tcplay(3): The 'ok' variable is only needed in #ifdef DEBUG.
[dragonfly.git] / sys / net / netisr.c
blob0b4f7f91206ee75133f1774bbcb1902696293b66
1 /*
2 * Copyright (c) 2003, 2004 Matthew Dillon. All rights reserved.
3 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
4 * Copyright (c) 2003 Jonathan Lemon. All rights reserved.
5 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
7 * This code is derived from software contributed to The DragonFly Project
8 * by Jonathan Lemon, Jeffrey M. Hsu, and Matthew Dillon.
10 * Jonathan Lemon gave Jeffrey Hsu permission to combine his copyright
11 * into this one around July 8 2004.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of The DragonFly Project nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific, prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/msgport.h>
44 #include <sys/proc.h>
45 #include <sys/interrupt.h>
46 #include <sys/socket.h>
47 #include <sys/sysctl.h>
48 #include <sys/socketvar.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/netisr.h>
52 #include <machine/cpufunc.h>
53 #include <machine/smp.h>
55 #include <sys/thread2.h>
56 #include <sys/msgport2.h>
57 #include <net/netmsg2.h>
58 #include <sys/mplock2.h>
60 static void netmsg_service_loop(void *arg);
61 static void cpu0_cpufn(struct mbuf **mp, int hoff);
62 static void netisr_nohashck(struct mbuf *, const struct pktinfo *);
64 struct netmsg_port_registration {
65 TAILQ_ENTRY(netmsg_port_registration) npr_entry;
66 lwkt_port_t npr_port;
69 struct netmsg_rollup {
70 TAILQ_ENTRY(netmsg_rollup) ru_entry;
71 netisr_ru_t ru_func;
74 struct netmsg_barrier {
75 struct netmsg_base base;
76 volatile cpumask_t *br_cpumask;
77 volatile uint32_t br_done;
80 #define NETISR_BR_NOTDONE 0x1
81 #define NETISR_BR_WAITDONE 0x80000000
83 struct netisr_barrier {
84 struct netmsg_barrier *br_msgs[MAXCPU];
85 int br_isset;
88 static struct netisr netisrs[NETISR_MAX];
89 static TAILQ_HEAD(,netmsg_port_registration) netreglist;
90 static TAILQ_HEAD(,netmsg_rollup) netrulist;
92 /* Per-CPU thread to handle any protocol. */
93 static struct thread netisr_cpu[MAXCPU];
94 lwkt_port netisr_afree_rport;
95 lwkt_port netisr_afree_free_so_rport;
96 lwkt_port netisr_adone_rport;
97 lwkt_port netisr_apanic_rport;
98 lwkt_port netisr_sync_port;
100 static int (*netmsg_fwd_port_fn)(lwkt_port_t, lwkt_msg_t);
102 SYSCTL_NODE(_net, OID_AUTO, netisr, CTLFLAG_RW, 0, "netisr");
105 * netisr_afree_rport replymsg function, only used to handle async
106 * messages which the sender has abandoned to their fate.
108 static void
109 netisr_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
111 kfree(msg, M_LWKTMSG);
114 static void
115 netisr_autofree_free_so_reply(lwkt_port_t port, lwkt_msg_t msg)
117 sofree(((netmsg_t)msg)->base.nm_so);
118 kfree(msg, M_LWKTMSG);
122 * We need a custom putport function to handle the case where the
123 * message target is the current thread's message port. This case
124 * can occur when the TCP or UDP stack does a direct callback to NFS and NFS
125 * then turns around and executes a network operation synchronously.
127 * To prevent deadlocking, we must execute these self-referential messages
128 * synchronously, effectively turning the message into a glorified direct
129 * procedure call back into the protocol stack. The operation must be
130 * complete on return or we will deadlock, so panic if it isn't.
132 * However, the target function is under no obligation to immediately
133 * reply the message. It may forward it elsewhere.
135 static int
136 netmsg_put_port(lwkt_port_t port, lwkt_msg_t lmsg)
138 netmsg_base_t nmsg = (void *)lmsg;
140 if ((lmsg->ms_flags & MSGF_SYNC) && port == &curthread->td_msgport) {
141 nmsg->nm_dispatch((netmsg_t)nmsg);
142 return(EASYNC);
143 } else {
144 return(netmsg_fwd_port_fn(port, lmsg));
149 * UNIX DOMAIN sockets still have to run their uipc functions synchronously,
150 * because they depend on the user proc context for a number of things
151 * (like creds) which we have not yet incorporated into the message structure.
153 * However, we maintain or message/port abstraction. Having a special
154 * synchronous port which runs the commands synchronously gives us the
155 * ability to serialize operations in one place later on when we start
156 * removing the BGL.
158 static int
159 netmsg_sync_putport(lwkt_port_t port, lwkt_msg_t lmsg)
161 netmsg_base_t nmsg = (void *)lmsg;
163 KKASSERT((lmsg->ms_flags & MSGF_DONE) == 0);
165 lmsg->ms_target_port = port; /* required for abort */
166 nmsg->nm_dispatch((netmsg_t)nmsg);
167 return(EASYNC);
170 static void
171 netisr_init(void)
173 int i;
175 TAILQ_INIT(&netreglist);
176 TAILQ_INIT(&netrulist);
179 * Create default per-cpu threads for generic protocol handling.
181 for (i = 0; i < ncpus; ++i) {
182 lwkt_create(netmsg_service_loop, NULL, NULL,
183 &netisr_cpu[i], TDF_NOSTART|TDF_FORCE_SPINPORT,
184 i, "netisr_cpu %d", i);
185 netmsg_service_port_init(&netisr_cpu[i].td_msgport);
186 lwkt_schedule(&netisr_cpu[i]);
190 * The netisr_afree_rport is a special reply port which automatically
191 * frees the replied message. The netisr_adone_rport simply marks
192 * the message as being done. The netisr_apanic_rport panics if
193 * the message is replied to.
195 lwkt_initport_replyonly(&netisr_afree_rport, netisr_autofree_reply);
196 lwkt_initport_replyonly(&netisr_afree_free_so_rport,
197 netisr_autofree_free_so_reply);
198 lwkt_initport_replyonly_null(&netisr_adone_rport);
199 lwkt_initport_panic(&netisr_apanic_rport);
202 * The netisr_syncport is a special port which executes the message
203 * synchronously and waits for it if EASYNC is returned.
205 lwkt_initport_putonly(&netisr_sync_port, netmsg_sync_putport);
208 SYSINIT(netisr, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, netisr_init, NULL);
211 * Finish initializing the message port for a netmsg service. This also
212 * registers the port for synchronous cleanup operations such as when an
213 * ifnet is being destroyed. There is no deregistration API yet.
215 void
216 netmsg_service_port_init(lwkt_port_t port)
218 struct netmsg_port_registration *reg;
221 * Override the putport function. Our custom function checks for
222 * self-references and executes such commands synchronously.
224 if (netmsg_fwd_port_fn == NULL)
225 netmsg_fwd_port_fn = port->mp_putport;
226 KKASSERT(netmsg_fwd_port_fn == port->mp_putport);
227 port->mp_putport = netmsg_put_port;
230 * Keep track of ports using the netmsg API so we can synchronize
231 * certain operations (such as freeing an ifnet structure) across all
232 * consumers.
234 reg = kmalloc(sizeof(*reg), M_TEMP, M_WAITOK|M_ZERO);
235 reg->npr_port = port;
236 TAILQ_INSERT_TAIL(&netreglist, reg, npr_entry);
240 * This function synchronizes the caller with all netmsg services. For
241 * example, if an interface is being removed we must make sure that all
242 * packets related to that interface complete processing before the structure
243 * can actually be freed. This sort of synchronization is an alternative to
244 * ref-counting the netif, removing the ref counting overhead in favor of
245 * placing additional overhead in the netif freeing sequence (where it is
246 * inconsequential).
248 void
249 netmsg_service_sync(void)
251 struct netmsg_port_registration *reg;
252 struct netmsg_base smsg;
254 netmsg_init(&smsg, NULL, &curthread->td_msgport, 0, netmsg_sync_handler);
256 TAILQ_FOREACH(reg, &netreglist, npr_entry) {
257 lwkt_domsg(reg->npr_port, &smsg.lmsg, 0);
262 * The netmsg function simply replies the message. API semantics require
263 * EASYNC to be returned if the netmsg function disposes of the message.
265 void
266 netmsg_sync_handler(netmsg_t msg)
268 lwkt_replymsg(&msg->lmsg, 0);
272 * Generic netmsg service loop. Some protocols may roll their own but all
273 * must do the basic command dispatch function call done here.
275 static void
276 netmsg_service_loop(void *arg)
278 struct netmsg_rollup *ru;
279 netmsg_base_t msg;
280 thread_t td = curthread;;
281 int limit;
283 while ((msg = lwkt_waitport(&td->td_msgport, 0))) {
285 * Run up to 512 pending netmsgs.
287 limit = 512;
288 do {
289 KASSERT(msg->nm_dispatch != NULL,
290 ("netmsg_service isr %d badmsg",
291 msg->lmsg.u.ms_result));
292 if (msg->nm_so &&
293 msg->nm_so->so_port != &td->td_msgport) {
295 * Sockets undergoing connect or disconnect
296 * ops can change ports on us. Chase the
297 * port.
299 kprintf("netmsg_service_loop: Warning, "
300 "port changed so=%p\n", msg->nm_so);
301 lwkt_forwardmsg(msg->nm_so->so_port,
302 &msg->lmsg);
303 } else {
305 * We are on the correct port, dispatch it.
307 msg->nm_dispatch((netmsg_t)msg);
309 if (--limit == 0)
310 break;
311 } while ((msg = lwkt_getport(&td->td_msgport)) != NULL);
314 * Run all registered rollup functions for this cpu
315 * (e.g. tcp_willblock()).
317 TAILQ_FOREACH(ru, &netrulist, ru_entry)
318 ru->ru_func();
323 * Forward a packet to a netisr service function.
325 * If the packet has not been assigned to a protocol thread we call
326 * the port characterization function to assign it. The caller must
327 * clear M_HASH (or not have set it in the first place) if the caller
328 * wishes the packet to be recharacterized.
331 netisr_queue(int num, struct mbuf *m)
333 struct netisr *ni;
334 struct netmsg_packet *pmsg;
335 lwkt_port_t port;
337 KASSERT((num > 0 && num <= NELEM(netisrs)),
338 ("Bad isr %d", num));
340 ni = &netisrs[num];
341 if (ni->ni_handler == NULL) {
342 kprintf("Unregistered isr %d\n", num);
343 m_freem(m);
344 return (EIO);
348 * Figure out which protocol thread to send to. This does not
349 * have to be perfect but performance will be really good if it
350 * is correct. Major protocol inputs such as ip_input() will
351 * re-characterize the packet as necessary.
353 if ((m->m_flags & M_HASH) == 0) {
354 ni->ni_cpufn(&m, 0);
355 if (m == NULL) {
356 m_freem(m);
357 return (EIO);
359 if ((m->m_flags & M_HASH) == 0) {
360 kprintf("netisr_queue(%d): packet hash failed\n", num);
361 m_freem(m);
362 return (EIO);
367 * Get the protocol port based on the packet hash, initialize
368 * the netmsg, and send it off.
370 port = netisr_portfn(m->m_pkthdr.hash);
371 pmsg = &m->m_hdr.mh_netmsg;
372 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
373 0, ni->ni_handler);
374 pmsg->nm_packet = m;
375 pmsg->base.lmsg.u.ms_result = num;
376 lwkt_sendmsg(port, &pmsg->base.lmsg);
378 return (0);
382 * Run a netisr service function on the packet.
384 * The packet must have been correctly characterized!
387 netisr_handle(int num, struct mbuf *m)
389 struct netisr *ni;
390 struct netmsg_packet *pmsg;
391 lwkt_port_t port;
394 * Get the protocol port based on the packet hash
396 KASSERT((m->m_flags & M_HASH), ("packet not characterized"));
397 port = netisr_portfn(m->m_pkthdr.hash);
398 KASSERT(&curthread->td_msgport == port, ("wrong msgport"));
400 KASSERT((num > 0 && num <= NELEM(netisrs)), ("bad isr %d", num));
401 ni = &netisrs[num];
402 if (ni->ni_handler == NULL) {
403 kprintf("unregistered isr %d\n", num);
404 m_freem(m);
405 return EIO;
409 * Initialize the netmsg, and run the handler directly.
411 pmsg = &m->m_hdr.mh_netmsg;
412 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
413 0, ni->ni_handler);
414 pmsg->nm_packet = m;
415 pmsg->base.lmsg.u.ms_result = num;
416 ni->ni_handler((netmsg_t)&pmsg->base);
418 return 0;
422 * Pre-characterization of a deeper portion of the packet for the
423 * requested isr.
425 * The base of the ISR type (e.g. IP) that we want to characterize is
426 * at (hoff) relative to the beginning of the mbuf. This allows
427 * e.g. ether_input_chain() to not have to adjust the m_data/m_len.
429 void
430 netisr_characterize(int num, struct mbuf **mp, int hoff)
432 struct netisr *ni;
433 struct mbuf *m;
436 * Validation
438 m = *mp;
439 KKASSERT(m != NULL);
441 if (num < 0 || num >= NETISR_MAX) {
442 if (num == NETISR_MAX) {
443 m->m_flags |= M_HASH;
444 m->m_pkthdr.hash = 0;
445 return;
447 panic("Bad isr %d", num);
451 * Valid netisr?
453 ni = &netisrs[num];
454 if (ni->ni_handler == NULL) {
455 kprintf("Unregistered isr %d\n", num);
456 m_freem(m);
457 *mp = NULL;
461 * Characterize the packet
463 if ((m->m_flags & M_HASH) == 0) {
464 ni->ni_cpufn(mp, hoff);
465 m = *mp;
466 if (m && (m->m_flags & M_HASH) == 0)
467 kprintf("netisr_queue(%d): packet hash failed\n", num);
471 void
472 netisr_register(int num, netisr_fn_t handler, netisr_cpufn_t cpufn)
474 struct netisr *ni;
476 KASSERT((num > 0 && num <= NELEM(netisrs)),
477 ("netisr_register: bad isr %d", num));
478 KKASSERT(handler != NULL);
480 if (cpufn == NULL)
481 cpufn = cpu0_cpufn;
483 ni = &netisrs[num];
485 ni->ni_handler = handler;
486 ni->ni_hashck = netisr_nohashck;
487 ni->ni_cpufn = cpufn;
488 netmsg_init(&ni->ni_netmsg, NULL, &netisr_adone_rport, 0, NULL);
491 void
492 netisr_register_hashcheck(int num, netisr_hashck_t hashck)
494 struct netisr *ni;
496 KASSERT((num > 0 && num <= NELEM(netisrs)),
497 ("netisr_register: bad isr %d", num));
499 ni = &netisrs[num];
500 ni->ni_hashck = hashck;
503 void
504 netisr_register_rollup(netisr_ru_t ru_func)
506 struct netmsg_rollup *ru;
508 ru = kmalloc(sizeof(*ru), M_TEMP, M_WAITOK|M_ZERO);
509 ru->ru_func = ru_func;
510 TAILQ_INSERT_TAIL(&netrulist, ru, ru_entry);
514 * Return the message port for the general protocol message servicing
515 * thread for a particular cpu.
517 lwkt_port_t
518 netisr_portfn(int cpu)
520 KKASSERT(cpu >= 0 && cpu < ncpus);
521 return (&netisr_cpu[cpu].td_msgport);
525 * Return the current cpu's network protocol thread.
527 lwkt_port_t
528 cur_netport(void)
530 return(netisr_portfn(mycpu->gd_cpuid));
534 * Return a default protocol control message processing thread port
536 lwkt_port_t
537 cpu0_ctlport(int cmd __unused, struct sockaddr *sa __unused,
538 void *extra __unused)
540 return (&netisr_cpu[0].td_msgport);
544 * This is a default netisr packet characterization function which
545 * sets M_HASH. If a netisr is registered with a NULL cpufn function
546 * this one is assigned.
548 * This function makes no attempt to validate the packet.
550 static void
551 cpu0_cpufn(struct mbuf **mp, int hoff __unused)
553 struct mbuf *m = *mp;
555 m->m_flags |= M_HASH;
556 m->m_pkthdr.hash = 0;
560 * schednetisr() is used to call the netisr handler from the appropriate
561 * netisr thread for polling and other purposes.
563 * This function may be called from a hard interrupt or IPI and must be
564 * MP SAFE and non-blocking. We use a fixed per-cpu message instead of
565 * trying to allocate one. We must get ourselves onto the target cpu
566 * to safely check the MSGF_DONE bit on the message but since the message
567 * will be sent to that cpu anyway this does not add any extra work beyond
568 * what lwkt_sendmsg() would have already had to do to schedule the target
569 * thread.
571 static void
572 schednetisr_remote(void *data)
574 int num = (int)(intptr_t)data;
575 struct netisr *ni = &netisrs[num];
576 lwkt_port_t port = &netisr_cpu[0].td_msgport;
577 netmsg_base_t pmsg;
579 pmsg = &netisrs[num].ni_netmsg;
580 if (pmsg->lmsg.ms_flags & MSGF_DONE) {
581 netmsg_init(pmsg, NULL, &netisr_adone_rport, 0, ni->ni_handler);
582 pmsg->lmsg.u.ms_result = num;
583 lwkt_sendmsg(port, &pmsg->lmsg);
587 void
588 schednetisr(int num)
590 KASSERT((num > 0 && num <= NELEM(netisrs)),
591 ("schednetisr: bad isr %d", num));
592 KKASSERT(netisrs[num].ni_handler != NULL);
593 #ifdef SMP
594 if (mycpu->gd_cpuid != 0) {
595 lwkt_send_ipiq(globaldata_find(0),
596 schednetisr_remote, (void *)(intptr_t)num);
597 } else {
598 crit_enter();
599 schednetisr_remote((void *)(intptr_t)num);
600 crit_exit();
602 #else
603 crit_enter();
604 schednetisr_remote((void *)(intptr_t)num);
605 crit_exit();
606 #endif
609 #ifdef SMP
611 static void
612 netisr_barrier_dispatch(netmsg_t nmsg)
614 struct netmsg_barrier *msg = (struct netmsg_barrier *)nmsg;
616 atomic_clear_cpumask(msg->br_cpumask, mycpu->gd_cpumask);
617 if (*msg->br_cpumask == 0)
618 wakeup(msg->br_cpumask);
620 for (;;) {
621 uint32_t done = msg->br_done;
623 cpu_ccfence();
624 if ((done & NETISR_BR_NOTDONE) == 0)
625 break;
627 tsleep_interlock(&msg->br_done, 0);
628 if (atomic_cmpset_int(&msg->br_done,
629 done, done | NETISR_BR_WAITDONE))
630 tsleep(&msg->br_done, PINTERLOCKED, "nbrdsp", 0);
633 lwkt_replymsg(&nmsg->lmsg, 0);
636 #endif
638 struct netisr_barrier *
639 netisr_barrier_create(void)
641 struct netisr_barrier *br;
643 br = kmalloc(sizeof(*br), M_LWKTMSG, M_WAITOK | M_ZERO);
644 return br;
647 void
648 netisr_barrier_set(struct netisr_barrier *br)
650 #ifdef SMP
651 volatile cpumask_t other_cpumask;
652 int i, cur_cpuid;
654 KKASSERT(&curthread->td_msgport == netisr_portfn(0));
655 KKASSERT(!br->br_isset);
657 other_cpumask = mycpu->gd_other_cpus & smp_active_mask;
658 cur_cpuid = mycpuid;
660 for (i = 0; i < ncpus; ++i) {
661 struct netmsg_barrier *msg;
663 if (i == cur_cpuid)
664 continue;
666 msg = kmalloc(sizeof(struct netmsg_barrier),
667 M_LWKTMSG, M_WAITOK);
668 netmsg_init(&msg->base, NULL, &netisr_afree_rport,
669 MSGF_PRIORITY, netisr_barrier_dispatch);
670 msg->br_cpumask = &other_cpumask;
671 msg->br_done = NETISR_BR_NOTDONE;
673 KKASSERT(br->br_msgs[i] == NULL);
674 br->br_msgs[i] = msg;
677 for (i = 0; i < ncpus; ++i) {
678 if (i == cur_cpuid)
679 continue;
680 lwkt_sendmsg(netisr_portfn(i), &br->br_msgs[i]->base.lmsg);
683 while (other_cpumask != 0) {
684 tsleep_interlock(&other_cpumask, 0);
685 if (other_cpumask != 0)
686 tsleep(&other_cpumask, PINTERLOCKED, "nbrset", 0);
688 #endif
689 br->br_isset = 1;
692 void
693 netisr_barrier_rem(struct netisr_barrier *br)
695 #ifdef SMP
696 int i, cur_cpuid;
698 KKASSERT(&curthread->td_msgport == netisr_portfn(0));
699 KKASSERT(br->br_isset);
701 cur_cpuid = mycpuid;
702 for (i = 0; i < ncpus; ++i) {
703 struct netmsg_barrier *msg = br->br_msgs[i];
704 uint32_t done;
706 msg = br->br_msgs[i];
707 br->br_msgs[i] = NULL;
709 if (i == cur_cpuid)
710 continue;
712 done = atomic_swap_int(&msg->br_done, 0);
713 if (done & NETISR_BR_WAITDONE)
714 wakeup(&msg->br_done);
716 #endif
717 br->br_isset = 0;
720 static void
721 netisr_nohashck(struct mbuf *m, const struct pktinfo *pi __unused)
723 m->m_flags &= ~M_HASH;
726 void
727 netisr_hashcheck(int num, struct mbuf *m, const struct pktinfo *pi)
729 struct netisr *ni;
731 if (num < 0 || num >= NETISR_MAX)
732 panic("Bad isr %d", num);
735 * Valid netisr?
737 ni = &netisrs[num];
738 if (ni->ni_handler == NULL)
739 panic("Unregistered isr %d", num);
741 ni->ni_hashck(m, pi);