2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * All advertising materials mentioning features or use of this software
36 * must display the following acknowledgement:
37 * This product includes software developed by Jeffrey M. Hsu.
39 * Copyright (c) 2001 Networks Associates Technologies, Inc.
40 * All rights reserved.
42 * This software was developed for the FreeBSD Project by Jonathan Lemon
43 * and NAI Labs, the Security Research Division of Network Associates, Inc.
44 * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45 * DARPA CHATS research program.
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. The name of the author may not be used to endorse or promote
56 * products derived from this software without specific prior written
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
75 #include "opt_inet6.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
84 #include <sys/proc.h> /* for proc0 declaration */
85 #include <sys/random.h>
86 #include <sys/socket.h>
87 #include <sys/socketvar.h>
88 #include <sys/in_cksum.h>
90 #include <sys/msgport2.h>
91 #include <net/netmsg2.h>
92 #include <net/netisr2.h>
95 #include <net/route.h>
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/in_var.h>
101 #include <netinet/in_pcb.h>
102 #include <netinet/ip_var.h>
103 #include <netinet/ip6.h>
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
118 static int tcp_syncookies
= 1;
119 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, syncookies
, CTLFLAG_RW
,
121 "Use TCP SYN cookies if the syncache overflows");
123 static void syncache_drop(struct syncache
*, struct syncache_head
*);
124 static void syncache_free(struct syncache
*);
125 static void syncache_insert(struct syncache
*, struct syncache_head
*);
126 static struct syncache
*syncache_lookup(struct in_conninfo
*,
127 struct syncache_head
**);
128 static int syncache_respond(struct syncache
*, struct mbuf
*);
129 static struct socket
*syncache_socket(struct syncache
*, struct socket
*,
131 static void syncache_timer(void *);
132 static u_int32_t
syncookie_generate(struct syncache
*);
133 static struct syncache
*syncookie_lookup(struct in_conninfo
*,
134 struct tcphdr
*, struct socket
*);
137 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
138 * 4 retransmits corresponds to a timeout of (3 + 3 + 3 + 3 + 3 == 15) seconds
139 * or (1 + 1 + 2 + 4 + 8 == 16) seconds if RFC6298 is used, the odds are that
140 * the user has given up attempting to connect by then.
142 #define SYNCACHE_MAXREXMTS 4
144 /* Arbitrary values */
145 #define TCP_SYNCACHE_HASHSIZE 512
146 #define TCP_SYNCACHE_BUCKETLIMIT 30
148 static void syncache_timer_handler(netmsg_t
);
149 static int syncache_sysctl_count(SYSCTL_HANDLER_ARGS
);
151 struct tcp_syncache
{
159 static struct tcp_syncache tcp_syncache
;
161 struct syncache_timerq
{
162 TAILQ_HEAD(, syncache
) list
;
163 struct callout timeo
;
164 struct netmsg_base nm
;
167 struct tcp_syncache_percpu
{
168 struct syncache_head
*hashbase
;
170 struct syncache_timerq timerq
[SYNCACHE_MAXREXMTS
+ 1];
173 static struct tcp_syncache_percpu
*tcp_syncache_percpu
[MAXCPU
];
175 SYSCTL_NODE(_net_inet_tcp
, OID_AUTO
, syncache
, CTLFLAG_RW
, 0, "TCP SYN cache");
177 SYSCTL_INT(_net_inet_tcp_syncache
, OID_AUTO
, bucketlimit
, CTLFLAG_RD
,
178 &tcp_syncache
.bucket_limit
, 0, "Per-bucket hash limit for syncache");
180 SYSCTL_INT(_net_inet_tcp_syncache
, OID_AUTO
, cachelimit
, CTLFLAG_RD
,
181 &tcp_syncache
.cache_limit
, 0, "Overall entry limit for syncache");
183 SYSCTL_PROC(_net_inet_tcp_syncache
, OID_AUTO
, count
, (CTLTYPE_INT
| CTLFLAG_RD
),
184 0, 0, syncache_sysctl_count
, "I", "Current number of entries in syncache");
186 SYSCTL_INT(_net_inet_tcp_syncache
, OID_AUTO
, hashsize
, CTLFLAG_RD
,
187 &tcp_syncache
.hashsize
, 0, "Size of TCP syncache hashtable");
189 SYSCTL_INT(_net_inet_tcp_syncache
, OID_AUTO
, rexmtlimit
, CTLFLAG_RW
,
190 &tcp_syncache
.rexmt_limit
, 0, "Limit on SYN/ACK retransmissions");
192 static MALLOC_DEFINE(M_SYNCACHE
, "syncache", "TCP syncache");
194 #define SYNCACHE_HASH(inc, mask) \
195 ((tcp_syncache.hash_secret ^ \
196 (inc)->inc_faddr.s_addr ^ \
197 ((inc)->inc_faddr.s_addr >> 16) ^ \
198 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
200 #define SYNCACHE_HASH6(inc, mask) \
201 ((tcp_syncache.hash_secret ^ \
202 (inc)->inc6_faddr.s6_addr32[0] ^ \
203 (inc)->inc6_faddr.s6_addr32[3] ^ \
204 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
206 #define ENDPTS_EQ(a, b) ( \
207 (a)->ie_fport == (b)->ie_fport && \
208 (a)->ie_lport == (b)->ie_lport && \
209 (a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr && \
210 (a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr \
213 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
216 syncache_rto(int slot
)
219 return (TCPTV_RTOBASE
* tcp_syn_backoff_low
[slot
]);
221 return (TCPTV_RTOBASE
* tcp_syn_backoff
[slot
]);
225 syncache_timeout(struct tcp_syncache_percpu
*syncache_percpu
,
226 struct syncache
*sc
, int slot
)
228 struct syncache_timerq
*tq
;
231 KASSERT(slot
<= SYNCACHE_MAXREXMTS
,
232 ("syncache: invalid slot %d", slot
));
236 * Record the time that we spent in SYN|ACK
239 * Needed by RFC3390 and RFC6298.
241 sc
->sc_rxtused
+= syncache_rto(slot
- 1);
243 sc
->sc_rxtslot
= slot
;
245 rto
= syncache_rto(slot
);
246 sc
->sc_rxttime
= ticks
+ rto
;
248 tq
= &syncache_percpu
->timerq
[slot
];
249 TAILQ_INSERT_TAIL(&tq
->list
, sc
, sc_timerq
);
250 if (!callout_active(&tq
->timeo
))
251 callout_reset(&tq
->timeo
, rto
, syncache_timer
, &tq
->nm
);
255 syncache_free(struct syncache
*sc
)
259 const boolean_t isipv6
= sc
->sc_inc
.inc_isipv6
;
261 const boolean_t isipv6
= FALSE
;
265 m_free(sc
->sc_ipopts
);
267 rt
= isipv6
? sc
->sc_route6
.ro_rt
: sc
->sc_route
.ro_rt
;
270 * If this is the only reference to a protocol-cloned
271 * route, remove it immediately.
273 if ((rt
->rt_flags
& (RTF_WASCLONED
| RTF_LLINFO
)) ==
274 RTF_WASCLONED
&& rt
->rt_refcnt
== 1) {
275 rtrequest(RTM_DELETE
, rt_key(rt
), rt
->rt_gateway
,
276 rt_mask(rt
), rt
->rt_flags
, NULL
);
280 kfree(sc
, M_SYNCACHE
);
284 syncache_init_dispatch(netmsg_t nm
)
286 struct tcp_syncache_percpu
*syncache_percpu
;
289 ASSERT_NETISR_NCPUS(mycpuid
);
291 syncache_percpu
= kmalloc(sizeof(*syncache_percpu
), M_SYNCACHE
,
294 /* Allocate the hash table. */
295 syncache_percpu
->hashbase
= kmalloc(tcp_syncache
.hashsize
*
296 sizeof(struct syncache_head
),
297 M_SYNCACHE
, M_WAITOK
| M_ZERO
);
299 /* Initialize the hash buckets. */
300 for (i
= 0; i
< tcp_syncache
.hashsize
; i
++) {
301 struct syncache_head
*bucket
;
303 bucket
= &syncache_percpu
->hashbase
[i
];
304 TAILQ_INIT(&bucket
->sch_bucket
);
305 bucket
->sch_length
= 0;
308 for (i
= 0; i
<= SYNCACHE_MAXREXMTS
; i
++) {
309 struct syncache_timerq
*tq
=
310 &syncache_percpu
->timerq
[i
];
312 /* Initialize the timer queues. */
313 TAILQ_INIT(&tq
->list
);
314 callout_init_mp(&tq
->timeo
);
316 netmsg_init(&tq
->nm
, NULL
, &netisr_adone_rport
,
317 MSGF_PRIORITY
, syncache_timer_handler
);
318 tq
->nm
.lmsg
.u
.ms_result
= i
;
321 tcp_syncache_percpu
[mycpuid
] = syncache_percpu
;
323 netisr_forwardmsg(&nm
->base
, mycpuid
+ 1);
329 struct netmsg_base nm
;
331 tcp_syncache
.hashsize
= TCP_SYNCACHE_HASHSIZE
;
332 tcp_syncache
.bucket_limit
= TCP_SYNCACHE_BUCKETLIMIT
;
333 tcp_syncache
.cache_limit
=
334 tcp_syncache
.hashsize
* tcp_syncache
.bucket_limit
;
335 tcp_syncache
.rexmt_limit
= SYNCACHE_MAXREXMTS
;
336 tcp_syncache
.hash_secret
= karc4random();
338 TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
339 &tcp_syncache
.hashsize
);
340 TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
341 &tcp_syncache
.cache_limit
);
342 TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
343 &tcp_syncache
.bucket_limit
);
344 if (!powerof2(tcp_syncache
.hashsize
)) {
345 kprintf("WARNING: syncache hash size is not a power of 2.\n");
346 tcp_syncache
.hashsize
= 512; /* safe default */
348 tcp_syncache
.hashmask
= tcp_syncache
.hashsize
- 1;
350 netmsg_init(&nm
, NULL
, &curthread
->td_msgport
, 0,
351 syncache_init_dispatch
);
352 netisr_domsg_global(&nm
);
356 syncache_insert(struct syncache
*sc
, struct syncache_head
*sch
)
358 struct tcp_syncache_percpu
*syncache_percpu
;
359 struct syncache
*sc2
;
362 syncache_percpu
= tcp_syncache_percpu
[mycpu
->gd_cpuid
];
365 * Make sure that we don't overflow the per-bucket
366 * limit or the total cache size limit.
368 if (sch
->sch_length
>= tcp_syncache
.bucket_limit
) {
370 * The bucket is full, toss the oldest element.
372 sc2
= TAILQ_FIRST(&sch
->sch_bucket
);
373 if (sc2
->sc_tp
!= NULL
)
374 sc2
->sc_tp
->ts_recent
= ticks
;
375 syncache_drop(sc2
, sch
);
376 tcpstat
.tcps_sc_bucketoverflow
++;
377 } else if (syncache_percpu
->cache_count
>= tcp_syncache
.cache_limit
) {
379 * The cache is full. Toss the oldest entry in the
380 * entire cache. This is the front entry in the
381 * first non-empty timer queue with the largest
384 for (i
= SYNCACHE_MAXREXMTS
; i
>= 0; i
--) {
385 sc2
= TAILQ_FIRST(&syncache_percpu
->timerq
[i
].list
);
389 if (sc2
->sc_tp
!= NULL
)
390 sc2
->sc_tp
->ts_recent
= ticks
;
391 syncache_drop(sc2
, NULL
);
392 tcpstat
.tcps_sc_cacheoverflow
++;
395 /* Initialize the entry's timer. */
396 syncache_timeout(syncache_percpu
, sc
, 0);
398 /* Put it into the bucket. */
399 TAILQ_INSERT_TAIL(&sch
->sch_bucket
, sc
, sc_hash
);
401 syncache_percpu
->cache_count
++;
402 tcpstat
.tcps_sc_added
++;
406 syncache_destroy(struct tcpcb
*tp
, struct tcpcb
*tp_inh
)
408 struct tcp_syncache_percpu
*syncache_percpu
;
411 ASSERT_NETISR_NCPUS(mycpuid
);
413 syncache_percpu
= tcp_syncache_percpu
[mycpu
->gd_cpuid
];
414 for (i
= 0; i
< tcp_syncache
.hashsize
; i
++) {
415 struct syncache_head
*bucket
;
418 bucket
= &syncache_percpu
->hashbase
[i
];
419 TAILQ_FOREACH(sc
, &bucket
->sch_bucket
, sc_hash
) {
427 syncache_drop(struct syncache
*sc
, struct syncache_head
*sch
)
429 struct tcp_syncache_percpu
*syncache_percpu
;
431 const boolean_t isipv6
= sc
->sc_inc
.inc_isipv6
;
433 const boolean_t isipv6
= FALSE
;
436 syncache_percpu
= tcp_syncache_percpu
[mycpu
->gd_cpuid
];
440 sch
= &syncache_percpu
->hashbase
[
441 SYNCACHE_HASH6(&sc
->sc_inc
, tcp_syncache
.hashmask
)];
443 sch
= &syncache_percpu
->hashbase
[
444 SYNCACHE_HASH(&sc
->sc_inc
, tcp_syncache
.hashmask
)];
448 TAILQ_REMOVE(&sch
->sch_bucket
, sc
, sc_hash
);
450 syncache_percpu
->cache_count
--;
458 * Remove the entry from the syncache timer/timeout queue. Note
459 * that we do not try to stop any running timer since we do not know
460 * whether the timer's message is in-transit or not. Since timeouts
461 * are fairly long, taking an unneeded callout does not detrimentally
462 * effect performance.
464 TAILQ_REMOVE(&syncache_percpu
->timerq
[sc
->sc_rxtslot
].list
, sc
,
471 * Place a timeout message on the TCP thread's message queue.
472 * This routine runs in soft interrupt context.
474 * An invariant is for this routine to be called, the callout must
475 * have been active. Note that the callout is not deactivated until
476 * after the message has been processed in syncache_timer_handler() below.
479 syncache_timer(void *p
)
481 struct netmsg_base
*msg
= p
;
483 KKASSERT(mycpuid
< netisr_ncpus
);
486 if (msg
->lmsg
.ms_flags
& MSGF_DONE
)
487 netisr_sendmsg_oncpu(msg
);
492 * Service a timer message queued by timer expiration.
493 * This routine runs in the TCP protocol thread.
495 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
496 * If we have retransmitted an entry the maximum number of times, expire it.
498 * When we finish processing timed-out entries, we restart the timer if there
499 * are any entries still on the queue and deactivate it otherwise. Only after
500 * a timer has been deactivated here can it be restarted by syncache_timeout().
503 syncache_timer_handler(netmsg_t msg
)
505 struct tcp_syncache_percpu
*syncache_percpu
;
506 struct syncache
*nsc
;
507 struct syncache_timerq
*tq
;
510 ASSERT_NETISR_NCPUS(mycpuid
);
514 netisr_replymsg(&msg
->base
, 0);
517 syncache_percpu
= tcp_syncache_percpu
[mycpu
->gd_cpuid
];
519 slot
= msg
->lmsg
.u
.ms_result
;
520 KASSERT(slot
<= SYNCACHE_MAXREXMTS
,
521 ("syncache: invalid slot %d", slot
));
522 tq
= &syncache_percpu
->timerq
[slot
];
524 nsc
= TAILQ_FIRST(&tq
->list
);
525 while (nsc
!= NULL
) {
528 if (ticks
< nsc
->sc_rxttime
)
529 break; /* finished because timerq sorted by time */
532 if (sc
->sc_tp
== NULL
) {
533 nsc
= TAILQ_NEXT(sc
, sc_timerq
);
534 syncache_drop(sc
, NULL
);
535 tcpstat
.tcps_sc_stale
++;
538 if (slot
== SYNCACHE_MAXREXMTS
||
539 slot
>= tcp_syncache
.rexmt_limit
||
540 sc
->sc_tp
->t_inpcb
->inp_gencnt
!= sc
->sc_inp_gencnt
) {
541 nsc
= TAILQ_NEXT(sc
, sc_timerq
);
542 syncache_drop(sc
, NULL
);
543 tcpstat
.tcps_sc_stale
++;
547 * syncache_respond() may call back into the syncache to
548 * to modify another entry, so do not obtain the next
549 * entry on the timer chain until it has completed.
551 syncache_respond(sc
, NULL
);
552 tcpstat
.tcps_sc_retransmitted
++;
553 nsc
= TAILQ_NEXT(sc
, sc_timerq
);
554 TAILQ_REMOVE(&tq
->list
, sc
, sc_timerq
);
555 syncache_timeout(syncache_percpu
, sc
, slot
+ 1);
559 callout_reset(&tq
->timeo
, nsc
->sc_rxttime
- ticks
,
560 syncache_timer
, &tq
->nm
);
562 callout_deactivate(&tq
->timeo
);
567 * Find an entry in the syncache.
569 static struct syncache
*
570 syncache_lookup(struct in_conninfo
*inc
, struct syncache_head
**schp
)
572 struct tcp_syncache_percpu
*syncache_percpu
;
574 struct syncache_head
*sch
;
576 syncache_percpu
= tcp_syncache_percpu
[mycpu
->gd_cpuid
];
578 if (inc
->inc_isipv6
) {
579 sch
= &syncache_percpu
->hashbase
[
580 SYNCACHE_HASH6(inc
, tcp_syncache
.hashmask
)];
582 TAILQ_FOREACH(sc
, &sch
->sch_bucket
, sc_hash
)
583 if (ENDPTS6_EQ(&inc
->inc_ie
, &sc
->sc_inc
.inc_ie
))
588 sch
= &syncache_percpu
->hashbase
[
589 SYNCACHE_HASH(inc
, tcp_syncache
.hashmask
)];
591 TAILQ_FOREACH(sc
, &sch
->sch_bucket
, sc_hash
) {
593 if (sc
->sc_inc
.inc_isipv6
)
596 if (ENDPTS_EQ(&inc
->inc_ie
, &sc
->sc_inc
.inc_ie
))
604 * This function is called when we get a RST for a
605 * non-existent connection, so that we can see if the
606 * connection is in the syn cache. If it is, zap it.
609 syncache_chkrst(struct in_conninfo
*inc
, struct tcphdr
*th
)
612 struct syncache_head
*sch
;
614 ASSERT_NETISR_NCPUS(mycpuid
);
616 sc
= syncache_lookup(inc
, &sch
);
621 * If the RST bit is set, check the sequence number to see
622 * if this is a valid reset segment.
624 * In all states except SYN-SENT, all reset (RST) segments
625 * are validated by checking their SEQ-fields. A reset is
626 * valid if its sequence number is in the window.
628 * The sequence number in the reset segment is normally an
629 * echo of our outgoing acknowlegement numbers, but some hosts
630 * send a reset with the sequence number at the rightmost edge
631 * of our receive window, and we have to handle this case.
633 if (SEQ_GEQ(th
->th_seq
, sc
->sc_irs
) &&
634 SEQ_LEQ(th
->th_seq
, sc
->sc_irs
+ sc
->sc_wnd
)) {
635 syncache_drop(sc
, sch
);
636 tcpstat
.tcps_sc_reset
++;
641 syncache_badack(struct in_conninfo
*inc
)
644 struct syncache_head
*sch
;
646 ASSERT_NETISR_NCPUS(mycpuid
);
648 sc
= syncache_lookup(inc
, &sch
);
650 syncache_drop(sc
, sch
);
651 tcpstat
.tcps_sc_badack
++;
656 syncache_unreach(struct in_conninfo
*inc
, const struct tcphdr
*th
)
659 struct syncache_head
*sch
;
661 ASSERT_NETISR_NCPUS(mycpuid
);
663 /* we are called at splnet() here */
664 sc
= syncache_lookup(inc
, &sch
);
668 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
669 if (ntohl(th
->th_seq
) != sc
->sc_iss
)
673 * If we've rertransmitted 3 times and this is our second error,
674 * we remove the entry. Otherwise, we allow it to continue on.
675 * This prevents us from incorrectly nuking an entry during a
676 * spurious network outage.
680 if ((sc
->sc_flags
& SCF_UNREACH
) == 0 || sc
->sc_rxtslot
< 3) {
681 sc
->sc_flags
|= SCF_UNREACH
;
684 syncache_drop(sc
, sch
);
685 tcpstat
.tcps_sc_unreach
++;
689 * Build a new TCP socket structure from a syncache entry.
691 * This is called from the context of the SYN+ACK
693 static struct socket
*
694 syncache_socket(struct syncache
*sc
, struct socket
*lso
, struct mbuf
*m
)
696 struct inpcb
*inp
= NULL
, *linp
;
698 struct tcpcb
*tp
, *ltp
;
701 const boolean_t isipv6
= sc
->sc_inc
.inc_isipv6
;
703 const boolean_t isipv6
= FALSE
;
705 struct sockaddr_in sin_faddr
;
706 struct sockaddr_in6 sin6_faddr
;
707 struct sockaddr
*faddr
;
709 KASSERT(m
->m_flags
& M_HASH
, ("mbuf has no hash"));
712 faddr
= (struct sockaddr
*)&sin6_faddr
;
713 sin6_faddr
.sin6_family
= AF_INET6
;
714 sin6_faddr
.sin6_len
= sizeof(sin6_faddr
);
715 sin6_faddr
.sin6_addr
= sc
->sc_inc
.inc6_faddr
;
716 sin6_faddr
.sin6_port
= sc
->sc_inc
.inc_fport
;
717 sin6_faddr
.sin6_flowinfo
= sin6_faddr
.sin6_scope_id
= 0;
719 faddr
= (struct sockaddr
*)&sin_faddr
;
720 sin_faddr
.sin_family
= AF_INET
;
721 sin_faddr
.sin_len
= sizeof(sin_faddr
);
722 sin_faddr
.sin_addr
= sc
->sc_inc
.inc_faddr
;
723 sin_faddr
.sin_port
= sc
->sc_inc
.inc_fport
;
724 bzero(sin_faddr
.sin_zero
, sizeof(sin_faddr
.sin_zero
));
728 * Ok, create the full blown connection, and set things up
729 * as they would have been set up if we had created the
730 * connection when the SYN arrived. If we can't create
731 * the connection, abort it.
733 * Set the protocol processing port for the socket to the current
734 * port (that the connection came in on).
737 * We don't keep a reference on the new socket, since its
738 * destruction will run in this thread (netisrN); there is no
741 so
= sonewconn_faddr(lso
, SS_ISCONNECTED
, faddr
,
742 FALSE
/* don't ref */);
745 * Drop the connection; we will send a RST if the peer
746 * retransmits the ACK,
748 tcpstat
.tcps_listendrop
++;
753 * Insert new socket into hash list.
756 inp
->inp_inc
.inc_isipv6
= sc
->sc_inc
.inc_isipv6
;
758 inp
->in6p_laddr
= sc
->sc_inc
.inc6_laddr
;
760 KASSERT(INP_ISIPV4(inp
), ("not inet pcb"));
761 inp
->inp_laddr
= sc
->sc_inc
.inc_laddr
;
763 inp
->inp_lport
= sc
->sc_inc
.inc_lport
;
766 ltp
= intotcpcb(linp
);
768 tcp_pcbport_insert(ltp
, inp
);
771 struct in6_addr laddr6
;
773 * Inherit socket options from the listening socket.
774 * Note that in6p_inputopts are not (and should not be)
775 * copied, since it stores previously received options and is
776 * used to detect if each new option is different than the
777 * previous one and hence should be passed to a user.
778 * If we copied in6p_inputopts, a user would not be able to
779 * receive options just after calling the accept system call.
781 inp
->inp_flags
|= linp
->inp_flags
& INP_CONTROLOPTS
;
782 if (linp
->in6p_outputopts
)
783 inp
->in6p_outputopts
=
784 ip6_copypktopts(linp
->in6p_outputopts
, M_INTWAIT
);
785 inp
->in6p_route
= sc
->sc_route6
;
786 sc
->sc_route6
.ro_rt
= NULL
;
788 laddr6
= inp
->in6p_laddr
;
789 if (IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_laddr
))
790 inp
->in6p_laddr
= sc
->sc_inc
.inc6_laddr
;
791 if (in6_pcbconnect(inp
, faddr
, &thread0
)) {
792 inp
->in6p_laddr
= laddr6
;
795 port
= tcp6_addrport();
797 struct in_addr laddr
;
799 inp
->inp_options
= ip_srcroute(m
);
800 if (inp
->inp_options
== NULL
) {
801 inp
->inp_options
= sc
->sc_ipopts
;
802 sc
->sc_ipopts
= NULL
;
804 inp
->inp_route
= sc
->sc_route
;
805 sc
->sc_route
.ro_rt
= NULL
;
807 laddr
= inp
->inp_laddr
;
808 if (inp
->inp_laddr
.s_addr
== INADDR_ANY
)
809 inp
->inp_laddr
= sc
->sc_inc
.inc_laddr
;
810 if (in_pcbconnect(inp
, faddr
, &thread0
)) {
811 inp
->inp_laddr
= laddr
;
815 inp
->inp_flags
|= INP_HASH
;
816 inp
->inp_hashval
= m
->m_pkthdr
.hash
;
817 port
= netisr_hashport(inp
->inp_hashval
);
821 * The current port should be in the context of the SYN+ACK and
822 * so should match the tcp address port.
824 KASSERT(port
== &curthread
->td_msgport
,
825 ("TCP PORT MISMATCH %p vs %p\n", port
, &curthread
->td_msgport
));
828 TCP_STATE_CHANGE(tp
, TCPS_SYN_RECEIVED
);
829 tp
->iss
= sc
->sc_iss
;
830 tp
->irs
= sc
->sc_irs
;
833 tp
->snd_wnd
= sc
->sc_sndwnd
;
834 tp
->snd_wl1
= sc
->sc_irs
;
835 tp
->rcv_up
= sc
->sc_irs
+ 1;
836 tp
->rcv_wnd
= sc
->sc_wnd
;
837 tp
->rcv_adv
+= tp
->rcv_wnd
;
839 tp
->t_flags
= sototcpcb(lso
)->t_flags
& (TF_NOPUSH
| TF_NODELAY
);
840 if (sc
->sc_flags
& SCF_NOOPT
)
841 tp
->t_flags
|= TF_NOOPT
;
842 if (sc
->sc_flags
& SCF_WINSCALE
) {
843 tp
->t_flags
|= TF_REQ_SCALE
| TF_RCVD_SCALE
;
844 tp
->snd_scale
= sc
->sc_requested_s_scale
;
845 tp
->request_r_scale
= sc
->sc_request_r_scale
;
847 if (sc
->sc_flags
& SCF_TIMESTAMP
) {
848 tp
->t_flags
|= TF_REQ_TSTMP
| TF_RCVD_TSTMP
;
849 tp
->ts_recent
= sc
->sc_tsrecent
;
850 tp
->ts_recent_age
= ticks
;
852 if (sc
->sc_flags
& SCF_SACK_PERMITTED
)
853 tp
->t_flags
|= TF_SACK_PERMITTED
;
856 if (sc
->sc_flags
& SCF_SIGNATURE
)
857 tp
->t_flags
|= TF_SIGNATURE
;
858 #endif /* TCP_SIGNATURE */
860 tp
->t_rxtsyn
= sc
->sc_rxtused
;
861 tcp_rmx_init(tp
, sc
->sc_peer_mss
);
864 * Inherit some properties from the listen socket
866 tp
->t_keepinit
= ltp
->t_keepinit
;
867 tp
->t_keepidle
= ltp
->t_keepidle
;
868 tp
->t_keepintvl
= ltp
->t_keepintvl
;
869 tp
->t_keepcnt
= ltp
->t_keepcnt
;
870 tp
->t_maxidle
= ltp
->t_maxidle
;
872 tcp_create_timermsg(tp
, port
);
873 tcp_callout_reset(tp
, tp
->tt_keep
, tp
->t_keepinit
, tcp_timer_keep
);
875 tcpstat
.tcps_accepts
++;
885 * This function gets called when we receive an ACK for a
886 * socket in the LISTEN state. We look up the connection
887 * in the syncache, and if its there, we pull it out of
888 * the cache and turn it into a full-blown connection in
889 * the SYN-RECEIVED state.
892 syncache_expand(struct in_conninfo
*inc
, struct tcphdr
*th
, struct socket
**sop
,
896 struct syncache_head
*sch
;
899 ASSERT_NETISR_NCPUS(mycpuid
);
901 sc
= syncache_lookup(inc
, &sch
);
904 * There is no syncache entry, so see if this ACK is
905 * a returning syncookie. To do this, first:
906 * A. See if this socket has had a syncache entry dropped in
907 * the past. We don't want to accept a bogus syncookie
908 * if we've never received a SYN.
909 * B. check that the syncookie is valid. If it is, then
910 * cobble up a fake syncache entry, and return.
914 sc
= syncookie_lookup(inc
, th
, *sop
);
918 tcpstat
.tcps_sc_recvcookie
++;
922 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
924 if (th
->th_ack
!= sc
->sc_iss
+ 1)
927 so
= syncache_socket(sc
, *sop
, m
);
931 /* XXXjlemon check this - is this correct? */
932 tcp_respond(NULL
, m
, m
, th
,
933 th
->th_seq
+ tlen
, (tcp_seq
)0, TH_RST
| TH_ACK
);
935 m_freem(m
); /* XXX only needed for above */
936 tcpstat
.tcps_sc_aborted
++;
938 tcpstat
.tcps_sc_completed
++;
943 syncache_drop(sc
, sch
);
949 * Given a LISTEN socket and an inbound SYN request, add
950 * this to the syn cache, and send back a segment:
951 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
954 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
955 * Doing so would require that we hold onto the data and deliver it
956 * to the application. However, if we are the target of a SYN-flood
957 * DoS attack, an attacker could send data which would eventually
958 * consume all available buffer space if it were ACKed. By not ACKing
959 * the data, we avoid this DoS scenario.
962 syncache_add(struct in_conninfo
*inc
, struct tcpopt
*to
, struct tcphdr
*th
,
963 struct socket
*so
, struct mbuf
*m
)
965 struct tcp_syncache_percpu
*syncache_percpu
;
967 struct syncache
*sc
= NULL
;
968 struct syncache_head
*sch
;
969 struct mbuf
*ipopts
= NULL
;
972 ASSERT_NETISR_NCPUS(mycpuid
);
973 KASSERT(m
->m_flags
& M_HASH
, ("mbuf has no hash"));
975 syncache_percpu
= tcp_syncache_percpu
[mycpu
->gd_cpuid
];
979 * Remember the IP options, if any.
982 if (!inc
->inc_isipv6
)
984 ipopts
= ip_srcroute(m
);
987 * See if we already have an entry for this connection.
988 * If we do, resend the SYN,ACK, and reset the retransmit timer.
991 * The syncache should be re-initialized with the contents
992 * of the new SYN which may have different options.
994 sc
= syncache_lookup(inc
, &sch
);
996 KASSERT(sc
->sc_flags
& SCF_HASH
, ("syncache has no hash"));
997 KASSERT(sc
->sc_hashval
== m
->m_pkthdr
.hash
,
998 ("syncache/mbuf hash mismatches"));
1000 tcpstat
.tcps_sc_dupsyn
++;
1003 * If we were remembering a previous source route,
1004 * forget it and use the new one we've been given.
1007 m_free(sc
->sc_ipopts
);
1008 sc
->sc_ipopts
= ipopts
;
1011 * Update timestamp if present.
1013 if (sc
->sc_flags
& SCF_TIMESTAMP
)
1014 sc
->sc_tsrecent
= to
->to_tsval
;
1016 /* Just update the TOF_SACK_PERMITTED for now. */
1017 if (tcp_do_sack
&& (to
->to_flags
& TOF_SACK_PERMITTED
))
1018 sc
->sc_flags
|= SCF_SACK_PERMITTED
;
1020 sc
->sc_flags
&= ~SCF_SACK_PERMITTED
;
1022 /* Update initial send window */
1023 sc
->sc_sndwnd
= th
->th_win
;
1026 * PCB may have changed, pick up new values.
1029 sc
->sc_inp_gencnt
= tp
->t_inpcb
->inp_gencnt
;
1030 if (syncache_respond(sc
, m
) == 0) {
1032 &syncache_percpu
->timerq
[sc
->sc_rxtslot
].list
,
1034 syncache_timeout(syncache_percpu
, sc
, sc
->sc_rxtslot
);
1035 tcpstat
.tcps_sndacks
++;
1036 tcpstat
.tcps_sndtotal
++;
1042 * Fill in the syncache values.
1044 sc
= kmalloc(sizeof(struct syncache
), M_SYNCACHE
, M_WAITOK
|M_ZERO
);
1045 sc
->sc_inp_gencnt
= tp
->t_inpcb
->inp_gencnt
;
1046 sc
->sc_ipopts
= ipopts
;
1047 sc
->sc_inc
.inc_fport
= inc
->inc_fport
;
1048 sc
->sc_inc
.inc_lport
= inc
->inc_lport
;
1051 sc
->sc_inc
.inc_isipv6
= inc
->inc_isipv6
;
1052 if (inc
->inc_isipv6
) {
1053 sc
->sc_inc
.inc6_faddr
= inc
->inc6_faddr
;
1054 sc
->sc_inc
.inc6_laddr
= inc
->inc6_laddr
;
1055 sc
->sc_route6
.ro_rt
= NULL
;
1059 sc
->sc_inc
.inc_faddr
= inc
->inc_faddr
;
1060 sc
->sc_inc
.inc_laddr
= inc
->inc_laddr
;
1061 sc
->sc_route
.ro_rt
= NULL
;
1063 sc
->sc_irs
= th
->th_seq
;
1064 sc
->sc_flags
= SCF_HASH
;
1065 sc
->sc_hashval
= m
->m_pkthdr
.hash
;
1066 sc
->sc_peer_mss
= to
->to_flags
& TOF_MSS
? to
->to_mss
: 0;
1068 sc
->sc_iss
= syncookie_generate(sc
);
1070 sc
->sc_iss
= karc4random();
1072 /* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
1073 win
= ssb_space(&so
->so_rcv
);
1075 win
= imin(win
, TCP_MAXWIN
);
1078 if (tcp_do_rfc1323
) {
1080 * A timestamp received in a SYN makes
1081 * it ok to send timestamp requests and replies.
1083 if (to
->to_flags
& TOF_TS
) {
1084 sc
->sc_tsrecent
= to
->to_tsval
;
1085 sc
->sc_flags
|= SCF_TIMESTAMP
;
1087 if (to
->to_flags
& TOF_SCALE
) {
1088 int wscale
= TCP_MIN_WINSHIFT
;
1090 /* Compute proper scaling value from buffer space */
1091 while (wscale
< TCP_MAX_WINSHIFT
&&
1092 (TCP_MAXWIN
<< wscale
) < so
->so_rcv
.ssb_hiwat
) {
1095 sc
->sc_request_r_scale
= wscale
;
1096 sc
->sc_requested_s_scale
= to
->to_requested_s_scale
;
1097 sc
->sc_flags
|= SCF_WINSCALE
;
1100 if (tcp_do_sack
&& (to
->to_flags
& TOF_SACK_PERMITTED
))
1101 sc
->sc_flags
|= SCF_SACK_PERMITTED
;
1102 if (tp
->t_flags
& TF_NOOPT
)
1103 sc
->sc_flags
= SCF_NOOPT
;
1104 #ifdef TCP_SIGNATURE
1106 * If listening socket requested TCP digests, and received SYN
1107 * contains the option, flag this in the syncache so that
1108 * syncache_respond() will do the right thing with the SYN+ACK.
1109 * XXX Currently we always record the option by default and will
1110 * attempt to use it in syncache_respond().
1112 if (to
->to_flags
& TOF_SIGNATURE
)
1113 sc
->sc_flags
= SCF_SIGNATURE
;
1114 #endif /* TCP_SIGNATURE */
1115 sc
->sc_sndwnd
= th
->th_win
;
1117 if (syncache_respond(sc
, m
) == 0) {
1118 syncache_insert(sc
, sch
);
1119 tcpstat
.tcps_sndacks
++;
1120 tcpstat
.tcps_sndtotal
++;
1123 tcpstat
.tcps_sc_dropped
++;
1129 syncache_respond(struct syncache
*sc
, struct mbuf
*m
)
1133 u_int16_t tlen
, hlen
, mssopt
;
1134 struct ip
*ip
= NULL
;
1137 struct ip6_hdr
*ip6
= NULL
;
1139 const boolean_t isipv6
= sc
->sc_inc
.inc_isipv6
;
1141 const boolean_t isipv6
= FALSE
;
1145 rt
= tcp_rtlookup6(&sc
->sc_inc
);
1147 mssopt
= rt
->rt_ifp
->if_mtu
-
1148 (sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
));
1150 mssopt
= tcp_v6mssdflt
;
1151 hlen
= sizeof(struct ip6_hdr
);
1153 rt
= tcp_rtlookup(&sc
->sc_inc
);
1155 mssopt
= rt
->rt_ifp
->if_mtu
-
1156 (sizeof(struct ip
) + sizeof(struct tcphdr
));
1158 mssopt
= tcp_mssdflt
;
1159 hlen
= sizeof(struct ip
);
1162 /* Compute the size of the TCP options. */
1163 if (sc
->sc_flags
& SCF_NOOPT
) {
1166 optlen
= TCPOLEN_MAXSEG
+
1167 ((sc
->sc_flags
& SCF_WINSCALE
) ? 4 : 0) +
1168 ((sc
->sc_flags
& SCF_TIMESTAMP
) ? TCPOLEN_TSTAMP_APPA
: 0) +
1169 ((sc
->sc_flags
& SCF_SACK_PERMITTED
) ?
1170 TCPOLEN_SACK_PERMITTED_ALIGNED
: 0);
1171 #ifdef TCP_SIGNATURE
1172 optlen
+= ((sc
->sc_flags
& SCF_SIGNATURE
) ?
1173 (TCPOLEN_SIGNATURE
+ 2) : 0);
1174 #endif /* TCP_SIGNATURE */
1176 tlen
= hlen
+ sizeof(struct tcphdr
) + optlen
;
1180 * assume that the entire packet will fit in a header mbuf
1182 KASSERT(max_linkhdr
+ tlen
<= MHLEN
, ("syncache: mbuf too small"));
1185 * XXX shouldn't this reuse the mbuf if possible ?
1186 * Create the IP+TCP header from scratch.
1191 m
= m_gethdr(M_NOWAIT
, MT_HEADER
);
1194 m
->m_data
+= max_linkhdr
;
1196 m
->m_pkthdr
.len
= tlen
;
1197 m
->m_pkthdr
.rcvif
= NULL
;
1198 if (tcp_prio_synack
)
1199 m
->m_flags
|= M_PRIO
;
1202 ip6
= mtod(m
, struct ip6_hdr
*);
1203 ip6
->ip6_vfc
= IPV6_VERSION
;
1204 ip6
->ip6_nxt
= IPPROTO_TCP
;
1205 ip6
->ip6_src
= sc
->sc_inc
.inc6_laddr
;
1206 ip6
->ip6_dst
= sc
->sc_inc
.inc6_faddr
;
1207 ip6
->ip6_plen
= htons(tlen
- hlen
);
1208 /* ip6_hlim is set after checksum */
1209 /* ip6_flow = ??? */
1211 th
= (struct tcphdr
*)(ip6
+ 1);
1213 ip
= mtod(m
, struct ip
*);
1214 ip
->ip_v
= IPVERSION
;
1215 ip
->ip_hl
= sizeof(struct ip
) >> 2;
1220 ip
->ip_p
= IPPROTO_TCP
;
1221 ip
->ip_src
= sc
->sc_inc
.inc_laddr
;
1222 ip
->ip_dst
= sc
->sc_inc
.inc_faddr
;
1223 ip
->ip_ttl
= sc
->sc_tp
->t_inpcb
->inp_ip_ttl
; /* XXX */
1224 ip
->ip_tos
= sc
->sc_tp
->t_inpcb
->inp_ip_tos
; /* XXX */
1227 * See if we should do MTU discovery. Route lookups are
1228 * expensive, so we will only unset the DF bit if:
1230 * 1) path_mtu_discovery is disabled
1231 * 2) the SCF_UNREACH flag has been set
1233 if (path_mtu_discovery
1234 && ((sc
->sc_flags
& SCF_UNREACH
) == 0)) {
1235 ip
->ip_off
|= IP_DF
;
1238 th
= (struct tcphdr
*)(ip
+ 1);
1240 th
->th_sport
= sc
->sc_inc
.inc_lport
;
1241 th
->th_dport
= sc
->sc_inc
.inc_fport
;
1243 th
->th_seq
= htonl(sc
->sc_iss
);
1244 th
->th_ack
= htonl(sc
->sc_irs
+ 1);
1245 th
->th_off
= (sizeof(struct tcphdr
) + optlen
) >> 2;
1247 th
->th_flags
= TH_SYN
| TH_ACK
;
1248 th
->th_win
= htons(sc
->sc_wnd
);
1251 /* Tack on the TCP options. */
1254 optp
= (u_int8_t
*)(th
+ 1);
1255 *optp
++ = TCPOPT_MAXSEG
;
1256 *optp
++ = TCPOLEN_MAXSEG
;
1257 *optp
++ = (mssopt
>> 8) & 0xff;
1258 *optp
++ = mssopt
& 0xff;
1260 if (sc
->sc_flags
& SCF_WINSCALE
) {
1261 *((u_int32_t
*)optp
) = htonl(TCPOPT_NOP
<< 24 |
1262 TCPOPT_WINDOW
<< 16 | TCPOLEN_WINDOW
<< 8 |
1263 sc
->sc_request_r_scale
);
1267 if (sc
->sc_flags
& SCF_TIMESTAMP
) {
1268 u_int32_t
*lp
= (u_int32_t
*)(optp
);
1270 /* Form timestamp option as shown in appendix A of RFC 1323. */
1271 *lp
++ = htonl(TCPOPT_TSTAMP_HDR
);
1272 *lp
++ = htonl(ticks
);
1273 *lp
= htonl(sc
->sc_tsrecent
);
1274 optp
+= TCPOLEN_TSTAMP_APPA
;
1277 #ifdef TCP_SIGNATURE
1279 * Handle TCP-MD5 passive opener response.
1281 if (sc
->sc_flags
& SCF_SIGNATURE
) {
1282 u_int8_t
*bp
= optp
;
1285 *bp
++ = TCPOPT_SIGNATURE
;
1286 *bp
++ = TCPOLEN_SIGNATURE
;
1287 for (i
= 0; i
< TCP_SIGLEN
; i
++)
1289 tcpsignature_compute(m
, 0, optlen
,
1290 optp
+ 2, IPSEC_DIR_OUTBOUND
);
1293 optp
+= TCPOLEN_SIGNATURE
+ 2;
1295 #endif /* TCP_SIGNATURE */
1297 if (sc
->sc_flags
& SCF_SACK_PERMITTED
) {
1298 *((u_int32_t
*)optp
) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED
);
1299 optp
+= TCPOLEN_SACK_PERMITTED_ALIGNED
;
1304 struct route_in6
*ro6
= &sc
->sc_route6
;
1307 th
->th_sum
= in6_cksum(m
, IPPROTO_TCP
, hlen
, tlen
- hlen
);
1308 ip6
->ip6_hlim
= in6_selecthlim(NULL
,
1309 ro6
->ro_rt
? ro6
->ro_rt
->rt_ifp
: NULL
);
1310 error
= ip6_output(m
, NULL
, ro6
, 0, NULL
, NULL
,
1311 sc
->sc_tp
->t_inpcb
);
1313 th
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
,
1314 htons(tlen
- hlen
+ IPPROTO_TCP
));
1315 m
->m_pkthdr
.csum_flags
= CSUM_TCP
;
1316 m
->m_pkthdr
.csum_data
= offsetof(struct tcphdr
, th_sum
);
1317 m
->m_pkthdr
.csum_thlen
= sizeof(struct tcphdr
) + optlen
;
1318 KASSERT(sc
->sc_flags
& SCF_HASH
, ("syncache has no hash"));
1319 m_sethash(m
, sc
->sc_hashval
);
1320 error
= ip_output(m
, sc
->sc_ipopts
, &sc
->sc_route
,
1321 IP_DEBUGROUTE
, NULL
, sc
->sc_tp
->t_inpcb
);
1329 * |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1331 * | MD5(laddr,faddr,secret,lport,fport) |. . . . . . .|
1333 * (A): peer mss index
1337 * The values below are chosen to minimize the size of the tcp_secret
1338 * table, as well as providing roughly a 16 second lifetime for the cookie.
1341 #define SYNCOOKIE_WNDBITS 5 /* exposed bits for window indexing */
1342 #define SYNCOOKIE_TIMESHIFT 1 /* scale ticks to window time units */
1344 #define SYNCOOKIE_WNDMASK ((1 << SYNCOOKIE_WNDBITS) - 1)
1345 #define SYNCOOKIE_NSECRETS (1 << SYNCOOKIE_WNDBITS)
1346 #define SYNCOOKIE_TIMEOUT \
1347 (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1348 #define SYNCOOKIE_DATAMASK ((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1351 u_int32_t ts_secbits
[4];
1353 } tcp_secret
[SYNCOOKIE_NSECRETS
];
1355 static int tcp_msstab
[] = { 0, 536, 1460, 8960 };
1357 static MD5_CTX syn_ctx
;
1359 #define MD5Add(v) MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1362 u_int32_t laddr
, faddr
;
1363 u_int32_t secbits
[4];
1364 u_int16_t lport
, fport
;
1368 CTASSERT(sizeof(struct md5_add
) == 28);
1372 * Consider the problem of a recreated (and retransmitted) cookie. If the
1373 * original SYN was accepted, the connection is established. The second
1374 * SYN is inflight, and if it arrives with an ISN that falls within the
1375 * receive window, the connection is killed.
1377 * However, since cookies have other problems, this may not be worth
1382 syncookie_generate(struct syncache
*sc
)
1384 u_int32_t md5_buffer
[4];
1389 const boolean_t isipv6
= sc
->sc_inc
.inc_isipv6
;
1391 const boolean_t isipv6
= FALSE
;
1394 idx
= ((ticks
<< SYNCOOKIE_TIMESHIFT
) / hz
) & SYNCOOKIE_WNDMASK
;
1395 if (tcp_secret
[idx
].ts_expire
< ticks
) {
1396 for (i
= 0; i
< 4; i
++)
1397 tcp_secret
[idx
].ts_secbits
[i
] = karc4random();
1398 tcp_secret
[idx
].ts_expire
= ticks
+ SYNCOOKIE_TIMEOUT
;
1400 for (data
= NELEM(tcp_msstab
) - 1; data
> 0; data
--)
1401 if (tcp_msstab
[data
] <= sc
->sc_peer_mss
)
1403 data
= (data
<< SYNCOOKIE_WNDBITS
) | idx
;
1404 data
^= sc
->sc_irs
; /* peer's iss */
1407 MD5Add(sc
->sc_inc
.inc6_laddr
);
1408 MD5Add(sc
->sc_inc
.inc6_faddr
);
1412 add
.laddr
= sc
->sc_inc
.inc_laddr
.s_addr
;
1413 add
.faddr
= sc
->sc_inc
.inc_faddr
.s_addr
;
1415 add
.lport
= sc
->sc_inc
.inc_lport
;
1416 add
.fport
= sc
->sc_inc
.inc_fport
;
1417 add
.secbits
[0] = tcp_secret
[idx
].ts_secbits
[0];
1418 add
.secbits
[1] = tcp_secret
[idx
].ts_secbits
[1];
1419 add
.secbits
[2] = tcp_secret
[idx
].ts_secbits
[2];
1420 add
.secbits
[3] = tcp_secret
[idx
].ts_secbits
[3];
1422 MD5Final((u_char
*)&md5_buffer
, &syn_ctx
);
1423 data
^= (md5_buffer
[0] & ~SYNCOOKIE_WNDMASK
);
1427 static struct syncache
*
1428 syncookie_lookup(struct in_conninfo
*inc
, struct tcphdr
*th
, struct socket
*so
)
1430 u_int32_t md5_buffer
[4];
1431 struct syncache
*sc
;
1436 data
= (th
->th_ack
- 1) ^ (th
->th_seq
- 1); /* remove ISS */
1437 idx
= data
& SYNCOOKIE_WNDMASK
;
1438 if (tcp_secret
[idx
].ts_expire
< ticks
||
1439 sototcpcb(so
)->ts_recent
+ SYNCOOKIE_TIMEOUT
< ticks
)
1443 if (inc
->inc_isipv6
) {
1444 MD5Add(inc
->inc6_laddr
);
1445 MD5Add(inc
->inc6_faddr
);
1451 add
.laddr
= inc
->inc_laddr
.s_addr
;
1452 add
.faddr
= inc
->inc_faddr
.s_addr
;
1454 add
.lport
= inc
->inc_lport
;
1455 add
.fport
= inc
->inc_fport
;
1456 add
.secbits
[0] = tcp_secret
[idx
].ts_secbits
[0];
1457 add
.secbits
[1] = tcp_secret
[idx
].ts_secbits
[1];
1458 add
.secbits
[2] = tcp_secret
[idx
].ts_secbits
[2];
1459 add
.secbits
[3] = tcp_secret
[idx
].ts_secbits
[3];
1461 MD5Final((u_char
*)&md5_buffer
, &syn_ctx
);
1462 data
^= md5_buffer
[0];
1463 if (data
& ~SYNCOOKIE_DATAMASK
)
1465 data
= data
>> SYNCOOKIE_WNDBITS
;
1468 * Fill in the syncache values.
1469 * XXX duplicate code from syncache_add
1471 sc
= kmalloc(sizeof(struct syncache
), M_SYNCACHE
, M_WAITOK
|M_ZERO
);
1472 sc
->sc_ipopts
= NULL
;
1473 sc
->sc_inc
.inc_fport
= inc
->inc_fport
;
1474 sc
->sc_inc
.inc_lport
= inc
->inc_lport
;
1476 sc
->sc_inc
.inc_isipv6
= inc
->inc_isipv6
;
1477 if (inc
->inc_isipv6
) {
1478 sc
->sc_inc
.inc6_faddr
= inc
->inc6_faddr
;
1479 sc
->sc_inc
.inc6_laddr
= inc
->inc6_laddr
;
1480 sc
->sc_route6
.ro_rt
= NULL
;
1484 sc
->sc_inc
.inc_faddr
= inc
->inc_faddr
;
1485 sc
->sc_inc
.inc_laddr
= inc
->inc_laddr
;
1486 sc
->sc_route
.ro_rt
= NULL
;
1488 sc
->sc_irs
= th
->th_seq
- 1;
1489 sc
->sc_iss
= th
->th_ack
- 1;
1490 wnd
= ssb_space(&so
->so_rcv
);
1492 wnd
= imin(wnd
, TCP_MAXWIN
);
1496 sc
->sc_peer_mss
= tcp_msstab
[data
];
1501 syncache_sysctl_count(SYSCTL_HANDLER_ARGS
)
1506 for (cpu
= 0; cpu
< netisr_ncpus
; ++cpu
)
1507 count
+= tcp_syncache_percpu
[cpu
]->cache_count
;
1508 return sysctl_handle_int(oidp
, &count
, 0, req
);