Remove advertising clause from all that isn't contrib or userland bin.
[dragonfly.git] / sys / kern / vfs_subr.c
blob8ffd98a91d03c21c3c6af6dc30e6a1e3758ba06d
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
35 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
39 * External virtual filesystem routines
41 #include "opt_ddb.h"
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/buf.h>
46 #include <sys/conf.h>
47 #include <sys/dirent.h>
48 #include <sys/domain.h>
49 #include <sys/eventhandler.h>
50 #include <sys/fcntl.h>
51 #include <sys/file.h>
52 #include <sys/kernel.h>
53 #include <sys/kthread.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/mount.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/reboot.h>
60 #include <sys/socket.h>
61 #include <sys/stat.h>
62 #include <sys/sysctl.h>
63 #include <sys/syslog.h>
64 #include <sys/unistd.h>
65 #include <sys/vmmeter.h>
66 #include <sys/vnode.h>
68 #include <machine/limits.h>
70 #include <vm/vm.h>
71 #include <vm/vm_object.h>
72 #include <vm/vm_extern.h>
73 #include <vm/vm_kern.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_map.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_pager.h>
78 #include <vm/vnode_pager.h>
79 #include <vm/vm_zone.h>
81 #include <sys/buf2.h>
82 #include <sys/thread2.h>
83 #include <sys/sysref2.h>
84 #include <sys/mplock2.h>
86 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
88 int numvnodes;
89 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
90 "Number of vnodes allocated");
91 int verbose_reclaims;
92 SYSCTL_INT(_debug, OID_AUTO, verbose_reclaims, CTLFLAG_RD, &verbose_reclaims, 0,
93 "Output filename of reclaimed vnode(s)");
95 enum vtype iftovt_tab[16] = {
96 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
97 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
99 int vttoif_tab[9] = {
100 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
101 S_IFSOCK, S_IFIFO, S_IFMT,
104 static int reassignbufcalls;
105 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls,
106 0, "Number of times buffers have been reassigned to the proper list");
108 static int check_buf_overlap = 2; /* invasive check */
109 SYSCTL_INT(_vfs, OID_AUTO, check_buf_overlap, CTLFLAG_RW, &check_buf_overlap,
110 0, "Enable overlapping buffer checks");
112 int nfs_mount_type = -1;
113 static struct lwkt_token spechash_token;
114 struct nfs_public nfs_pub; /* publicly exported FS */
116 int desiredvnodes;
117 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
118 &desiredvnodes, 0, "Maximum number of vnodes");
120 static void vfs_free_addrlist (struct netexport *nep);
121 static int vfs_free_netcred (struct radix_node *rn, void *w);
122 static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
123 const struct export_args *argp);
126 * Red black tree functions
128 static int rb_buf_compare(struct buf *b1, struct buf *b2);
129 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
130 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
132 static int
133 rb_buf_compare(struct buf *b1, struct buf *b2)
135 if (b1->b_loffset < b2->b_loffset)
136 return(-1);
137 if (b1->b_loffset > b2->b_loffset)
138 return(1);
139 return(0);
143 * Returns non-zero if the vnode is a candidate for lazy msyncing.
145 * NOTE: v_object is not stable (this scan can race), however the
146 * mntvnodescan code holds vmobj_token so any VM object we
147 * do find will remain stable storage.
149 static __inline int
150 vshouldmsync(struct vnode *vp)
152 vm_object_t object;
154 if (vp->v_auxrefs != 0 || vp->v_sysref.refcnt > 0)
155 return (0); /* other holders */
156 object = vp->v_object;
157 cpu_ccfence();
158 if (object && (object->ref_count || object->resident_page_count))
159 return(0);
160 return (1);
164 * Initialize the vnode management data structures.
166 * Called from vfsinit()
168 void
169 vfs_subr_init(void)
171 int factor1;
172 int factor2;
175 * Desiredvnodes is kern.maxvnodes. We want to scale it
176 * according to available system memory but we may also have
177 * to limit it based on available KVM, which is capped on 32 bit
178 * systems, to ~80K vnodes or so.
180 * WARNING! For machines with 64-256M of ram we have to be sure
181 * that the default limit scales down well due to HAMMER
182 * taking up significantly more memory per-vnode vs UFS.
183 * We want around ~5800 on a 128M machine.
185 factor1 = 20 * (sizeof(struct vm_object) + sizeof(struct vnode));
186 factor2 = 25 * (sizeof(struct vm_object) + sizeof(struct vnode));
187 desiredvnodes =
188 imin((int64_t)vmstats.v_page_count * PAGE_SIZE / factor1,
189 KvaSize / factor2);
190 desiredvnodes = imax(desiredvnodes, maxproc * 8);
192 lwkt_token_init(&spechash_token, "spechash");
196 * Knob to control the precision of file timestamps:
198 * 0 = seconds only; nanoseconds zeroed.
199 * 1 = seconds and nanoseconds, accurate within 1/HZ.
200 * 2 = seconds and nanoseconds, truncated to microseconds.
201 * >=3 = seconds and nanoseconds, maximum precision.
203 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
205 static int timestamp_precision = TSP_SEC;
206 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
207 &timestamp_precision, 0, "Precision of file timestamps");
210 * Get a current timestamp.
212 * MPSAFE
214 void
215 vfs_timestamp(struct timespec *tsp)
217 struct timeval tv;
219 switch (timestamp_precision) {
220 case TSP_SEC:
221 tsp->tv_sec = time_second;
222 tsp->tv_nsec = 0;
223 break;
224 case TSP_HZ:
225 getnanotime(tsp);
226 break;
227 case TSP_USEC:
228 microtime(&tv);
229 TIMEVAL_TO_TIMESPEC(&tv, tsp);
230 break;
231 case TSP_NSEC:
232 default:
233 nanotime(tsp);
234 break;
239 * Set vnode attributes to VNOVAL
241 void
242 vattr_null(struct vattr *vap)
244 vap->va_type = VNON;
245 vap->va_size = VNOVAL;
246 vap->va_bytes = VNOVAL;
247 vap->va_mode = VNOVAL;
248 vap->va_nlink = VNOVAL;
249 vap->va_uid = VNOVAL;
250 vap->va_gid = VNOVAL;
251 vap->va_fsid = VNOVAL;
252 vap->va_fileid = VNOVAL;
253 vap->va_blocksize = VNOVAL;
254 vap->va_rmajor = VNOVAL;
255 vap->va_rminor = VNOVAL;
256 vap->va_atime.tv_sec = VNOVAL;
257 vap->va_atime.tv_nsec = VNOVAL;
258 vap->va_mtime.tv_sec = VNOVAL;
259 vap->va_mtime.tv_nsec = VNOVAL;
260 vap->va_ctime.tv_sec = VNOVAL;
261 vap->va_ctime.tv_nsec = VNOVAL;
262 vap->va_flags = VNOVAL;
263 vap->va_gen = VNOVAL;
264 vap->va_vaflags = 0;
265 /* va_*_uuid fields are only valid if related flags are set */
269 * Flush out and invalidate all buffers associated with a vnode.
271 * vp must be locked.
273 static int vinvalbuf_bp(struct buf *bp, void *data);
275 struct vinvalbuf_bp_info {
276 struct vnode *vp;
277 int slptimeo;
278 int lkflags;
279 int flags;
280 int clean;
284 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
286 struct vinvalbuf_bp_info info;
287 vm_object_t object;
288 int error;
290 lwkt_gettoken(&vp->v_token);
293 * If we are being asked to save, call fsync to ensure that the inode
294 * is updated.
296 if (flags & V_SAVE) {
297 error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo);
298 if (error)
299 goto done;
300 if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
301 if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0)
302 goto done;
303 #if 0
305 * Dirty bufs may be left or generated via races
306 * in circumstances where vinvalbuf() is called on
307 * a vnode not undergoing reclamation. Only
308 * panic if we are trying to reclaim the vnode.
310 if ((vp->v_flag & VRECLAIMED) &&
311 (bio_track_active(&vp->v_track_write) ||
312 !RB_EMPTY(&vp->v_rbdirty_tree))) {
313 panic("vinvalbuf: dirty bufs");
315 #endif
318 info.slptimeo = slptimeo;
319 info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
320 if (slpflag & PCATCH)
321 info.lkflags |= LK_PCATCH;
322 info.flags = flags;
323 info.vp = vp;
326 * Flush the buffer cache until nothing is left, wait for all I/O
327 * to complete. At least one pass is required. We might block
328 * in the pip code so we have to re-check. Order is important.
330 do {
332 * Flush buffer cache
334 if (!RB_EMPTY(&vp->v_rbclean_tree)) {
335 info.clean = 1;
336 error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
337 NULL, vinvalbuf_bp, &info);
339 if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
340 info.clean = 0;
341 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
342 NULL, vinvalbuf_bp, &info);
346 * Wait for I/O completion.
348 bio_track_wait(&vp->v_track_write, 0, 0);
349 if ((object = vp->v_object) != NULL)
350 refcount_wait(&object->paging_in_progress, "vnvlbx");
351 } while (bio_track_active(&vp->v_track_write) ||
352 !RB_EMPTY(&vp->v_rbclean_tree) ||
353 !RB_EMPTY(&vp->v_rbdirty_tree));
356 * Destroy the copy in the VM cache, too.
358 if ((object = vp->v_object) != NULL) {
359 vm_object_page_remove(object, 0, 0,
360 (flags & V_SAVE) ? TRUE : FALSE);
363 if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
364 panic("vinvalbuf: flush failed");
365 if (!RB_EMPTY(&vp->v_rbhash_tree))
366 panic("vinvalbuf: flush failed, buffers still present");
367 error = 0;
368 done:
369 lwkt_reltoken(&vp->v_token);
370 return (error);
373 static int
374 vinvalbuf_bp(struct buf *bp, void *data)
376 struct vinvalbuf_bp_info *info = data;
377 int error;
379 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
380 atomic_add_int(&bp->b_refs, 1);
381 error = BUF_TIMELOCK(bp, info->lkflags,
382 "vinvalbuf", info->slptimeo);
383 atomic_subtract_int(&bp->b_refs, 1);
384 if (error == 0) {
385 BUF_UNLOCK(bp);
386 error = ENOLCK;
388 if (error == ENOLCK)
389 return(0);
390 return (-error);
392 KKASSERT(bp->b_vp == info->vp);
395 * Must check clean/dirty status after successfully locking as
396 * it may race.
398 if ((info->clean && (bp->b_flags & B_DELWRI)) ||
399 (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0)) {
400 BUF_UNLOCK(bp);
401 return(0);
405 * NOTE: NO B_LOCKED CHECK. Also no buf_checkwrite()
406 * check. This code will write out the buffer, period.
408 bremfree(bp);
409 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
410 (info->flags & V_SAVE)) {
411 cluster_awrite(bp);
412 } else if (info->flags & V_SAVE) {
414 * Cannot set B_NOCACHE on a clean buffer as this will
415 * destroy the VM backing store which might actually
416 * be dirty (and unsynchronized).
418 bp->b_flags |= (B_INVAL | B_RELBUF);
419 brelse(bp);
420 } else {
421 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
422 brelse(bp);
424 return(0);
428 * Truncate a file's buffer and pages to a specified length. This
429 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
430 * sync activity.
432 * The vnode must be locked.
434 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
435 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
436 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
437 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
439 struct vtruncbuf_info {
440 struct vnode *vp;
441 off_t truncloffset;
442 int clean;
446 vtruncbuf(struct vnode *vp, off_t length, int blksize)
448 struct vtruncbuf_info info;
449 const char *filename;
450 int count;
453 * Round up to the *next* block, then destroy the buffers in question.
454 * Since we are only removing some of the buffers we must rely on the
455 * scan count to determine whether a loop is necessary.
457 if ((count = (int)(length % blksize)) != 0)
458 info.truncloffset = length + (blksize - count);
459 else
460 info.truncloffset = length;
461 info.vp = vp;
463 lwkt_gettoken(&vp->v_token);
464 do {
465 info.clean = 1;
466 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
467 vtruncbuf_bp_trunc_cmp,
468 vtruncbuf_bp_trunc, &info);
469 info.clean = 0;
470 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
471 vtruncbuf_bp_trunc_cmp,
472 vtruncbuf_bp_trunc, &info);
473 } while(count);
476 * For safety, fsync any remaining metadata if the file is not being
477 * truncated to 0. Since the metadata does not represent the entire
478 * dirty list we have to rely on the hit count to ensure that we get
479 * all of it.
481 if (length > 0) {
482 do {
483 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
484 vtruncbuf_bp_metasync_cmp,
485 vtruncbuf_bp_metasync, &info);
486 } while (count);
490 * Clean out any left over VM backing store.
492 * It is possible to have in-progress I/O from buffers that were
493 * not part of the truncation. This should not happen if we
494 * are truncating to 0-length.
496 vnode_pager_setsize(vp, length);
497 bio_track_wait(&vp->v_track_write, 0, 0);
500 * Debugging only
502 spin_lock(&vp->v_spin);
503 filename = TAILQ_FIRST(&vp->v_namecache) ?
504 TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
505 spin_unlock(&vp->v_spin);
508 * Make sure no buffers were instantiated while we were trying
509 * to clean out the remaining VM pages. This could occur due
510 * to busy dirty VM pages being flushed out to disk.
512 do {
513 info.clean = 1;
514 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
515 vtruncbuf_bp_trunc_cmp,
516 vtruncbuf_bp_trunc, &info);
517 info.clean = 0;
518 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
519 vtruncbuf_bp_trunc_cmp,
520 vtruncbuf_bp_trunc, &info);
521 if (count) {
522 kprintf("Warning: vtruncbuf(): Had to re-clean %d "
523 "left over buffers in %s\n", count, filename);
525 } while(count);
527 lwkt_reltoken(&vp->v_token);
529 return (0);
533 * The callback buffer is beyond the new file EOF and must be destroyed.
534 * Note that the compare function must conform to the RB_SCAN's requirements.
536 static
538 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
540 struct vtruncbuf_info *info = data;
542 if (bp->b_loffset >= info->truncloffset)
543 return(0);
544 return(-1);
547 static
548 int
549 vtruncbuf_bp_trunc(struct buf *bp, void *data)
551 struct vtruncbuf_info *info = data;
554 * Do not try to use a buffer we cannot immediately lock, but sleep
555 * anyway to prevent a livelock. The code will loop until all buffers
556 * can be acted upon.
558 * We must always revalidate the buffer after locking it to deal
559 * with MP races.
561 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
562 atomic_add_int(&bp->b_refs, 1);
563 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
564 BUF_UNLOCK(bp);
565 atomic_subtract_int(&bp->b_refs, 1);
566 } else if ((info->clean && (bp->b_flags & B_DELWRI)) ||
567 (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0) ||
568 bp->b_vp != info->vp ||
569 vtruncbuf_bp_trunc_cmp(bp, data)) {
570 BUF_UNLOCK(bp);
571 } else {
572 bremfree(bp);
573 bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
574 brelse(bp);
576 return(1);
580 * Fsync all meta-data after truncating a file to be non-zero. Only metadata
581 * blocks (with a negative loffset) are scanned.
582 * Note that the compare function must conform to the RB_SCAN's requirements.
584 static int
585 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data __unused)
587 if (bp->b_loffset < 0)
588 return(0);
589 return(1);
592 static int
593 vtruncbuf_bp_metasync(struct buf *bp, void *data)
595 struct vtruncbuf_info *info = data;
597 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
598 atomic_add_int(&bp->b_refs, 1);
599 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
600 BUF_UNLOCK(bp);
601 atomic_subtract_int(&bp->b_refs, 1);
602 } else if ((bp->b_flags & B_DELWRI) == 0 ||
603 bp->b_vp != info->vp ||
604 vtruncbuf_bp_metasync_cmp(bp, data)) {
605 BUF_UNLOCK(bp);
606 } else {
607 bremfree(bp);
608 if (bp->b_vp == info->vp)
609 bawrite(bp);
610 else
611 bwrite(bp);
613 return(1);
617 * vfsync - implements a multipass fsync on a file which understands
618 * dependancies and meta-data. The passed vnode must be locked. The
619 * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
621 * When fsyncing data asynchronously just do one consolidated pass starting
622 * with the most negative block number. This may not get all the data due
623 * to dependancies.
625 * When fsyncing data synchronously do a data pass, then a metadata pass,
626 * then do additional data+metadata passes to try to get all the data out.
628 static int vfsync_wait_output(struct vnode *vp,
629 int (*waitoutput)(struct vnode *, struct thread *));
630 static int vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused);
631 static int vfsync_data_only_cmp(struct buf *bp, void *data);
632 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
633 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
634 static int vfsync_bp(struct buf *bp, void *data);
636 struct vfsync_info {
637 struct vnode *vp;
638 int synchronous;
639 int syncdeps;
640 int lazycount;
641 int lazylimit;
642 int skippedbufs;
643 int (*checkdef)(struct buf *);
644 int (*cmpfunc)(struct buf *, void *);
648 vfsync(struct vnode *vp, int waitfor, int passes,
649 int (*checkdef)(struct buf *),
650 int (*waitoutput)(struct vnode *, struct thread *))
652 struct vfsync_info info;
653 int error;
655 bzero(&info, sizeof(info));
656 info.vp = vp;
657 if ((info.checkdef = checkdef) == NULL)
658 info.syncdeps = 1;
660 lwkt_gettoken(&vp->v_token);
662 switch(waitfor) {
663 case MNT_LAZY | MNT_NOWAIT:
664 case MNT_LAZY:
666 * Lazy (filesystem syncer typ) Asynchronous plus limit the
667 * number of data (not meta) pages we try to flush to 1MB.
668 * A non-zero return means that lazy limit was reached.
670 info.lazylimit = 1024 * 1024;
671 info.syncdeps = 1;
672 info.cmpfunc = vfsync_lazy_range_cmp;
673 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
674 vfsync_lazy_range_cmp, vfsync_bp, &info);
675 info.cmpfunc = vfsync_meta_only_cmp;
676 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
677 vfsync_meta_only_cmp, vfsync_bp, &info);
678 if (error == 0)
679 vp->v_lazyw = 0;
680 else if (!RB_EMPTY(&vp->v_rbdirty_tree))
681 vn_syncer_add(vp, 1);
682 error = 0;
683 break;
684 case MNT_NOWAIT:
686 * Asynchronous. Do a data-only pass and a meta-only pass.
688 info.syncdeps = 1;
689 info.cmpfunc = vfsync_data_only_cmp;
690 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
691 vfsync_bp, &info);
692 info.cmpfunc = vfsync_meta_only_cmp;
693 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
694 vfsync_bp, &info);
695 error = 0;
696 break;
697 default:
699 * Synchronous. Do a data-only pass, then a meta-data+data
700 * pass, then additional integrated passes to try to get
701 * all the dependancies flushed.
703 info.cmpfunc = vfsync_data_only_cmp;
704 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
705 vfsync_bp, &info);
706 error = vfsync_wait_output(vp, waitoutput);
707 if (error == 0) {
708 info.skippedbufs = 0;
709 info.cmpfunc = vfsync_dummy_cmp;
710 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
711 vfsync_bp, &info);
712 error = vfsync_wait_output(vp, waitoutput);
713 if (info.skippedbufs) {
714 kprintf("Warning: vfsync skipped %d dirty "
715 "bufs in pass2!\n", info.skippedbufs);
718 while (error == 0 && passes > 0 &&
719 !RB_EMPTY(&vp->v_rbdirty_tree)
721 if (--passes == 0) {
722 info.synchronous = 1;
723 info.syncdeps = 1;
725 info.cmpfunc = vfsync_dummy_cmp;
726 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
727 vfsync_bp, &info);
728 if (error < 0)
729 error = -error;
730 info.syncdeps = 1;
731 if (error == 0)
732 error = vfsync_wait_output(vp, waitoutput);
734 break;
736 lwkt_reltoken(&vp->v_token);
737 return(error);
740 static int
741 vfsync_wait_output(struct vnode *vp,
742 int (*waitoutput)(struct vnode *, struct thread *))
744 int error;
746 error = bio_track_wait(&vp->v_track_write, 0, 0);
747 if (waitoutput)
748 error = waitoutput(vp, curthread);
749 return(error);
752 static int
753 vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused)
755 return(0);
758 static int
759 vfsync_data_only_cmp(struct buf *bp, void *data)
761 if (bp->b_loffset < 0)
762 return(-1);
763 return(0);
766 static int
767 vfsync_meta_only_cmp(struct buf *bp, void *data)
769 if (bp->b_loffset < 0)
770 return(0);
771 return(1);
774 static int
775 vfsync_lazy_range_cmp(struct buf *bp, void *data)
777 struct vfsync_info *info = data;
779 if (bp->b_loffset < info->vp->v_lazyw)
780 return(-1);
781 return(0);
784 static int
785 vfsync_bp(struct buf *bp, void *data)
787 struct vfsync_info *info = data;
788 struct vnode *vp = info->vp;
789 int error;
792 * Ignore buffers that we cannot immediately lock.
794 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
795 ++info->skippedbufs;
796 return(0);
800 * We must revalidate the buffer after locking.
802 if ((bp->b_flags & B_DELWRI) == 0 ||
803 bp->b_vp != info->vp ||
804 info->cmpfunc(bp, data)) {
805 BUF_UNLOCK(bp);
806 return(0);
810 * If syncdeps is not set we do not try to write buffers which have
811 * dependancies.
813 if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp)) {
814 BUF_UNLOCK(bp);
815 return(0);
819 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
820 * has been written but an additional handshake with the device
821 * is required before we can dispose of the buffer. We have no idea
822 * how to do this so we have to skip these buffers.
824 if (bp->b_flags & B_NEEDCOMMIT) {
825 BUF_UNLOCK(bp);
826 return(0);
830 * Ask bioops if it is ok to sync. If not the VFS may have
831 * set B_LOCKED so we have to cycle the buffer.
833 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
834 bremfree(bp);
835 brelse(bp);
836 return(0);
839 if (info->synchronous) {
841 * Synchronous flushing. An error may be returned.
843 bremfree(bp);
844 error = bwrite(bp);
845 } else {
847 * Asynchronous flushing. A negative return value simply
848 * stops the scan and is not considered an error. We use
849 * this to support limited MNT_LAZY flushes.
851 vp->v_lazyw = bp->b_loffset;
852 bremfree(bp);
853 info->lazycount += cluster_awrite(bp);
854 waitrunningbufspace();
855 vm_wait_nominal();
856 if (info->lazylimit && info->lazycount >= info->lazylimit)
857 error = 1;
858 else
859 error = 0;
861 return(-error);
865 * Associate a buffer with a vnode.
867 * MPSAFE
870 bgetvp(struct vnode *vp, struct buf *bp, int testsize)
872 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
873 KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
876 * Insert onto list for new vnode.
878 lwkt_gettoken(&vp->v_token);
880 if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) {
881 lwkt_reltoken(&vp->v_token);
882 return (EEXIST);
886 * Diagnostics (mainly for HAMMER debugging). Check for
887 * overlapping buffers.
889 if (check_buf_overlap) {
890 struct buf *bx;
891 bx = buf_rb_hash_RB_PREV(bp);
892 if (bx) {
893 if (bx->b_loffset + bx->b_bufsize > bp->b_loffset) {
894 kprintf("bgetvp: overlapl %016jx/%d %016jx "
895 "bx %p bp %p\n",
896 (intmax_t)bx->b_loffset,
897 bx->b_bufsize,
898 (intmax_t)bp->b_loffset,
899 bx, bp);
900 if (check_buf_overlap > 1)
901 panic("bgetvp - overlapping buffer");
904 bx = buf_rb_hash_RB_NEXT(bp);
905 if (bx) {
906 if (bp->b_loffset + testsize > bx->b_loffset) {
907 kprintf("bgetvp: overlapr %016jx/%d %016jx "
908 "bp %p bx %p\n",
909 (intmax_t)bp->b_loffset,
910 testsize,
911 (intmax_t)bx->b_loffset,
912 bp, bx);
913 if (check_buf_overlap > 1)
914 panic("bgetvp - overlapping buffer");
918 bp->b_vp = vp;
919 bp->b_flags |= B_HASHED;
920 bp->b_flags |= B_VNCLEAN;
921 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
922 panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
923 /*vhold(vp);*/
924 lwkt_reltoken(&vp->v_token);
925 return(0);
929 * Disassociate a buffer from a vnode.
931 * MPSAFE
933 void
934 brelvp(struct buf *bp)
936 struct vnode *vp;
938 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
941 * Delete from old vnode list, if on one.
943 vp = bp->b_vp;
944 lwkt_gettoken(&vp->v_token);
945 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
946 if (bp->b_flags & B_VNDIRTY)
947 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
948 else
949 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
950 bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
952 if (bp->b_flags & B_HASHED) {
953 buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
954 bp->b_flags &= ~B_HASHED;
956 if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree))
957 vn_syncer_remove(vp);
958 bp->b_vp = NULL;
960 lwkt_reltoken(&vp->v_token);
962 /*vdrop(vp);*/
966 * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
967 * This routine is called when the state of the B_DELWRI bit is changed.
969 * Must be called with vp->v_token held.
970 * MPSAFE
972 void
973 reassignbuf(struct buf *bp)
975 struct vnode *vp = bp->b_vp;
976 int delay;
978 ASSERT_LWKT_TOKEN_HELD(&vp->v_token);
979 ++reassignbufcalls;
982 * B_PAGING flagged buffers cannot be reassigned because their vp
983 * is not fully linked in.
985 if (bp->b_flags & B_PAGING)
986 panic("cannot reassign paging buffer");
988 if (bp->b_flags & B_DELWRI) {
990 * Move to the dirty list, add the vnode to the worklist
992 if (bp->b_flags & B_VNCLEAN) {
993 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
994 bp->b_flags &= ~B_VNCLEAN;
996 if ((bp->b_flags & B_VNDIRTY) == 0) {
997 if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
998 panic("reassignbuf: dup lblk vp %p bp %p",
999 vp, bp);
1001 bp->b_flags |= B_VNDIRTY;
1003 if ((vp->v_flag & VONWORKLST) == 0) {
1004 switch (vp->v_type) {
1005 case VDIR:
1006 delay = dirdelay;
1007 break;
1008 case VCHR:
1009 case VBLK:
1010 if (vp->v_rdev &&
1011 vp->v_rdev->si_mountpoint != NULL) {
1012 delay = metadelay;
1013 break;
1015 /* fall through */
1016 default:
1017 delay = filedelay;
1019 vn_syncer_add(vp, delay);
1021 } else {
1023 * Move to the clean list, remove the vnode from the worklist
1024 * if no dirty blocks remain.
1026 if (bp->b_flags & B_VNDIRTY) {
1027 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1028 bp->b_flags &= ~B_VNDIRTY;
1030 if ((bp->b_flags & B_VNCLEAN) == 0) {
1031 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
1032 panic("reassignbuf: dup lblk vp %p bp %p",
1033 vp, bp);
1035 bp->b_flags |= B_VNCLEAN;
1037 if ((vp->v_flag & VONWORKLST) &&
1038 RB_EMPTY(&vp->v_rbdirty_tree)) {
1039 vn_syncer_remove(vp);
1045 * Create a vnode for a block device. Used for mounting the root file
1046 * system.
1048 * A vref()'d vnode is returned.
1050 extern struct vop_ops *devfs_vnode_dev_vops_p;
1052 bdevvp(cdev_t dev, struct vnode **vpp)
1054 struct vnode *vp;
1055 struct vnode *nvp;
1056 int error;
1058 if (dev == NULL) {
1059 *vpp = NULLVP;
1060 return (ENXIO);
1062 error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p,
1063 &nvp, 0, 0);
1064 if (error) {
1065 *vpp = NULLVP;
1066 return (error);
1068 vp = nvp;
1069 vp->v_type = VCHR;
1070 #if 0
1071 vp->v_rdev = dev;
1072 #endif
1073 v_associate_rdev(vp, dev);
1074 vp->v_umajor = dev->si_umajor;
1075 vp->v_uminor = dev->si_uminor;
1076 vx_unlock(vp);
1077 *vpp = vp;
1078 return (0);
1082 v_associate_rdev(struct vnode *vp, cdev_t dev)
1084 if (dev == NULL)
1085 return(ENXIO);
1086 if (dev_is_good(dev) == 0)
1087 return(ENXIO);
1088 KKASSERT(vp->v_rdev == NULL);
1089 vp->v_rdev = reference_dev(dev);
1090 lwkt_gettoken(&spechash_token);
1091 SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1092 lwkt_reltoken(&spechash_token);
1093 return(0);
1096 void
1097 v_release_rdev(struct vnode *vp)
1099 cdev_t dev;
1101 if ((dev = vp->v_rdev) != NULL) {
1102 lwkt_gettoken(&spechash_token);
1103 SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1104 vp->v_rdev = NULL;
1105 release_dev(dev);
1106 lwkt_reltoken(&spechash_token);
1111 * Add a vnode to the alias list hung off the cdev_t. We only associate
1112 * the device number with the vnode. The actual device is not associated
1113 * until the vnode is opened (usually in spec_open()), and will be
1114 * disassociated on last close.
1116 void
1117 addaliasu(struct vnode *nvp, int x, int y)
1119 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1120 panic("addaliasu on non-special vnode");
1121 nvp->v_umajor = x;
1122 nvp->v_uminor = y;
1126 * Simple call that a filesystem can make to try to get rid of a
1127 * vnode. It will fail if anyone is referencing the vnode (including
1128 * the caller).
1130 * The filesystem can check whether its in-memory inode structure still
1131 * references the vp on return.
1133 void
1134 vclean_unlocked(struct vnode *vp)
1136 vx_get(vp);
1137 if (sysref_isactive(&vp->v_sysref) == 0)
1138 vgone_vxlocked(vp);
1139 vx_put(vp);
1143 * Disassociate a vnode from its underlying filesystem.
1145 * The vnode must be VX locked and referenced. In all normal situations
1146 * there are no active references. If vclean_vxlocked() is called while
1147 * there are active references, the vnode is being ripped out and we have
1148 * to call VOP_CLOSE() as appropriate before we can reclaim it.
1150 void
1151 vclean_vxlocked(struct vnode *vp, int flags)
1153 int active;
1154 int n;
1155 vm_object_t object;
1156 struct namecache *ncp;
1159 * If the vnode has already been reclaimed we have nothing to do.
1161 if (vp->v_flag & VRECLAIMED)
1162 return;
1163 vsetflags(vp, VRECLAIMED);
1165 if (verbose_reclaims) {
1166 if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL)
1167 kprintf("Debug: reclaim %p %s\n", vp, ncp->nc_name);
1171 * Scrap the vfs cache
1173 while (cache_inval_vp(vp, 0) != 0) {
1174 kprintf("Warning: vnode %p clean/cache_resolution "
1175 "race detected\n", vp);
1176 tsleep(vp, 0, "vclninv", 2);
1180 * Check to see if the vnode is in use. If so we have to reference it
1181 * before we clean it out so that its count cannot fall to zero and
1182 * generate a race against ourselves to recycle it.
1184 active = sysref_isactive(&vp->v_sysref);
1187 * Clean out any buffers associated with the vnode and destroy its
1188 * object, if it has one.
1190 vinvalbuf(vp, V_SAVE, 0, 0);
1193 * If purging an active vnode (typically during a forced unmount
1194 * or reboot), it must be closed and deactivated before being
1195 * reclaimed. This isn't really all that safe, but what can
1196 * we do? XXX.
1198 * Note that neither of these routines unlocks the vnode.
1200 if (active && (flags & DOCLOSE)) {
1201 while ((n = vp->v_opencount) != 0) {
1202 if (vp->v_writecount)
1203 VOP_CLOSE(vp, FWRITE|FNONBLOCK);
1204 else
1205 VOP_CLOSE(vp, FNONBLOCK);
1206 if (vp->v_opencount == n) {
1207 kprintf("Warning: unable to force-close"
1208 " vnode %p\n", vp);
1209 break;
1215 * If the vnode has not been deactivated, deactivated it. Deactivation
1216 * can create new buffers and VM pages so we have to call vinvalbuf()
1217 * again to make sure they all get flushed.
1219 * This can occur if a file with a link count of 0 needs to be
1220 * truncated.
1222 * If the vnode is already dead don't try to deactivate it.
1224 if ((vp->v_flag & VINACTIVE) == 0) {
1225 vsetflags(vp, VINACTIVE);
1226 if (vp->v_mount)
1227 VOP_INACTIVE(vp);
1228 vinvalbuf(vp, V_SAVE, 0, 0);
1232 * If the vnode has an object, destroy it.
1234 while ((object = vp->v_object) != NULL) {
1235 vm_object_hold(object);
1236 if (object == vp->v_object)
1237 break;
1238 vm_object_drop(object);
1241 if (object != NULL) {
1242 if (object->ref_count == 0) {
1243 if ((object->flags & OBJ_DEAD) == 0)
1244 vm_object_terminate(object);
1245 vm_object_drop(object);
1246 vclrflags(vp, VOBJBUF);
1247 } else {
1248 vm_pager_deallocate(object);
1249 vclrflags(vp, VOBJBUF);
1250 vm_object_drop(object);
1253 KKASSERT((vp->v_flag & VOBJBUF) == 0);
1256 * Reclaim the vnode if not already dead.
1258 if (vp->v_mount && VOP_RECLAIM(vp))
1259 panic("vclean: cannot reclaim");
1262 * Done with purge, notify sleepers of the grim news.
1264 vp->v_ops = &dead_vnode_vops_p;
1265 vn_gone(vp);
1266 vp->v_tag = VT_NON;
1269 * If we are destroying an active vnode, reactivate it now that
1270 * we have reassociated it with deadfs. This prevents the system
1271 * from crashing on the vnode due to it being unexpectedly marked
1272 * as inactive or reclaimed.
1274 if (active && (flags & DOCLOSE)) {
1275 vclrflags(vp, VINACTIVE | VRECLAIMED);
1280 * Eliminate all activity associated with the requested vnode
1281 * and with all vnodes aliased to the requested vnode.
1283 * The vnode must be referenced but should not be locked.
1286 vrevoke(struct vnode *vp, struct ucred *cred)
1288 struct vnode *vq;
1289 struct vnode *vqn;
1290 cdev_t dev;
1291 int error;
1294 * If the vnode has a device association, scrap all vnodes associated
1295 * with the device. Don't let the device disappear on us while we
1296 * are scrapping the vnodes.
1298 * The passed vp will probably show up in the list, do not VX lock
1299 * it twice!
1301 * Releasing the vnode's rdev here can mess up specfs's call to
1302 * device close, so don't do it. The vnode has been disassociated
1303 * and the device will be closed after the last ref on the related
1304 * fp goes away (if not still open by e.g. the kernel).
1306 if (vp->v_type != VCHR) {
1307 error = fdrevoke(vp, DTYPE_VNODE, cred);
1308 return (error);
1310 if ((dev = vp->v_rdev) == NULL) {
1311 return(0);
1313 reference_dev(dev);
1314 lwkt_gettoken(&spechash_token);
1316 restart:
1317 vqn = SLIST_FIRST(&dev->si_hlist);
1318 if (vqn)
1319 vhold(vqn);
1320 while ((vq = vqn) != NULL) {
1321 if (sysref_isactive(&vq->v_sysref)) {
1322 vref(vq);
1323 fdrevoke(vq, DTYPE_VNODE, cred);
1324 /*v_release_rdev(vq);*/
1325 vrele(vq);
1326 if (vq->v_rdev != dev) {
1327 vdrop(vq);
1328 goto restart;
1331 vqn = SLIST_NEXT(vq, v_cdevnext);
1332 if (vqn)
1333 vhold(vqn);
1334 vdrop(vq);
1336 lwkt_reltoken(&spechash_token);
1337 dev_drevoke(dev);
1338 release_dev(dev);
1339 return (0);
1343 * This is called when the object underlying a vnode is being destroyed,
1344 * such as in a remove(). Try to recycle the vnode immediately if the
1345 * only active reference is our reference.
1347 * Directory vnodes in the namecache with children cannot be immediately
1348 * recycled because numerous VOP_N*() ops require them to be stable.
1350 * To avoid recursive recycling from VOP_INACTIVE implemenetations this
1351 * function is a NOP if VRECLAIMED is already set.
1354 vrecycle(struct vnode *vp)
1356 if (vp->v_sysref.refcnt <= 1 && (vp->v_flag & VRECLAIMED) == 0) {
1357 if (cache_inval_vp_nonblock(vp))
1358 return(0);
1359 vgone_vxlocked(vp);
1360 return (1);
1362 return (0);
1366 * Return the maximum I/O size allowed for strategy calls on VP.
1368 * If vp is VCHR or VBLK we dive the device, otherwise we use
1369 * the vp's mount info.
1371 * The returned value is clamped at MAXPHYS as most callers cannot use
1372 * buffers larger than that size.
1375 vmaxiosize(struct vnode *vp)
1377 int maxiosize;
1379 if (vp->v_type == VBLK || vp->v_type == VCHR)
1380 maxiosize = vp->v_rdev->si_iosize_max;
1381 else
1382 maxiosize = vp->v_mount->mnt_iosize_max;
1384 if (maxiosize > MAXPHYS)
1385 maxiosize = MAXPHYS;
1386 return (maxiosize);
1390 * Eliminate all activity associated with a vnode in preparation for reuse.
1392 * The vnode must be VX locked and refd and will remain VX locked and refd
1393 * on return. This routine may be called with the vnode in any state, as
1394 * long as it is VX locked. The vnode will be cleaned out and marked
1395 * VRECLAIMED but will not actually be reused until all existing refs and
1396 * holds go away.
1398 * NOTE: This routine may be called on a vnode which has not yet been
1399 * already been deactivated (VOP_INACTIVE), or on a vnode which has
1400 * already been reclaimed.
1402 * This routine is not responsible for placing us back on the freelist.
1403 * Instead, it happens automatically when the caller releases the VX lock
1404 * (assuming there aren't any other references).
1406 void
1407 vgone_vxlocked(struct vnode *vp)
1410 * assert that the VX lock is held. This is an absolute requirement
1411 * now for vgone_vxlocked() to be called.
1413 KKASSERT(vp->v_lock.lk_exclusivecount == 1);
1416 * Clean out the filesystem specific data and set the VRECLAIMED
1417 * bit. Also deactivate the vnode if necessary.
1419 vclean_vxlocked(vp, DOCLOSE);
1422 * Delete from old mount point vnode list, if on one.
1424 if (vp->v_mount != NULL) {
1425 KKASSERT(vp->v_data == NULL);
1426 insmntque(vp, NULL);
1430 * If special device, remove it from special device alias list
1431 * if it is on one. This should normally only occur if a vnode is
1432 * being revoked as the device should otherwise have been released
1433 * naturally.
1435 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1436 v_release_rdev(vp);
1440 * Set us to VBAD
1442 vp->v_type = VBAD;
1446 * Lookup a vnode by device number.
1448 * Returns non-zero and *vpp set to a vref'd vnode on success.
1449 * Returns zero on failure.
1452 vfinddev(cdev_t dev, enum vtype type, struct vnode **vpp)
1454 struct vnode *vp;
1456 lwkt_gettoken(&spechash_token);
1457 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1458 if (type == vp->v_type) {
1459 *vpp = vp;
1460 vref(vp);
1461 lwkt_reltoken(&spechash_token);
1462 return (1);
1465 lwkt_reltoken(&spechash_token);
1466 return (0);
1470 * Calculate the total number of references to a special device. This
1471 * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1472 * an overloaded field. Since udev2dev can now return NULL, we have
1473 * to check for a NULL v_rdev.
1476 count_dev(cdev_t dev)
1478 struct vnode *vp;
1479 int count = 0;
1481 if (SLIST_FIRST(&dev->si_hlist)) {
1482 lwkt_gettoken(&spechash_token);
1483 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1484 count += vp->v_opencount;
1486 lwkt_reltoken(&spechash_token);
1488 return(count);
1492 vcount(struct vnode *vp)
1494 if (vp->v_rdev == NULL)
1495 return(0);
1496 return(count_dev(vp->v_rdev));
1500 * Initialize VMIO for a vnode. This routine MUST be called before a
1501 * VFS can issue buffer cache ops on a vnode. It is typically called
1502 * when a vnode is initialized from its inode.
1505 vinitvmio(struct vnode *vp, off_t filesize, int blksize, int boff)
1507 vm_object_t object;
1508 int error = 0;
1510 retry:
1511 while ((object = vp->v_object) != NULL) {
1512 vm_object_hold(object);
1513 if (object == vp->v_object)
1514 break;
1515 vm_object_drop(object);
1518 if (object == NULL) {
1519 object = vnode_pager_alloc(vp, filesize, 0, 0, blksize, boff);
1522 * Dereference the reference we just created. This assumes
1523 * that the object is associated with the vp.
1525 vm_object_hold(object);
1526 object->ref_count--;
1527 vrele(vp);
1528 } else {
1529 if (object->flags & OBJ_DEAD) {
1530 vn_unlock(vp);
1531 if (vp->v_object == object)
1532 vm_object_dead_sleep(object, "vodead");
1533 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1534 vm_object_drop(object);
1535 goto retry;
1538 KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1539 vsetflags(vp, VOBJBUF);
1540 vm_object_drop(object);
1542 return (error);
1547 * Print out a description of a vnode.
1549 static char *typename[] =
1550 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1552 void
1553 vprint(char *label, struct vnode *vp)
1555 char buf[96];
1557 if (label != NULL)
1558 kprintf("%s: %p: ", label, (void *)vp);
1559 else
1560 kprintf("%p: ", (void *)vp);
1561 kprintf("type %s, sysrefs %d, writecount %d, holdcnt %d,",
1562 typename[vp->v_type],
1563 vp->v_sysref.refcnt, vp->v_writecount, vp->v_auxrefs);
1564 buf[0] = '\0';
1565 if (vp->v_flag & VROOT)
1566 strcat(buf, "|VROOT");
1567 if (vp->v_flag & VPFSROOT)
1568 strcat(buf, "|VPFSROOT");
1569 if (vp->v_flag & VTEXT)
1570 strcat(buf, "|VTEXT");
1571 if (vp->v_flag & VSYSTEM)
1572 strcat(buf, "|VSYSTEM");
1573 if (vp->v_flag & VFREE)
1574 strcat(buf, "|VFREE");
1575 if (vp->v_flag & VOBJBUF)
1576 strcat(buf, "|VOBJBUF");
1577 if (buf[0] != '\0')
1578 kprintf(" flags (%s)", &buf[1]);
1579 if (vp->v_data == NULL) {
1580 kprintf("\n");
1581 } else {
1582 kprintf("\n\t");
1583 VOP_PRINT(vp);
1588 * Do the usual access checking.
1589 * file_mode, uid and gid are from the vnode in question,
1590 * while acc_mode and cred are from the VOP_ACCESS parameter list
1593 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
1594 mode_t acc_mode, struct ucred *cred)
1596 mode_t mask;
1597 int ismember;
1600 * Super-user always gets read/write access, but execute access depends
1601 * on at least one execute bit being set.
1603 if (priv_check_cred(cred, PRIV_ROOT, 0) == 0) {
1604 if ((acc_mode & VEXEC) && type != VDIR &&
1605 (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
1606 return (EACCES);
1607 return (0);
1610 mask = 0;
1612 /* Otherwise, check the owner. */
1613 if (cred->cr_uid == uid) {
1614 if (acc_mode & VEXEC)
1615 mask |= S_IXUSR;
1616 if (acc_mode & VREAD)
1617 mask |= S_IRUSR;
1618 if (acc_mode & VWRITE)
1619 mask |= S_IWUSR;
1620 return ((file_mode & mask) == mask ? 0 : EACCES);
1623 /* Otherwise, check the groups. */
1624 ismember = groupmember(gid, cred);
1625 if (cred->cr_svgid == gid || ismember) {
1626 if (acc_mode & VEXEC)
1627 mask |= S_IXGRP;
1628 if (acc_mode & VREAD)
1629 mask |= S_IRGRP;
1630 if (acc_mode & VWRITE)
1631 mask |= S_IWGRP;
1632 return ((file_mode & mask) == mask ? 0 : EACCES);
1635 /* Otherwise, check everyone else. */
1636 if (acc_mode & VEXEC)
1637 mask |= S_IXOTH;
1638 if (acc_mode & VREAD)
1639 mask |= S_IROTH;
1640 if (acc_mode & VWRITE)
1641 mask |= S_IWOTH;
1642 return ((file_mode & mask) == mask ? 0 : EACCES);
1645 #ifdef DDB
1646 #include <ddb/ddb.h>
1648 static int db_show_locked_vnodes(struct mount *mp, void *data);
1651 * List all of the locked vnodes in the system.
1652 * Called when debugging the kernel.
1654 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1656 kprintf("Locked vnodes\n");
1657 mountlist_scan(db_show_locked_vnodes, NULL,
1658 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1661 static int
1662 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1664 struct vnode *vp;
1666 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1667 if (vn_islocked(vp))
1668 vprint(NULL, vp);
1670 return(0);
1672 #endif
1675 * Top level filesystem related information gathering.
1677 static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1679 static int
1680 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1682 int *name = (int *)arg1 - 1; /* XXX */
1683 u_int namelen = arg2 + 1; /* XXX */
1684 struct vfsconf *vfsp;
1685 int maxtypenum;
1687 #if 1 || defined(COMPAT_PRELITE2)
1688 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1689 if (namelen == 1)
1690 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1691 #endif
1693 #ifdef notyet
1694 /* all sysctl names at this level are at least name and field */
1695 if (namelen < 2)
1696 return (ENOTDIR); /* overloaded */
1697 if (name[0] != VFS_GENERIC) {
1698 vfsp = vfsconf_find_by_typenum(name[0]);
1699 if (vfsp == NULL)
1700 return (EOPNOTSUPP);
1701 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1702 oldp, oldlenp, newp, newlen, p));
1704 #endif
1705 switch (name[1]) {
1706 case VFS_MAXTYPENUM:
1707 if (namelen != 2)
1708 return (ENOTDIR);
1709 maxtypenum = vfsconf_get_maxtypenum();
1710 return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
1711 case VFS_CONF:
1712 if (namelen != 3)
1713 return (ENOTDIR); /* overloaded */
1714 vfsp = vfsconf_find_by_typenum(name[2]);
1715 if (vfsp == NULL)
1716 return (EOPNOTSUPP);
1717 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1719 return (EOPNOTSUPP);
1722 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1723 "Generic filesystem");
1725 #if 1 || defined(COMPAT_PRELITE2)
1727 static int
1728 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
1730 int error;
1731 struct ovfsconf ovfs;
1732 struct sysctl_req *req = (struct sysctl_req*) data;
1734 bzero(&ovfs, sizeof(ovfs));
1735 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
1736 strcpy(ovfs.vfc_name, vfsp->vfc_name);
1737 ovfs.vfc_index = vfsp->vfc_typenum;
1738 ovfs.vfc_refcount = vfsp->vfc_refcount;
1739 ovfs.vfc_flags = vfsp->vfc_flags;
1740 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1741 if (error)
1742 return error; /* abort iteration with error code */
1743 else
1744 return 0; /* continue iterating with next element */
1747 static int
1748 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1750 return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
1753 #endif /* 1 || COMPAT_PRELITE2 */
1756 * Check to see if a filesystem is mounted on a block device.
1759 vfs_mountedon(struct vnode *vp)
1761 cdev_t dev;
1763 if ((dev = vp->v_rdev) == NULL) {
1764 /* if (vp->v_type != VBLK)
1765 dev = get_dev(vp->v_uminor, vp->v_umajor); */
1767 if (dev != NULL && dev->si_mountpoint)
1768 return (EBUSY);
1769 return (0);
1773 * Unmount all filesystems. The list is traversed in reverse order
1774 * of mounting to avoid dependencies.
1777 static int vfs_umountall_callback(struct mount *mp, void *data);
1779 void
1780 vfs_unmountall(void)
1782 int count;
1784 do {
1785 count = mountlist_scan(vfs_umountall_callback,
1786 NULL, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1787 } while (count);
1790 static
1792 vfs_umountall_callback(struct mount *mp, void *data)
1794 int error;
1796 error = dounmount(mp, MNT_FORCE);
1797 if (error) {
1798 mountlist_remove(mp);
1799 kprintf("unmount of filesystem mounted from %s failed (",
1800 mp->mnt_stat.f_mntfromname);
1801 if (error == EBUSY)
1802 kprintf("BUSY)\n");
1803 else
1804 kprintf("%d)\n", error);
1806 return(1);
1810 * Checks the mount flags for parameter mp and put the names comma-separated
1811 * into a string buffer buf with a size limit specified by len.
1813 * It returns the number of bytes written into buf, and (*errorp) will be
1814 * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1815 * not large enough). The buffer will be 0-terminated if len was not 0.
1817 size_t
1818 vfs_flagstostr(int flags, const struct mountctl_opt *optp,
1819 char *buf, size_t len, int *errorp)
1821 static const struct mountctl_opt optnames[] = {
1822 { MNT_ASYNC, "asynchronous" },
1823 { MNT_EXPORTED, "NFS exported" },
1824 { MNT_LOCAL, "local" },
1825 { MNT_NOATIME, "noatime" },
1826 { MNT_NODEV, "nodev" },
1827 { MNT_NOEXEC, "noexec" },
1828 { MNT_NOSUID, "nosuid" },
1829 { MNT_NOSYMFOLLOW, "nosymfollow" },
1830 { MNT_QUOTA, "with-quotas" },
1831 { MNT_RDONLY, "read-only" },
1832 { MNT_SYNCHRONOUS, "synchronous" },
1833 { MNT_UNION, "union" },
1834 { MNT_NOCLUSTERR, "noclusterr" },
1835 { MNT_NOCLUSTERW, "noclusterw" },
1836 { MNT_SUIDDIR, "suiddir" },
1837 { MNT_SOFTDEP, "soft-updates" },
1838 { MNT_IGNORE, "ignore" },
1839 { 0, NULL}
1841 int bwritten;
1842 int bleft;
1843 int optlen;
1844 int actsize;
1846 *errorp = 0;
1847 bwritten = 0;
1848 bleft = len - 1; /* leave room for trailing \0 */
1851 * Checks the size of the string. If it contains
1852 * any data, then we will append the new flags to
1853 * it.
1855 actsize = strlen(buf);
1856 if (actsize > 0)
1857 buf += actsize;
1859 /* Default flags if no flags passed */
1860 if (optp == NULL)
1861 optp = optnames;
1863 if (bleft < 0) { /* degenerate case, 0-length buffer */
1864 *errorp = EINVAL;
1865 return(0);
1868 for (; flags && optp->o_opt; ++optp) {
1869 if ((flags & optp->o_opt) == 0)
1870 continue;
1871 optlen = strlen(optp->o_name);
1872 if (bwritten || actsize > 0) {
1873 if (bleft < 2) {
1874 *errorp = ENOSPC;
1875 break;
1877 buf[bwritten++] = ',';
1878 buf[bwritten++] = ' ';
1879 bleft -= 2;
1881 if (bleft < optlen) {
1882 *errorp = ENOSPC;
1883 break;
1885 bcopy(optp->o_name, buf + bwritten, optlen);
1886 bwritten += optlen;
1887 bleft -= optlen;
1888 flags &= ~optp->o_opt;
1892 * Space already reserved for trailing \0
1894 buf[bwritten] = 0;
1895 return (bwritten);
1899 * Build hash lists of net addresses and hang them off the mount point.
1900 * Called by ufs_mount() to set up the lists of export addresses.
1902 static int
1903 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1904 const struct export_args *argp)
1906 struct netcred *np;
1907 struct radix_node_head *rnh;
1908 int i;
1909 struct radix_node *rn;
1910 struct sockaddr *saddr, *smask = NULL;
1911 struct domain *dom;
1912 int error;
1914 if (argp->ex_addrlen == 0) {
1915 if (mp->mnt_flag & MNT_DEFEXPORTED)
1916 return (EPERM);
1917 np = &nep->ne_defexported;
1918 np->netc_exflags = argp->ex_flags;
1919 np->netc_anon = argp->ex_anon;
1920 np->netc_anon.cr_ref = 1;
1921 mp->mnt_flag |= MNT_DEFEXPORTED;
1922 return (0);
1925 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1926 return (EINVAL);
1927 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1928 return (EINVAL);
1930 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1931 np = (struct netcred *) kmalloc(i, M_NETADDR, M_WAITOK | M_ZERO);
1932 saddr = (struct sockaddr *) (np + 1);
1933 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1934 goto out;
1935 if (saddr->sa_len > argp->ex_addrlen)
1936 saddr->sa_len = argp->ex_addrlen;
1937 if (argp->ex_masklen) {
1938 smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1939 error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1940 if (error)
1941 goto out;
1942 if (smask->sa_len > argp->ex_masklen)
1943 smask->sa_len = argp->ex_masklen;
1945 i = saddr->sa_family;
1946 if ((rnh = nep->ne_rtable[i]) == NULL) {
1948 * Seems silly to initialize every AF when most are not used,
1949 * do so on demand here
1951 SLIST_FOREACH(dom, &domains, dom_next)
1952 if (dom->dom_family == i && dom->dom_rtattach) {
1953 dom->dom_rtattach((void **) &nep->ne_rtable[i],
1954 dom->dom_rtoffset);
1955 break;
1957 if ((rnh = nep->ne_rtable[i]) == NULL) {
1958 error = ENOBUFS;
1959 goto out;
1962 rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1963 np->netc_rnodes);
1964 if (rn == NULL || np != (struct netcred *) rn) { /* already exists */
1965 error = EPERM;
1966 goto out;
1968 np->netc_exflags = argp->ex_flags;
1969 np->netc_anon = argp->ex_anon;
1970 np->netc_anon.cr_ref = 1;
1971 return (0);
1972 out:
1973 kfree(np, M_NETADDR);
1974 return (error);
1977 /* ARGSUSED */
1978 static int
1979 vfs_free_netcred(struct radix_node *rn, void *w)
1981 struct radix_node_head *rnh = (struct radix_node_head *) w;
1983 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1984 kfree((caddr_t) rn, M_NETADDR);
1985 return (0);
1989 * Free the net address hash lists that are hanging off the mount points.
1991 static void
1992 vfs_free_addrlist(struct netexport *nep)
1994 int i;
1995 struct radix_node_head *rnh;
1997 for (i = 0; i <= AF_MAX; i++)
1998 if ((rnh = nep->ne_rtable[i])) {
1999 (*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2000 (caddr_t) rnh);
2001 kfree((caddr_t) rnh, M_RTABLE);
2002 nep->ne_rtable[i] = 0;
2007 vfs_export(struct mount *mp, struct netexport *nep,
2008 const struct export_args *argp)
2010 int error;
2012 if (argp->ex_flags & MNT_DELEXPORT) {
2013 if (mp->mnt_flag & MNT_EXPUBLIC) {
2014 vfs_setpublicfs(NULL, NULL, NULL);
2015 mp->mnt_flag &= ~MNT_EXPUBLIC;
2017 vfs_free_addrlist(nep);
2018 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2020 if (argp->ex_flags & MNT_EXPORTED) {
2021 if (argp->ex_flags & MNT_EXPUBLIC) {
2022 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2023 return (error);
2024 mp->mnt_flag |= MNT_EXPUBLIC;
2026 if ((error = vfs_hang_addrlist(mp, nep, argp)))
2027 return (error);
2028 mp->mnt_flag |= MNT_EXPORTED;
2030 return (0);
2035 * Set the publicly exported filesystem (WebNFS). Currently, only
2036 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2039 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
2040 const struct export_args *argp)
2042 int error;
2043 struct vnode *rvp;
2044 char *cp;
2047 * mp == NULL -> invalidate the current info, the FS is
2048 * no longer exported. May be called from either vfs_export
2049 * or unmount, so check if it hasn't already been done.
2051 if (mp == NULL) {
2052 if (nfs_pub.np_valid) {
2053 nfs_pub.np_valid = 0;
2054 if (nfs_pub.np_index != NULL) {
2055 kfree(nfs_pub.np_index, M_TEMP);
2056 nfs_pub.np_index = NULL;
2059 return (0);
2063 * Only one allowed at a time.
2065 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2066 return (EBUSY);
2069 * Get real filehandle for root of exported FS.
2071 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2072 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2074 if ((error = VFS_ROOT(mp, &rvp)))
2075 return (error);
2077 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2078 return (error);
2080 vput(rvp);
2083 * If an indexfile was specified, pull it in.
2085 if (argp->ex_indexfile != NULL) {
2086 int namelen;
2088 error = vn_get_namelen(rvp, &namelen);
2089 if (error)
2090 return (error);
2091 nfs_pub.np_index = kmalloc(namelen, M_TEMP, M_WAITOK);
2092 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2093 namelen, NULL);
2094 if (!error) {
2096 * Check for illegal filenames.
2098 for (cp = nfs_pub.np_index; *cp; cp++) {
2099 if (*cp == '/') {
2100 error = EINVAL;
2101 break;
2105 if (error) {
2106 kfree(nfs_pub.np_index, M_TEMP);
2107 return (error);
2111 nfs_pub.np_mount = mp;
2112 nfs_pub.np_valid = 1;
2113 return (0);
2116 struct netcred *
2117 vfs_export_lookup(struct mount *mp, struct netexport *nep,
2118 struct sockaddr *nam)
2120 struct netcred *np;
2121 struct radix_node_head *rnh;
2122 struct sockaddr *saddr;
2124 np = NULL;
2125 if (mp->mnt_flag & MNT_EXPORTED) {
2127 * Lookup in the export list first.
2129 if (nam != NULL) {
2130 saddr = nam;
2131 rnh = nep->ne_rtable[saddr->sa_family];
2132 if (rnh != NULL) {
2133 np = (struct netcred *)
2134 (*rnh->rnh_matchaddr)((char *)saddr,
2135 rnh);
2136 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2137 np = NULL;
2141 * If no address match, use the default if it exists.
2143 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2144 np = &nep->ne_defexported;
2146 return (np);
2150 * perform msync on all vnodes under a mount point. The mount point must
2151 * be locked. This code is also responsible for lazy-freeing unreferenced
2152 * vnodes whos VM objects no longer contain pages.
2154 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2156 * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
2157 * but vnode_pager_putpages() doesn't lock the vnode. We have to do it
2158 * way up in this high level function.
2160 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2161 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
2163 void
2164 vfs_msync(struct mount *mp, int flags)
2166 int vmsc_flags;
2169 * tmpfs sets this flag to prevent msync(), sync, and the
2170 * filesystem periodic syncer from trying to flush VM pages
2171 * to swap. Only pure memory pressure flushes tmpfs VM pages
2172 * to swap.
2174 if (mp->mnt_kern_flag & MNTK_NOMSYNC)
2175 return;
2178 * Ok, scan the vnodes for work.
2180 vmsc_flags = VMSC_GETVP;
2181 if (flags != MNT_WAIT)
2182 vmsc_flags |= VMSC_NOWAIT;
2183 vmntvnodescan(mp, vmsc_flags,
2184 vfs_msync_scan1, vfs_msync_scan2,
2185 (void *)(intptr_t)flags);
2189 * scan1 is a fast pre-check. There could be hundreds of thousands of
2190 * vnodes, we cannot afford to do anything heavy weight until we have a
2191 * fairly good indication that there is work to do.
2193 static
2195 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2197 int flags = (int)(intptr_t)data;
2199 if ((vp->v_flag & VRECLAIMED) == 0) {
2200 if (vshouldmsync(vp))
2201 return(0); /* call scan2 */
2202 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2203 (vp->v_flag & VOBJDIRTY) &&
2204 (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
2205 return(0); /* call scan2 */
2210 * do not call scan2, continue the loop
2212 return(-1);
2216 * This callback is handed a locked vnode.
2218 static
2220 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
2222 vm_object_t obj;
2223 int flags = (int)(intptr_t)data;
2225 if (vp->v_flag & VRECLAIMED)
2226 return(0);
2228 if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
2229 if ((obj = vp->v_object) != NULL) {
2230 vm_object_page_clean(obj, 0, 0,
2231 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2234 return(0);
2238 * Wake up anyone interested in vp because it is being revoked.
2240 void
2241 vn_gone(struct vnode *vp)
2243 lwkt_gettoken(&vp->v_token);
2244 KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, NOTE_REVOKE);
2245 lwkt_reltoken(&vp->v_token);
2249 * extract the cdev_t from a VBLK or VCHR. The vnode must have been opened
2250 * (or v_rdev might be NULL).
2252 cdev_t
2253 vn_todev(struct vnode *vp)
2255 if (vp->v_type != VBLK && vp->v_type != VCHR)
2256 return (NULL);
2257 KKASSERT(vp->v_rdev != NULL);
2258 return (vp->v_rdev);
2262 * Check if vnode represents a disk device. The vnode does not need to be
2263 * opened.
2265 * MPALMOSTSAFE
2268 vn_isdisk(struct vnode *vp, int *errp)
2270 cdev_t dev;
2272 if (vp->v_type != VCHR) {
2273 if (errp != NULL)
2274 *errp = ENOTBLK;
2275 return (0);
2278 dev = vp->v_rdev;
2280 if (dev == NULL) {
2281 if (errp != NULL)
2282 *errp = ENXIO;
2283 return (0);
2285 if (dev_is_good(dev) == 0) {
2286 if (errp != NULL)
2287 *errp = ENXIO;
2288 return (0);
2290 if ((dev_dflags(dev) & D_DISK) == 0) {
2291 if (errp != NULL)
2292 *errp = ENOTBLK;
2293 return (0);
2295 if (errp != NULL)
2296 *errp = 0;
2297 return (1);
2301 vn_get_namelen(struct vnode *vp, int *namelen)
2303 int error;
2304 register_t retval[2];
2306 error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2307 if (error)
2308 return (error);
2309 *namelen = (int)retval[0];
2310 return (0);
2314 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2315 uint16_t d_namlen, const char *d_name)
2317 struct dirent *dp;
2318 size_t len;
2320 len = _DIRENT_RECLEN(d_namlen);
2321 if (len > uio->uio_resid)
2322 return(1);
2324 dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2326 dp->d_ino = d_ino;
2327 dp->d_namlen = d_namlen;
2328 dp->d_type = d_type;
2329 bcopy(d_name, dp->d_name, d_namlen);
2331 *error = uiomove((caddr_t)dp, len, uio);
2333 kfree(dp, M_TEMP);
2335 return(0);
2338 void
2339 vn_mark_atime(struct vnode *vp, struct thread *td)
2341 struct proc *p = td->td_proc;
2342 struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2344 if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2345 VOP_MARKATIME(vp, cred);