HAMMER VFS - Major retooling of the refcount mechanics, and fix a deadlock
[dragonfly.git] / lib / libm / src / e_log.c
blob917b2e12ca65c8ddfdd016e3a297318e03395140
1 /* @(#)e_log.c 5.1 93/09/24 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
12 * $NetBSD: e_log.c,v 1.12 2002/05/26 22:01:51 wiz Exp $
13 * $DragonFly: src/lib/libm/src/e_log.c,v 1.2 2007/06/24 05:17:51 pavalos Exp $
16 /* log(x)
17 * Return the logrithm of x
19 * Method :
20 * 1. Argument Reduction: find k and f such that
21 * x = 2^k * (1+f),
22 * where sqrt(2)/2 < 1+f < sqrt(2) .
24 * 2. Approximation of log(1+f).
25 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
26 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
27 * = 2s + s*R
28 * We use a special Reme algorithm on [0,0.1716] to generate
29 * a polynomial of degree 14 to approximate R The maximum error
30 * of this polynomial approximation is bounded by 2**-58.45. In
31 * other words,
32 * 2 4 6 8 10 12 14
33 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
34 * (the values of Lg1 to Lg7 are listed in the program)
35 * and
36 * | 2 14 | -58.45
37 * | Lg1*s +...+Lg7*s - R(z) | <= 2
38 * | |
39 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
40 * In order to guarantee error in log below 1ulp, we compute log
41 * by
42 * log(1+f) = f - s*(f - R) (if f is not too large)
43 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
45 * 3. Finally, log(x) = k*ln2 + log(1+f).
46 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
47 * Here ln2 is split into two floating point number:
48 * ln2_hi + ln2_lo,
49 * where n*ln2_hi is always exact for |n| < 2000.
51 * Special cases:
52 * log(x) is NaN with signal if x < 0 (including -INF) ;
53 * log(+INF) is +INF; log(0) is -INF with signal;
54 * log(NaN) is that NaN with no signal.
56 * Accuracy:
57 * according to an error analysis, the error is always less than
58 * 1 ulp (unit in the last place).
60 * Constants:
61 * The hexadecimal values are the intended ones for the following
62 * constants. The decimal values may be used, provided that the
63 * compiler will convert from decimal to binary accurately enough
64 * to produce the hexadecimal values shown.
67 #include <math.h>
68 #include "math_private.h"
70 static const double
71 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
72 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
73 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
74 Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
75 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
76 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
77 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
78 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
79 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
80 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
82 static const double zero = 0.0;
84 double
85 log(double x)
87 double hfsq,f,s,z,R,w,t1,t2,dk;
88 int32_t k,hx,i,j;
89 u_int32_t lx;
91 EXTRACT_WORDS(hx,lx,x);
93 k=0;
94 if (hx < 0x00100000) { /* x < 2**-1022 */
95 if (((hx&0x7fffffff)|lx)==0)
96 return -two54/zero; /* log(+-0)=-inf */
97 if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
98 k -= 54; x *= two54; /* subnormal number, scale up x */
99 GET_HIGH_WORD(hx,x);
101 if (hx >= 0x7ff00000) return x+x;
102 k += (hx>>20)-1023;
103 hx &= 0x000fffff;
104 i = (hx+0x95f64)&0x100000;
105 SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
106 k += (i>>20);
107 f = x-1.0;
108 if((0x000fffff&(2+hx))<3) { /* -2**-20 <= f < 2**-20 */
109 if(f==zero) { if(k==0) return zero; else {dk=(double)k;
110 return dk*ln2_hi+dk*ln2_lo;}
112 R = f*f*(0.5-0.33333333333333333*f);
113 if(k==0) return f-R; else {dk=(double)k;
114 return dk*ln2_hi-((R-dk*ln2_lo)-f);}
116 s = f/(2.0+f);
117 dk = (double)k;
118 z = s*s;
119 i = hx-0x6147a;
120 w = z*z;
121 j = 0x6b851-hx;
122 t1= w*(Lg2+w*(Lg4+w*Lg6));
123 t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
124 i |= j;
125 R = t2+t1;
126 if(i>0) {
127 hfsq=0.5*f*f;
128 if(k==0) return f-(hfsq-s*(hfsq+R)); else
129 return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
130 } else {
131 if(k==0) return f-s*(f-R); else
132 return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);