Prevent implicit -std=* passing from NXCFLAGS to NXCXXFLAGS.
[dragonfly.git] / lib / libstand / qdivrem.c
blob3e1ed8d37c24da7dc05553e2467a3ead73cb18e1
1 /*-
2 * Copyright (c) 1992, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This software was developed by the Computer Systems Engineering group
6 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 * contributed to Berkeley.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * $FreeBSD: src/lib/libstand/qdivrem.c,v 1.2 1999/08/28 00:05:33 peter Exp $
34 * $DragonFly: src/lib/libstand/qdivrem.c,v 1.4 2005/12/11 02:27:26 swildner Exp $
35 * From: Id: qdivrem.c,v 1.7 1997/11/07 09:20:40 phk Exp
39 * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed),
40 * section 4.3.1, pp. 257--259.
43 #include "quad.h"
45 #define B (1 << HALF_BITS) /* digit base */
47 /* Combine two `digits' to make a single two-digit number. */
48 #define COMBINE(a, b) (((u_int)(a) << HALF_BITS) | (b))
50 _Static_assert(sizeof(int) / 2 == sizeof(short),
51 "Bitwise functions in libstand are broken on this architecture");
53 /* select a type for digits in base B: use unsigned short if they fit */
54 typedef unsigned short digit;
57 * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
58 * `fall out' the left (there never will be any such anyway).
59 * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS.
61 static void
62 shl(digit *p, int len, int sh)
64 int i;
66 for (i = 0; i < len; i++)
67 p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh));
68 p[i] = LHALF(p[i] << sh);
72 * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
74 * We do this in base 2-sup-HALF_BITS, so that all intermediate products
75 * fit within u_int. As a consequence, the maximum length dividend and
76 * divisor are 4 `digits' in this base (they are shorter if they have
77 * leading zeros).
79 u_quad_t
80 __qdivrem(u_quad_t uq, u_quad_t vq, u_quad_t *arq)
82 union uu tmp;
83 digit *u, *v, *q;
84 digit v1, v2;
85 u_int qhat, rhat, t;
86 int m, n, d, j, i;
87 digit uspace[5], vspace[5], qspace[5];
90 * Take care of special cases: divide by zero, and u < v.
92 if (vq == 0) {
93 /* divide by zero. */
94 static volatile const unsigned int zero = 0;
96 tmp.ul[H] = tmp.ul[L] = 1 / zero;
97 if (arq)
98 *arq = uq;
99 return (tmp.q);
101 if (uq < vq) {
102 if (arq)
103 *arq = uq;
104 return (0);
106 u = &uspace[0];
107 v = &vspace[0];
108 q = &qspace[0];
111 * Break dividend and divisor into digits in base B, then
112 * count leading zeros to determine m and n. When done, we
113 * will have:
114 * u = (u[1]u[2]...u[m+n]) sub B
115 * v = (v[1]v[2]...v[n]) sub B
116 * v[1] != 0
117 * 1 < n <= 4 (if n = 1, we use a different division algorithm)
118 * m >= 0 (otherwise u < v, which we already checked)
119 * m + n = 4
120 * and thus
121 * m = 4 - n <= 2
123 tmp.uq = uq;
124 u[0] = 0;
125 u[1] = HHALF(tmp.ul[H]);
126 u[2] = LHALF(tmp.ul[H]);
127 u[3] = HHALF(tmp.ul[L]);
128 u[4] = LHALF(tmp.ul[L]);
129 tmp.uq = vq;
130 v[1] = HHALF(tmp.ul[H]);
131 v[2] = LHALF(tmp.ul[H]);
132 v[3] = HHALF(tmp.ul[L]);
133 v[4] = LHALF(tmp.ul[L]);
134 for (n = 4; v[1] == 0; v++) {
135 if (--n == 1) {
136 u_int rbj; /* r*B+u[j] (not root boy jim) */
137 digit q1, q2, q3, q4;
140 * Change of plan, per exercise 16.
141 * r = 0;
142 * for j = 1..4:
143 * q[j] = floor((r*B + u[j]) / v),
144 * r = (r*B + u[j]) % v;
145 * We unroll this completely here.
147 t = v[2]; /* nonzero, by definition */
148 q1 = u[1] / t;
149 rbj = COMBINE(u[1] % t, u[2]);
150 q2 = rbj / t;
151 rbj = COMBINE(rbj % t, u[3]);
152 q3 = rbj / t;
153 rbj = COMBINE(rbj % t, u[4]);
154 q4 = rbj / t;
155 if (arq)
156 *arq = rbj % t;
157 tmp.ul[H] = COMBINE(q1, q2);
158 tmp.ul[L] = COMBINE(q3, q4);
159 return (tmp.q);
164 * By adjusting q once we determine m, we can guarantee that
165 * there is a complete four-digit quotient at &qspace[1] when
166 * we finally stop.
168 for (m = 4 - n; u[1] == 0; u++)
169 m--;
170 for (i = 4 - m; --i >= 0;)
171 q[i] = 0;
172 q += 4 - m;
175 * Here we run Program D, translated from MIX to C and acquiring
176 * a few minor changes.
178 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
180 d = 0;
181 for (t = v[1]; t < B / 2; t <<= 1)
182 d++;
183 if (d > 0) {
184 shl(&u[0], m + n, d); /* u <<= d */
185 shl(&v[1], n - 1, d); /* v <<= d */
188 * D2: j = 0.
190 j = 0;
191 v1 = v[1]; /* for D3 -- note that v[1..n] are constant */
192 v2 = v[2]; /* for D3 */
193 do {
194 digit uj0, uj1, uj2;
197 * D3: Calculate qhat (\^q, in TeX notation).
198 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
199 * let rhat = (u[j]*B + u[j+1]) mod v[1].
200 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
201 * decrement qhat and increase rhat correspondingly.
202 * Note that if rhat >= B, v[2]*qhat < rhat*B.
204 uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */
205 uj1 = u[j + 1]; /* for D3 only */
206 uj2 = u[j + 2]; /* for D3 only */
207 if (uj0 == v1) {
208 qhat = B;
209 rhat = uj1;
210 goto qhat_too_big;
211 } else {
212 u_int nn = COMBINE(uj0, uj1);
213 qhat = nn / v1;
214 rhat = nn % v1;
216 while (v2 * qhat > COMBINE(rhat, uj2)) {
217 qhat_too_big:
218 qhat--;
219 if ((rhat += v1) >= B)
220 break;
223 * D4: Multiply and subtract.
224 * The variable `t' holds any borrows across the loop.
225 * We split this up so that we do not require v[0] = 0,
226 * and to eliminate a final special case.
228 for (t = 0, i = n; i > 0; i--) {
229 t = u[i + j] - v[i] * qhat - t;
230 u[i + j] = LHALF(t);
231 t = (B - HHALF(t)) & (B - 1);
233 t = u[j] - t;
234 u[j] = LHALF(t);
236 * D5: test remainder.
237 * There is a borrow if and only if HHALF(t) is nonzero;
238 * in that (rare) case, qhat was too large (by exactly 1).
239 * Fix it by adding v[1..n] to u[j..j+n].
241 if (HHALF(t)) {
242 qhat--;
243 for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
244 t += u[i + j] + v[i];
245 u[i + j] = LHALF(t);
246 t = HHALF(t);
248 u[j] = LHALF(u[j] + t);
250 q[j] = qhat;
251 } while (++j <= m); /* D7: loop on j. */
254 * If caller wants the remainder, we have to calculate it as
255 * u[m..m+n] >> d (this is at most n digits and thus fits in
256 * u[m+1..m+n], but we may need more source digits).
258 if (arq) {
259 if (d) {
260 for (i = m + n; i > m; --i)
261 u[i] = (u[i] >> d) |
262 LHALF(u[i - 1] << (HALF_BITS - d));
263 u[i] = 0;
265 tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
266 tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
267 *arq = tmp.q;
270 tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
271 tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
272 return (tmp.q);
276 * Divide two unsigned quads.
279 u_quad_t
280 __udivdi3(u_quad_t a, u_quad_t b)
283 return (__qdivrem(a, b, (u_quad_t *)0));
287 * Return remainder after dividing two unsigned quads.
289 u_quad_t
290 __umoddi3(u_quad_t a, u_quad_t b)
292 u_quad_t r;
294 (void)__qdivrem(a, b, &r);
295 return (r);