2 * Copyright (c) 1997, 1998 Kenneth D. Merry.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * $FreeBSD: src/lib/libdevstat/devstat.c,v 1.6 1999/08/28 00:04:26 peter Exp $
29 * $DragonFly: src/lib/libdevstat/devstat.c,v 1.5 2005/01/08 19:19:26 joerg Exp $
32 #include <sys/types.h>
33 #include <sys/sysctl.h>
34 #include <sys/errno.h>
44 char devstat_errbuf
[DEVSTAT_ERRBUF_SIZE
];
47 * Table to match descriptive strings with device types. These are in
48 * order from most common to least common to speed search time.
50 struct devstat_match_table match_table
[] = {
51 {"da", DEVSTAT_TYPE_DIRECT
, DEVSTAT_MATCH_TYPE
},
52 {"cd", DEVSTAT_TYPE_CDROM
, DEVSTAT_MATCH_TYPE
},
53 {"scsi", DEVSTAT_TYPE_IF_SCSI
, DEVSTAT_MATCH_IF
},
54 {"ide", DEVSTAT_TYPE_IF_IDE
, DEVSTAT_MATCH_IF
},
55 {"other", DEVSTAT_TYPE_IF_OTHER
, DEVSTAT_MATCH_IF
},
56 {"worm", DEVSTAT_TYPE_WORM
, DEVSTAT_MATCH_TYPE
},
57 {"sa", DEVSTAT_TYPE_SEQUENTIAL
,DEVSTAT_MATCH_TYPE
},
58 {"pass", DEVSTAT_TYPE_PASS
, DEVSTAT_MATCH_PASS
},
59 {"optical", DEVSTAT_TYPE_OPTICAL
, DEVSTAT_MATCH_TYPE
},
60 {"array", DEVSTAT_TYPE_STORARRAY
, DEVSTAT_MATCH_TYPE
},
61 {"changer", DEVSTAT_TYPE_CHANGER
, DEVSTAT_MATCH_TYPE
},
62 {"scanner", DEVSTAT_TYPE_SCANNER
, DEVSTAT_MATCH_TYPE
},
63 {"printer", DEVSTAT_TYPE_PRINTER
, DEVSTAT_MATCH_TYPE
},
64 {"floppy", DEVSTAT_TYPE_FLOPPY
, DEVSTAT_MATCH_TYPE
},
65 {"proc", DEVSTAT_TYPE_PROCESSOR
, DEVSTAT_MATCH_TYPE
},
66 {"comm", DEVSTAT_TYPE_COMM
, DEVSTAT_MATCH_TYPE
},
67 {"enclosure", DEVSTAT_TYPE_ENCLOSURE
, DEVSTAT_MATCH_TYPE
},
72 * Local function declarations.
74 static int compare_select(const void *arg1
, const void *arg2
);
81 const char *func_name
= "getnumdevs";
83 numdevsize
= sizeof(int);
86 * Find out how many devices we have in the system.
88 if (sysctlbyname("kern.devstat.numdevs", &numdevs
,
89 &numdevsize
, NULL
, 0) == -1) {
90 sprintf(devstat_errbuf
, "%s: error getting number of devices\n"
91 "%s: %s", func_name
, func_name
, strerror(errno
));
98 * This is an easy way to get the generation number, but the generation is
99 * supplied in a more atmoic manner by the kern.devstat.all sysctl.
100 * Because this generation sysctl is separate from the statistics sysctl,
101 * the device list and the generation could change between the time that
102 * this function is called and the device list is retreived.
109 const char *func_name
= "getgeneration";
111 gensize
= sizeof(long);
114 * Get the current generation number.
116 if (sysctlbyname("kern.devstat.generation", &generation
,
117 &gensize
, NULL
, 0) == -1) {
118 sprintf(devstat_errbuf
,"%s: error getting devstat generation\n"
119 "%s: %s", func_name
, func_name
, strerror(errno
));
126 * Get the current devstat version. The return value of this function
127 * should be compared with DEVSTAT_VERSION, which is defined in
128 * sys/devicestat.h. This will enable userland programs to determine
129 * whether they are out of sync with the kernel.
136 const char *func_name
= "getversion";
138 versize
= sizeof(int);
141 * Get the current devstat version.
143 if (sysctlbyname("kern.devstat.version", &version
, &versize
,
145 sprintf(devstat_errbuf
, "%s: error getting devstat version\n"
146 "%s: %s", func_name
, func_name
, strerror(errno
));
153 * Check the devstat version we know about against the devstat version the
154 * kernel knows about. If they don't match, print an error into the
155 * devstat error buffer, and return -1. If they match, return 0.
162 const char *func_name
= "checkversion";
165 version
= getversion();
167 if (version
!= DEVSTAT_VERSION
) {
172 * This is really pretty silly, but basically the idea is
173 * that if getversion() returns an error (i.e. -1), then it
174 * has printed an error message in the buffer. Therefore,
175 * we need to add a \n to the end of that message before we
176 * print our own message in the buffer.
179 buflen
= strlen(devstat_errbuf
);
180 errlen
= snprintf(tmpstr
, sizeof(tmpstr
), "\n");
181 strncat(devstat_errbuf
, tmpstr
,
182 DEVSTAT_ERRBUF_SIZE
- buflen
- 1);
186 errlen
= snprintf(tmpstr
, sizeof(tmpstr
),
187 "%s: userland devstat version %d is not "
188 "the same as the kernel\n%s: devstat "
189 "version %d\n", func_name
, DEVSTAT_VERSION
,
193 strncat(devstat_errbuf
, tmpstr
,
194 DEVSTAT_ERRBUF_SIZE
- buflen
- 1);
197 strncpy(devstat_errbuf
, tmpstr
, DEVSTAT_ERRBUF_SIZE
);
198 devstat_errbuf
[DEVSTAT_ERRBUF_SIZE
- 1] = '\0';
201 if (version
< DEVSTAT_VERSION
)
202 snprintf(tmpstr
, sizeof(tmpstr
),
203 "%s: libdevstat newer than kernel\n",
206 snprintf(tmpstr
, sizeof(tmpstr
),
207 "%s: kernel newer than libdevstat\n",
210 strncat(devstat_errbuf
, tmpstr
,
211 DEVSTAT_ERRBUF_SIZE
- buflen
- 1);
220 * Get the current list of devices and statistics, and the current
225 * 0 -- device list is unchanged
226 * 1 -- device list has changed
229 getdevs(struct statinfo
*stats
)
236 struct devinfo
*dinfo
;
237 const char *func_name
= "getdevs";
239 dinfo
= stats
->dinfo
;
242 sprintf(devstat_errbuf
, "%s: stats->dinfo was NULL", func_name
);
246 oldnumdevs
= dinfo
->numdevs
;
247 oldgeneration
= dinfo
->generation
;
250 * If this is our first time through, mem_ptr will be null.
252 if (dinfo
->mem_ptr
== NULL
) {
254 * Get the number of devices. If it's negative, it's an
255 * error. Don't bother setting the error string, since
256 * getnumdevs() has already done that for us.
258 if ((dinfo
->numdevs
= getnumdevs()) < 0)
262 * The kern.devstat.all sysctl returns the current generation
263 * number, as well as all the devices. So we need four
266 dssize
=(dinfo
->numdevs
* sizeof(struct devstat
)) +sizeof(long);
267 dinfo
->mem_ptr
= (u_int8_t
*)malloc(dssize
);
269 dssize
=(dinfo
->numdevs
* sizeof(struct devstat
)) +sizeof(long);
271 /* Get the current time when we get the stats */
272 gettimeofday(&stats
->busy_time
, NULL
);
275 * Request all of the devices. We only really allow for one
276 * ENOMEM failure. It would, of course, be possible to just go in
277 * a loop and keep reallocing the device structure until we don't
278 * get ENOMEM back. I'm not sure it's worth it, though. If
279 * devices are being added to the system that quickly, maybe the
280 * user can just wait until all devices are added.
282 if ((error
= sysctlbyname("kern.devstat.all", dinfo
->mem_ptr
,
283 &dssize
, NULL
, 0)) == -1) {
285 * If we get ENOMEM back, that means that there are
286 * more devices now, so we need to allocate more
287 * space for the device array.
289 if (errno
== ENOMEM
) {
291 * No need to set the error string here, getnumdevs()
292 * will do that if it fails.
294 if ((dinfo
->numdevs
= getnumdevs()) < 0)
297 dssize
= (dinfo
->numdevs
* sizeof(struct devstat
)) +
299 dinfo
->mem_ptr
= (u_int8_t
*)realloc(dinfo
->mem_ptr
,
301 if ((error
= sysctlbyname("kern.devstat.all",
302 dinfo
->mem_ptr
, &dssize
, NULL
, 0)) == -1) {
303 sprintf(devstat_errbuf
,
304 "%s: error getting device stats\n"
305 "%s: %s", func_name
, func_name
,
310 sprintf(devstat_errbuf
,
311 "%s: error getting device stats\n"
312 "%s: %s", func_name
, func_name
,
319 * The sysctl spits out the generation as the first four bytes,
320 * then all of the device statistics structures.
322 dinfo
->generation
= *(long *)dinfo
->mem_ptr
;
325 * If the generation has changed, and if the current number of
326 * devices is not the same as the number of devices recorded in the
327 * devinfo structure, it is likely that the device list has shrunk.
328 * The reason that it is likely that the device list has shrunk in
329 * this case is that if the device list has grown, the sysctl above
330 * will return an ENOMEM error, and we will reset the number of
331 * devices and reallocate the device array. If the second sysctl
332 * fails, we will return an error and therefore never get to this
333 * point. If the device list has shrunk, the sysctl will not
334 * return an error since we have more space allocated than is
335 * necessary. So, in the shrinkage case, we catch it here and
336 * reallocate the array so that we don't use any more space than is
339 if (oldgeneration
!= dinfo
->generation
) {
340 if (getnumdevs() != dinfo
->numdevs
) {
341 if ((dinfo
->numdevs
= getnumdevs()) < 0)
343 dssize
= (dinfo
->numdevs
* sizeof(struct devstat
)) +
345 dinfo
->mem_ptr
= (u_int8_t
*)realloc(dinfo
->mem_ptr
,
351 dinfo
->devices
= (struct devstat
*)(dinfo
->mem_ptr
+ sizeof(long));
359 * Devices are selected/deselected based upon the following criteria:
360 * - devices specified by the user on the command line
361 * - devices matching any device type expressions given on the command line
362 * - devices with the highest I/O, if 'top' mode is enabled
363 * - the first n unselected devices in the device list, if maxshowdevs
364 * devices haven't already been selected and if the user has not
365 * specified any devices on the command line and if we're in "add" mode.
368 * - device selection list (dev_select)
369 * - current number of devices selected (num_selected)
370 * - total number of devices in the selection list (num_selections)
371 * - devstat generation as of the last time selectdevs() was called
372 * (select_generation)
373 * - current devstat generation (current_generation)
374 * - current list of devices and statistics (devices)
375 * - number of devices in the current device list (numdevs)
376 * - compiled version of the command line device type arguments (matches)
377 * - This is optional. If the number of devices is 0, this will be ignored.
378 * - The matching code pays attention to the current selection mode. So
379 * if you pass in a matching expression, it will be evaluated based
380 * upon the selection mode that is passed in. See below for details.
381 * - number of device type matching expressions (num_matches)
382 * - Set to 0 to disable the matching code.
383 * - list of devices specified on the command line by the user (dev_selections)
384 * - number of devices selected on the command line by the user
385 * (num_dev_selections)
386 * - Our selection mode. There are four different selection modes:
387 * - add mode. (DS_SELECT_ADD) Any devices matching devices explicitly
388 * selected by the user or devices matching a pattern given by the
389 * user will be selected in addition to devices that are already
390 * selected. Additional devices will be selected, up to maxshowdevs
392 * - only mode. (DS_SELECT_ONLY) Only devices matching devices
393 * explicitly given by the user or devices matching a pattern
394 * given by the user will be selected. No other devices will be
396 * - addonly mode. (DS_SELECT_ADDONLY) This is similar to add and
397 * only. Basically, this will not de-select any devices that are
398 * current selected, as only mode would, but it will also not
399 * gratuitously select up to maxshowdevs devices as add mode would.
400 * - remove mode. (DS_SELECT_REMOVE) Any devices matching devices
401 * explicitly selected by the user or devices matching a pattern
402 * given by the user will be de-selected.
403 * - maximum number of devices we can select (maxshowdevs)
404 * - flag indicating whether or not we're in 'top' mode (perf_select)
407 * - the device selection list may be modified and passed back out
408 * - the number of devices selected and the total number of items in the
409 * device selection list may be changed
410 * - the selection generation may be changed to match the current generation
414 * 0 -- selected devices are unchanged
415 * 1 -- selected devices changed
418 selectdevs(struct device_selection
**dev_select
, int *num_selected
,
419 int *num_selections
, long *select_generation
,
420 long current_generation
, struct devstat
*devices
, int numdevs
,
421 struct devstat_match
*matches
, int num_matches
,
422 char **dev_selections
, int num_dev_selections
,
423 devstat_select_mode select_mode
, int maxshowdevs
, int perf_select
)
426 int init_selections
= 0, init_selected_var
= 0;
427 struct device_selection
*old_dev_select
= NULL
;
428 int old_num_selections
= 0, old_num_selected
;
429 int selection_number
= 0;
430 int changed
= 0, found
= 0;
432 if ((dev_select
== NULL
) || (devices
== NULL
) || (numdevs
<= 0))
436 * We always want to make sure that we have as many dev_select
437 * entries as there are devices.
440 * In this case, we haven't selected devices before.
442 if (*dev_select
== NULL
) {
443 *dev_select
= (struct device_selection
*)malloc(numdevs
*
444 sizeof(struct device_selection
));
445 *select_generation
= current_generation
;
449 * In this case, we have selected devices before, but the device
450 * list has changed since we last selected devices, so we need to
451 * either enlarge or reduce the size of the device selection list.
453 } else if (*num_selections
!= numdevs
) {
454 *dev_select
= (struct device_selection
*)realloc(*dev_select
,
455 numdevs
* sizeof(struct device_selection
));
456 *select_generation
= current_generation
;
459 * In this case, we've selected devices before, and the selection
460 * list is the same size as it was the last time, but the device
463 } else if (*select_generation
< current_generation
) {
464 *select_generation
= current_generation
;
469 * If we're in "only" mode, we want to clear out the selected
470 * variable since we're going to select exactly what the user wants
473 if (select_mode
== DS_SELECT_ONLY
)
474 init_selected_var
= 1;
477 * In all cases, we want to back up the number of selected devices.
478 * It is a quick and accurate way to determine whether the selected
479 * devices have changed.
481 old_num_selected
= *num_selected
;
484 * We want to make a backup of the current selection list if
485 * the list of devices has changed, or if we're in performance
486 * selection mode. In both cases, we don't want to make a backup
487 * if we already know for sure that the list will be different.
488 * This is certainly the case if this is our first time through the
491 if (((init_selected_var
!= 0) || (init_selections
!= 0)
492 || (perf_select
!= 0)) && (changed
== 0)){
493 old_dev_select
= (struct device_selection
*)malloc(
494 *num_selections
* sizeof(struct device_selection
));
495 old_num_selections
= *num_selections
;
496 bcopy(*dev_select
, old_dev_select
,
497 sizeof(struct device_selection
) * *num_selections
);
500 if (init_selections
!= 0) {
501 bzero(*dev_select
, sizeof(struct device_selection
) * numdevs
);
503 for (i
= 0; i
< numdevs
; i
++) {
504 (*dev_select
)[i
].device_number
=
505 devices
[i
].device_number
;
506 strncpy((*dev_select
)[i
].device_name
,
507 devices
[i
].device_name
,
509 (*dev_select
)[i
].device_name
[DEVSTAT_NAME_LEN
- 1]='\0';
510 (*dev_select
)[i
].unit_number
= devices
[i
].unit_number
;
511 (*dev_select
)[i
].position
= i
;
513 *num_selections
= numdevs
;
514 } else if (init_selected_var
!= 0) {
515 for (i
= 0; i
< numdevs
; i
++)
516 (*dev_select
)[i
].selected
= 0;
519 /* we haven't gotten around to selecting anything yet.. */
520 if ((select_mode
== DS_SELECT_ONLY
) || (init_selections
!= 0)
521 || (init_selected_var
!= 0))
525 * Look through any devices the user specified on the command line
526 * and see if they match known devices. If so, select them.
528 for (i
= 0; (i
< *num_selections
) && (num_dev_selections
> 0); i
++) {
531 snprintf(tmpstr
, sizeof(tmpstr
), "%s%d",
532 (*dev_select
)[i
].device_name
,
533 (*dev_select
)[i
].unit_number
);
534 for (j
= 0; j
< num_dev_selections
; j
++) {
535 if (strcmp(tmpstr
, dev_selections
[j
]) == 0) {
537 * Here we do different things based on the
538 * mode we're in. If we're in add or
539 * addonly mode, we only select this device
540 * if it hasn't already been selected.
541 * Otherwise, we would be unnecessarily
542 * changing the selection order and
543 * incrementing the selection count. If
544 * we're in only mode, we unconditionally
545 * select this device, since in only mode
546 * any previous selections are erased and
547 * manually specified devices are the first
548 * ones to be selected. If we're in remove
549 * mode, we de-select the specified device and
550 * decrement the selection count.
552 switch(select_mode
) {
554 case DS_SELECT_ADDONLY
:
555 if ((*dev_select
)[i
].selected
)
559 (*dev_select
)[i
].selected
=
563 case DS_SELECT_REMOVE
:
564 (*dev_select
)[i
].selected
= 0;
567 * This isn't passed back out, we
568 * just use it to keep track of
569 * how many devices we've removed.
571 num_dev_selections
--;
580 * Go through the user's device type expressions and select devices
581 * accordingly. We only do this if the number of devices already
582 * selected is less than the maximum number we can show.
584 for (i
= 0; (i
< num_matches
) && (*num_selected
< maxshowdevs
); i
++) {
585 /* We should probably indicate some error here */
586 if ((matches
[i
].match_fields
== DEVSTAT_MATCH_NONE
)
587 || (matches
[i
].num_match_categories
<= 0))
590 for (j
= 0; j
< numdevs
; j
++) {
591 int num_match_categories
;
593 num_match_categories
= matches
[i
].num_match_categories
;
596 * Determine whether or not the current device
597 * matches the given matching expression. This if
598 * statement consists of three components:
599 * - the device type check
600 * - the device interface check
601 * - the passthrough check
602 * If a the matching test is successful, it
603 * decrements the number of matching categories,
604 * and if we've reached the last element that
605 * needed to be matched, the if statement succeeds.
608 if ((((matches
[i
].match_fields
& DEVSTAT_MATCH_TYPE
)!=0)
609 && ((devices
[j
].device_type
& DEVSTAT_TYPE_MASK
) ==
610 (matches
[i
].device_type
& DEVSTAT_TYPE_MASK
))
611 &&(((matches
[i
].match_fields
& DEVSTAT_MATCH_PASS
)!=0)
612 || (((matches
[i
].match_fields
&
613 DEVSTAT_MATCH_PASS
) == 0)
614 && ((devices
[j
].device_type
&
615 DEVSTAT_TYPE_PASS
) == 0)))
616 && (--num_match_categories
== 0))
617 || (((matches
[i
].match_fields
& DEVSTAT_MATCH_IF
) != 0)
618 && ((devices
[j
].device_type
& DEVSTAT_TYPE_IF_MASK
) ==
619 (matches
[i
].device_type
& DEVSTAT_TYPE_IF_MASK
))
620 &&(((matches
[i
].match_fields
& DEVSTAT_MATCH_PASS
)!=0)
621 || (((matches
[i
].match_fields
&
622 DEVSTAT_MATCH_PASS
) == 0)
623 && ((devices
[j
].device_type
&
624 DEVSTAT_TYPE_PASS
) == 0)))
625 && (--num_match_categories
== 0))
626 || (((matches
[i
].match_fields
& DEVSTAT_MATCH_PASS
)!=0)
627 && ((devices
[j
].device_type
& DEVSTAT_TYPE_PASS
) != 0)
628 && (--num_match_categories
== 0))) {
631 * This is probably a non-optimal solution
632 * to the problem that the devices in the
633 * device list will not be in the same
634 * order as the devices in the selection
637 for (k
= 0; k
< numdevs
; k
++) {
638 if ((*dev_select
)[k
].position
== j
) {
645 * There shouldn't be a case where a device
646 * in the device list is not in the
647 * selection list...but it could happen.
650 fprintf(stderr
, "selectdevs: couldn't"
651 " find %s%d in selection "
653 devices
[j
].device_name
,
654 devices
[j
].unit_number
);
659 * We do different things based upon the
660 * mode we're in. If we're in add or only
661 * mode, we go ahead and select this device
662 * if it hasn't already been selected. If
663 * it has already been selected, we leave
664 * it alone so we don't mess up the
665 * selection ordering. Manually specified
666 * devices have already been selected, and
667 * they have higher priority than pattern
668 * matched devices. If we're in remove
669 * mode, we de-select the given device and
670 * decrement the selected count.
672 switch(select_mode
) {
674 case DS_SELECT_ADDONLY
:
676 if ((*dev_select
)[k
].selected
!= 0)
678 (*dev_select
)[k
].selected
=
682 case DS_SELECT_REMOVE
:
683 (*dev_select
)[k
].selected
= 0;
692 * Here we implement "top" mode. Devices are sorted in the
693 * selection array based on two criteria: whether or not they are
694 * selected (not selection number, just the fact that they are
695 * selected!) and the number of bytes in the "bytes" field of the
696 * selection structure. The bytes field generally must be kept up
697 * by the user. In the future, it may be maintained by library
698 * functions, but for now the user has to do the work.
700 * At first glance, it may seem wrong that we don't go through and
701 * select every device in the case where the user hasn't specified
702 * any devices or patterns. In fact, though, it won't make any
703 * difference in the device sorting. In that particular case (i.e.
704 * when we're in "add" or "only" mode, and the user hasn't
705 * specified anything) the first time through no devices will be
706 * selected, so the only criterion used to sort them will be their
707 * performance. The second time through, and every time thereafter,
708 * all devices will be selected, so again selection won't matter.
710 if (perf_select
!= 0) {
712 /* Sort the device array by throughput */
713 qsort(*dev_select
, *num_selections
,
714 sizeof(struct device_selection
),
717 if (*num_selected
== 0) {
719 * Here we select every device in the array, if it
720 * isn't already selected. Because the 'selected'
721 * variable in the selection array entries contains
722 * the selection order, the devstats routine can show
723 * the devices that were selected first.
725 for (i
= 0; i
< *num_selections
; i
++) {
726 if ((*dev_select
)[i
].selected
== 0) {
727 (*dev_select
)[i
].selected
=
733 selection_number
= 0;
734 for (i
= 0; i
< *num_selections
; i
++) {
735 if ((*dev_select
)[i
].selected
!= 0) {
736 (*dev_select
)[i
].selected
=
744 * If we're in the "add" selection mode and if we haven't already
745 * selected maxshowdevs number of devices, go through the array and
746 * select any unselected devices. If we're in "only" mode, we
747 * obviously don't want to select anything other than what the user
748 * specifies. If we're in "remove" mode, it probably isn't a good
749 * idea to go through and select any more devices, since we might
750 * end up selecting something that the user wants removed. Through
751 * more complicated logic, we could actually figure this out, but
752 * that would probably require combining this loop with the various
753 * selections loops above.
755 if ((select_mode
== DS_SELECT_ADD
) && (*num_selected
< maxshowdevs
)) {
756 for (i
= 0; i
< *num_selections
; i
++)
757 if ((*dev_select
)[i
].selected
== 0) {
758 (*dev_select
)[i
].selected
= ++selection_number
;
764 * Look at the number of devices that have been selected. If it
765 * has changed, set the changed variable. Otherwise, if we've
766 * made a backup of the selection list, compare it to the current
767 * selection list to see if the selected devices have changed.
769 if ((changed
== 0) && (old_num_selected
!= *num_selected
))
771 else if ((changed
== 0) && (old_dev_select
!= NULL
)) {
773 * Now we go through the selection list and we look at
774 * it three different ways.
776 for (i
= 0; (i
< *num_selections
) && (changed
== 0) &&
777 (i
< old_num_selections
); i
++) {
779 * If the device at index i in both the new and old
780 * selection arrays has the same device number and
781 * selection status, it hasn't changed. We
782 * continue on to the next index.
784 if (((*dev_select
)[i
].device_number
==
785 old_dev_select
[i
].device_number
)
786 && ((*dev_select
)[i
].selected
==
787 old_dev_select
[i
].selected
))
791 * Now, if we're still going through the if
792 * statement, the above test wasn't true. So we
793 * check here to see if the device at index i in
794 * the current array is the same as the device at
795 * index i in the old array. If it is, that means
796 * that its selection number has changed. Set
797 * changed to 1 and exit the loop.
799 else if ((*dev_select
)[i
].device_number
==
800 old_dev_select
[i
].device_number
) {
805 * If we get here, then the device at index i in
806 * the current array isn't the same device as the
807 * device at index i in the old array.
813 * Search through the old selection array
814 * looking for a device with the same
815 * device number as the device at index i
816 * in the current array. If the selection
817 * status is the same, then we mark it as
818 * found. If the selection status isn't
819 * the same, we break out of the loop.
820 * Since found isn't set, changed will be
823 for (j
= 0; j
< old_num_selections
; j
++) {
824 if (((*dev_select
)[i
].device_number
==
825 old_dev_select
[j
].device_number
)
826 && ((*dev_select
)[i
].selected
==
827 old_dev_select
[j
].selected
)){
831 else if ((*dev_select
)[i
].device_number
832 == old_dev_select
[j
].device_number
)
840 if (old_dev_select
!= NULL
)
841 free(old_dev_select
);
847 * Comparison routine for qsort() above. Note that the comparison here is
848 * backwards -- generally, it should return a value to indicate whether
849 * arg1 is <, =, or > arg2. Instead, it returns the opposite. The reason
850 * it returns the opposite is so that the selection array will be sorted in
851 * order of decreasing performance. We sort on two parameters. The first
852 * sort key is whether or not one or the other of the devices in question
853 * has been selected. If one of them has, and the other one has not, the
854 * selected device is automatically more important than the unselected
855 * device. If neither device is selected, we judge the devices based upon
859 compare_select(const void *arg1
, const void *arg2
)
861 if ((((const struct device_selection
*)arg1
)->selected
)
862 && (((const struct device_selection
*)arg2
)->selected
== 0))
864 else if ((((const struct device_selection
*)arg1
)->selected
== 0)
865 && (((const struct device_selection
*)arg2
)->selected
))
867 else if (((const struct device_selection
*)arg2
)->bytes
<
868 ((const struct device_selection
*)arg1
)->bytes
)
870 else if (((const struct device_selection
*)arg2
)->bytes
>
871 ((const struct device_selection
*)arg1
)->bytes
)
878 * Take a string with the general format "arg1,arg2,arg3", and build a
879 * device matching expression from it.
882 buildmatch(const char *match_str
, struct devstat_match
**matches
,
887 char *matchbuf_orig
; /* strdup of match_str */
888 char *matchbuf
; /* allow strsep to clobber */
893 /* We can't do much without a string to parse */
894 if (match_str
== NULL
) {
895 sprintf(devstat_errbuf
, "%s: no match expression", __func__
);
900 * Break the (comma delimited) input string out into separate strings.
901 * strsep is destructive, so copy the string first.
903 matchbuf
= matchbuf_orig
= strdup(match_str
);
904 if (matchbuf
== NULL
) {
905 sprintf(devstat_errbuf
, "%s: out of memory", __func__
);
908 for (tempstr
= tstr
, num_args
= 0;
909 (*tempstr
= strsep(&matchbuf
, ",")) != NULL
&& (num_args
< 5);
911 if (**tempstr
!= '\0')
912 if (++tempstr
>= &tstr
[5])
915 /* The user gave us too many type arguments */
917 sprintf(devstat_errbuf
, "%s: too many type arguments",
923 * Since you can't realloc a pointer that hasn't been malloced
924 * first, we malloc first and then realloc.
926 if (*num_matches
== 0)
927 *matches
= (struct devstat_match
*)malloc(
928 sizeof(struct devstat_match
));
930 *matches
= (struct devstat_match
*)realloc(*matches
,
931 sizeof(struct devstat_match
) * (*num_matches
+ 1));
933 /* Make sure the current entry is clear */
934 bzero(&matches
[0][*num_matches
], sizeof(struct devstat_match
));
937 * Step through the arguments the user gave us and build a device
938 * matching expression from them.
940 for (i
= 0; i
< num_args
; i
++) {
941 char *tempstr2
, *tempstr3
;
944 * Get rid of leading white space.
947 while (isspace(*tempstr2
) && (*tempstr2
!= '\0'))
951 * Get rid of trailing white space.
953 tempstr3
= &tempstr2
[strlen(tempstr2
) - 1];
955 while ((*tempstr3
!= '\0') && (tempstr3
> tempstr2
)
956 && (isspace(*tempstr3
))) {
962 * Go through the match table comparing the user's
963 * arguments to known device types, interfaces, etc.
965 for (j
= 0; match_table
[j
].match_str
!= NULL
; j
++) {
967 * We do case-insensitive matching, in case someone
968 * wants to enter "SCSI" instead of "scsi" or
969 * something like that. Only compare as many
970 * characters as are in the string in the match
971 * table. This should help if someone tries to use
972 * a super-long match expression.
974 if (strncasecmp(tempstr2
, match_table
[j
].match_str
,
975 strlen(match_table
[j
].match_str
)) == 0) {
977 * Make sure the user hasn't specified two
978 * items of the same type, like "da" and
979 * "cd". One device cannot be both.
981 if (((*matches
)[*num_matches
].match_fields
&
982 match_table
[j
].match_field
) != 0) {
983 sprintf(devstat_errbuf
,
984 "%s: cannot have more than "
985 "one match item in a single "
986 "category", __func__
);
990 * If we've gotten this far, we have a
991 * winner. Set the appropriate fields in
994 (*matches
)[*num_matches
].match_fields
|=
995 match_table
[j
].match_field
;
996 (*matches
)[*num_matches
].device_type
|=
998 (*matches
)[*num_matches
].num_match_categories
++;
1003 * We should have found a match in the above for loop. If
1004 * not, that means the user entered an invalid device type
1007 if ((*matches
)[*num_matches
].num_match_categories
!= (i
+ 1)) {
1008 snprintf(devstat_errbuf
, sizeof(devstat_errbuf
),
1009 "%s: unknown match item \"%s\"", __func__
,
1018 free(matchbuf_orig
);
1023 * Compute a number of device statistics. Only one field is mandatory, and
1024 * that is "current". Everything else is optional. The caller passes in
1025 * pointers to variables to hold the various statistics he desires. If he
1026 * doesn't want a particular staistic, he should pass in a NULL pointer.
1032 compute_stats(struct devstat
*current
, struct devstat
*previous
,
1033 long double etime
, u_int64_t
*total_bytes
,
1034 u_int64_t
*total_transfers
, u_int64_t
*total_blocks
,
1035 long double *kb_per_transfer
, long double *transfers_per_second
,
1036 long double *mb_per_second
, long double *blocks_per_second
,
1037 long double *ms_per_transaction
)
1039 u_int64_t totalbytes
, totaltransfers
, totalblocks
;
1042 * current is the only mandatory field.
1044 if (current
== NULL
) {
1045 sprintf(devstat_errbuf
, "%s: current stats structure was NULL",
1050 totalbytes
= (current
->bytes_written
+ current
->bytes_read
) -
1051 ((previous
) ? (previous
->bytes_written
+
1052 previous
->bytes_read
) : 0);
1055 *total_bytes
= totalbytes
;
1057 totaltransfers
= (current
->num_reads
+
1058 current
->num_writes
+
1059 current
->num_other
) -
1061 (previous
->num_reads
+
1062 previous
->num_writes
+
1063 previous
->num_other
) : 0);
1064 if (total_transfers
)
1065 *total_transfers
= totaltransfers
;
1067 if (transfers_per_second
) {
1069 *transfers_per_second
= totaltransfers
;
1070 *transfers_per_second
/= etime
;
1072 *transfers_per_second
= 0.0;
1075 if (kb_per_transfer
) {
1076 *kb_per_transfer
= totalbytes
;
1077 *kb_per_transfer
/= 1024;
1078 if (totaltransfers
> 0)
1079 *kb_per_transfer
/= totaltransfers
;
1081 *kb_per_transfer
= 0.0;
1084 if (mb_per_second
) {
1085 *mb_per_second
= totalbytes
;
1086 *mb_per_second
/= 1024 * 1024;
1088 *mb_per_second
/= etime
;
1090 *mb_per_second
= 0.0;
1093 totalblocks
= totalbytes
;
1094 if (current
->block_size
> 0)
1095 totalblocks
/= current
->block_size
;
1100 *total_blocks
= totalblocks
;
1102 if (blocks_per_second
) {
1103 *blocks_per_second
= totalblocks
;
1105 *blocks_per_second
/= etime
;
1107 *blocks_per_second
= 0.0;
1110 if (ms_per_transaction
) {
1111 if (totaltransfers
> 0) {
1112 *ms_per_transaction
= etime
;
1113 *ms_per_transaction
/= totaltransfers
;
1114 *ms_per_transaction
*= 1000;
1116 *ms_per_transaction
= 0.0;
1123 compute_etime(struct timeval cur_time
, struct timeval prev_time
)
1125 struct timeval busy_time
;
1126 u_int64_t busy_usec
;
1129 timersub(&cur_time
, &prev_time
, &busy_time
);
1131 busy_usec
= busy_time
.tv_sec
;
1132 busy_usec
*= 1000000;
1133 busy_usec
+= busy_time
.tv_usec
;