1 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.28 2007/10/20 23:23:22 julian Exp $ */
3 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 * Cryptographic Subsystem.
29 * This code is derived from the Openbsd Cryptographic Framework (OCF)
30 * that has the copyright shown below. Very little of the original
35 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
37 * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 * supported the development of this code.
41 * Copyright (c) 2000, 2001 Angelos D. Keromytis
43 * Permission to use, copy, and modify this software with or without fee
44 * is hereby granted, provided that this entire notice is included in
45 * all source code copies of any software which is or includes a copy or
46 * modification of this software.
48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
55 #define CRYPTO_TIMING /* enable timing support */
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/eventhandler.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
65 #include <sys/module.h>
66 #include <sys/malloc.h>
68 #include <sys/sysctl.h>
69 #include <sys/objcache.h>
71 #include <sys/thread2.h>
75 #include <opencrypto/cryptodev.h>
76 #include <opencrypto/xform.h> /* XXX for M_XDATA */
80 #include "cryptodev_if.h"
83 * Crypto drivers register themselves by allocating a slot in the
84 * crypto_drivers table with crypto_get_driverid() and then registering
85 * each algorithm they support with crypto_register() and crypto_kregister().
87 static struct lock crypto_drivers_lock
; /* lock on driver table */
88 #define CRYPTO_DRIVER_LOCK() lockmgr(&crypto_drivers_lock, LK_EXCLUSIVE)
89 #define CRYPTO_DRIVER_UNLOCK() lockmgr(&crypto_drivers_lock, LK_RELEASE)
90 #define CRYPTO_DRIVER_ASSERT() KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0)
93 * Crypto device/driver capabilities structure.
96 * (d) - protected by CRYPTO_DRIVER_LOCK()
97 * (q) - protected by CRYPTO_Q_LOCK()
98 * Not tagged fields are read-only.
101 device_t cc_dev
; /* (d) device/driver */
102 u_int32_t cc_sessions
; /* (d) # of sessions */
103 u_int32_t cc_koperations
; /* (d) # os asym operations */
105 * Largest possible operator length (in bits) for each type of
106 * encryption algorithm. XXX not used
108 u_int16_t cc_max_op_len
[CRYPTO_ALGORITHM_MAX
+ 1];
109 u_int8_t cc_alg
[CRYPTO_ALGORITHM_MAX
+ 1];
110 u_int8_t cc_kalg
[CRK_ALGORITHM_MAX
+ 1];
112 int cc_flags
; /* (d) flags */
113 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */
114 int cc_qblocked
; /* (q) symmetric q blocked */
115 int cc_kqblocked
; /* (q) asymmetric q blocked */
117 static struct cryptocap
*crypto_drivers
= NULL
;
118 static int crypto_drivers_num
= 0;
120 typedef struct crypto_tdinfo
{
121 TAILQ_HEAD(,cryptop
) crp_q
; /* request queues */
122 TAILQ_HEAD(,cryptkop
) crp_kq
;
124 struct lock crp_lock
;
129 * There are two queues for crypto requests; one for symmetric (e.g.
130 * cipher) operations and one for asymmetric (e.g. MOD) operations.
131 * See below for how synchronization is handled.
132 * A single lock is used to lock access to both queues. We could
133 * have one per-queue but having one simplifies handling of block/unblock
136 static struct crypto_tdinfo tdinfo_array
[MAXCPU
];
138 #define CRYPTO_Q_LOCK(tdinfo) lockmgr(&tdinfo->crp_lock, LK_EXCLUSIVE)
139 #define CRYPTO_Q_UNLOCK(tdinfo) lockmgr(&tdinfo->crp_lock, LK_RELEASE)
142 * There are two queues for processing completed crypto requests; one
143 * for the symmetric and one for the asymmetric ops. We only need one
144 * but have two to avoid type futzing (cryptop vs. cryptkop). A single
145 * lock is used to lock access to both queues. Note that this lock
146 * must be separate from the lock on request queues to insure driver
147 * callbacks don't generate lock order reversals.
149 static TAILQ_HEAD(,cryptop
) crp_ret_q
; /* callback queues */
150 static TAILQ_HEAD(,cryptkop
) crp_ret_kq
;
151 static struct lock crypto_ret_q_lock
;
152 #define CRYPTO_RETQ_LOCK() lockmgr(&crypto_ret_q_lock, LK_EXCLUSIVE)
153 #define CRYPTO_RETQ_UNLOCK() lockmgr(&crypto_ret_q_lock, LK_RELEASE)
154 #define CRYPTO_RETQ_EMPTY() (TAILQ_EMPTY(&crp_ret_q) && TAILQ_EMPTY(&crp_ret_kq))
157 * Crypto op and desciptor data structures are allocated
158 * from separate object caches.
160 static struct objcache
*cryptop_oc
, *cryptodesc_oc
;
162 static MALLOC_DEFINE(M_CRYPTO_OP
, "crypto op", "crypto op");
163 static MALLOC_DEFINE(M_CRYPTO_DESC
, "crypto desc", "crypto desc");
165 int crypto_userasymcrypto
= 1; /* userland may do asym crypto reqs */
166 SYSCTL_INT(_kern
, OID_AUTO
, userasymcrypto
, CTLFLAG_RW
,
167 &crypto_userasymcrypto
, 0,
168 "Enable/disable user-mode access to asymmetric crypto support");
169 int crypto_devallowsoft
= 0; /* only use hardware crypto for asym */
170 SYSCTL_INT(_kern
, OID_AUTO
, cryptodevallowsoft
, CTLFLAG_RW
,
171 &crypto_devallowsoft
, 0,
172 "Enable/disable use of software asym crypto support");
173 int crypto_altdispatch
= 0; /* dispatch to alternative cpu */
174 SYSCTL_INT(_kern
, OID_AUTO
, cryptoaltdispatch
, CTLFLAG_RW
,
175 &crypto_altdispatch
, 0,
176 "Do not queue crypto op on current cpu");
178 MALLOC_DEFINE(M_CRYPTO_DATA
, "crypto", "crypto session records");
180 static void crypto_proc(void *dummy
);
181 static void crypto_ret_proc(void *dummy
);
182 static struct thread
*cryptoretthread
;
183 static void crypto_destroy(void);
184 static int crypto_invoke(struct cryptocap
*cap
, struct cryptop
*crp
, int hint
);
185 static int crypto_kinvoke(struct cryptkop
*krp
, int flags
);
187 static struct cryptostats cryptostats
;
188 SYSCTL_STRUCT(_kern
, OID_AUTO
, crypto_stats
, CTLFLAG_RW
, &cryptostats
,
189 cryptostats
, "Crypto system statistics");
192 static int crypto_timing
= 0;
193 SYSCTL_INT(_debug
, OID_AUTO
, crypto_timing
, CTLFLAG_RW
,
194 &crypto_timing
, 0, "Enable/disable crypto timing support");
200 crypto_tdinfo_t tdinfo
;
204 lockinit(&crypto_drivers_lock
, "crypto driver table", 0, LK_CANRECURSE
);
206 TAILQ_INIT(&crp_ret_q
);
207 TAILQ_INIT(&crp_ret_kq
);
208 lockinit(&crypto_ret_q_lock
, "crypto return queues", 0, LK_CANRECURSE
);
210 cryptop_oc
= objcache_create_simple(M_CRYPTO_OP
, sizeof(struct cryptop
));
211 cryptodesc_oc
= objcache_create_simple(M_CRYPTO_DESC
,
212 sizeof(struct cryptodesc
));
213 if (cryptodesc_oc
== NULL
|| cryptop_oc
== NULL
) {
214 kprintf("crypto_init: cannot setup crypto caches\n");
219 crypto_drivers_num
= CRYPTO_DRIVERS_INITIAL
;
220 crypto_drivers
= kmalloc(crypto_drivers_num
* sizeof(struct cryptocap
),
221 M_CRYPTO_DATA
, M_WAITOK
| M_ZERO
);
223 for (n
= 0; n
< ncpus
; ++n
) {
224 tdinfo
= &tdinfo_array
[n
];
225 TAILQ_INIT(&tdinfo
->crp_q
);
226 TAILQ_INIT(&tdinfo
->crp_kq
);
227 lockinit(&tdinfo
->crp_lock
, "crypto op queues",
229 kthread_create_cpu(crypto_proc
, tdinfo
, &tdinfo
->crp_td
,
232 kthread_create(crypto_ret_proc
, NULL
,
233 &cryptoretthread
, "crypto returns");
241 * Signal a crypto thread to terminate. We use the driver
242 * table lock to synchronize the sleep/wakeups so that we
243 * are sure the threads have terminated before we release
244 * the data structures they use. See crypto_finis below
245 * for the other half of this song-and-dance.
248 crypto_terminate(struct thread
**tp
, void *q
)
252 KKASSERT(lockstatus(&crypto_drivers_lock
, curthread
) != 0);
256 kprintf("crypto_terminate: start\n");
259 tsleep_interlock(t
, 0);
260 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
262 tsleep(t
, PINTERLOCKED
, "crypto_destroy", 0);
263 CRYPTO_DRIVER_LOCK();
264 kprintf("crypto_terminate: end\n");
271 crypto_tdinfo_t tdinfo
;
275 * Terminate any crypto threads.
277 CRYPTO_DRIVER_LOCK();
278 for (n
= 0; n
< ncpus
; ++n
) {
279 tdinfo
= &tdinfo_array
[n
];
280 crypto_terminate(&tdinfo
->crp_td
, &tdinfo
->crp_q
);
281 lockuninit(&tdinfo
->crp_lock
);
283 crypto_terminate(&cryptoretthread
, &crp_ret_q
);
284 CRYPTO_DRIVER_UNLOCK();
286 /* XXX flush queues??? */
289 * Reclaim dynamically allocated resources.
291 if (crypto_drivers
!= NULL
)
292 kfree(crypto_drivers
, M_CRYPTO_DATA
);
294 if (cryptodesc_oc
!= NULL
)
295 objcache_destroy(cryptodesc_oc
);
296 if (cryptop_oc
!= NULL
)
297 objcache_destroy(cryptop_oc
);
298 lockuninit(&crypto_ret_q_lock
);
299 lockuninit(&crypto_drivers_lock
);
302 static struct cryptocap
*
303 crypto_checkdriver(u_int32_t hid
)
305 if (crypto_drivers
== NULL
)
307 return (hid
>= crypto_drivers_num
? NULL
: &crypto_drivers
[hid
]);
311 * Compare a driver's list of supported algorithms against another
312 * list; return non-zero if all algorithms are supported.
315 driver_suitable(const struct cryptocap
*cap
, const struct cryptoini
*cri
)
317 const struct cryptoini
*cr
;
319 /* See if all the algorithms are supported. */
320 for (cr
= cri
; cr
; cr
= cr
->cri_next
)
321 if (cap
->cc_alg
[cr
->cri_alg
] == 0)
327 * Select a driver for a new session that supports the specified
328 * algorithms and, optionally, is constrained according to the flags.
329 * The algorithm we use here is pretty stupid; just use the
330 * first driver that supports all the algorithms we need. If there
331 * are multiple drivers we choose the driver with the fewest active
332 * sessions. We prefer hardware-backed drivers to software ones.
334 * XXX We need more smarts here (in real life too, but that's
335 * XXX another story altogether).
337 static struct cryptocap
*
338 crypto_select_driver(const struct cryptoini
*cri
, int flags
)
340 struct cryptocap
*cap
, *best
;
343 CRYPTO_DRIVER_ASSERT();
346 * Look first for hardware crypto devices if permitted.
348 if (flags
& CRYPTOCAP_F_HARDWARE
)
349 match
= CRYPTOCAP_F_HARDWARE
;
351 match
= CRYPTOCAP_F_SOFTWARE
;
354 for (hid
= 0; hid
< crypto_drivers_num
; hid
++) {
355 cap
= &crypto_drivers
[hid
];
357 * If it's not initialized, is in the process of
358 * going away, or is not appropriate (hardware
359 * or software based on match), then skip.
361 if (cap
->cc_dev
== NULL
||
362 (cap
->cc_flags
& CRYPTOCAP_F_CLEANUP
) ||
363 (cap
->cc_flags
& match
) == 0)
366 /* verify all the algorithms are supported. */
367 if (driver_suitable(cap
, cri
)) {
369 cap
->cc_sessions
< best
->cc_sessions
)
375 if (match
== CRYPTOCAP_F_HARDWARE
&& (flags
& CRYPTOCAP_F_SOFTWARE
)) {
376 /* sort of an Algol 68-style for loop */
377 match
= CRYPTOCAP_F_SOFTWARE
;
384 * Create a new session. The crid argument specifies a crypto
385 * driver to use or constraints on a driver to select (hardware
386 * only, software only, either). Whatever driver is selected
387 * must be capable of the requested crypto algorithms.
390 crypto_newsession(u_int64_t
*sid
, struct cryptoini
*cri
, int crid
)
392 struct cryptocap
*cap
;
396 CRYPTO_DRIVER_LOCK();
397 if ((crid
& (CRYPTOCAP_F_HARDWARE
| CRYPTOCAP_F_SOFTWARE
)) == 0) {
399 * Use specified driver; verify it is capable.
401 cap
= crypto_checkdriver(crid
);
402 if (cap
!= NULL
&& !driver_suitable(cap
, cri
))
406 * No requested driver; select based on crid flags.
408 cap
= crypto_select_driver(cri
, crid
);
410 * if NULL then can't do everything in one session.
411 * XXX Fix this. We need to inject a "virtual" session
412 * XXX layer right about here.
416 /* Call the driver initialization routine. */
417 hid
= cap
- crypto_drivers
;
418 lid
= hid
; /* Pass the driver ID. */
419 err
= CRYPTODEV_NEWSESSION(cap
->cc_dev
, &lid
, cri
);
421 (*sid
) = (cap
->cc_flags
& 0xff000000)
422 | (hid
& 0x00ffffff);
424 (*sid
) |= (lid
& 0xffffffff);
429 CRYPTO_DRIVER_UNLOCK();
434 crypto_remove(struct cryptocap
*cap
)
437 KKASSERT(lockstatus(&crypto_drivers_lock
, curthread
) != 0);
438 if (cap
->cc_sessions
== 0 && cap
->cc_koperations
== 0)
439 bzero(cap
, sizeof(*cap
));
443 * Delete an existing session (or a reserved session on an unregistered
447 crypto_freesession(u_int64_t sid
)
449 struct cryptocap
*cap
;
453 CRYPTO_DRIVER_LOCK();
455 if (crypto_drivers
== NULL
) {
460 /* Determine two IDs. */
461 hid
= CRYPTO_SESID2HID(sid
);
463 if (hid
>= crypto_drivers_num
) {
467 cap
= &crypto_drivers
[hid
];
469 if (cap
->cc_sessions
)
472 /* Call the driver cleanup routine, if available. */
473 err
= CRYPTODEV_FREESESSION(cap
->cc_dev
, sid
);
475 if (cap
->cc_flags
& CRYPTOCAP_F_CLEANUP
)
479 CRYPTO_DRIVER_UNLOCK();
484 * Return an unused driver id. Used by drivers prior to registering
485 * support for the algorithms they handle.
488 crypto_get_driverid(device_t dev
, int flags
)
490 struct cryptocap
*newdrv
;
493 if ((flags
& (CRYPTOCAP_F_HARDWARE
| CRYPTOCAP_F_SOFTWARE
)) == 0) {
494 kprintf("%s: no flags specified when registering driver\n",
495 device_get_nameunit(dev
));
499 CRYPTO_DRIVER_LOCK();
501 for (i
= 0; i
< crypto_drivers_num
; i
++) {
502 if (crypto_drivers
[i
].cc_dev
== NULL
&&
503 (crypto_drivers
[i
].cc_flags
& CRYPTOCAP_F_CLEANUP
) == 0) {
508 /* Out of entries, allocate some more. */
509 if (i
== crypto_drivers_num
) {
510 /* Be careful about wrap-around. */
511 if (2 * crypto_drivers_num
<= crypto_drivers_num
) {
512 CRYPTO_DRIVER_UNLOCK();
513 kprintf("crypto: driver count wraparound!\n");
517 newdrv
= kmalloc(2 * crypto_drivers_num
*
518 sizeof(struct cryptocap
),
519 M_CRYPTO_DATA
, M_WAITOK
|M_ZERO
);
521 bcopy(crypto_drivers
, newdrv
,
522 crypto_drivers_num
* sizeof(struct cryptocap
));
524 crypto_drivers_num
*= 2;
526 kfree(crypto_drivers
, M_CRYPTO_DATA
);
527 crypto_drivers
= newdrv
;
530 /* NB: state is zero'd on free */
531 crypto_drivers
[i
].cc_sessions
= 1; /* Mark */
532 crypto_drivers
[i
].cc_dev
= dev
;
533 crypto_drivers
[i
].cc_flags
= flags
;
535 kprintf("crypto: assign %s driver id %u, flags %u\n",
536 device_get_nameunit(dev
), i
, flags
);
538 CRYPTO_DRIVER_UNLOCK();
544 * Lookup a driver by name. We match against the full device
545 * name and unit, and against just the name. The latter gives
546 * us a simple widlcarding by device name. On success return the
547 * driver/hardware identifier; otherwise return -1.
550 crypto_find_driver(const char *match
)
552 int i
, len
= strlen(match
);
554 CRYPTO_DRIVER_LOCK();
555 for (i
= 0; i
< crypto_drivers_num
; i
++) {
556 device_t dev
= crypto_drivers
[i
].cc_dev
;
558 (crypto_drivers
[i
].cc_flags
& CRYPTOCAP_F_CLEANUP
))
560 if (strncmp(match
, device_get_nameunit(dev
), len
) == 0 ||
561 strncmp(match
, device_get_name(dev
), len
) == 0)
564 CRYPTO_DRIVER_UNLOCK();
565 return i
< crypto_drivers_num
? i
: -1;
569 * Return the device_t for the specified driver or NULL
570 * if the driver identifier is invalid.
573 crypto_find_device_byhid(int hid
)
575 struct cryptocap
*cap
= crypto_checkdriver(hid
);
576 return cap
!= NULL
? cap
->cc_dev
: NULL
;
580 * Return the device/driver capabilities.
583 crypto_getcaps(int hid
)
585 struct cryptocap
*cap
= crypto_checkdriver(hid
);
586 return cap
!= NULL
? cap
->cc_flags
: 0;
590 * Register support for a key-related algorithm. This routine
591 * is called once for each algorithm supported a driver.
594 crypto_kregister(u_int32_t driverid
, int kalg
, u_int32_t flags
)
596 struct cryptocap
*cap
;
599 CRYPTO_DRIVER_LOCK();
601 cap
= crypto_checkdriver(driverid
);
603 (CRK_ALGORITM_MIN
<= kalg
&& kalg
<= CRK_ALGORITHM_MAX
)) {
605 * XXX Do some performance testing to determine placing.
606 * XXX We probably need an auxiliary data structure that
607 * XXX describes relative performances.
610 cap
->cc_kalg
[kalg
] = flags
| CRYPTO_ALG_FLAG_SUPPORTED
;
612 kprintf("crypto: %s registers key alg %u flags %u\n"
613 , device_get_nameunit(cap
->cc_dev
)
622 CRYPTO_DRIVER_UNLOCK();
627 * Register support for a non-key-related algorithm. This routine
628 * is called once for each such algorithm supported by a driver.
631 crypto_register(u_int32_t driverid
, int alg
, u_int16_t maxoplen
,
634 struct cryptocap
*cap
;
637 CRYPTO_DRIVER_LOCK();
639 cap
= crypto_checkdriver(driverid
);
640 /* NB: algorithms are in the range [1..max] */
642 (CRYPTO_ALGORITHM_MIN
<= alg
&& alg
<= CRYPTO_ALGORITHM_MAX
)) {
644 * XXX Do some performance testing to determine placing.
645 * XXX We probably need an auxiliary data structure that
646 * XXX describes relative performances.
649 cap
->cc_alg
[alg
] = flags
| CRYPTO_ALG_FLAG_SUPPORTED
;
650 cap
->cc_max_op_len
[alg
] = maxoplen
;
652 kprintf("crypto: %s registers alg %u flags %u maxoplen %u\n"
653 , device_get_nameunit(cap
->cc_dev
)
658 cap
->cc_sessions
= 0; /* Unmark */
663 CRYPTO_DRIVER_UNLOCK();
668 driver_finis(struct cryptocap
*cap
)
672 CRYPTO_DRIVER_ASSERT();
674 ses
= cap
->cc_sessions
;
675 kops
= cap
->cc_koperations
;
676 bzero(cap
, sizeof(*cap
));
677 if (ses
!= 0 || kops
!= 0) {
679 * If there are pending sessions,
680 * just mark as invalid.
682 cap
->cc_flags
|= CRYPTOCAP_F_CLEANUP
;
683 cap
->cc_sessions
= ses
;
684 cap
->cc_koperations
= kops
;
689 * Unregister a crypto driver. If there are pending sessions using it,
690 * leave enough information around so that subsequent calls using those
691 * sessions will correctly detect the driver has been unregistered and
695 crypto_unregister(u_int32_t driverid
, int alg
)
697 struct cryptocap
*cap
;
700 CRYPTO_DRIVER_LOCK();
701 cap
= crypto_checkdriver(driverid
);
703 (CRYPTO_ALGORITHM_MIN
<= alg
&& alg
<= CRYPTO_ALGORITHM_MAX
) &&
704 cap
->cc_alg
[alg
] != 0) {
705 cap
->cc_alg
[alg
] = 0;
706 cap
->cc_max_op_len
[alg
] = 0;
708 /* Was this the last algorithm ? */
709 for (i
= 1; i
<= CRYPTO_ALGORITHM_MAX
; i
++) {
710 if (cap
->cc_alg
[i
] != 0)
714 if (i
== CRYPTO_ALGORITHM_MAX
+ 1)
720 CRYPTO_DRIVER_UNLOCK();
726 * Unregister all algorithms associated with a crypto driver.
727 * If there are pending sessions using it, leave enough information
728 * around so that subsequent calls using those sessions will
729 * correctly detect the driver has been unregistered and reroute
733 crypto_unregister_all(u_int32_t driverid
)
735 struct cryptocap
*cap
;
738 CRYPTO_DRIVER_LOCK();
739 cap
= crypto_checkdriver(driverid
);
746 CRYPTO_DRIVER_UNLOCK();
752 * Clear blockage on a driver. The what parameter indicates whether
753 * the driver is now ready for cryptop's and/or cryptokop's.
756 crypto_unblock(u_int32_t driverid
, int what
)
758 crypto_tdinfo_t tdinfo
;
759 struct cryptocap
*cap
;
763 CRYPTO_DRIVER_LOCK();
764 cap
= crypto_checkdriver(driverid
);
766 if (what
& CRYPTO_SYMQ
)
767 cap
->cc_qblocked
= 0;
768 if (what
& CRYPTO_ASYMQ
)
769 cap
->cc_kqblocked
= 0;
770 for (n
= 0; n
< ncpus
; ++n
) {
771 tdinfo
= &tdinfo_array
[n
];
772 CRYPTO_Q_LOCK(tdinfo
);
773 if (tdinfo
->crp_sleep
)
774 wakeup_one(&tdinfo
->crp_q
);
775 CRYPTO_Q_UNLOCK(tdinfo
);
781 CRYPTO_DRIVER_UNLOCK();
786 static volatile int dispatch_rover
;
789 * Add a crypto request to a queue, to be processed by the kernel thread.
792 crypto_dispatch(struct cryptop
*crp
)
794 crypto_tdinfo_t tdinfo
;
795 struct cryptocap
*cap
;
800 cryptostats
.cs_ops
++;
804 nanouptime(&crp
->crp_tstamp
);
807 hid
= CRYPTO_SESID2HID(crp
->crp_sid
);
810 * Dispatch the crypto op directly to the driver if the caller
811 * marked the request to be processed immediately or this is
812 * a synchronous callback chain occuring from within a crypto
815 * Fall through to queueing the driver is blocked.
817 if ((crp
->crp_flags
& CRYPTO_F_BATCH
) == 0 ||
818 curthread
->td_type
== TD_TYPE_CRYPTO
) {
819 cap
= crypto_checkdriver(hid
);
820 /* Driver cannot disappeared when there is an active session. */
821 KASSERT(cap
!= NULL
, ("%s: Driver disappeared.", __func__
));
822 if (!cap
->cc_qblocked
) {
823 result
= crypto_invoke(cap
, crp
, 0);
824 if (result
!= ERESTART
)
827 * The driver ran out of resources, put the request on
834 * Dispatch to a cpu for action if possible. Dispatch to a different
835 * cpu than the current cpu.
837 if (CRYPTO_SESID2CAPS(crp
->crp_sid
) & CRYPTOCAP_F_SMP
) {
838 n
= atomic_fetchadd_int(&dispatch_rover
, 1) & 255;
839 if (crypto_altdispatch
&& mycpu
->gd_cpuid
== n
)
845 tdinfo
= &tdinfo_array
[n
];
847 CRYPTO_Q_LOCK(tdinfo
);
848 TAILQ_INSERT_TAIL(&tdinfo
->crp_q
, crp
, crp_next
);
849 if (tdinfo
->crp_sleep
)
850 wakeup_one(&tdinfo
->crp_q
);
851 CRYPTO_Q_UNLOCK(tdinfo
);
856 * Add an asymetric crypto request to a queue,
857 * to be processed by the kernel thread.
860 crypto_kdispatch(struct cryptkop
*krp
)
862 crypto_tdinfo_t tdinfo
;
866 cryptostats
.cs_kops
++;
869 /* not sure how to test F_SMP here */
870 n
= atomic_fetchadd_int(&dispatch_rover
, 1) & 255;
874 tdinfo
= &tdinfo_array
[n
];
876 error
= crypto_kinvoke(krp
, krp
->krp_crid
);
878 if (error
== ERESTART
) {
879 CRYPTO_Q_LOCK(tdinfo
);
880 TAILQ_INSERT_TAIL(&tdinfo
->crp_kq
, krp
, krp_next
);
881 if (tdinfo
->crp_sleep
)
882 wakeup_one(&tdinfo
->crp_q
);
883 CRYPTO_Q_UNLOCK(tdinfo
);
890 * Verify a driver is suitable for the specified operation.
893 kdriver_suitable(const struct cryptocap
*cap
, const struct cryptkop
*krp
)
895 return (cap
->cc_kalg
[krp
->krp_op
] & CRYPTO_ALG_FLAG_SUPPORTED
) != 0;
899 * Select a driver for an asym operation. The driver must
900 * support the necessary algorithm. The caller can constrain
901 * which device is selected with the flags parameter. The
902 * algorithm we use here is pretty stupid; just use the first
903 * driver that supports the algorithms we need. If there are
904 * multiple suitable drivers we choose the driver with the
905 * fewest active operations. We prefer hardware-backed
906 * drivers to software ones when either may be used.
908 static struct cryptocap
*
909 crypto_select_kdriver(const struct cryptkop
*krp
, int flags
)
911 struct cryptocap
*cap
, *best
;
914 CRYPTO_DRIVER_ASSERT();
917 * Look first for hardware crypto devices if permitted.
919 if (flags
& CRYPTOCAP_F_HARDWARE
)
920 match
= CRYPTOCAP_F_HARDWARE
;
922 match
= CRYPTOCAP_F_SOFTWARE
;
925 for (hid
= 0; hid
< crypto_drivers_num
; hid
++) {
926 cap
= &crypto_drivers
[hid
];
928 * If it's not initialized, is in the process of
929 * going away, or is not appropriate (hardware
930 * or software based on match), then skip.
932 if (cap
->cc_dev
== NULL
||
933 (cap
->cc_flags
& CRYPTOCAP_F_CLEANUP
) ||
934 (cap
->cc_flags
& match
) == 0)
937 /* verify all the algorithms are supported. */
938 if (kdriver_suitable(cap
, krp
)) {
940 cap
->cc_koperations
< best
->cc_koperations
)
946 if (match
== CRYPTOCAP_F_HARDWARE
&& (flags
& CRYPTOCAP_F_SOFTWARE
)) {
947 /* sort of an Algol 68-style for loop */
948 match
= CRYPTOCAP_F_SOFTWARE
;
955 * Dispatch an assymetric crypto request.
958 crypto_kinvoke(struct cryptkop
*krp
, int crid
)
960 struct cryptocap
*cap
= NULL
;
963 KASSERT(krp
!= NULL
, ("%s: krp == NULL", __func__
));
964 KASSERT(krp
->krp_callback
!= NULL
,
965 ("%s: krp->crp_callback == NULL", __func__
));
967 CRYPTO_DRIVER_LOCK();
968 if ((crid
& (CRYPTOCAP_F_HARDWARE
| CRYPTOCAP_F_SOFTWARE
)) == 0) {
969 cap
= crypto_checkdriver(crid
);
972 * Driver present, it must support the necessary
973 * algorithm and, if s/w drivers are excluded,
974 * it must be registered as hardware-backed.
976 if (!kdriver_suitable(cap
, krp
) ||
977 (!crypto_devallowsoft
&&
978 (cap
->cc_flags
& CRYPTOCAP_F_HARDWARE
) == 0))
983 * No requested driver; select based on crid flags.
985 if (!crypto_devallowsoft
) /* NB: disallow s/w drivers */
986 crid
&= ~CRYPTOCAP_F_SOFTWARE
;
987 cap
= crypto_select_kdriver(krp
, crid
);
989 if (cap
!= NULL
&& !cap
->cc_kqblocked
) {
990 krp
->krp_hid
= cap
- crypto_drivers
;
991 cap
->cc_koperations
++;
992 CRYPTO_DRIVER_UNLOCK();
993 error
= CRYPTODEV_KPROCESS(cap
->cc_dev
, krp
, 0);
994 CRYPTO_DRIVER_LOCK();
995 if (error
== ERESTART
) {
996 cap
->cc_koperations
--;
997 CRYPTO_DRIVER_UNLOCK();
1002 * NB: cap is !NULL if device is blocked; in
1003 * that case return ERESTART so the operation
1004 * is resubmitted if possible.
1006 error
= (cap
== NULL
) ? ENODEV
: ERESTART
;
1008 CRYPTO_DRIVER_UNLOCK();
1011 krp
->krp_status
= error
;
1017 #ifdef CRYPTO_TIMING
1019 crypto_tstat(struct cryptotstat
*ts
, struct timespec
*tv
)
1021 struct timespec now
, t
;
1024 t
.tv_sec
= now
.tv_sec
- tv
->tv_sec
;
1025 t
.tv_nsec
= now
.tv_nsec
- tv
->tv_nsec
;
1026 if (t
.tv_nsec
< 0) {
1028 t
.tv_nsec
+= 1000000000;
1030 timespecadd(&ts
->acc
, &t
);
1031 if (timespeccmp(&t
, &ts
->min
, <))
1033 if (timespeccmp(&t
, &ts
->max
, >))
1042 * Dispatch a crypto request to the appropriate crypto devices.
1045 crypto_invoke(struct cryptocap
*cap
, struct cryptop
*crp
, int hint
)
1048 KASSERT(crp
!= NULL
, ("%s: crp == NULL", __func__
));
1049 KASSERT(crp
->crp_callback
!= NULL
,
1050 ("%s: crp->crp_callback == NULL", __func__
));
1051 KASSERT(crp
->crp_desc
!= NULL
, ("%s: crp->crp_desc == NULL", __func__
));
1053 #ifdef CRYPTO_TIMING
1055 crypto_tstat(&cryptostats
.cs_invoke
, &crp
->crp_tstamp
);
1057 if (cap
->cc_flags
& CRYPTOCAP_F_CLEANUP
) {
1058 struct cryptodesc
*crd
;
1062 * Driver has unregistered; migrate the session and return
1063 * an error to the caller so they'll resubmit the op.
1065 * XXX: What if there are more already queued requests for this
1068 crypto_freesession(crp
->crp_sid
);
1070 for (crd
= crp
->crp_desc
; crd
->crd_next
; crd
= crd
->crd_next
)
1071 crd
->CRD_INI
.cri_next
= &(crd
->crd_next
->CRD_INI
);
1073 /* XXX propagate flags from initial session? */
1074 if (crypto_newsession(&nid
, &(crp
->crp_desc
->CRD_INI
),
1075 CRYPTOCAP_F_HARDWARE
| CRYPTOCAP_F_SOFTWARE
) == 0)
1078 crp
->crp_etype
= EAGAIN
;
1083 * Invoke the driver to process the request.
1085 return CRYPTODEV_PROCESS(cap
->cc_dev
, crp
, hint
);
1090 * Release a set of crypto descriptors.
1093 crypto_freereq(struct cryptop
*crp
)
1095 struct cryptodesc
*crd
;
1097 crypto_tdinfo_t tdinfo
;
1098 struct cryptop
*crp2
;
1106 for (n
= 0; n
< ncpus
; ++n
) {
1107 tdinfo
= &tdinfo_array
[n
];
1109 CRYPTO_Q_LOCK(tdinfo
);
1110 TAILQ_FOREACH(crp2
, &tdinfo
->crp_q
, crp_next
) {
1111 KASSERT(crp2
!= crp
,
1112 ("Freeing cryptop from the crypto queue (%p).",
1115 CRYPTO_Q_UNLOCK(tdinfo
);
1118 TAILQ_FOREACH(crp2
, &crp_ret_q
, crp_next
) {
1119 KASSERT(crp2
!= crp
,
1120 ("Freeing cryptop from the return queue (%p).",
1123 CRYPTO_RETQ_UNLOCK();
1126 while ((crd
= crp
->crp_desc
) != NULL
) {
1127 crp
->crp_desc
= crd
->crd_next
;
1128 objcache_put(cryptodesc_oc
, crd
);
1130 objcache_put(cryptop_oc
, crp
);
1134 * Acquire a set of crypto descriptors.
1137 crypto_getreq(int num
)
1139 struct cryptodesc
*crd
;
1140 struct cryptop
*crp
;
1142 crp
= objcache_get(cryptop_oc
, M_WAITOK
);
1144 bzero(crp
, sizeof (*crp
));
1146 crd
= objcache_get(cryptodesc_oc
, M_WAITOK
);
1148 crypto_freereq(crp
);
1151 bzero(crd
, sizeof (*crd
));
1153 crd
->crd_next
= crp
->crp_desc
;
1154 crp
->crp_desc
= crd
;
1161 * Invoke the callback on behalf of the driver.
1164 crypto_done(struct cryptop
*crp
)
1166 KASSERT((crp
->crp_flags
& CRYPTO_F_DONE
) == 0,
1167 ("crypto_done: op already done, flags 0x%x", crp
->crp_flags
));
1168 crp
->crp_flags
|= CRYPTO_F_DONE
;
1169 if (crp
->crp_etype
!= 0)
1170 cryptostats
.cs_errs
++;
1171 #ifdef CRYPTO_TIMING
1173 crypto_tstat(&cryptostats
.cs_done
, &crp
->crp_tstamp
);
1176 * CBIMM means unconditionally do the callback immediately;
1177 * CBIFSYNC means do the callback immediately only if the
1178 * operation was done synchronously. Both are used to avoid
1179 * doing extraneous context switches; the latter is mostly
1180 * used with the software crypto driver.
1182 if ((crp
->crp_flags
& CRYPTO_F_CBIMM
) ||
1183 ((crp
->crp_flags
& CRYPTO_F_CBIFSYNC
) &&
1184 (CRYPTO_SESID2CAPS(crp
->crp_sid
) & CRYPTOCAP_F_SYNC
))) {
1186 * Do the callback directly. This is ok when the
1187 * callback routine does very little (e.g. the
1188 * /dev/crypto callback method just does a wakeup).
1190 #ifdef CRYPTO_TIMING
1191 if (crypto_timing
) {
1193 * NB: We must copy the timestamp before
1194 * doing the callback as the cryptop is
1195 * likely to be reclaimed.
1197 struct timespec t
= crp
->crp_tstamp
;
1198 crypto_tstat(&cryptostats
.cs_cb
, &t
);
1199 crp
->crp_callback(crp
);
1200 crypto_tstat(&cryptostats
.cs_finis
, &t
);
1203 crp
->crp_callback(crp
);
1206 * Normal case; queue the callback for the thread.
1209 if (CRYPTO_RETQ_EMPTY())
1210 wakeup_one(&crp_ret_q
); /* shared wait channel */
1211 TAILQ_INSERT_TAIL(&crp_ret_q
, crp
, crp_next
);
1212 CRYPTO_RETQ_UNLOCK();
1217 * Invoke the callback on behalf of the driver.
1220 crypto_kdone(struct cryptkop
*krp
)
1222 struct cryptocap
*cap
;
1224 if (krp
->krp_status
!= 0)
1225 cryptostats
.cs_kerrs
++;
1226 CRYPTO_DRIVER_LOCK();
1227 /* XXX: What if driver is loaded in the meantime? */
1228 if (krp
->krp_hid
< crypto_drivers_num
) {
1229 cap
= &crypto_drivers
[krp
->krp_hid
];
1230 cap
->cc_koperations
--;
1231 KASSERT(cap
->cc_koperations
>= 0, ("cc_koperations < 0"));
1232 if (cap
->cc_flags
& CRYPTOCAP_F_CLEANUP
)
1235 CRYPTO_DRIVER_UNLOCK();
1237 if (CRYPTO_RETQ_EMPTY())
1238 wakeup_one(&crp_ret_q
); /* shared wait channel */
1239 TAILQ_INSERT_TAIL(&crp_ret_kq
, krp
, krp_next
);
1240 CRYPTO_RETQ_UNLOCK();
1244 crypto_getfeat(int *featp
)
1246 int hid
, kalg
, feat
= 0;
1248 CRYPTO_DRIVER_LOCK();
1249 for (hid
= 0; hid
< crypto_drivers_num
; hid
++) {
1250 const struct cryptocap
*cap
= &crypto_drivers
[hid
];
1252 if ((cap
->cc_flags
& CRYPTOCAP_F_SOFTWARE
) &&
1253 !crypto_devallowsoft
) {
1256 for (kalg
= 0; kalg
<= CRK_ALGORITHM_MAX
; kalg
++)
1257 if (cap
->cc_kalg
[kalg
] & CRYPTO_ALG_FLAG_SUPPORTED
)
1260 CRYPTO_DRIVER_UNLOCK();
1266 * Terminate a thread at module unload. The process that
1267 * initiated this is waiting for us to signal that we're gone;
1268 * wake it up and exit. We use the driver table lock to insure
1269 * we don't do the wakeup before they're waiting. There is no
1270 * race here because the waiter sleeps on the proc lock for the
1271 * thread so it gets notified at the right time because of an
1272 * extra wakeup that's done in exit1().
1275 crypto_finis(void *chan
)
1277 CRYPTO_DRIVER_LOCK();
1279 CRYPTO_DRIVER_UNLOCK();
1284 * Crypto thread, dispatches crypto requests.
1289 crypto_proc(void *arg
)
1291 crypto_tdinfo_t tdinfo
= arg
;
1292 struct cryptop
*crp
, *submit
;
1293 struct cryptkop
*krp
;
1294 struct cryptocap
*cap
;
1298 CRYPTO_Q_LOCK(tdinfo
);
1300 curthread
->td_type
= TD_TYPE_CRYPTO
;
1304 * Find the first element in the queue that can be
1305 * processed and look-ahead to see if multiple ops
1306 * are ready for the same driver.
1310 TAILQ_FOREACH(crp
, &tdinfo
->crp_q
, crp_next
) {
1311 hid
= CRYPTO_SESID2HID(crp
->crp_sid
);
1312 cap
= crypto_checkdriver(hid
);
1314 * Driver cannot disappeared when there is an active
1317 KASSERT(cap
!= NULL
, ("%s:%u Driver disappeared.",
1318 __func__
, __LINE__
));
1319 if (cap
== NULL
|| cap
->cc_dev
== NULL
) {
1320 /* Op needs to be migrated, process it. */
1325 if (!cap
->cc_qblocked
) {
1326 if (submit
!= NULL
) {
1328 * We stop on finding another op,
1329 * regardless whether its for the same
1330 * driver or not. We could keep
1331 * searching the queue but it might be
1332 * better to just use a per-driver
1335 if (CRYPTO_SESID2HID(submit
->crp_sid
) == hid
)
1336 hint
= CRYPTO_HINT_MORE
;
1340 if ((submit
->crp_flags
& CRYPTO_F_BATCH
) == 0)
1342 /* keep scanning for more are q'd */
1346 if (submit
!= NULL
) {
1347 TAILQ_REMOVE(&tdinfo
->crp_q
, submit
, crp_next
);
1348 hid
= CRYPTO_SESID2HID(submit
->crp_sid
);
1349 cap
= crypto_checkdriver(hid
);
1350 KASSERT(cap
!= NULL
, ("%s:%u Driver disappeared.",
1351 __func__
, __LINE__
));
1353 CRYPTO_Q_UNLOCK(tdinfo
);
1354 result
= crypto_invoke(cap
, submit
, hint
);
1355 CRYPTO_Q_LOCK(tdinfo
);
1357 if (result
== ERESTART
) {
1359 * The driver ran out of resources, mark the
1360 * driver ``blocked'' for cryptop's and put
1361 * the request back in the queue. It would
1362 * best to put the request back where we got
1363 * it but that's hard so for now we put it
1364 * at the front. This should be ok; putting
1365 * it at the end does not work.
1367 /* XXX validate sid again? */
1368 crypto_drivers
[CRYPTO_SESID2HID(submit
->crp_sid
)].cc_qblocked
= 1;
1369 TAILQ_INSERT_HEAD(&tdinfo
->crp_q
,
1371 cryptostats
.cs_blocks
++;
1375 /* As above, but for key ops */
1376 TAILQ_FOREACH(krp
, &tdinfo
->crp_kq
, krp_next
) {
1377 cap
= crypto_checkdriver(krp
->krp_hid
);
1378 if (cap
== NULL
|| cap
->cc_dev
== NULL
) {
1380 * Operation needs to be migrated, invalidate
1381 * the assigned device so it will reselect a
1382 * new one below. Propagate the original
1383 * crid selection flags if supplied.
1385 krp
->krp_hid
= krp
->krp_crid
&
1386 (CRYPTOCAP_F_SOFTWARE
|CRYPTOCAP_F_HARDWARE
);
1387 if (krp
->krp_hid
== 0)
1389 CRYPTOCAP_F_SOFTWARE
|CRYPTOCAP_F_HARDWARE
;
1392 if (!cap
->cc_kqblocked
)
1396 TAILQ_REMOVE(&tdinfo
->crp_kq
, krp
, krp_next
);
1398 CRYPTO_Q_UNLOCK(tdinfo
);
1399 result
= crypto_kinvoke(krp
, krp
->krp_hid
);
1400 CRYPTO_Q_LOCK(tdinfo
);
1402 if (result
== ERESTART
) {
1404 * The driver ran out of resources, mark the
1405 * driver ``blocked'' for cryptkop's and put
1406 * the request back in the queue. It would
1407 * best to put the request back where we got
1408 * it but that's hard so for now we put it
1409 * at the front. This should be ok; putting
1410 * it at the end does not work.
1412 /* XXX validate sid again? */
1413 crypto_drivers
[krp
->krp_hid
].cc_kqblocked
= 1;
1414 TAILQ_INSERT_HEAD(&tdinfo
->crp_kq
,
1416 cryptostats
.cs_kblocks
++;
1420 if (submit
== NULL
&& krp
== NULL
) {
1422 * Nothing more to be processed. Sleep until we're
1423 * woken because there are more ops to process.
1424 * This happens either by submission or by a driver
1425 * becoming unblocked and notifying us through
1426 * crypto_unblock. Note that when we wakeup we
1427 * start processing each queue again from the
1428 * front. It's not clear that it's important to
1429 * preserve this ordering since ops may finish
1430 * out of order if dispatched to different devices
1431 * and some become blocked while others do not.
1433 tdinfo
->crp_sleep
= 1;
1434 lksleep (&tdinfo
->crp_q
, &tdinfo
->crp_lock
,
1435 0, "crypto_wait", 0);
1436 tdinfo
->crp_sleep
= 0;
1437 if (tdinfo
->crp_td
== NULL
)
1439 cryptostats
.cs_intrs
++;
1442 CRYPTO_Q_UNLOCK(tdinfo
);
1444 crypto_finis(&tdinfo
->crp_q
);
1448 * Crypto returns thread, does callbacks for processed crypto requests.
1449 * Callbacks are done here, rather than in the crypto drivers, because
1450 * callbacks typically are expensive and would slow interrupt handling.
1455 crypto_ret_proc(void *dummy __unused
)
1457 struct cryptop
*crpt
;
1458 struct cryptkop
*krpt
;
1462 /* Harvest return q's for completed ops */
1463 crpt
= TAILQ_FIRST(&crp_ret_q
);
1465 TAILQ_REMOVE(&crp_ret_q
, crpt
, crp_next
);
1467 krpt
= TAILQ_FIRST(&crp_ret_kq
);
1469 TAILQ_REMOVE(&crp_ret_kq
, krpt
, krp_next
);
1471 if (crpt
!= NULL
|| krpt
!= NULL
) {
1472 CRYPTO_RETQ_UNLOCK();
1474 * Run callbacks unlocked.
1477 #ifdef CRYPTO_TIMING
1478 if (crypto_timing
) {
1480 * NB: We must copy the timestamp before
1481 * doing the callback as the cryptop is
1482 * likely to be reclaimed.
1484 struct timespec t
= crpt
->crp_tstamp
;
1485 crypto_tstat(&cryptostats
.cs_cb
, &t
);
1486 crpt
->crp_callback(crpt
);
1487 crypto_tstat(&cryptostats
.cs_finis
, &t
);
1490 crpt
->crp_callback(crpt
);
1493 krpt
->krp_callback(krpt
);
1497 * Nothing more to be processed. Sleep until we're
1498 * woken because there are more returns to process.
1500 lksleep(&crp_ret_q
, &crypto_ret_q_lock
,
1501 0, "crypto_ret_wait", 0);
1502 if (cryptoretthread
== NULL
)
1504 cryptostats
.cs_rets
++;
1507 CRYPTO_RETQ_UNLOCK();
1509 crypto_finis(&crp_ret_q
);
1514 db_show_drivers(void)
1518 db_printf("%12s %4s %4s %8s %2s %2s\n"
1526 for (hid
= 0; hid
< crypto_drivers_num
; hid
++) {
1527 const struct cryptocap
*cap
= &crypto_drivers
[hid
];
1528 if (cap
->cc_dev
== NULL
)
1530 db_printf("%-12s %4u %4u %08x %2u %2u\n"
1531 , device_get_nameunit(cap
->cc_dev
)
1533 , cap
->cc_koperations
1541 DB_SHOW_COMMAND(crypto
, db_show_crypto
)
1543 crypto_tdinfo_t tdinfo
;
1544 struct cryptop
*crp
;
1550 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1551 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1552 "Desc", "Callback");
1554 for (n
= 0; n
< ncpus
; ++n
) {
1555 tdinfo
= &tdinfo_array
[n
];
1557 TAILQ_FOREACH(crp
, &tdinfo
->crp_q
, crp_next
) {
1558 db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
1559 , (int) CRYPTO_SESID2HID(crp
->crp_sid
)
1560 , (int) CRYPTO_SESID2CAPS(crp
->crp_sid
)
1561 , crp
->crp_ilen
, crp
->crp_olen
1569 if (!TAILQ_EMPTY(&crp_ret_q
)) {
1570 db_printf("\n%4s %4s %4s %8s\n",
1571 "HID", "Etype", "Flags", "Callback");
1572 TAILQ_FOREACH(crp
, &crp_ret_q
, crp_next
) {
1573 db_printf("%4u %4u %04x %8p\n"
1574 , (int) CRYPTO_SESID2HID(crp
->crp_sid
)
1583 DB_SHOW_COMMAND(kcrypto
, db_show_kcrypto
)
1585 crypto_tdinfo_t tdinfo
;
1586 struct cryptkop
*krp
;
1592 db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
1593 "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
1595 for (n
= 0; n
< ncpus
; ++n
) {
1596 tdinfo
= &tdinfo_array
[n
];
1598 TAILQ_FOREACH(krp
, &tdinfo
->crp_kq
, krp_next
) {
1599 db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
1602 , krp
->krp_iparams
, krp
->krp_oparams
1603 , krp
->krp_crid
, krp
->krp_hid
1608 if (!TAILQ_EMPTY(&crp_ret_q
)) {
1609 db_printf("%4s %5s %8s %4s %8s\n",
1610 "Op", "Status", "CRID", "HID", "Callback");
1611 TAILQ_FOREACH(krp
, &crp_ret_kq
, krp_next
) {
1612 db_printf("%4u %5u %08x %4u %8p\n"
1615 , krp
->krp_crid
, krp
->krp_hid
1623 int crypto_modevent(module_t mod
, int type
, void *unused
);
1626 * Initialization code, both for static and dynamic loading.
1627 * Note this is not invoked with the usual MODULE_DECLARE
1628 * mechanism but instead is listed as a dependency by the
1629 * cryptosoft driver. This guarantees proper ordering of
1630 * calls on module load/unload.
1633 crypto_modevent(module_t mod
, int type
, void *unused
)
1639 error
= crypto_init();
1640 if (error
== 0 && bootverbose
)
1641 kprintf("crypto: <crypto core>\n");
1644 /*XXX disallow if active sessions */
1651 MODULE_VERSION(crypto
, 1);
1652 MODULE_DEPEND(crypto
, zlib
, 1, 1, 1);