreq *rep, int islocked);
147 static int nfs_reconnect (struct nfsmount *nmp, struct nfsreq *rep);
148 #ifndef NFS_NOSERVER
149 static int nfsrv_getstream (struct nfssvc_sock *, int, int *);
150 static void nfs_timer_req(struct nfsreq *req);
151 static void nfs_checkpkt(struct mbuf *m, int len);
153 int (*nfsrv3_procs[NFS_NPROCS]) (struct nfsrv_descript *nd,
154 struct nfssvc_sock *slp,
155 struct thread *td,
156 struct mbuf **mreqp) = {
157 nfsrv_null,
158 nfsrv_getattr,
159 nfsrv_setattr,
160 nfsrv_lookup,
161 nfsrv3_access,
162 nfsrv_readlink,
163 nfsrv_read,
164 nfsrv_write,
165 nfsrv_create,
166 nfsrv_mkdir,
167 nfsrv_symlink,
168 nfsrv_mknod,
169 nfsrv_remove,
170 nfsrv_rmdir,
171 nfsrv_rename,
172 nfsrv_link,
173 nfsrv_readdir,
174 nfsrv_readdirplus,
175 nfsrv_statfs,
176 nfsrv_fsinfo,
177 nfsrv_pathconf,
178 nfsrv_commit,
179 nfsrv_noop,
180 nfsrv_noop,
181 nfsrv_noop,
182 nfsrv_noop
184 #endif /* NFS_NOSERVER */
187 * Initialize sockets and congestion for a new NFS connection.
188 * We do not free the sockaddr if error.
191 nfs_connect(struct nfsmount *nmp, struct nfsreq *rep)
193 struct socket *so;
194 int error;
195 struct sockaddr *saddr;
196 struct sockaddr_in *sin;
197 struct thread *td = &thread0; /* only used for socreate and sobind */
199 nmp->nm_so = so = NULL;
200 if (nmp->nm_flag & NFSMNT_FORCE)
201 return (EINVAL);
202 saddr = nmp->nm_nam;
203 error = socreate(saddr->sa_family, &so, nmp->nm_sotype,
204 nmp->nm_soproto, td);
205 if (error)
206 goto bad;
207 nmp->nm_soflags = so->so_proto->pr_flags;
210 * Some servers require that the client port be a reserved port number.
212 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
213 struct sockopt sopt;
214 int ip;
215 struct sockaddr_in ssin;
217 bzero(&sopt, sizeof sopt);
218 ip = IP_PORTRANGE_LOW;
219 sopt.sopt_level = IPPROTO_IP;
220 sopt.sopt_name = IP_PORTRANGE;
221 sopt.sopt_val = (void *)&ip;
222 sopt.sopt_valsize = sizeof(ip);
223 sopt.sopt_td = NULL;
224 error = sosetopt(so, &sopt);
225 if (error)
226 goto bad;
227 bzero(&ssin, sizeof ssin);
228 sin = &ssin;
229 sin->sin_len = sizeof (struct sockaddr_in);
230 sin->sin_family = AF_INET;
231 sin->sin_addr.s_addr = INADDR_ANY;
232 sin->sin_port = htons(0);
233 error = sobind(so, (struct sockaddr *)sin, td);
234 if (error)
235 goto bad;
236 bzero(&sopt, sizeof sopt);
237 ip = IP_PORTRANGE_DEFAULT;
238 sopt.sopt_level = IPPROTO_IP;
239 sopt.sopt_name = IP_PORTRANGE;
240 sopt.sopt_val = (void *)&ip;
241 sopt.sopt_valsize = sizeof(ip);
242 sopt.sopt_td = NULL;
243 error = sosetopt(so, &sopt);
244 if (error)
245 goto bad;
249 * Protocols that do not require connections may be optionally left
250 * unconnected for servers that reply from a port other than NFS_PORT.
252 if (nmp->nm_flag & NFSMNT_NOCONN) {
253 if (nmp->nm_soflags & PR_CONNREQUIRED) {
254 error = ENOTCONN;
255 goto bad;
257 } else {
258 error = soconnect(so, nmp->nm_nam, td);
259 if (error)
260 goto bad;
263 * Wait for the connection to complete. Cribbed from the
264 * connect system call but with the wait timing out so
265 * that interruptible mounts don't hang here for a long time.
267 crit_enter();
268 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
269 (void) tsleep((caddr_t)&so->so_timeo, 0,
270 "nfscon", 2 * hz);
271 if ((so->so_state & SS_ISCONNECTING) &&
272 so->so_error == 0 && rep &&
273 (error = nfs_sigintr(nmp, rep, rep->r_td)) != 0){
274 soclrstate(so, SS_ISCONNECTING);
275 crit_exit();
276 goto bad;
279 if (so->so_error) {
280 error = so->so_error;
281 so->so_error = 0;
282 crit_exit();
283 goto bad;
285 crit_exit();
287 so->so_rcv.ssb_timeo = (5 * hz);
288 so->so_snd.ssb_timeo = (5 * hz);
291 * Get buffer reservation size from sysctl, but impose reasonable
292 * limits.
294 if (nmp->nm_sotype == SOCK_STREAM) {
295 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
296 struct sockopt sopt;
297 int val;
299 bzero(&sopt, sizeof sopt);
300 sopt.sopt_level = SOL_SOCKET;
301 sopt.sopt_name = SO_KEEPALIVE;
302 sopt.sopt_val = &val;
303 sopt.sopt_valsize = sizeof val;
304 val = 1;
305 sosetopt(so, &sopt);
307 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
308 struct sockopt sopt;
309 int val;
311 bzero(&sopt, sizeof sopt);
312 sopt.sopt_level = IPPROTO_TCP;
313 sopt.sopt_name = TCP_NODELAY;
314 sopt.sopt_val = &val;
315 sopt.sopt_valsize = sizeof val;
316 val = 1;
317 sosetopt(so, &sopt);
319 bzero(&sopt, sizeof sopt);
320 sopt.sopt_level = IPPROTO_TCP;
321 sopt.sopt_name = TCP_FASTKEEP;
322 sopt.sopt_val = &val;
323 sopt.sopt_valsize = sizeof val;
324 val = 1;
325 sosetopt(so, &sopt);
328 error = soreserve(so, nfs_soreserve, nfs_soreserve, NULL);
329 if (error)
330 goto bad;
331 atomic_set_int(&so->so_rcv.ssb_flags, SSB_NOINTR);
332 atomic_set_int(&so->so_snd.ssb_flags, SSB_NOINTR);
334 /* Initialize other non-zero congestion variables */
335 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] =
336 nmp->nm_srtt[3] = (NFS_TIMEO << NFS_RTT_SCALE_BITS);
337 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
338 nmp->nm_sdrtt[3] = 0;
339 nmp->nm_maxasync_scaled = NFS_MINASYNC_SCALED;
340 nmp->nm_timeouts = 0;
343 * Assign nm_so last. The moment nm_so is assigned the nfs_timer()
344 * can mess with the socket.
346 nmp->nm_so = so;
347 return (0);
349 bad:
350 if (so) {
351 soshutdown(so, SHUT_RDWR);
352 soclose(so, FNONBLOCK);
354 return (error);
358 * Reconnect routine:
359 * Called when a connection is broken on a reliable protocol.
360 * - clean up the old socket
361 * - nfs_connect() again
362 * - set R_NEEDSXMIT for all outstanding requests on mount point
363 * If this fails the mount point is DEAD!
364 * nb: Must be called with the nfs_sndlock() set on the mount point.
366 static int
367 nfs_reconnect(struct nfsmount *nmp, struct nfsreq *rep)
369 struct nfsreq *req;
370 int error;
372 nfs_disconnect(nmp);
373 if (nmp->nm_rxstate >= NFSSVC_STOPPING)
374 return (EINTR);
375 while ((error = nfs_connect(nmp, rep)) != 0) {
376 if (error == EINTR || error == ERESTART)
377 return (EINTR);
378 if (error == EINVAL)
379 return (error);
380 if (nmp->nm_rxstate >= NFSSVC_STOPPING)
381 return (EINTR);
382 (void) tsleep((caddr_t)&lbolt, 0, "nfscon", 0);
386 * Loop through outstanding request list and fix up all requests
387 * on old socket.
389 crit_enter();
390 TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
391 KKASSERT(req->r_nmp == nmp);
392 req->r_flags |= R_NEEDSXMIT;
394 crit_exit();
395 return (0);
399 * NFS disconnect. Clean up and unlink.
401 void
402 nfs_disconnect(struct nfsmount *nmp)
404 struct socket *so;
406 if (nmp->nm_so) {
407 so = nmp->nm_so;
408 nmp->nm_so = NULL;
409 soshutdown(so, SHUT_RDWR);
410 soclose(so, FNONBLOCK);
414 void
415 nfs_safedisconnect(struct nfsmount *nmp)
417 nfs_rcvlock(nmp, NULL);
418 nfs_disconnect(nmp);
419 nfs_rcvunlock(nmp);
423 * This is the nfs send routine. For connection based socket types, it
424 * must be called with an nfs_sndlock() on the socket.
425 * "rep == NULL" indicates that it has been called from a server.
426 * For the client side:
427 * - return EINTR if the RPC is terminated, 0 otherwise
428 * - set R_NEEDSXMIT if the send fails for any reason
429 * - do any cleanup required by recoverable socket errors (?)
430 * For the server side:
431 * - return EINTR or ERESTART if interrupted by a signal
432 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
433 * - do any cleanup required by recoverable socket errors (?)
436 nfs_send(struct socket *so, struct sockaddr *nam, struct mbuf *top,
437 struct nfsreq *rep)
439 struct sockaddr *sendnam;
440 int error, soflags, flags;
442 if (rep) {
443 if (rep->r_flags & R_SOFTTERM) {
444 m_freem(top);
445 return (EINTR);
447 if ((so = rep->r_nmp->nm_so) == NULL) {
448 rep->r_flags |= R_NEEDSXMIT;
449 m_freem(top);
450 return (0);
452 rep->r_flags &= ~R_NEEDSXMIT;
453 soflags = rep->r_nmp->nm_soflags;
454 } else {
455 soflags = so->so_proto->pr_flags;
457 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
458 sendnam = NULL;
459 else
460 sendnam = nam;
461 if (so->so_type == SOCK_SEQPACKET)
462 flags = MSG_EOR;
463 else
464 flags = 0;
467 * calls pru_sosend -> sosend -> so_pru_send -> netrpc
469 error = so_pru_sosend(so, sendnam, NULL, top, NULL, flags,
470 curthread /*XXX*/);
473 * ENOBUFS for dgram sockets is transient and non fatal.
474 * No need to log, and no need to break a soft mount.
476 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
477 error = 0;
479 * do backoff retransmit on client
481 if (rep) {
482 if ((rep->r_nmp->nm_state & NFSSTA_SENDSPACE) == 0) {
483 rep->r_nmp->nm_state |= NFSSTA_SENDSPACE;
484 kprintf("Warning: NFS: Insufficient sendspace "
485 "(%lu),\n"
486 "\t You must increase vfs.nfs.soreserve"
487 "or decrease vfs.nfs.maxasyncbio\n",
488 so->so_snd.ssb_hiwat);
490 rep->r_flags |= R_NEEDSXMIT;
494 if (error) {
495 if (rep) {
496 log(LOG_INFO, "nfs send error %d for server %s\n",error,
497 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
499 * Deal with errors for the client side.
501 if (rep->r_flags & R_SOFTTERM)
502 error = EINTR;
503 else
504 rep->r_flags |= R_NEEDSXMIT;
505 } else {
506 log(LOG_INFO, "nfsd send error %d\n", error);
510 * Handle any recoverable (soft) socket errors here. (?)
512 if (error != EINTR && error != ERESTART &&
513 error != EWOULDBLOCK && error != EPIPE)
514 error = 0;
516 return (error);
520 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
521 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
522 * Mark and consolidate the data into a new mbuf list.
523 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
524 * small mbufs.
525 * For SOCK_STREAM we must be very careful to read an entire record once
526 * we have read any of it, even if the system call has been interrupted.
528 static int
529 nfs_receive(struct nfsmount *nmp, struct nfsreq *rep,
530 struct sockaddr **aname, struct mbuf **mp)
532 struct socket *so;
533 struct sockbuf sio;
534 struct uio auio;
535 struct iovec aio;
536 struct mbuf *m;
537 struct mbuf *control;
538 u_int32_t len;
539 struct sockaddr **getnam;
540 int error, sotype, rcvflg;
541 struct thread *td = curthread; /* XXX */
544 * Set up arguments for soreceive()
546 *mp = NULL;
547 *aname = NULL;
548 sotype = nmp->nm_sotype;
551 * For reliable protocols, lock against other senders/receivers
552 * in case a reconnect is necessary.
553 * For SOCK_STREAM, first get the Record Mark to find out how much
554 * more there is to get.
555 * We must lock the socket against other receivers
556 * until we have an entire rpc request/reply.
558 if (sotype != SOCK_DGRAM) {
559 error = nfs_sndlock(nmp, rep);
560 if (error)
561 return (error);
562 tryagain:
564 * Check for fatal errors and resending request.
567 * Ugh: If a reconnect attempt just happened, nm_so
568 * would have changed. NULL indicates a failed
569 * attempt that has essentially shut down this
570 * mount point.
572 if (rep && (rep->r_mrep || (rep->r_flags & R_SOFTTERM))) {
573 nfs_sndunlock(nmp);
574 return (EINTR);
576 so = nmp->nm_so;
577 if (so == NULL) {
578 error = nfs_reconnect(nmp, rep);
579 if (error) {
580 nfs_sndunlock(nmp);
581 return (error);
583 goto tryagain;
585 while (rep && (rep->r_flags & R_NEEDSXMIT)) {
586 m = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT);
587 nfsstats.rpcretries++;
588 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
589 if (error) {
590 if (error == EINTR || error == ERESTART ||
591 (error = nfs_reconnect(nmp, rep)) != 0) {
592 nfs_sndunlock(nmp);
593 return (error);
595 goto tryagain;
598 nfs_sndunlock(nmp);
599 if (sotype == SOCK_STREAM) {
601 * Get the length marker from the stream
603 aio.iov_base = (caddr_t)&len;
604 aio.iov_len = sizeof(u_int32_t);
605 auio.uio_iov = &aio;
606 auio.uio_iovcnt = 1;
607 auio.uio_segflg = UIO_SYSSPACE;
608 auio.uio_rw = UIO_READ;
609 auio.uio_offset = 0;
610 auio.uio_resid = sizeof(u_int32_t);
611 auio.uio_td = td;
612 do {
613 rcvflg = MSG_WAITALL;
614 error = so_pru_soreceive(so, NULL, &auio, NULL,
615 NULL, &rcvflg);
616 if (error == EWOULDBLOCK && rep) {
617 if (rep->r_flags & R_SOFTTERM)
618 return (EINTR);
620 } while (error == EWOULDBLOCK);
622 if (error == 0 && auio.uio_resid > 0) {
624 * Only log short packets if not EOF
626 if (auio.uio_resid != sizeof(u_int32_t)) {
627 log(LOG_INFO,
628 "short receive (%d/%d) from nfs server %s\n",
629 (int)(sizeof(u_int32_t) - auio.uio_resid),
630 (int)sizeof(u_int32_t),
631 nmp->nm_mountp->mnt_stat.f_mntfromname);
633 error = EPIPE;
635 if (error)
636 goto errout;
637 len = ntohl(len) & ~0x80000000;
639 * This is SERIOUS! We are out of sync with the sender
640 * and forcing a disconnect/reconnect is all I can do.
642 if (len > NFS_MAXPACKET) {
643 log(LOG_ERR, "%s (%d) from nfs server %s\n",
644 "impossible packet length",
645 len,
646 nmp->nm_mountp->mnt_stat.f_mntfromname);
647 error = EFBIG;
648 goto errout;
652 * Get the rest of the packet as an mbuf chain
654 sbinit(&sio, len);
655 do {
656 rcvflg = MSG_WAITALL;
657 error = so_pru_soreceive(so, NULL, NULL, &sio,
658 NULL, &rcvflg);
659 } while (error == EWOULDBLOCK || error == EINTR ||
660 error == ERESTART);
661 if (error == 0 && sio.sb_cc != len) {
662 if (sio.sb_cc != 0) {
663 log(LOG_INFO,
664 "short receive (%zu/%d) from nfs server %s\n",
665 (size_t)len - auio.uio_resid, len,
666 nmp->nm_mountp->mnt_stat.f_mntfromname);
668 error = EPIPE;
670 *mp = sio.sb_mb;
671 } else {
673 * Non-stream, so get the whole packet by not
674 * specifying MSG_WAITALL and by specifying a large
675 * length.
677 * We have no use for control msg., but must grab them
678 * and then throw them away so we know what is going
679 * on.
681 sbinit(&sio, 100000000);
682 do {
683 rcvflg = 0;
684 error = so_pru_soreceive(so, NULL, NULL, &sio,
685 &control, &rcvflg);
686 if (control)
687 m_freem(control);
688 if (error == EWOULDBLOCK && rep) {
689 if (rep->r_flags & R_SOFTTERM) {
690 m_freem(sio.sb_mb);
691 return (EINTR);
694 } while (error == EWOULDBLOCK ||
695 (error == 0 && sio.sb_mb == NULL && control));
696 if ((rcvflg & MSG_EOR) == 0)
697 kprintf("Egad!!\n");
698 if (error == 0 && sio.sb_mb == NULL)
699 error = EPIPE;
700 len = sio.sb_cc;
701 *mp = sio.sb_mb;
703 errout:
704 if (error && error != EINTR && error != ERESTART) {
705 m_freem(*mp);
706 *mp = NULL;
707 if (error != EPIPE) {
708 log(LOG_INFO,
709 "receive error %d from nfs server %s\n",
710 error,
711 nmp->nm_mountp->mnt_stat.f_mntfromname);
713 error = nfs_sndlock(nmp, rep);
714 if (!error) {
715 error = nfs_reconnect(nmp, rep);
716 if (!error)
717 goto tryagain;
718 else
719 nfs_sndunlock(nmp);
722 } else {
723 if ((so = nmp->nm_so) == NULL)
724 return (EACCES);
725 if (so->so_state & SS_ISCONNECTED)
726 getnam = NULL;
727 else
728 getnam = aname;
729 sbinit(&sio, 100000000);
730 do {
731 rcvflg = 0;
732 error = so_pru_soreceive(so, getnam, NULL, &sio,
733 NULL, &rcvflg);
734 if (error == EWOULDBLOCK && rep &&
735 (rep->r_flags & R_SOFTTERM)) {
736 m_freem(sio.sb_mb);
737 return (EINTR);
739 } while (error == EWOULDBLOCK);
741 len = sio.sb_cc;
742 *mp = sio.sb_mb;
745 * A shutdown may result in no error and no mbuf.
746 * Convert to EPIPE.
748 if (*mp == NULL && error == 0)
749 error = EPIPE;
751 if (error) {
752 m_freem(*mp);
753 *mp = NULL;
757 * Search for any mbufs that are not a multiple of 4 bytes long
758 * or with m_data not longword aligned.
759 * These could cause pointer alignment problems, so copy them to
760 * well aligned mbufs.
762 nfs_realign(mp, 5 * NFSX_UNSIGNED);
763 return (error);
767 * Implement receipt of reply on a socket.
769 * We must search through the list of received datagrams matching them
770 * with outstanding requests using the xid, until ours is found.
772 * If myrep is NULL we process packets on the socket until
773 * interrupted or until nm_reqrxq is non-empty.
775 /* ARGSUSED */
777 nfs_reply(struct nfsmount *nmp, struct nfsreq *myrep)
779 struct nfsreq *rep;
780 struct sockaddr *nam;
781 u_int32_t rxid;
782 u_int32_t *tl;
783 int error;
784 struct nfsm_info info;
787 * Loop around until we get our own reply
789 for (;;) {
791 * Lock against other receivers so that I don't get stuck in
792 * sbwait() after someone else has received my reply for me.
793 * Also necessary for connection based protocols to avoid
794 * race conditions during a reconnect.
796 * If nfs_rcvlock() returns EALREADY, that means that
797 * the reply has already been recieved by another
798 * process and we can return immediately. In this
799 * case, the lock is not taken to avoid races with
800 * other processes.
802 info.mrep = NULL;
804 error = nfs_rcvlock(nmp, myrep);
805 if (error == EALREADY)
806 return (0);
807 if (error)
808 return (error);
811 * If myrep is NULL we are the receiver helper thread.
812 * Stop waiting for incoming replies if there are
813 * messages sitting on reqrxq that we need to process,
814 * or if a shutdown request is pending.
816 if (myrep == NULL && (TAILQ_FIRST(&nmp->nm_reqrxq) ||
817 nmp->nm_rxstate > NFSSVC_PENDING)) {
818 nfs_rcvunlock(nmp);
819 return(EWOULDBLOCK);
823 * Get the next Rpc reply off the socket
825 * We cannot release the receive lock until we've
826 * filled in rep->r_mrep, otherwise a waiting
827 * thread may deadlock in soreceive with no incoming
828 * packets expected.
830 error = nfs_receive(nmp, myrep, &nam, &info.mrep);
831 if (error) {
833 * Ignore routing errors on connectionless protocols??
835 nfs_rcvunlock(nmp);
836 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
837 if (nmp->nm_so == NULL)
838 return (error);
839 nmp->nm_so->so_error = 0;
840 continue;
842 return (error);
844 if (nam)
845 kfree(nam, M_SONAME);
848 * Get the xid and check that it is an rpc reply
850 info.md = info.mrep;
851 info.dpos = mtod(info.md, caddr_t);
852 NULLOUT(tl = nfsm_dissect(&info, 2*NFSX_UNSIGNED));
853 rxid = *tl++;
854 if (*tl != rpc_reply) {
855 nfsstats.rpcinvalid++;
856 m_freem(info.mrep);
857 info.mrep = NULL;
858 nfsmout:
859 nfs_rcvunlock(nmp);
860 continue;
864 * Loop through the request list to match up the reply
865 * Iff no match, just drop the datagram. On match, set
866 * r_mrep atomically to prevent the timer from messing
867 * around with the request after we have exited the critical
868 * section.
870 crit_enter();
871 TAILQ_FOREACH(rep, &nmp->nm_reqq, r_chain) {
872 if (rep->r_mrep == NULL && rxid == rep->r_xid)
873 break;
877 * Fill in the rest of the reply if we found a match.
879 * Deal with duplicate responses if there was no match.
881 if (rep) {
882 rep->r_md = info.md;
883 rep->r_dpos = info.dpos;
884 if (nfsrtton) {
885 struct rttl *rt;
887 rt = &nfsrtt.rttl[nfsrtt.pos];
888 rt->proc = rep->r_procnum;
889 rt->rto = 0;
890 rt->sent = 0;
891 rt->cwnd = nmp->nm_maxasync_scaled;
892 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
893 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
894 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
895 getmicrotime(&rt->tstamp);
896 if (rep->r_flags & R_TIMING)
897 rt->rtt = rep->r_rtt;
898 else
899 rt->rtt = 1000000;
900 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
904 * New congestion control is based only on async
905 * requests.
907 if (nmp->nm_maxasync_scaled < NFS_MAXASYNC_SCALED)
908 ++nmp->nm_maxasync_scaled;
909 if (rep->r_flags & R_SENT) {
910 rep->r_flags &= ~R_SENT;
913 * Update rtt using a gain of 0.125 on the mean
914 * and a gain of 0.25 on the deviation.
916 * NOTE SRTT/SDRTT are only good if R_TIMING is set.
918 if ((rep->r_flags & R_TIMING) && rep->r_rexmit == 0) {
920 * Since the timer resolution of
921 * NFS_HZ is so course, it can often
922 * result in r_rtt == 0. Since
923 * r_rtt == N means that the actual
924 * rtt is between N+dt and N+2-dt ticks,
925 * add 1.
927 int n;
928 int d;
930 #define NFSRSB NFS_RTT_SCALE_BITS
931 n = ((NFS_SRTT(rep) * 7) +
932 (rep->r_rtt << NFSRSB)) >> 3;
933 d = n - NFS_SRTT(rep);
934 NFS_SRTT(rep) = n;
937 * Don't let the jitter calculation decay
938 * too quickly, but we want a fast rampup.
940 if (d < 0)
941 d = -d;
942 d <<= NFSRSB;
943 if (d < NFS_SDRTT(rep))
944 n = ((NFS_SDRTT(rep) * 15) + d) >> 4;
945 else
946 n = ((NFS_SDRTT(rep) * 3) + d) >> 2;
947 NFS_SDRTT(rep) = n;
948 #undef NFSRSB
950 nmp->nm_timeouts = 0;
951 rep->r_mrep = info.mrep;
952 nfs_hardterm(rep, 0);
953 } else {
955 * Extract vers, prog, nfsver, procnum. A duplicate
956 * response means we didn't wait long enough so
957 * we increase the SRTT to avoid future spurious
958 * timeouts.
960 u_int procnum = nmp->nm_lastreprocnum;
961 int n;
963 if (procnum < NFS_NPROCS && proct[procnum]) {
964 if (nfs_showrexmit)
965 kprintf("D");
966 n = nmp->nm_srtt[proct[procnum]];
967 n += NFS_ASYSCALE * NFS_HZ;
968 if (n < NFS_ASYSCALE * NFS_HZ * 10)
969 n = NFS_ASYSCALE * NFS_HZ * 10;
970 nmp->nm_srtt[proct[procnum]] = n;
973 nfs_rcvunlock(nmp);
974 crit_exit();
977 * If not matched to a request, drop it.
978 * If it's mine, get out.
980 if (rep == NULL) {
981 nfsstats.rpcunexpected++;
982 m_freem(info.mrep);
983 info.mrep = NULL;
984 } else if (rep == myrep) {
985 if (rep->r_mrep == NULL)
986 panic("nfsreply nil");
987 return (0);
993 * Run the request state machine until the target state is reached
994 * or a fatal error occurs. The target state is not run. Specifying
995 * a target of NFSM_STATE_DONE runs the state machine until the rpc
996 * is complete.
998 * EINPROGRESS is returned for all states other then the DONE state,
999 * indicating that the rpc is still in progress.
1002 nfs_request(struct nfsm_info *info, nfsm_state_t bstate, nfsm_state_t estate)
1004 struct nfsreq *req;
1006 while (info->state >= bstate && info->state < estate) {
1007 switch(info->state) {
1008 case NFSM_STATE_SETUP:
1010 * Setup the nfsreq. Any error which occurs during
1011 * this state is fatal.
1013 info->error = nfs_request_setup(info);
1014 if (info->error) {
1015 info->state = NFSM_STATE_DONE;
1016 return (info->error);
1017 } else {
1018 req = info->req;
1019 req->r_mrp = &info->mrep;
1020 req->r_mdp = &info->md;
1021 req->r_dposp = &info->dpos;
1022 info->state = NFSM_STATE_AUTH;
1024 break;
1025 case NFSM_STATE_AUTH:
1027 * Authenticate the nfsreq. Any error which occurs
1028 * during this state is fatal.
1030 info->error = nfs_request_auth(info->req);
1031 if (info->error) {
1032 info->state = NFSM_STATE_DONE;
1033 return (info->error);
1034 } else {
1035 info->state = NFSM_STATE_TRY;
1037 break;
1038 case NFSM_STATE_TRY:
1040 * Transmit or retransmit attempt. An error in this
1041 * state is ignored and we always move on to the
1042 * next state.
1044 * This can trivially race the receiver if the
1045 * request is asynchronous. nfs_request_try()
1046 * will thus set the state for us and we
1047 * must also return immediately if we are
1048 * running an async state machine, because
1049 * info can become invalid due to races after
1050 * try() returns.
1052 if (info->req->r_flags & R_ASYNC) {
1053 nfs_request_try(info->req);
1054 if (estate == NFSM_STATE_WAITREPLY)
1055 return (EINPROGRESS);
1056 } else {
1057 nfs_request_try(info->req);
1058 info->state = NFSM_STATE_WAITREPLY;
1060 break;
1061 case NFSM_STATE_WAITREPLY:
1063 * Wait for a reply or timeout and move on to the
1064 * next state. The error returned by this state
1065 * is passed to the processing code in the next
1066 * state.
1068 info->error = nfs_request_waitreply(info->req);
1069 info->state = NFSM_STATE_PROCESSREPLY;
1070 break;
1071 case NFSM_STATE_PROCESSREPLY:
1073 * Process the reply or timeout. Errors which occur
1074 * in this state may cause the state machine to
1075 * go back to an earlier state, and are fatal
1076 * otherwise.
1078 info->error = nfs_request_processreply(info,
1079 info->error);
1080 switch(info->error) {
1081 case ENEEDAUTH:
1082 info->state = NFSM_STATE_AUTH;
1083 break;
1084 case EAGAIN:
1085 info->state = NFSM_STATE_TRY;
1086 break;
1087 default:
1089 * Operation complete, with or without an
1090 * error. We are done.
1092 info->req = NULL;
1093 info->state = NFSM_STATE_DONE;
1094 return (info->error);
1096 break;
1097 case NFSM_STATE_DONE:
1099 * Shouldn't be reached
1101 return (info->error);
1102 /* NOT REACHED */
1107 * If we are done return the error code (if any).
1108 * Otherwise return EINPROGRESS.
1110 if (info->state == NFSM_STATE_DONE)
1111 return (info->error);
1112 return (EINPROGRESS);
1116 * nfs_request - goes something like this
1117 * - fill in request struct
1118 * - links it into list
1119 * - calls nfs_send() for first transmit
1120 * - calls nfs_receive() to get reply
1121 * - break down rpc header and return with nfs reply pointed to
1122 * by mrep or error
1123 * nb: always frees up mreq mbuf list
1125 static int
1126 nfs_request_setup(nfsm_info_t info)
1128 struct nfsreq *req;
1129 struct nfsmount *nmp;
1130 struct mbuf *m;
1131 int i;
1134 * Reject requests while attempting a forced unmount.
1136 if (info->vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
1137 m_freem(info->mreq);
1138 info->mreq = NULL;
1139 return (EIO);
1141 nmp = VFSTONFS(info->vp->v_mount);
1142 req = kmalloc(sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
1143 req->r_nmp = nmp;
1144 req->r_vp = info->vp;
1145 req->r_td = info->td;
1146 req->r_procnum = info->procnum;
1147 req->r_mreq = NULL;
1148 req->r_cred = info->cred;
1150 i = 0;
1151 m = info->mreq;
1152 while (m) {
1153 i += m->m_len;
1154 m = m->m_next;
1156 req->r_mrest = info->mreq;
1157 req->r_mrest_len = i;
1160 * The presence of a non-NULL r_info in req indicates
1161 * async completion via our helper threads. See the receiver
1162 * code.
1164 if (info->bio) {
1165 req->r_info = info;
1166 req->r_flags = R_ASYNC;
1167 } else {
1168 req->r_info = NULL;
1169 req->r_flags = 0;
1171 info->req = req;
1172 return(0);
1175 static int
1176 nfs_request_auth(struct nfsreq *rep)
1178 struct nfsmount *nmp = rep->r_nmp;
1179 struct mbuf *m;
1180 char nickv[RPCX_NICKVERF];
1181 int error = 0, auth_len, auth_type;
1182 int verf_len;
1183 u_int32_t xid;
1184 char *auth_str, *verf_str;
1185 struct ucred *cred;
1187 cred = rep->r_cred;
1188 rep->r_failed_auth = 0;
1191 * Get the RPC header with authorization.
1193 verf_str = auth_str = NULL;
1194 if (nmp->nm_flag & NFSMNT_KERB) {
1195 verf_str = nickv;
1196 verf_len = sizeof (nickv);
1197 auth_type = RPCAUTH_KERB4;
1198 bzero((caddr_t)rep->r_key, sizeof(rep->r_key));
1199 if (rep->r_failed_auth ||
1200 nfs_getnickauth(nmp, cred, &auth_str, &auth_len,
1201 verf_str, verf_len)) {
1202 error = nfs_getauth(nmp, rep, cred, &auth_str,
1203 &auth_len, verf_str, &verf_len, rep->r_key);
1204 if (error) {
1205 m_freem(rep->r_mrest);
1206 rep->r_mrest = NULL;
1207 kfree((caddr_t)rep, M_NFSREQ);
1208 return (error);
1211 } else {
1212 auth_type = RPCAUTH_UNIX;
1213 if (cred->cr_ngroups < 1)
1214 panic("nfsreq nogrps");
1215 auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
1216 nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
1217 5 * NFSX_UNSIGNED;
1219 if (rep->r_mrest)
1220 nfs_checkpkt(rep->r_mrest, rep->r_mrest_len);
1221 m = nfsm_rpchead(cred, nmp->nm_flag, rep->r_procnum, auth_type,
1222 auth_len, auth_str, verf_len, verf_str,
1223 rep->r_mrest, rep->r_mrest_len, &rep->r_mheadend, &xid);
1224 rep->r_mrest = NULL;
1225 if (auth_str)
1226 kfree(auth_str, M_TEMP);
1229 * For stream protocols, insert a Sun RPC Record Mark.
1231 if (nmp->nm_sotype == SOCK_STREAM) {
1232 M_PREPEND(m, NFSX_UNSIGNED, MB_WAIT);
1233 if (m == NULL) {
1234 kfree(rep, M_NFSREQ);
1235 return (ENOBUFS);
1237 *mtod(m, u_int32_t *) = htonl(0x80000000 |
1238 (m->m_pkthdr.len - NFSX_UNSIGNED));
1241 nfs_checkpkt(m, m->m_pkthdr.len);
1243 rep->r_mreq = m;
1244 rep->r_xid = xid;
1245 return (0);
1248 static int
1249 nfs_request_try(struct nfsreq *rep)
1251 struct nfsmount *nmp = rep->r_nmp;
1252 struct mbuf *m2;
1253 int error;
1256 * Request is not on any queue, only the owner has access to it
1257 * so it should not be locked by anyone atm.
1259 * Interlock to prevent races. While locked the only remote
1260 * action possible is for r_mrep to be set (once we enqueue it).
1262 if (rep->r_flags == 0xdeadc0de) {
1263 print_backtrace(-1);
1264 panic("flags nbad");
1266 KKASSERT((rep->r_flags & (R_LOCKED | R_ONREQQ)) == 0);
1267 if (nmp->nm_flag & NFSMNT_SOFT)
1268 rep->r_retry = nmp->nm_retry;
1269 else
1270 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
1271 rep->r_rtt = rep->r_rexmit = 0;
1272 if (proct[rep->r_procnum] > 0)
1273 rep->r_flags |= R_TIMING | R_LOCKED;
1274 else
1275 rep->r_flags |= R_LOCKED;
1276 rep->r_mrep = NULL;
1278 nfsstats.rpcrequests++;
1280 if (nmp->nm_flag & NFSMNT_FORCE) {
1281 rep->r_flags |= R_SOFTTERM;
1282 rep->r_flags &= ~R_LOCKED;
1283 return (0);
1285 rep->r_flags |= R_NEEDSXMIT; /* in case send lock races us */
1288 * Do the client side RPC.
1290 * Chain request into list of outstanding requests. Be sure
1291 * to put it LAST so timer finds oldest requests first. Note
1292 * that our control of R_LOCKED prevents the request from
1293 * getting ripped out from under us or transmitted by the
1294 * timer code.
1296 * For requests with info structures we must atomically set the
1297 * info's state because the structure could become invalid upon
1298 * return due to races (i.e., if async)
1300 crit_enter();
1301 mtx_link_init(&rep->r_link);
1302 KKASSERT((rep->r_flags & R_ONREQQ) == 0);
1303 TAILQ_INSERT_TAIL(&nmp->nm_reqq, rep, r_chain);
1304 rep->r_flags |= R_ONREQQ;
1305 ++nmp->nm_reqqlen;
1306 if (rep->r_flags & R_ASYNC)
1307 rep->r_info->state = NFSM_STATE_WAITREPLY;
1308 crit_exit();
1310 error = 0;
1313 * Send if we can. Congestion control is not handled here any more
1314 * becausing trying to defer the initial send based on the nfs_timer
1315 * requires having a very fast nfs_timer, which is silly.
1317 if (nmp->nm_so) {
1318 if (nmp->nm_soflags & PR_CONNREQUIRED)
1319 error = nfs_sndlock(nmp, rep);
1320 if (error == 0 && (rep->r_flags & R_NEEDSXMIT)) {
1321 m2 = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT);
1322 error = nfs_send(nmp->nm_so, nmp->nm_nam, m2, rep);
1323 rep->r_flags &= ~R_NEEDSXMIT;
1324 if ((rep->r_flags & R_SENT) == 0) {
1325 rep->r_flags |= R_SENT;
1327 if (nmp->nm_soflags & PR_CONNREQUIRED)
1328 nfs_sndunlock(nmp);
1330 } else {
1331 rep->r_rtt = -1;
1333 if (error == EPIPE)
1334 error = 0;
1337 * Release the lock. The only remote action that may have occurred
1338 * would have been the setting of rep->r_mrep. If this occured
1339 * and the request was async we have to move it to the reader
1340 * thread's queue for action.
1342 * For async requests also make sure the reader is woken up so
1343 * it gets on the socket to read responses.
1345 crit_enter();
1346 if (rep->r_flags & R_ASYNC) {
1347 if (rep->r_mrep)
1348 nfs_hardterm(rep, 1);
1349 rep->r_flags &= ~R_LOCKED;
1350 nfssvc_iod_reader_wakeup(nmp);
1351 } else {
1352 rep->r_flags &= ~R_LOCKED;
1354 if (rep->r_flags & R_WANTED) {
1355 rep->r_flags &= ~R_WANTED;
1356 wakeup(rep);
1358 crit_exit();
1359 return (error);
1363 * This code is only called for synchronous requests. Completed synchronous
1364 * requests are left on reqq and we remove them before moving on to the
1365 * processing state.
1367 static int
1368 nfs_request_waitreply(struct nfsreq *rep)
1370 struct nfsmount *nmp = rep->r_nmp;
1371 int error;
1373 KKASSERT((rep->r_flags & R_ASYNC) == 0);
1376 * Wait until the request is finished.
1378 error = nfs_reply(nmp, rep);
1381 * RPC done, unlink the request, but don't rip it out from under
1382 * the callout timer.
1384 * Once unlinked no other receiver or the timer will have
1385 * visibility, so we do not have to set R_LOCKED.
1387 crit_enter();
1388 while (rep->r_flags & R_LOCKED) {
1389 rep->r_flags |= R_WANTED;
1390 tsleep(rep, 0, "nfstrac", 0);
1392 KKASSERT(rep->r_flags & R_ONREQQ);
1393 TAILQ_REMOVE(&nmp->nm_reqq, rep, r_chain);
1394 rep->r_flags &= ~R_ONREQQ;
1395 --nmp->nm_reqqlen;
1396 if (TAILQ_FIRST(&nmp->nm_bioq) &&
1397 nmp->nm_reqqlen <= nfs_maxasyncbio * 2 / 3) {
1398 nfssvc_iod_writer_wakeup(nmp);
1400 crit_exit();
1403 * Decrement the outstanding request count.
1405 if (rep->r_flags & R_SENT) {
1406 rep->r_flags &= ~R_SENT;
1408 return (error);
1412 * Process reply with error returned from nfs_requet_waitreply().
1414 * Returns EAGAIN if it wants us to loop up to nfs_request_try() again.
1415 * Returns ENEEDAUTH if it wants us to loop up to nfs_request_auth() again.
1417 static int
1418 nfs_request_processreply(nfsm_info_t info, int error)
1420 struct nfsreq *req = info->req;
1421 struct nfsmount *nmp = req->r_nmp;
1422 u_int32_t *tl;
1423 int verf_type;
1424 int i;
1427 * If there was a successful reply and a tprintf msg.
1428 * tprintf a response.
1430 if (error == 0 && (req->r_flags & R_TPRINTFMSG)) {
1431 nfs_msg(req->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
1432 "is alive again");
1434 info->mrep = req->r_mrep;
1435 info->md = req->r_md;
1436 info->dpos = req->r_dpos;
1437 if (error) {
1438 m_freem(req->r_mreq);
1439 req->r_mreq = NULL;
1440 kfree(req, M_NFSREQ);
1441 info->req = NULL;
1442 return (error);
1446 * break down the rpc header and check if ok
1448 NULLOUT(tl = nfsm_dissect(info, 3 * NFSX_UNSIGNED));
1449 if (*tl++ == rpc_msgdenied) {
1450 if (*tl == rpc_mismatch) {
1451 error = EOPNOTSUPP;
1452 } else if ((nmp->nm_flag & NFSMNT_KERB) &&
1453 *tl++ == rpc_autherr) {
1454 if (req->r_failed_auth == 0) {
1455 req->r_failed_auth++;
1456 req->r_mheadend->m_next = NULL;
1457 m_freem(info->mrep);
1458 info->mrep = NULL;
1459 m_freem(req->r_mreq);
1460 req->r_mreq = NULL;
1461 return (ENEEDAUTH);
1462 } else {
1463 error = EAUTH;
1465 } else {
1466 error = EACCES;
1468 m_freem(info->mrep);
1469 info->mrep = NULL;
1470 m_freem(req->r_mreq);
1471 req->r_mreq = NULL;
1472 kfree(req, M_NFSREQ);
1473 info->req = NULL;
1474 return (error);
1478 * Grab any Kerberos verifier, otherwise just throw it away.
1480 verf_type = fxdr_unsigned(int, *tl++);
1481 i = fxdr_unsigned(int32_t, *tl);
1482 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1483 error = nfs_savenickauth(nmp, req->r_cred, i, req->r_key,
1484 &info->md, &info->dpos, info->mrep);
1485 if (error)
1486 goto nfsmout;
1487 } else if (i > 0) {
1488 ERROROUT(nfsm_adv(info, nfsm_rndup(i)));
1490 NULLOUT(tl = nfsm_dissect(info, NFSX_UNSIGNED));
1491 /* 0 == ok */
1492 if (*tl == 0) {
1493 NULLOUT(tl = nfsm_dissect(info, NFSX_UNSIGNED));
1494 if (*tl != 0) {
1495 error = fxdr_unsigned(int, *tl);
1498 * Does anyone even implement this? Just impose
1499 * a 1-second delay.
1501 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1502 error == NFSERR_TRYLATER) {
1503 m_freem(info->mrep);
1504 info->mrep = NULL;
1505 error = 0;
1507 tsleep((caddr_t)&lbolt, 0, "nqnfstry", 0);
1508 return (EAGAIN); /* goto tryagain */
1512 * If the File Handle was stale, invalidate the
1513 * lookup cache, just in case.
1515 * To avoid namecache<->vnode deadlocks we must
1516 * release the vnode lock if we hold it.
1518 if (error == ESTALE) {
1519 struct vnode *vp = req->r_vp;
1520 int ltype;
1522 ltype = lockstatus(&vp->v_lock, curthread);
1523 if (ltype == LK_EXCLUSIVE || ltype == LK_SHARED)
1524 lockmgr(&vp->v_lock, LK_RELEASE);
1525 cache_inval_vp(vp, CINV_CHILDREN);
1526 if (ltype == LK_EXCLUSIVE || ltype == LK_SHARED)
1527 lockmgr(&vp->v_lock, ltype);
1529 if (nmp->nm_flag & NFSMNT_NFSV3) {
1530 KKASSERT(*req->r_mrp == info->mrep);
1531 KKASSERT(*req->r_mdp == info->md);
1532 KKASSERT(*req->r_dposp == info->dpos);
1533 error |= NFSERR_RETERR;
1534 } else {
1535 m_freem(info->mrep);
1536 info->mrep = NULL;
1538 m_freem(req->r_mreq);
1539 req->r_mreq = NULL;
1540 kfree(req, M_NFSREQ);
1541 info->req = NULL;
1542 return (error);
1545 KKASSERT(*req->r_mrp == info->mrep);
1546 KKASSERT(*req->r_mdp == info->md);
1547 KKASSERT(*req->r_dposp == info->dpos);
1548 m_freem(req->r_mreq);
1549 req->r_mreq = NULL;
1550 kfree(req, M_NFSREQ);
1551 return (0);
1553 m_freem(info->mrep);
1554 info->mrep = NULL;
1555 error = EPROTONOSUPPORT;
1556 nfsmout:
1557 m_freem(req->r_mreq);
1558 req->r_mreq = NULL;
1559 kfree(req, M_NFSREQ);
1560 info->req = NULL;
1561 return (error);
1564 #ifndef NFS_NOSERVER
1566 * Generate the rpc reply header
1567 * siz arg. is used to decide if adding a cluster is worthwhile
1570 nfs_rephead(int siz, struct nfsrv_descript *nd, struct nfssvc_sock *slp,
1571 int err, struct mbuf **mrq, struct mbuf **mbp, caddr_t *bposp)
1573 u_int32_t *tl;
1574 struct nfsm_info info;
1576 siz += RPC_REPLYSIZ;
1577 info.mb = m_getl(max_hdr + siz, MB_WAIT, MT_DATA, M_PKTHDR, NULL);
1578 info.mreq = info.mb;
1579 info.mreq->m_pkthdr.len = 0;
1581 * If this is not a cluster, try and leave leading space
1582 * for the lower level headers.
1584 if ((max_hdr + siz) < MINCLSIZE)
1585 info.mreq->m_data += max_hdr;
1586 tl = mtod(info.mreq, u_int32_t *);
1587 info.mreq->m_len = 6 * NFSX_UNSIGNED;
1588 info.bpos = ((caddr_t)tl) + info.mreq->m_len;
1589 *tl++ = txdr_unsigned(nd->nd_retxid);
1590 *tl++ = rpc_reply;
1591 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1592 *tl++ = rpc_msgdenied;
1593 if (err & NFSERR_AUTHERR) {
1594 *tl++ = rpc_autherr;
1595 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1596 info.mreq->m_len -= NFSX_UNSIGNED;
1597 info.bpos -= NFSX_UNSIGNED;
1598 } else {
1599 *tl++ = rpc_mismatch;
1600 *tl++ = txdr_unsigned(RPC_VER2);
1601 *tl = txdr_unsigned(RPC_VER2);
1603 } else {
1604 *tl++ = rpc_msgaccepted;
1607 * For Kerberos authentication, we must send the nickname
1608 * verifier back, otherwise just RPCAUTH_NULL.
1610 if (nd->nd_flag & ND_KERBFULL) {
1611 struct nfsuid *nuidp;
1612 struct timeval ktvout;
1614 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1615 nuidp != NULL; nuidp = nuidp->nu_hash.le_next) {
1616 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1617 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1618 &nuidp->nu_haddr, nd->nd_nam2)))
1619 break;
1621 if (nuidp) {
1623 * Encrypt the timestamp in ecb mode using the
1624 * session key.
1626 #ifdef NFSKERB
1628 #else
1629 ktvout.tv_sec = 0;
1630 ktvout.tv_usec = 0;
1631 #endif
1633 *tl++ = rpc_auth_kerb;
1634 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1635 *tl = ktvout.tv_sec;
1636 tl = nfsm_build(&info, 3 * NFSX_UNSIGNED);
1637 *tl++ = ktvout.tv_usec;
1638 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1639 } else {
1640 *tl++ = 0;
1641 *tl++ = 0;
1643 } else {
1644 *tl++ = 0;
1645 *tl++ = 0;
1647 switch (err) {
1648 case EPROGUNAVAIL:
1649 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1650 break;
1651 case EPROGMISMATCH:
1652 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1653 tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
1654 *tl++ = txdr_unsigned(2);
1655 *tl = txdr_unsigned(3);
1656 break;
1657 case EPROCUNAVAIL:
1658 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1659 break;
1660 case EBADRPC:
1661 *tl = txdr_unsigned(RPC_GARBAGE);
1662 break;
1663 default:
1664 *tl = 0;
1665 if (err != NFSERR_RETVOID) {
1666 tl = nfsm_build(&info, NFSX_UNSIGNED);
1667 if (err)
1668 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1669 else
1670 *tl = 0;
1672 break;
1676 if (mrq != NULL)
1677 *mrq = info.mreq;
1678 *mbp = info.mb;
1679 *bposp = info.bpos;
1680 if (err != 0 && err != NFSERR_RETVOID)
1681 nfsstats.srvrpc_errs++;
1682 return (0);
1686 #endif /* NFS_NOSERVER */
1689 * Nfs timer routine.
1691 * Scan the nfsreq list and retranmit any requests that have timed out
1692 * To avoid retransmission attempts on STREAM sockets (in the future) make
1693 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1695 * Requests with attached responses, terminated requests, and
1696 * locked requests are ignored. Locked requests will be picked up
1697 * in a later timer call.
1699 void
1700 nfs_timer_callout(void *arg /* never used */)
1702 struct nfsmount *nmp;
1703 struct nfsreq *req;
1704 #ifndef NFS_NOSERVER
1705 struct nfssvc_sock *slp;
1706 u_quad_t cur_usec;
1707 #endif /* NFS_NOSERVER */
1709 lwkt_gettoken(&nfs_token);
1710 TAILQ_FOREACH(nmp, &nfs_mountq, nm_entry) {
1711 lwkt_gettoken(&nmp->nm_token);
1712 TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1713 KKASSERT(nmp == req->r_nmp);
1714 if (req->r_mrep)
1715 continue;
1716 if (req->r_flags & (R_SOFTTERM | R_LOCKED))
1717 continue;
1720 * Handle timeout/retry. Be sure to process r_mrep
1721 * for async requests that completed while we had
1722 * the request locked or they will hang in the reqq
1723 * forever.
1725 req->r_flags |= R_LOCKED;
1726 if (nfs_sigintr(nmp, req, req->r_td)) {
1727 nfs_softterm(req, 1);
1728 req->r_flags &= ~R_LOCKED;
1729 } else {
1730 nfs_timer_req(req);
1731 if (req->r_flags & R_ASYNC) {
1732 if (req->r_mrep)
1733 nfs_hardterm(req, 1);
1734 req->r_flags &= ~R_LOCKED;
1735 nfssvc_iod_reader_wakeup(nmp);
1736 } else {
1737 req->r_flags &= ~R_LOCKED;
1740 if (req->r_flags & R_WANTED) {
1741 req->r_flags &= ~R_WANTED;
1742 wakeup(req);
1745 lwkt_reltoken(&nmp->nm_token);
1747 #ifndef NFS_NOSERVER
1750 * Scan the write gathering queues for writes that need to be
1751 * completed now.
1753 cur_usec = nfs_curusec();
1755 TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
1756 /* XXX race against removal */
1757 if (lwkt_trytoken(&slp->ns_token)) {
1758 if (slp->ns_tq.lh_first &&
1759 (slp->ns_tq.lh_first->nd_time <= cur_usec)) {
1760 nfsrv_wakenfsd(slp, 1);
1762 lwkt_reltoken(&slp->ns_token);
1765 #endif /* NFS_NOSERVER */
1767 callout_reset(&nfs_timer_handle, nfs_ticks, nfs_timer_callout, NULL);
1768 lwkt_reltoken(&nfs_token);
1771 static
1772 void
1773 nfs_timer_req(struct nfsreq *req)
1775 struct thread *td = &thread0; /* XXX for creds, will break if sleep */
1776 struct nfsmount *nmp = req->r_nmp;
1777 struct mbuf *m;
1778 struct socket *so;
1779 int timeo;
1780 int error;
1783 * rtt ticks and timeout calculation. Return if the timeout
1784 * has not been reached yet, unless the packet is flagged
1785 * for an immediate send.
1787 * The mean rtt doesn't help when we get random I/Os, we have
1788 * to multiply by fairly large numbers.
1790 if (req->r_rtt >= 0) {
1792 * Calculate the timeout to test against.
1794 req->r_rtt++;
1795 if (nmp->nm_flag & NFSMNT_DUMBTIMR) {
1796 timeo = nmp->nm_timeo << NFS_RTT_SCALE_BITS;
1797 } else if (req->r_flags & R_TIMING) {
1798 timeo = NFS_SRTT(req) + NFS_SDRTT(req);
1799 } else {
1800 timeo = nmp->nm_timeo << NFS_RTT_SCALE_BITS;
1802 timeo *= multt[req->r_procnum];
1803 /* timeo is still scaled by SCALE_BITS */
1805 #define NFSFS (NFS_RTT_SCALE * NFS_HZ)
1806 if (req->r_flags & R_TIMING) {
1807 static long last_time;
1808 if (nfs_showrtt && last_time != time_second) {
1809 kprintf("rpccmd %d NFS SRTT %d SDRTT %d "
1810 "timeo %d.%03d\n",
1811 proct[req->r_procnum],
1812 NFS_SRTT(req), NFS_SDRTT(req),
1813 timeo / NFSFS,
1814 timeo % NFSFS * 1000 / NFSFS);
1815 last_time = time_second;
1818 #undef NFSFS
1821 * deal with nfs_timer jitter.
1823 timeo = (timeo >> NFS_RTT_SCALE_BITS) + 1;
1824 if (timeo < 2)
1825 timeo = 2;
1827 if (nmp->nm_timeouts > 0)
1828 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1829 if (timeo > NFS_MAXTIMEO)
1830 timeo = NFS_MAXTIMEO;
1831 if (req->r_rtt <= timeo) {
1832 if ((req->r_flags & R_NEEDSXMIT) == 0)
1833 return;
1834 } else if (nmp->nm_timeouts < 8) {
1835 nmp->nm_timeouts++;
1840 * Check for server not responding
1842 if ((req->r_flags & R_TPRINTFMSG) == 0 &&
1843 req->r_rexmit > nmp->nm_deadthresh) {
1844 nfs_msg(req->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
1845 "not responding");
1846 req->r_flags |= R_TPRINTFMSG;
1848 if (req->r_rexmit >= req->r_retry) { /* too many */
1849 nfsstats.rpctimeouts++;
1850 nfs_softterm(req, 1);
1851 return;
1855 * Generally disable retransmission on reliable sockets,
1856 * unless the request is flagged for immediate send.
1858 if (nmp->nm_sotype != SOCK_DGRAM) {
1859 if (++req->r_rexmit > NFS_MAXREXMIT)
1860 req->r_rexmit = NFS_MAXREXMIT;
1861 if ((req->r_flags & R_NEEDSXMIT) == 0)
1862 return;
1866 * Stop here if we do not have a socket!
1868 if ((so = nmp->nm_so) == NULL)
1869 return;
1872 * If there is enough space and the window allows.. resend it.
1874 * r_rtt is left intact in case we get an answer after the
1875 * retry that was a reply to the original packet.
1877 * NOTE: so_pru_send()
1879 if (ssb_space(&so->so_snd) >= req->r_mreq->m_pkthdr.len &&
1880 (req->r_flags & (R_SENT | R_NEEDSXMIT)) &&
1881 (m = m_copym(req->r_mreq, 0, M_COPYALL, MB_DONTWAIT))){
1882 if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1883 error = so_pru_send(so, 0, m, NULL, NULL, td);
1884 else
1885 error = so_pru_send(so, 0, m, nmp->nm_nam, NULL, td);
1886 if (error) {
1887 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
1888 so->so_error = 0;
1889 req->r_flags |= R_NEEDSXMIT;
1890 } else if (req->r_mrep == NULL) {
1892 * Iff first send, start timing
1893 * else turn timing off, backoff timer
1894 * and divide congestion window by 2.
1896 * It is possible for the so_pru_send() to
1897 * block and for us to race a reply so we
1898 * only do this if the reply field has not
1899 * been filled in. R_LOCKED will prevent
1900 * the request from being ripped out from under
1901 * us entirely.
1903 * Record the last resent procnum to aid us
1904 * in duplicate detection on receive.
1906 if ((req->r_flags & R_NEEDSXMIT) == 0) {
1907 if (nfs_showrexmit)
1908 kprintf("X");
1909 if (++req->r_rexmit > NFS_MAXREXMIT)
1910 req->r_rexmit = NFS_MAXREXMIT;
1911 nmp->nm_maxasync_scaled >>= 1;
1912 if (nmp->nm_maxasync_scaled < NFS_MINASYNC_SCALED)
1913 nmp->nm_maxasync_scaled = NFS_MINASYNC_SCALED;
1914 nfsstats.rpcretries++;
1915 nmp->nm_lastreprocnum = req->r_procnum;
1916 } else {
1917 req->r_flags |= R_SENT;
1918 req->r_flags &= ~R_NEEDSXMIT;
1925 * Mark all of an nfs mount's outstanding requests with R_SOFTTERM and
1926 * wait for all requests to complete. This is used by forced unmounts
1927 * to terminate any outstanding RPCs.
1929 * Locked requests cannot be canceled but will be marked for
1930 * soft-termination.
1933 nfs_nmcancelreqs(struct nfsmount *nmp)
1935 struct nfsreq *req;
1936 int i;
1938 crit_enter();
1939 TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1940 if (req->r_mrep != NULL || (req->r_flags & R_SOFTTERM))
1941 continue;
1942 nfs_softterm(req, 0);
1944 /* XXX the other two queues as well */
1945 crit_exit();
1947 for (i = 0; i < 30; i++) {
1948 crit_enter();
1949 TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1950 if (nmp == req->r_nmp)
1951 break;
1953 crit_exit();
1954 if (req == NULL)
1955 return (0);
1956 tsleep(&lbolt, 0, "nfscancel", 0);
1958 return (EBUSY);
1962 * Soft-terminate a request, effectively marking it as failed.
1964 * Must be called from within a critical section.
1966 static void
1967 nfs_softterm(struct nfsreq *rep, int islocked)
1969 rep->r_flags |= R_SOFTTERM;
1970 nfs_hardterm(rep, islocked);
1974 * Hard-terminate a request, typically after getting a response.
1976 * The state machine can still decide to re-issue it later if necessary.
1978 * Must be called from within a critical section.
1980 static void
1981 nfs_hardterm(struct nfsreq *rep, int islocked)
1983 struct nfsmount *nmp = rep->r_nmp;
1986 * The nm_send count is decremented now to avoid deadlocks
1987 * when the process in soreceive() hasn't yet managed to send
1988 * its own request.
1990 if (rep->r_flags & R_SENT) {
1991 rep->r_flags &= ~R_SENT;
1995 * If we locked the request or nobody else has locked the request,
1996 * and the request is async, we can move it to the reader thread's
1997 * queue now and fix up the state.
1999 * If we locked the request or nobody else has locked the request,
2000 * we can wake up anyone blocked waiting for a response on the
2001 * request.
2003 if (islocked || (rep->r_flags & R_LOCKED) == 0) {
2004 if ((rep->r_flags & (R_ONREQQ | R_ASYNC)) ==
2005 (R_ONREQQ | R_ASYNC)) {
2006 rep->r_flags &= ~R_ONREQQ;
2007 TAILQ_REMOVE(&nmp->nm_reqq, rep, r_chain);
2008 --nmp->nm_reqqlen;
2009 TAILQ_INSERT_TAIL(&nmp->nm_reqrxq, rep, r_chain);
2010 KKASSERT(rep->r_info->state == NFSM_STATE_TRY ||
2011 rep->r_info->state == NFSM_STATE_WAITREPLY);
2012 rep->r_info->state = NFSM_STATE_PROCESSREPLY;
2013 nfssvc_iod_reader_wakeup(nmp);
2014 if (TAILQ_FIRST(&nmp->nm_bioq) &&
2015 nmp->nm_reqqlen <= nfs_maxasyncbio * 2 / 3) {
2016 nfssvc_iod_writer_wakeup(nmp);
2019 mtx_abort_ex_link(&nmp->nm_rxlock, &rep->r_link);
2024 * Test for a termination condition pending on the process.
2025 * This is used for NFSMNT_INT mounts.
2028 nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td)
2030 sigset_t tmpset;
2031 struct proc *p;
2032 struct lwp *lp;
2034 if (rep && (rep->r_flags & R_SOFTTERM))
2035 return (EINTR);
2036 /* Terminate all requests while attempting a forced unmount. */
2037 if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)
2038 return (EINTR);
2039 if (!(nmp->nm_flag & NFSMNT_INT))
2040 return (0);
2041 /* td might be NULL YYY */
2042 if (td == NULL || (p = td->td_proc) == NULL)
2043 return (0);
2045 lp = td->td_lwp;
2046 tmpset = lwp_sigpend(lp);
2047 SIGSETNAND(tmpset, lp->lwp_sigmask);
2048 SIGSETNAND(tmpset, p->p_sigignore);
2049 if (SIGNOTEMPTY(tmpset) && NFSINT_SIGMASK(tmpset))
2050 return (EINTR);
2052 return (0);
2056 * Lock a socket against others.
2057 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
2058 * and also to avoid race conditions between the processes with nfs requests
2059 * in progress when a reconnect is necessary.
2062 nfs_sndlock(struct nfsmount *nmp, struct nfsreq *rep)
2064 mtx_t mtx = &nmp->nm_txlock;
2065 struct thread *td;
2066 int slptimeo;
2067 int slpflag;
2068 int error;
2070 slpflag = 0;
2071 slptimeo = 0;
2072 td = rep ? rep->r_td : NULL;
2073 if (nmp->nm_flag & NFSMNT_INT)
2074 slpflag = PCATCH;
2076 while ((error = mtx_lock_ex_try(mtx)) != 0) {
2077 if (nfs_sigintr(nmp, rep, td)) {
2078 error = EINTR;
2079 break;
2081 error = mtx_lock_ex(mtx, "nfsndlck", slpflag, slptimeo);
2082 if (error == 0)
2083 break;
2084 if (slpflag == PCATCH) {
2085 slpflag = 0;
2086 slptimeo = 2 * hz;
2089 /* Always fail if our request has been cancelled. */
2090 if (rep && (rep->r_flags & R_SOFTTERM)) {
2091 if (error == 0)
2092 mtx_unlock(mtx);
2093 error = EINTR;
2095 return (error);
2099 * Unlock the stream socket for others.
2101 void
2102 nfs_sndunlock(struct nfsmount *nmp)
2104 mtx_unlock(&nmp->nm_txlock);
2108 * Lock the receiver side of the socket.
2110 * rep may be NULL.
2112 static int
2113 nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep)
2115 mtx_t mtx = &nmp->nm_rxlock;
2116 int slpflag;
2117 int slptimeo;
2118 int error;
2121 * Unconditionally check for completion in case another nfsiod
2122 * get the packet while the caller was blocked, before the caller
2123 * called us. Packet reception is handled by mainline code which
2124 * is protected by the BGL at the moment.
2126 * We do not strictly need the second check just before the
2127 * tsleep(), but it's good defensive programming.
2129 if (rep && rep->r_mrep != NULL)
2130 return (EALREADY);
2132 if (nmp->nm_flag & NFSMNT_INT)
2133 slpflag = PCATCH;
2134 else
2135 slpflag = 0;
2136 slptimeo = 0;
2138 while ((error = mtx_lock_ex_try(mtx)) != 0) {
2139 if (nfs_sigintr(nmp, rep, (rep ? rep->r_td : NULL))) {
2140 error = EINTR;
2141 break;
2143 if (rep && rep->r_mrep != NULL) {
2144 error = EALREADY;
2145 break;
2149 * NOTE: can return ENOLCK, but in that case rep->r_mrep
2150 * will already be set.
2152 if (rep) {
2153 error = mtx_lock_ex_link(mtx, &rep->r_link,
2154 "nfsrcvlk",
2155 slpflag, slptimeo);
2156 } else {
2157 error = mtx_lock_ex(mtx, "nfsrcvlk", slpflag, slptimeo);
2159 if (error == 0)
2160 break;
2163 * If our reply was recieved while we were sleeping,
2164 * then just return without taking the lock to avoid a
2165 * situation where a single iod could 'capture' the
2166 * recieve lock.
2168 if (rep && rep->r_mrep != NULL) {
2169 error = EALREADY;
2170 break;
2172 if (slpflag == PCATCH) {
2173 slpflag = 0;
2174 slptimeo = 2 * hz;
2177 if (error == 0) {
2178 if (rep && rep->r_mrep != NULL) {
2179 error = EALREADY;
2180 mtx_unlock(mtx);
2183 return (error);
2187 * Unlock the stream socket for others.
2189 static void
2190 nfs_rcvunlock(struct nfsmount *nmp)
2192 mtx_unlock(&nmp->nm_rxlock);
2196 * nfs_realign:
2198 * Check for badly aligned mbuf data and realign by copying the unaligned
2199 * portion of the data into a new mbuf chain and freeing the portions
2200 * of the old chain that were replaced.
2202 * We cannot simply realign the data within the existing mbuf chain
2203 * because the underlying buffers may contain other rpc commands and
2204 * we cannot afford to overwrite them.
2206 * We would prefer to avoid this situation entirely. The situation does
2207 * not occur with NFS/UDP and is supposed to only occassionally occur
2208 * with TCP. Use vfs.nfs.realign_count and realign_test to check this.
2210 * NOTE! MB_DONTWAIT cannot be used here. The mbufs must be acquired
2211 * because the rpc request OR reply cannot be thrown away. TCP NFS
2212 * mounts do not retry their RPCs unless the TCP connection itself
2213 * is dropped so throwing away a RPC will basically cause the NFS
2214 * operation to lockup indefinitely.
2216 static void
2217 nfs_realign(struct mbuf **pm, int hsiz)
2219 struct mbuf *m;
2220 struct mbuf *n = NULL;
2223 * Check for misalignemnt
2225 ++nfs_realign_test;
2226 while ((m = *pm) != NULL) {
2227 if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3))
2228 break;
2229 pm = &m->m_next;
2233 * If misalignment found make a completely new copy.
2235 if (m) {
2236 ++nfs_realign_count;
2237 n = m_dup_data(m, MB_WAIT);
2238 m_freem(*pm);
2239 *pm = n;
2243 #ifndef NFS_NOSERVER
2246 * Parse an RPC request
2247 * - verify it
2248 * - fill in the cred struct.
2251 nfs_getreq(struct nfsrv_descript *nd, struct nfsd *nfsd, int has_header)
2253 int len, i;
2254 u_int32_t *tl;
2255 struct uio uio;
2256 struct iovec iov;
2257 caddr_t cp;
2258 u_int32_t nfsvers, auth_type;
2259 uid_t nickuid;
2260 int error = 0, ticklen;
2261 struct nfsuid *nuidp;
2262 struct timeval tvin, tvout;
2263 struct nfsm_info info;
2264 #if 0 /* until encrypted keys are implemented */
2265 NFSKERBKEYSCHED_T keys; /* stores key schedule */
2266 #endif
2268 info.mrep = nd->nd_mrep;
2269 info.md = nd->nd_md;
2270 info.dpos = nd->nd_dpos;
2272 if (has_header) {
2273 NULLOUT(tl = nfsm_dissect(&info, 10 * NFSX_UNSIGNED));
2274 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
2275 if (*tl++ != rpc_call) {
2276 m_freem(info.mrep);
2277 return (EBADRPC);
2279 } else {
2280 NULLOUT(tl = nfsm_dissect(&info, 8 * NFSX_UNSIGNED));
2282 nd->nd_repstat = 0;
2283 nd->nd_flag = 0;
2284 if (*tl++ != rpc_vers) {
2285 nd->nd_repstat = ERPCMISMATCH;
2286 nd->nd_procnum = NFSPROC_NOOP;
2287 return (0);
2289 if (*tl != nfs_prog) {
2290 nd->nd_repstat = EPROGUNAVAIL;
2291 nd->nd_procnum = NFSPROC_NOOP;
2292 return (0);
2294 tl++;
2295 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
2296 if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) {
2297 nd->nd_repstat = EPROGMISMATCH;
2298 nd->nd_procnum = NFSPROC_NOOP;
2299 return (0);
2301 if (nfsvers == NFS_VER3)
2302 nd->nd_flag = ND_NFSV3;
2303 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
2304 if (nd->nd_procnum == NFSPROC_NULL)
2305 return (0);
2306 if (nd->nd_procnum >= NFS_NPROCS ||
2307 (nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
2308 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
2309 nd->nd_repstat = EPROCUNAVAIL;
2310 nd->nd_procnum = NFSPROC_NOOP;
2311 return (0);
2313 if ((nd->nd_flag & ND_NFSV3) == 0)
2314 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
2315 auth_type = *tl++;
2316 len = fxdr_unsigned(int, *tl++);
2317 if (len < 0 || len > RPCAUTH_MAXSIZ) {
2318 m_freem(info.mrep);
2319 return (EBADRPC);
2322 nd->nd_flag &= ~ND_KERBAUTH;
2324 * Handle auth_unix or auth_kerb.
2326 if (auth_type == rpc_auth_unix) {
2327 len = fxdr_unsigned(int, *++tl);
2328 if (len < 0 || len > NFS_MAXNAMLEN) {
2329 m_freem(info.mrep);
2330 return (EBADRPC);
2332 ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2333 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2334 bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
2335 nd->nd_cr.cr_ref = 1;
2336 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
2337 nd->nd_cr.cr_ruid = nd->nd_cr.cr_svuid = nd->nd_cr.cr_uid;
2338 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
2339 nd->nd_cr.cr_rgid = nd->nd_cr.cr_svgid = nd->nd_cr.cr_gid;
2340 len = fxdr_unsigned(int, *tl);
2341 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
2342 m_freem(info.mrep);
2343 return (EBADRPC);
2345 NULLOUT(tl = nfsm_dissect(&info, (len + 2) * NFSX_UNSIGNED));
2346 for (i = 1; i <= len; i++)
2347 if (i < NGROUPS)
2348 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
2349 else
2350 tl++;
2351 nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1);
2352 if (nd->nd_cr.cr_ngroups > 1)
2353 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
2354 len = fxdr_unsigned(int, *++tl);
2355 if (len < 0 || len > RPCAUTH_MAXSIZ) {
2356 m_freem(info.mrep);
2357 return (EBADRPC);
2359 if (len > 0) {
2360 ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2362 } else if (auth_type == rpc_auth_kerb) {
2363 switch (fxdr_unsigned(int, *tl++)) {
2364 case RPCAKN_FULLNAME:
2365 ticklen = fxdr_unsigned(int, *tl);
2366 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
2367 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
2368 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
2369 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
2370 m_freem(info.mrep);
2371 return (EBADRPC);
2373 uio.uio_offset = 0;
2374 uio.uio_iov = &iov;
2375 uio.uio_iovcnt = 1;
2376 uio.uio_segflg = UIO_SYSSPACE;
2377 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
2378 iov.iov_len = RPCAUTH_MAXSIZ - 4;
2379 ERROROUT(nfsm_mtouio(&info, &uio, uio.uio_resid));
2380 NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2381 if (*tl++ != rpc_auth_kerb ||
2382 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
2383 kprintf("Bad kerb verifier\n");
2384 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2385 nd->nd_procnum = NFSPROC_NOOP;
2386 return (0);
2388 NULLOUT(cp = nfsm_dissect(&info, 4 * NFSX_UNSIGNED));
2389 tl = (u_int32_t *)cp;
2390 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
2391 kprintf("Not fullname kerb verifier\n");
2392 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2393 nd->nd_procnum = NFSPROC_NOOP;
2394 return (0);
2396 cp += NFSX_UNSIGNED;
2397 bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
2398 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
2399 nd->nd_flag |= ND_KERBFULL;
2400 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
2401 break;
2402 case RPCAKN_NICKNAME:
2403 if (len != 2 * NFSX_UNSIGNED) {
2404 kprintf("Kerb nickname short\n");
2405 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
2406 nd->nd_procnum = NFSPROC_NOOP;
2407 return (0);
2409 nickuid = fxdr_unsigned(uid_t, *tl);
2410 NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2411 if (*tl++ != rpc_auth_kerb ||
2412 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
2413 kprintf("Kerb nick verifier bad\n");
2414 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2415 nd->nd_procnum = NFSPROC_NOOP;
2416 return (0);
2418 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2419 tvin.tv_sec = *tl++;
2420 tvin.tv_usec = *tl;
2422 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
2423 nuidp != NULL; nuidp = nuidp->nu_hash.le_next) {
2424 if (nuidp->nu_cr.cr_uid == nickuid &&
2425 (!nd->nd_nam2 ||
2426 netaddr_match(NU_NETFAM(nuidp),
2427 &nuidp->nu_haddr, nd->nd_nam2)))
2428 break;
2430 if (!nuidp) {
2431 nd->nd_repstat =
2432 (NFSERR_AUTHERR|AUTH_REJECTCRED);
2433 nd->nd_procnum = NFSPROC_NOOP;
2434 return (0);
2438 * Now, decrypt the timestamp using the session key
2439 * and validate it.
2441 #ifdef NFSKERB
2443 #else
2444 tvout.tv_sec = 0;
2445 tvout.tv_usec = 0;
2446 #endif
2448 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
2449 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
2450 if (nuidp->nu_expire < time_second ||
2451 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
2452 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
2453 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
2454 nuidp->nu_expire = 0;
2455 nd->nd_repstat =
2456 (NFSERR_AUTHERR|AUTH_REJECTVERF);
2457 nd->nd_procnum = NFSPROC_NOOP;
2458 return (0);
2460 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
2461 nd->nd_flag |= ND_KERBNICK;
2462 break;
2464 } else {
2465 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
2466 nd->nd_procnum = NFSPROC_NOOP;
2467 return (0);
2470 nd->nd_md = info.md;
2471 nd->nd_dpos = info.dpos;
2472 return (0);
2473 nfsmout:
2474 return (error);
2477 #endif
2480 * Send a message to the originating process's terminal. The thread and/or
2481 * process may be NULL. YYY the thread should not be NULL but there may
2482 * still be some uio_td's that are still being passed as NULL through to
2483 * nfsm_request().
2485 static int
2486 nfs_msg(struct thread *td, char *server, char *msg)
2488 tpr_t tpr;
2490 if (td && td->td_proc)
2491 tpr = tprintf_open(td->td_proc);
2492 else
2493 tpr = NULL;
2494 tprintf(tpr, "nfs server %s: %s\n", server, msg);
2495 tprintf_close(tpr);
2496 return (0);
2499 #ifndef NFS_NOSERVER
2502 * Socket upcall routine for nfsd sockets. This runs in the protocol
2503 * thread and passes waitflag == MB_DONTWAIT.
2505 void
2506 nfsrv_rcv_upcall(struct socket *so, void *arg, int waitflag)
2508 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2510 if (slp->ns_needq_upcall == 0) {
2511 slp->ns_needq_upcall = 1; /* ok to race */
2512 lwkt_gettoken(&nfs_token);
2513 nfsrv_wakenfsd(slp, 1);
2514 lwkt_reltoken(&nfs_token);
2516 #if 0
2517 lwkt_gettoken(&slp->ns_token);
2518 slp->ns_flag |= SLP_NEEDQ;
2519 nfsrv_rcv(so, arg, waitflag);
2520 lwkt_reltoken(&slp->ns_token);
2521 #endif
2525 * Process new data on a receive socket. Essentially do as much as we can
2526 * non-blocking, else punt and it will be called with MB_WAIT from an nfsd.
2528 * slp->ns_token is held on call
2530 void
2531 nfsrv_rcv(struct socket *so, void *arg, int waitflag)
2533 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2534 struct mbuf *m;
2535 struct sockaddr *nam;
2536 struct sockbuf sio;
2537 int flags, error;
2538 int nparallel_wakeup = 0;
2540 ASSERT_LWKT_TOKEN_HELD(&slp->ns_token);
2542 if ((slp->ns_flag & SLP_VALID) == 0)
2543 return;
2546 * Do not allow an infinite number of completed RPC records to build
2547 * up before we stop reading data from the socket. Otherwise we could
2548 * end up holding onto an unreasonable number of mbufs for requests
2549 * waiting for service.
2551 * This should give pretty good feedback to the TCP layer and
2552 * prevents a memory crunch for other protocols.
2554 * Note that the same service socket can be dispatched to several
2555 * nfs servers simultaniously. The tcp protocol callback calls us
2556 * with MB_DONTWAIT. nfsd calls us with MB_WAIT (typically).
2558 if (NFSRV_RECLIMIT(slp))
2559 return;
2562 * Handle protocol specifics to parse an RPC request. We always
2563 * pull from the socket using non-blocking I/O.
2565 if (so->so_type == SOCK_STREAM) {
2567 * The data has to be read in an orderly fashion from a TCP
2568 * stream, unlike a UDP socket. It is possible for soreceive
2569 * and/or nfsrv_getstream() to block, so make sure only one
2570 * entity is messing around with the TCP stream at any given
2571 * moment. The receive sockbuf's lock in soreceive is not
2572 * sufficient.
2574 if (slp->ns_flag & SLP_GETSTREAM)
2575 return;
2576 slp->ns_flag |= SLP_GETSTREAM;
2579 * Do soreceive(). Pull out as much data as possible without
2580 * blocking.
2582 sbinit(&sio, 1000000000);
2583 flags = MSG_DONTWAIT;
2584 error = so_pru_soreceive(so, &nam, NULL, &sio, NULL, &flags);
2585 if (error || sio.sb_mb == NULL) {
2586 if (error != EWOULDBLOCK)
2587 slp->ns_flag |= SLP_DISCONN;
2588 slp->ns_flag &= ~(SLP_GETSTREAM | SLP_NEEDQ);
2589 goto done;
2591 m = sio.sb_mb;
2592 if (slp->ns_rawend) {
2593 slp->ns_rawend->m_next = m;
2594 slp->ns_cc += sio.sb_cc;
2595 } else {
2596 slp->ns_raw = m;
2597 slp->ns_cc = sio.sb_cc;
2599 while (m->m_next)
2600 m = m->m_next;
2601 slp->ns_rawend = m;
2604 * Now try and parse as many record(s) as we can out of the
2605 * raw stream data. This will set SLP_DOREC.
2607 error = nfsrv_getstream(slp, waitflag, &nparallel_wakeup);
2608 if (error && error != EWOULDBLOCK)
2609 slp->ns_flag |= SLP_DISCONN;
2610 slp->ns_flag &= ~SLP_GETSTREAM;
2611 } else {
2613 * For UDP soreceive typically pulls just one packet, loop
2614 * to get the whole batch.
2616 do {
2617 sbinit(&sio, 1000000000);
2618 flags = MSG_DONTWAIT;
2619 error = so_pru_soreceive(so, &nam, NULL, &sio,
2620 NULL, &flags);
2621 if (sio.sb_mb) {
2622 struct nfsrv_rec *rec;
2623 int mf = (waitflag & MB_DONTWAIT) ?
2624 M_NOWAIT : M_WAITOK;
2625 rec = kmalloc(sizeof(struct nfsrv_rec),
2626 M_NFSRVDESC, mf);
2627 if (!rec) {
2628 if (nam)
2629 kfree(nam, M_SONAME);
2630 m_freem(sio.sb_mb);
2631 continue;
2633 nfs_realign(&sio.sb_mb, 10 * NFSX_UNSIGNED);
2634 rec->nr_address = nam;
2635 rec->nr_packet = sio.sb_mb;
2636 STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2637 ++slp->ns_numrec;
2638 slp->ns_flag |= SLP_DOREC;
2639 ++nparallel_wakeup;
2640 } else {
2641 slp->ns_flag &= ~SLP_NEEDQ;
2643 if (error) {
2644 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2645 && error != EWOULDBLOCK) {
2646 slp->ns_flag |= SLP_DISCONN;
2647 break;
2650 if (NFSRV_RECLIMIT(slp))
2651 break;
2652 } while (sio.sb_mb);
2656 * If we were upcalled from the tcp protocol layer and we have
2657 * fully parsed records ready to go, or there is new data pending,
2658 * or something went wrong, try to wake up a nfsd thread to deal
2659 * with it.
2661 done:
2662 /* XXX this code is currently not executed (nfsrv_rcv_upcall) */
2663 if (waitflag == MB_DONTWAIT && (slp->ns_flag & SLP_ACTION_MASK)) {
2664 lwkt_gettoken(&nfs_token);
2665 nfsrv_wakenfsd(slp, nparallel_wakeup);
2666 lwkt_reltoken(&nfs_token);
2671 * Try and extract an RPC request from the mbuf data list received on a
2672 * stream socket. The "waitflag" argument indicates whether or not it
2673 * can sleep.
2675 static int
2676 nfsrv_getstream(struct nfssvc_sock *slp, int waitflag, int *countp)
2678 struct mbuf *m, **mpp;
2679 char *cp1, *cp2;
2680 int len;
2681 struct mbuf *om, *m2, *recm;
2682 u_int32_t recmark;
2684 for (;;) {
2685 if (slp->ns_reclen == 0) {
2686 if (slp->ns_cc < NFSX_UNSIGNED)
2687 return (0);
2688 m = slp->ns_raw;
2689 if (m->m_len >= NFSX_UNSIGNED) {
2690 bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
2691 m->m_data += NFSX_UNSIGNED;
2692 m->m_len -= NFSX_UNSIGNED;
2693 } else {
2694 cp1 = (caddr_t)&recmark;
2695 cp2 = mtod(m, caddr_t);
2696 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
2697 while (m->m_len == 0) {
2698 m = m->m_next;
2699 cp2 = mtod(m, caddr_t);
2701 *cp1++ = *cp2++;
2702 m->m_data++;
2703 m->m_len--;
2706 slp->ns_cc -= NFSX_UNSIGNED;
2707 recmark = ntohl(recmark);
2708 slp->ns_reclen = recmark & ~0x80000000;
2709 if (recmark & 0x80000000)
2710 slp->ns_flag |= SLP_LASTFRAG;
2711 else
2712 slp->ns_flag &= ~SLP_LASTFRAG;
2713 if (slp->ns_reclen > NFS_MAXPACKET || slp->ns_reclen <= 0) {
2714 log(LOG_ERR, "%s (%d) from nfs client\n",
2715 "impossible packet length",
2716 slp->ns_reclen);
2717 return (EPERM);
2722 * Now get the record part.
2724 * Note that slp->ns_reclen may be 0. Linux sometimes
2725 * generates 0-length RPCs
2727 recm = NULL;
2728 if (slp->ns_cc == slp->ns_reclen) {
2729 recm = slp->ns_raw;
2730 slp->ns_raw = slp->ns_rawend = NULL;
2731 slp->ns_cc = slp->ns_reclen = 0;
2732 } else if (slp->ns_cc > slp->ns_reclen) {
2733 len = 0;
2734 m = slp->ns_raw;
2735 om = NULL;
2737 while (len < slp->ns_reclen) {
2738 if ((len + m->m_len) > slp->ns_reclen) {
2739 m2 = m_copym(m, 0, slp->ns_reclen - len,
2740 waitflag);
2741 if (m2) {
2742 if (om) {
2743 om->m_next = m2;
2744 recm = slp->ns_raw;
2745 } else
2746 recm = m2;
2747 m->m_data += slp->ns_reclen - len;
2748 m->m_len -= slp->ns_reclen - len;
2749 len = slp->ns_reclen;
2750 } else {
2751 return (EWOULDBLOCK);
2753 } else if ((len + m->m_len) == slp->ns_reclen) {
2754 om = m;
2755 len += m->m_len;
2756 m = m->m_next;
2757 recm = slp->ns_raw;
2758 om->m_next = NULL;
2759 } else {
2760 om = m;
2761 len += m->m_len;
2762 m = m->m_next;
2765 slp->ns_raw = m;
2766 slp->ns_cc -= len;
2767 slp->ns_reclen = 0;
2768 } else {
2769 return (0);
2773 * Accumulate the fragments into a record.
2775 mpp = &slp->ns_frag;
2776 while (*mpp)
2777 mpp = &((*mpp)->m_next);
2778 *mpp = recm;
2779 if (slp->ns_flag & SLP_LASTFRAG) {
2780 struct nfsrv_rec *rec;
2781 int mf = (waitflag & MB_DONTWAIT) ? M_NOWAIT : M_WAITOK;
2782 rec = kmalloc(sizeof(struct nfsrv_rec), M_NFSRVDESC, mf);
2783 if (!rec) {
2784 m_freem(slp->ns_frag);
2785 } else {
2786 nfs_realign(&slp->ns_frag, 10 * NFSX_UNSIGNED);
2787 rec->nr_address = NULL;
2788 rec->nr_packet = slp->ns_frag;
2789 STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2790 ++slp->ns_numrec;
2791 slp->ns_flag |= SLP_DOREC;
2792 ++*countp;
2794 slp->ns_frag = NULL;
2799 #ifdef INVARIANTS
2802 * Sanity check our mbuf chain.
2804 static void
2805 nfs_checkpkt(struct mbuf *m, int len)
2807 int xlen = 0;
2808 while (m) {
2809 xlen += m->m_len;
2810 m = m->m_next;
2812 if (xlen != len) {
2813 panic("nfs_checkpkt: len mismatch %d/%d mbuf %p",
2814 xlen, len, m);
2818 #else
2820 static void
2821 nfs_checkpkt(struct mbuf *m __unused, int len __unused)
2825 #endif
2828 * Parse an RPC header.
2830 * If the socket is invalid or no records are pending we return ENOBUFS.
2831 * The caller must deal with NEEDQ races.
2834 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd,
2835 struct nfsrv_descript **ndp)
2837 struct nfsrv_rec *rec;
2838 struct mbuf *m;
2839 struct sockaddr *nam;
2840 struct nfsrv_descript *nd;
2841 int error;
2843 *ndp = NULL;
2844 if ((slp->ns_flag & SLP_VALID) == 0 || !STAILQ_FIRST(&slp->ns_rec))
2845 return (ENOBUFS);
2846 rec = STAILQ_FIRST(&slp->ns_rec);
2847 STAILQ_REMOVE_HEAD(&slp->ns_rec, nr_link);
2848 KKASSERT(slp->ns_numrec > 0);
2849 if (--slp->ns_numrec == 0)
2850 slp->ns_flag &= ~SLP_DOREC;
2851 nam = rec->nr_address;
2852 m = rec->nr_packet;
2853 kfree(rec, M_NFSRVDESC);
2854 nd = kmalloc(sizeof(struct nfsrv_descript), M_NFSRVDESC, M_WAITOK);
2855 nd->nd_md = nd->nd_mrep = m;
2856 nd->nd_nam2 = nam;
2857 nd->nd_dpos = mtod(m, caddr_t);
2858 error = nfs_getreq(nd, nfsd, TRUE);
2859 if (error) {
2860 if (nam) {
2861 kfree(nam, M_SONAME);
2863 kfree((caddr_t)nd, M_NFSRVDESC);
2864 return (error);
2866 *ndp = nd;
2867 nfsd->nfsd_nd = nd;
2868 return (0);
2872 * Try to assign service sockets to nfsd threads based on the number
2873 * of new rpc requests that have been queued on the service socket.
2875 * If no nfsd's are available or additonal requests are pending, set the
2876 * NFSD_CHECKSLP flag so that one of the running nfsds will go look for
2877 * the work in the nfssvc_sock list when it is finished processing its
2878 * current work. This flag is only cleared when an nfsd can not find
2879 * any new work to perform.
2881 void
2882 nfsrv_wakenfsd(struct nfssvc_sock *slp, int nparallel)
2884 struct nfsd *nd;
2886 if ((slp->ns_flag & SLP_VALID) == 0)
2887 return;
2888 if (nparallel <= 1)
2889 nparallel = 1;
2890 TAILQ_FOREACH(nd, &nfsd_head, nfsd_chain) {
2891 if (nd->nfsd_flag & NFSD_WAITING) {
2892 nd->nfsd_flag &= ~NFSD_WAITING;
2893 if (nd->nfsd_slp)
2894 panic("nfsd wakeup");
2895 nfsrv_slpref(slp);
2896 nd->nfsd_slp = slp;
2897 wakeup((caddr_t)nd);
2898 if (--nparallel == 0)
2899 break;
2904 * If we couldn't assign slp then the NFSDs are all busy and
2905 * we set a flag indicating that there is pending work.
2907 if (nparallel)
2908 nfsd_head_flag |= NFSD_CHECKSLP;
2910 #endif /* NFS_NOSERVER */