wbsio: support W83627UHG (0xa2); supported by lm(4) as W83627DHG (0xc1)
[dragonfly.git] / sys / kern / subr_disk.c
blob1c253e3f5d7380e28e3a28dfccd98dd9aa46543d
1 /*
2 * Copyright (c) 2003,2004,2009 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * ----------------------------------------------------------------------------
35 * "THE BEER-WARE LICENSE" (Revision 42):
36 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you
37 * can do whatever you want with this stuff. If we meet some day, and you think
38 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
39 * ----------------------------------------------------------------------------
41 * Copyright (c) 1982, 1986, 1988, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
77 * @(#)ufs_disksubr.c 8.5 (Berkeley) 1/21/94
78 * $FreeBSD: src/sys/kern/subr_disk.c,v 1.20.2.6 2001/10/05 07:14:57 peter Exp $
79 * $FreeBSD: src/sys/ufs/ufs/ufs_disksubr.c,v 1.44.2.3 2001/03/05 05:42:19 obrien Exp $
80 * $DragonFly: src/sys/kern/subr_disk.c,v 1.40 2008/06/05 18:06:32 swildner Exp $
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/kernel.h>
86 #include <sys/proc.h>
87 #include <sys/sysctl.h>
88 #include <sys/buf.h>
89 #include <sys/conf.h>
90 #include <sys/disklabel.h>
91 #include <sys/disklabel32.h>
92 #include <sys/disklabel64.h>
93 #include <sys/diskslice.h>
94 #include <sys/diskmbr.h>
95 #include <sys/disk.h>
96 #include <sys/kerneldump.h>
97 #include <sys/malloc.h>
98 #include <sys/sysctl.h>
99 #include <machine/md_var.h>
100 #include <sys/ctype.h>
101 #include <sys/syslog.h>
102 #include <sys/device.h>
103 #include <sys/msgport.h>
104 #include <sys/msgport2.h>
105 #include <sys/buf2.h>
106 #include <sys/devfs.h>
107 #include <sys/thread.h>
108 #include <sys/thread2.h>
110 #include <sys/queue.h>
111 #include <sys/lock.h>
113 static MALLOC_DEFINE(M_DISK, "disk", "disk data");
114 static int disk_debug_enable = 0;
116 static void disk_msg_autofree_reply(lwkt_port_t, lwkt_msg_t);
117 static void disk_msg_core(void *);
118 static int disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe);
119 static void disk_probe(struct disk *dp, int reprobe);
120 static void _setdiskinfo(struct disk *disk, struct disk_info *info);
121 static void bioqwritereorder(struct bio_queue_head *bioq);
122 static void disk_cleanserial(char *serno);
124 static d_open_t diskopen;
125 static d_close_t diskclose;
126 static d_ioctl_t diskioctl;
127 static d_strategy_t diskstrategy;
128 static d_psize_t diskpsize;
129 static d_clone_t diskclone;
130 static d_dump_t diskdump;
132 static LIST_HEAD(, disk) disklist = LIST_HEAD_INITIALIZER(&disklist);
133 static struct lwkt_token disklist_token;
135 static struct dev_ops disk_ops = {
136 { "disk", 0, D_DISK },
137 .d_open = diskopen,
138 .d_close = diskclose,
139 .d_read = physread,
140 .d_write = physwrite,
141 .d_ioctl = diskioctl,
142 .d_strategy = diskstrategy,
143 .d_dump = diskdump,
144 .d_psize = diskpsize,
145 .d_clone = diskclone
148 static struct objcache *disk_msg_cache;
150 struct objcache_malloc_args disk_msg_malloc_args = {
151 sizeof(struct disk_msg), M_DISK };
153 static struct lwkt_port disk_dispose_port;
154 static struct lwkt_port disk_msg_port;
156 static int
157 disk_debug(int level, char *fmt, ...)
159 __va_list ap;
161 __va_start(ap, fmt);
162 if (level <= disk_debug_enable)
163 kvprintf(fmt, ap);
164 __va_end(ap);
166 return 0;
169 static int
170 disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe)
172 struct disk_info *info = &dp->d_info;
173 struct diskslice *sp = &dp->d_slice->dss_slices[slice];
174 disklabel_ops_t ops;
175 struct partinfo part;
176 const char *msg;
177 cdev_t ndev;
178 int sno;
179 u_int i;
181 disk_debug(2,
182 "disk_probe_slice (begin): %s (%s)\n",
183 dev->si_name, dp->d_cdev->si_name);
185 sno = slice ? slice - 1 : 0;
187 ops = &disklabel32_ops;
188 msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
189 if (msg && !strcmp(msg, "no disk label")) {
190 ops = &disklabel64_ops;
191 msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
193 if (msg == NULL) {
194 if (slice != WHOLE_DISK_SLICE)
195 ops->op_adjust_label_reserved(dp->d_slice, slice, sp);
196 else
197 sp->ds_reserved = 0;
199 sp->ds_ops = ops;
200 for (i = 0; i < ops->op_getnumparts(sp->ds_label); i++) {
201 ops->op_loadpartinfo(sp->ds_label, i, &part);
202 if (part.fstype) {
203 if (reprobe &&
204 (ndev = devfs_find_device_by_name("%s%c",
205 dev->si_name, 'a' + i))
208 * Device already exists and
209 * is still valid.
211 ndev->si_flags |= SI_REPROBE_TEST;
212 } else {
213 ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
214 dkmakeminor(dkunit(dp->d_cdev),
215 slice, i),
216 UID_ROOT, GID_OPERATOR, 0640,
217 "%s%c", dev->si_name, 'a'+ i);
218 ndev->si_disk = dp;
219 if (dp->d_info.d_serialno) {
220 make_dev_alias(ndev,
221 "serno/%s.s%d%c",
222 dp->d_info.d_serialno,
223 sno, 'a' + i);
225 ndev->si_flags |= SI_REPROBE_TEST;
229 } else if (info->d_dsflags & DSO_COMPATLABEL) {
230 msg = NULL;
231 if (sp->ds_size >= 0x100000000ULL)
232 ops = &disklabel64_ops;
233 else
234 ops = &disklabel32_ops;
235 sp->ds_label = ops->op_clone_label(info, sp);
236 } else {
237 if (sp->ds_type == DOSPTYP_386BSD || /* XXX */
238 sp->ds_type == DOSPTYP_NETBSD ||
239 sp->ds_type == DOSPTYP_OPENBSD) {
240 log(LOG_WARNING, "%s: cannot find label (%s)\n",
241 dev->si_name, msg);
245 if (msg == NULL) {
246 sp->ds_wlabel = FALSE;
249 return (msg ? EINVAL : 0);
253 * This routine is only called for newly minted drives or to reprobe
254 * a drive with no open slices. disk_probe_slice() is called directly
255 * when reprobing partition changes within slices.
257 static void
258 disk_probe(struct disk *dp, int reprobe)
260 struct disk_info *info = &dp->d_info;
261 cdev_t dev = dp->d_cdev;
262 cdev_t ndev;
263 int error, i, sno;
264 struct diskslices *osp;
265 struct diskslice *sp;
267 KKASSERT (info->d_media_blksize != 0);
269 osp = dp->d_slice;
270 dp->d_slice = dsmakeslicestruct(BASE_SLICE, info);
271 disk_debug(1, "disk_probe (begin): %s\n", dp->d_cdev->si_name);
273 error = mbrinit(dev, info, &(dp->d_slice));
274 if (error) {
275 dsgone(&osp);
276 return;
279 for (i = 0; i < dp->d_slice->dss_nslices; i++) {
281 * Ignore the whole-disk slice, it has already been created.
283 if (i == WHOLE_DISK_SLICE)
284 continue;
285 sp = &dp->d_slice->dss_slices[i];
288 * Handle s0. s0 is a compatibility slice if there are no
289 * other slices and it has not otherwise been set up, else
290 * we ignore it.
292 if (i == COMPATIBILITY_SLICE) {
293 sno = 0;
294 if (sp->ds_type == 0 &&
295 dp->d_slice->dss_nslices == BASE_SLICE) {
296 sp->ds_size = info->d_media_blocks;
297 sp->ds_reserved = 0;
299 } else {
300 sno = i - 1;
301 sp->ds_reserved = 0;
305 * Ignore 0-length slices
307 if (sp->ds_size == 0)
308 continue;
310 if (reprobe &&
311 (ndev = devfs_find_device_by_name("%ss%d",
312 dev->si_name, sno))) {
314 * Device already exists and is still valid
316 ndev->si_flags |= SI_REPROBE_TEST;
317 } else {
319 * Else create new device
321 ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
322 dkmakewholeslice(dkunit(dev), i),
323 UID_ROOT, GID_OPERATOR, 0640,
324 "%ss%d", dev->si_name, sno);
325 if (dp->d_info.d_serialno) {
326 make_dev_alias(ndev, "serno/%s.s%d",
327 dp->d_info.d_serialno, sno);
329 ndev->si_disk = dp;
330 ndev->si_flags |= SI_REPROBE_TEST;
332 sp->ds_dev = ndev;
335 * Probe appropriate slices for a disklabel
337 * XXX slice type 1 used by our gpt probe code.
338 * XXX slice type 0 used by mbr compat slice.
340 if (sp->ds_type == DOSPTYP_386BSD ||
341 sp->ds_type == DOSPTYP_NETBSD ||
342 sp->ds_type == DOSPTYP_OPENBSD ||
343 sp->ds_type == 0 ||
344 sp->ds_type == 1) {
345 if (dp->d_slice->dss_first_bsd_slice == 0)
346 dp->d_slice->dss_first_bsd_slice = i;
347 disk_probe_slice(dp, ndev, i, reprobe);
350 dsgone(&osp);
351 disk_debug(1, "disk_probe (end): %s\n", dp->d_cdev->si_name);
355 static void
356 disk_msg_core(void *arg)
358 struct disk *dp;
359 struct diskslice *sp;
360 lwkt_tokref ilock;
361 disk_msg_t msg;
362 int run;
364 lwkt_initport_thread(&disk_msg_port, curthread);
365 wakeup(curthread);
366 run = 1;
368 while (run) {
369 msg = (disk_msg_t)lwkt_waitport(&disk_msg_port, 0);
371 switch (msg->hdr.u.ms_result) {
372 case DISK_DISK_PROBE:
373 dp = (struct disk *)msg->load;
374 disk_debug(1,
375 "DISK_DISK_PROBE: %s\n",
376 dp->d_cdev->si_name);
377 disk_probe(dp, 0);
378 break;
379 case DISK_DISK_DESTROY:
380 dp = (struct disk *)msg->load;
381 disk_debug(1,
382 "DISK_DISK_DESTROY: %s\n",
383 dp->d_cdev->si_name);
384 devfs_destroy_subnames(dp->d_cdev->si_name);
385 devfs_destroy_dev(dp->d_cdev);
386 lwkt_gettoken(&ilock, &disklist_token);
387 LIST_REMOVE(dp, d_list);
388 lwkt_reltoken(&ilock);
389 if (dp->d_info.d_serialno) {
390 kfree(dp->d_info.d_serialno, M_TEMP);
391 dp->d_info.d_serialno = NULL;
393 break;
394 case DISK_UNPROBE:
395 dp = (struct disk *)msg->load;
396 disk_debug(1,
397 "DISK_DISK_UNPROBE: %s\n",
398 dp->d_cdev->si_name);
399 devfs_destroy_subnames(dp->d_cdev->si_name);
400 break;
401 case DISK_SLICE_REPROBE:
402 dp = (struct disk *)msg->load;
403 sp = (struct diskslice *)msg->load2;
404 devfs_clr_subnames_flag(sp->ds_dev->si_name,
405 SI_REPROBE_TEST);
406 disk_debug(1,
407 "DISK_SLICE_REPROBE: %s\n",
408 sp->ds_dev->si_name);
409 disk_probe_slice(dp, sp->ds_dev,
410 dkslice(sp->ds_dev), 1);
411 devfs_destroy_subnames_without_flag(
412 sp->ds_dev->si_name, SI_REPROBE_TEST);
413 break;
414 case DISK_DISK_REPROBE:
415 dp = (struct disk *)msg->load;
416 devfs_clr_subnames_flag(dp->d_cdev->si_name, SI_REPROBE_TEST);
417 disk_debug(1,
418 "DISK_DISK_REPROBE: %s\n",
419 dp->d_cdev->si_name);
420 disk_probe(dp, 1);
421 devfs_destroy_subnames_without_flag(
422 dp->d_cdev->si_name, SI_REPROBE_TEST);
423 break;
424 case DISK_SYNC:
425 disk_debug(1, "DISK_SYNC\n");
426 break;
427 default:
428 devfs_debug(DEVFS_DEBUG_WARNING,
429 "disk_msg_core: unknown message "
430 "received at core\n");
431 break;
433 lwkt_replymsg(&msg->hdr, 0);
435 lwkt_exit();
440 * Acts as a message drain. Any message that is replied to here gets
441 * destroyed and the memory freed.
443 static void
444 disk_msg_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
446 objcache_put(disk_msg_cache, msg);
450 void
451 disk_msg_send(uint32_t cmd, void *load, void *load2)
453 disk_msg_t disk_msg;
454 lwkt_port_t port = &disk_msg_port;
456 disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
458 lwkt_initmsg(&disk_msg->hdr, &disk_dispose_port, 0);
460 disk_msg->hdr.u.ms_result = cmd;
461 disk_msg->load = load;
462 disk_msg->load2 = load2;
463 KKASSERT(port);
464 lwkt_sendmsg(port, &disk_msg->hdr);
467 void
468 disk_msg_send_sync(uint32_t cmd, void *load, void *load2)
470 struct lwkt_port rep_port;
471 disk_msg_t disk_msg;
472 lwkt_port_t port;
474 disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
475 port = &disk_msg_port;
477 /* XXX could probably use curthread's built-in msgport */
478 lwkt_initport_thread(&rep_port, curthread);
479 lwkt_initmsg(&disk_msg->hdr, &rep_port, 0);
481 disk_msg->hdr.u.ms_result = cmd;
482 disk_msg->load = load;
483 disk_msg->load2 = load2;
485 lwkt_sendmsg(port, &disk_msg->hdr);
486 lwkt_waitmsg(&disk_msg->hdr, 0);
487 objcache_put(disk_msg_cache, disk_msg);
491 * Create a raw device for the dev_ops template (which is returned). Also
492 * create a slice and unit managed disk and overload the user visible
493 * device space with it.
495 * NOTE: The returned raw device is NOT a slice and unit managed device.
496 * It is an actual raw device representing the raw disk as specified by
497 * the passed dev_ops. The disk layer not only returns such a raw device,
498 * it also uses it internally when passing (modified) commands through.
500 cdev_t
501 disk_create(int unit, struct disk *dp, struct dev_ops *raw_ops)
503 lwkt_tokref ilock;
504 cdev_t rawdev;
506 disk_debug(1,
507 "disk_create (begin): %s%d\n",
508 raw_ops->head.name, unit);
510 rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit),
511 UID_ROOT, GID_OPERATOR, 0640,
512 "%s%d", raw_ops->head.name, unit);
514 bzero(dp, sizeof(*dp));
516 dp->d_rawdev = rawdev;
517 dp->d_raw_ops = raw_ops;
518 dp->d_dev_ops = &disk_ops;
519 dp->d_cdev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
520 dkmakewholedisk(unit),
521 UID_ROOT, GID_OPERATOR, 0640,
522 "%s%d", raw_ops->head.name, unit);
524 dp->d_cdev->si_disk = dp;
526 lwkt_gettoken(&ilock, &disklist_token);
527 LIST_INSERT_HEAD(&disklist, dp, d_list);
528 lwkt_reltoken(&ilock);
530 disk_debug(1,
531 "disk_create (end): %s%d\n",
532 raw_ops->head.name, unit);
534 return (dp->d_rawdev);
538 static void
539 _setdiskinfo(struct disk *disk, struct disk_info *info)
541 char *oldserialno;
543 oldserialno = disk->d_info.d_serialno;
544 bcopy(info, &disk->d_info, sizeof(disk->d_info));
545 info = &disk->d_info;
547 disk_debug(1,
548 "_setdiskinfo: %s\n",
549 disk->d_cdev->si_name);
552 * The serial number is duplicated so the caller can throw
553 * their copy away.
555 if (info->d_serialno && info->d_serialno[0]) {
556 info->d_serialno = kstrdup(info->d_serialno, M_TEMP);
557 disk_cleanserial(info->d_serialno);
558 if (disk->d_cdev) {
559 make_dev_alias(disk->d_cdev, "serno/%s",
560 info->d_serialno);
562 } else {
563 info->d_serialno = NULL;
565 if (oldserialno)
566 kfree(oldserialno, M_TEMP);
569 * The caller may set d_media_size or d_media_blocks and we
570 * calculate the other.
572 KKASSERT(info->d_media_size == 0 || info->d_media_blksize == 0);
573 if (info->d_media_size == 0 && info->d_media_blocks) {
574 info->d_media_size = (u_int64_t)info->d_media_blocks *
575 info->d_media_blksize;
576 } else if (info->d_media_size && info->d_media_blocks == 0 &&
577 info->d_media_blksize) {
578 info->d_media_blocks = info->d_media_size /
579 info->d_media_blksize;
583 * The si_* fields for rawdev are not set until after the
584 * disk_create() call, so someone using the cooked version
585 * of the raw device (i.e. da0s0) will not get the right
586 * si_iosize_max unless we fix it up here.
588 if (disk->d_cdev && disk->d_rawdev &&
589 disk->d_cdev->si_iosize_max == 0) {
590 disk->d_cdev->si_iosize_max = disk->d_rawdev->si_iosize_max;
591 disk->d_cdev->si_bsize_phys = disk->d_rawdev->si_bsize_phys;
592 disk->d_cdev->si_bsize_best = disk->d_rawdev->si_bsize_best;
597 * Disk drivers must call this routine when media parameters are available
598 * or have changed.
600 void
601 disk_setdiskinfo(struct disk *disk, struct disk_info *info)
603 _setdiskinfo(disk, info);
604 disk_msg_send(DISK_DISK_PROBE, disk, NULL);
605 disk_debug(1,
606 "disk_setdiskinfo: sent probe for %s\n",
607 disk->d_cdev->si_name);
610 void
611 disk_setdiskinfo_sync(struct disk *disk, struct disk_info *info)
613 _setdiskinfo(disk, info);
614 disk_msg_send_sync(DISK_DISK_PROBE, disk, NULL);
615 disk_debug(1,
616 "disk_setdiskinfo_sync: sent probe for %s\n",
617 disk->d_cdev->si_name);
621 * This routine is called when an adapter detaches. The higher level
622 * managed disk device is destroyed while the lower level raw device is
623 * released.
625 void
626 disk_destroy(struct disk *disk)
628 disk_msg_send_sync(DISK_DISK_DESTROY, disk, NULL);
629 return;
633 disk_dumpcheck(cdev_t dev, u_int64_t *size, u_int64_t *blkno, u_int32_t *secsize)
635 struct partinfo pinfo;
636 int error;
638 bzero(&pinfo, sizeof(pinfo));
639 error = dev_dioctl(dev, DIOCGPART, (void *)&pinfo, 0,
640 proc0.p_ucred, NULL);
641 if (error)
642 return (error);
644 if (pinfo.media_blksize == 0)
645 return (ENXIO);
647 if (blkno) /* XXX: make sure this reserved stuff is right */
648 *blkno = pinfo.reserved_blocks +
649 pinfo.media_offset / pinfo.media_blksize;
650 if (secsize)
651 *secsize = pinfo.media_blksize;
652 if (size)
653 *size = (pinfo.media_blocks - pinfo.reserved_blocks);
655 return (0);
659 disk_dumpconf(cdev_t dev, u_int onoff)
661 struct dumperinfo di;
662 u_int64_t size, blkno;
663 u_int32_t secsize;
664 int error;
666 if (!onoff)
667 return set_dumper(NULL);
669 error = disk_dumpcheck(dev, &size, &blkno, &secsize);
671 if (error)
672 return ENXIO;
674 bzero(&di, sizeof(struct dumperinfo));
675 di.dumper = diskdump;
676 di.priv = dev;
677 di.blocksize = secsize;
678 di.mediaoffset = blkno * DEV_BSIZE;
679 di.mediasize = size * DEV_BSIZE;
681 return set_dumper(&di);
684 void
685 disk_unprobe(struct disk *disk)
687 if (disk == NULL)
688 return;
690 disk_msg_send_sync(DISK_UNPROBE, disk, NULL);
693 void
694 disk_invalidate (struct disk *disk)
696 dsgone(&disk->d_slice);
699 struct disk *
700 disk_enumerate(struct disk *disk)
702 struct disk *dp;
703 lwkt_tokref ilock;
705 lwkt_gettoken(&ilock, &disklist_token);
706 if (!disk)
707 dp = (LIST_FIRST(&disklist));
708 else
709 dp = (LIST_NEXT(disk, d_list));
710 lwkt_reltoken(&ilock);
712 return dp;
715 static
717 sysctl_disks(SYSCTL_HANDLER_ARGS)
719 struct disk *disk;
720 int error, first;
722 disk = NULL;
723 first = 1;
725 while ((disk = disk_enumerate(disk))) {
726 if (!first) {
727 error = SYSCTL_OUT(req, " ", 1);
728 if (error)
729 return error;
730 } else {
731 first = 0;
733 error = SYSCTL_OUT(req, disk->d_rawdev->si_name,
734 strlen(disk->d_rawdev->si_name));
735 if (error)
736 return error;
738 error = SYSCTL_OUT(req, "", 1);
739 return error;
742 SYSCTL_PROC(_kern, OID_AUTO, disks, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
743 sysctl_disks, "A", "names of available disks");
746 * Open a disk device or partition.
748 static
750 diskopen(struct dev_open_args *ap)
752 cdev_t dev = ap->a_head.a_dev;
753 struct disk *dp;
754 int error;
757 * dp can't be NULL here XXX.
759 * d_slice will be NULL if setdiskinfo() has not been called yet.
760 * setdiskinfo() is typically called whether the disk is present
761 * or not (e.g. CD), but the base disk device is created first
762 * and there may be a race.
764 dp = dev->si_disk;
765 if (dp == NULL || dp->d_slice == NULL)
766 return (ENXIO);
767 error = 0;
770 * Deal with open races
772 while (dp->d_flags & DISKFLAG_LOCK) {
773 dp->d_flags |= DISKFLAG_WANTED;
774 error = tsleep(dp, PCATCH, "diskopen", hz);
775 if (error)
776 return (error);
778 dp->d_flags |= DISKFLAG_LOCK;
781 * Open the underlying raw device.
783 if (!dsisopen(dp->d_slice)) {
784 #if 0
785 if (!pdev->si_iosize_max)
786 pdev->si_iosize_max = dev->si_iosize_max;
787 #endif
788 error = dev_dopen(dp->d_rawdev, ap->a_oflags,
789 ap->a_devtype, ap->a_cred);
791 #if 0
793 * Inherit properties from the underlying device now that it is
794 * open.
796 dev_dclone(dev);
797 #endif
799 if (error)
800 goto out;
801 error = dsopen(dev, ap->a_devtype, dp->d_info.d_dsflags,
802 &dp->d_slice, &dp->d_info);
803 if (!dsisopen(dp->d_slice)) {
804 dev_dclose(dp->d_rawdev, ap->a_oflags, ap->a_devtype);
806 out:
807 dp->d_flags &= ~DISKFLAG_LOCK;
808 if (dp->d_flags & DISKFLAG_WANTED) {
809 dp->d_flags &= ~DISKFLAG_WANTED;
810 wakeup(dp);
813 return(error);
817 * Close a disk device or partition
819 static
821 diskclose(struct dev_close_args *ap)
823 cdev_t dev = ap->a_head.a_dev;
824 struct disk *dp;
825 int error;
827 error = 0;
828 dp = dev->si_disk;
830 dsclose(dev, ap->a_devtype, dp->d_slice);
831 if (!dsisopen(dp->d_slice)) {
832 error = dev_dclose(dp->d_rawdev, ap->a_fflag, ap->a_devtype);
834 return (error);
838 * First execute the ioctl on the disk device, and if it isn't supported
839 * try running it on the backing device.
841 static
843 diskioctl(struct dev_ioctl_args *ap)
845 cdev_t dev = ap->a_head.a_dev;
846 struct disk *dp;
847 int error;
848 u_int u;
850 dp = dev->si_disk;
851 if (dp == NULL)
852 return (ENXIO);
854 devfs_debug(DEVFS_DEBUG_DEBUG,
855 "diskioctl: cmd is: %x (name: %s)\n",
856 ap->a_cmd, dev->si_name);
857 devfs_debug(DEVFS_DEBUG_DEBUG,
858 "diskioctl: &dp->d_slice is: %x, %x\n",
859 &dp->d_slice, dp->d_slice);
861 if (ap->a_cmd == DIOCGKERNELDUMP) {
862 u = *(u_int *)ap->a_data;
863 return disk_dumpconf(dev, u);
866 error = dsioctl(dev, ap->a_cmd, ap->a_data, ap->a_fflag,
867 &dp->d_slice, &dp->d_info);
869 if (error == ENOIOCTL) {
870 error = dev_dioctl(dp->d_rawdev, ap->a_cmd, ap->a_data,
871 ap->a_fflag, ap->a_cred, NULL);
873 return (error);
877 * Execute strategy routine
879 static
881 diskstrategy(struct dev_strategy_args *ap)
883 cdev_t dev = ap->a_head.a_dev;
884 struct bio *bio = ap->a_bio;
885 struct bio *nbio;
886 struct disk *dp;
888 dp = dev->si_disk;
890 if (dp == NULL) {
891 bio->bio_buf->b_error = ENXIO;
892 bio->bio_buf->b_flags |= B_ERROR;
893 biodone(bio);
894 return(0);
896 KKASSERT(dev->si_disk == dp);
899 * The dscheck() function will also transform the slice relative
900 * block number i.e. bio->bio_offset into a block number that can be
901 * passed directly to the underlying raw device. If dscheck()
902 * returns NULL it will have handled the bio for us (e.g. EOF
903 * or error due to being beyond the device size).
905 if ((nbio = dscheck(dev, bio, dp->d_slice)) != NULL) {
906 dev_dstrategy(dp->d_rawdev, nbio);
907 } else {
908 biodone(bio);
910 return(0);
914 * Return the partition size in ?blocks?
916 static
918 diskpsize(struct dev_psize_args *ap)
920 cdev_t dev = ap->a_head.a_dev;
921 struct disk *dp;
923 dp = dev->si_disk;
924 if (dp == NULL)
925 return(ENODEV);
926 ap->a_result = dssize(dev, &dp->d_slice);
927 return(0);
931 * When new device entries are instantiated, make sure they inherit our
932 * si_disk structure and block and iosize limits from the raw device.
934 * This routine is always called synchronously in the context of the
935 * client.
937 * XXX The various io and block size constraints are not always initialized
938 * properly by devices.
940 static
942 diskclone(struct dev_clone_args *ap)
944 cdev_t dev = ap->a_head.a_dev;
945 struct disk *dp;
946 dp = dev->si_disk;
948 KKASSERT(dp != NULL);
949 dev->si_disk = dp;
950 dev->si_iosize_max = dp->d_rawdev->si_iosize_max;
951 dev->si_bsize_phys = dp->d_rawdev->si_bsize_phys;
952 dev->si_bsize_best = dp->d_rawdev->si_bsize_best;
953 return(0);
957 diskdump(struct dev_dump_args *ap)
959 cdev_t dev = ap->a_head.a_dev;
960 struct disk *dp = dev->si_disk;
961 u_int64_t size, offset;
962 int error;
964 error = disk_dumpcheck(dev, &size, &ap->a_blkno, &ap->a_secsize);
965 /* XXX: this should probably go in disk_dumpcheck somehow */
966 if (ap->a_length != 0) {
967 size *= DEV_BSIZE;
968 offset = ap->a_blkno * DEV_BSIZE;
969 if ((ap->a_offset < offset) ||
970 (ap->a_offset + ap->a_length - offset > size)) {
971 kprintf("Attempt to write outside dump device boundaries.\n");
972 error = ENOSPC;
976 if (error == 0) {
977 ap->a_head.a_dev = dp->d_rawdev;
978 error = dev_doperate(&ap->a_head);
981 return(error);
985 SYSCTL_INT(_debug_sizeof, OID_AUTO, diskslices, CTLFLAG_RD,
986 0, sizeof(struct diskslices), "sizeof(struct diskslices)");
988 SYSCTL_INT(_debug_sizeof, OID_AUTO, disk, CTLFLAG_RD,
989 0, sizeof(struct disk), "sizeof(struct disk)");
992 * Reorder interval for burst write allowance and minor write
993 * allowance.
995 * We always want to trickle some writes in to make use of the
996 * disk's zone cache. Bursting occurs on a longer interval and only
997 * runningbufspace is well over the hirunningspace limit.
999 int bioq_reorder_burst_interval = 60; /* should be multiple of minor */
1000 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_interval,
1001 CTLFLAG_RW, &bioq_reorder_burst_interval, 0, "");
1002 int bioq_reorder_minor_interval = 5;
1003 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_interval,
1004 CTLFLAG_RW, &bioq_reorder_minor_interval, 0, "");
1006 int bioq_reorder_burst_bytes = 3000000;
1007 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_bytes,
1008 CTLFLAG_RW, &bioq_reorder_burst_bytes, 0, "");
1009 int bioq_reorder_minor_bytes = 262144;
1010 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_bytes,
1011 CTLFLAG_RW, &bioq_reorder_minor_bytes, 0, "");
1015 * Order I/Os. Generally speaking this code is designed to make better
1016 * use of drive zone caches. A drive zone cache can typically track linear
1017 * reads or writes for around 16 zones simultaniously.
1019 * Read prioritization issues: It is possible for hundreds of megabytes worth
1020 * of writes to be queued asynchronously. This creates a huge bottleneck
1021 * for reads which reduce read bandwidth to a trickle.
1023 * To solve this problem we generally reorder reads before writes.
1025 * However, a large number of random reads can also starve writes and
1026 * make poor use of the drive zone cache so we allow writes to trickle
1027 * in every N reads.
1029 void
1030 bioqdisksort(struct bio_queue_head *bioq, struct bio *bio)
1033 * The BIO wants to be ordered. Adding to the tail also
1034 * causes transition to be set to NULL, forcing the ordering
1035 * of all prior I/O's.
1037 if (bio->bio_buf->b_flags & B_ORDERED) {
1038 bioq_insert_tail(bioq, bio);
1039 return;
1042 switch(bio->bio_buf->b_cmd) {
1043 case BUF_CMD_READ:
1044 if (bioq->transition) {
1046 * Insert before the first write. Bleedover writes
1047 * based on reorder intervals to prevent starvation.
1049 TAILQ_INSERT_BEFORE(bioq->transition, bio, bio_act);
1050 ++bioq->reorder;
1051 if (bioq->reorder % bioq_reorder_minor_interval == 0) {
1052 bioqwritereorder(bioq);
1053 if (bioq->reorder >=
1054 bioq_reorder_burst_interval) {
1055 bioq->reorder = 0;
1058 } else {
1060 * No writes queued (or ordering was forced),
1061 * insert at tail.
1063 TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1065 break;
1066 case BUF_CMD_WRITE:
1068 * Writes are always appended. If no writes were previously
1069 * queued or an ordered tail insertion occured the transition
1070 * field will be NULL.
1072 TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1073 if (bioq->transition == NULL)
1074 bioq->transition = bio;
1075 break;
1076 default:
1078 * All other request types are forced to be ordered.
1080 bioq_insert_tail(bioq, bio);
1081 break;
1086 * Move the read-write transition point to prevent reads from
1087 * completely starving our writes. This brings a number of writes into
1088 * the fold every N reads.
1090 * We bring a few linear writes into the fold on a minor interval
1091 * and we bring a non-linear burst of writes into the fold on a major
1092 * interval. Bursting only occurs if runningbufspace is really high
1093 * (typically from syncs, fsyncs, or HAMMER flushes).
1095 static
1096 void
1097 bioqwritereorder(struct bio_queue_head *bioq)
1099 struct bio *bio;
1100 off_t next_offset;
1101 size_t left;
1102 size_t n;
1103 int check_off;
1105 if (bioq->reorder < bioq_reorder_burst_interval ||
1106 !buf_runningbufspace_severe()) {
1107 left = (size_t)bioq_reorder_minor_bytes;
1108 check_off = 1;
1109 } else {
1110 left = (size_t)bioq_reorder_burst_bytes;
1111 check_off = 0;
1114 next_offset = bioq->transition->bio_offset;
1115 while ((bio = bioq->transition) != NULL &&
1116 (check_off == 0 || next_offset == bio->bio_offset)
1118 n = bio->bio_buf->b_bcount;
1119 next_offset = bio->bio_offset + n;
1120 bioq->transition = TAILQ_NEXT(bio, bio_act);
1121 if (left < n)
1122 break;
1123 left -= n;
1128 * Disk error is the preface to plaintive error messages
1129 * about failing disk transfers. It prints messages of the form
1131 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
1133 * if the offset of the error in the transfer and a disk label
1134 * are both available. blkdone should be -1 if the position of the error
1135 * is unknown; the disklabel pointer may be null from drivers that have not
1136 * been converted to use them. The message is printed with kprintf
1137 * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
1138 * The message should be completed (with at least a newline) with kprintf
1139 * or log(-1, ...), respectively. There is no trailing space.
1141 void
1142 diskerr(struct bio *bio, cdev_t dev, const char *what, int pri, int donecnt)
1144 struct buf *bp = bio->bio_buf;
1145 const char *term;
1147 switch(bp->b_cmd) {
1148 case BUF_CMD_READ:
1149 term = "read";
1150 break;
1151 case BUF_CMD_WRITE:
1152 term = "write";
1153 break;
1154 default:
1155 term = "access";
1156 break;
1158 kprintf("%s: %s %sing ", dev->si_name, what, term);
1159 kprintf("offset %012llx for %d",
1160 (long long)bio->bio_offset,
1161 bp->b_bcount);
1163 if (donecnt)
1164 kprintf(" (%d bytes completed)", donecnt);
1168 * Locate a disk device
1170 cdev_t
1171 disk_locate(const char *devname)
1173 return devfs_find_device_by_name(devname);
1176 void
1177 disk_config(void *arg)
1179 disk_msg_send_sync(DISK_SYNC, NULL, NULL);
1182 static void
1183 disk_init(void)
1185 struct thread* td_core;
1187 disk_msg_cache = objcache_create("disk-msg-cache", 0, 0,
1188 NULL, NULL, NULL,
1189 objcache_malloc_alloc,
1190 objcache_malloc_free,
1191 &disk_msg_malloc_args);
1193 lwkt_token_init(&disklist_token);
1196 * Initialize the reply-only port which acts as a message drain
1198 lwkt_initport_replyonly(&disk_dispose_port, disk_msg_autofree_reply);
1200 lwkt_create(disk_msg_core, /*args*/NULL, &td_core, NULL,
1201 0, 0, "disk_msg_core");
1203 tsleep(td_core, 0, "diskcore", 0);
1206 static void
1207 disk_uninit(void)
1209 objcache_destroy(disk_msg_cache);
1213 * Clean out illegal characters in serial numbers.
1215 static void
1216 disk_cleanserial(char *serno)
1218 char c;
1220 while ((c = *serno) != 0) {
1221 if (c >= 'a' && c <= 'z')
1223 else if (c >= 'A' && c <= 'Z')
1225 else if (c >= '0' && c <= '9')
1227 else if (c == '-' || c == '@' || c == '+' || c == '.')
1229 else
1230 c = '_';
1231 *serno++= c;
1235 TUNABLE_INT("kern.disk_debug", &disk_debug_enable);
1236 SYSCTL_INT(_kern, OID_AUTO, disk_debug, CTLFLAG_RW, &disk_debug_enable,
1237 0, "Enable subr_disk debugging");
1239 SYSINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, disk_init, NULL);
1240 SYSUNINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, disk_uninit, NULL);