4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
8 * Copyright (c) 1994 David Greenman
12 * This code is derived from software contributed to Berkeley by
13 * The Mach Operating System project at Carnegie-Mellon University.
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 * must display the following acknowledgement:
25 * This product includes software developed by the University of
26 * California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
46 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47 * All rights reserved.
49 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51 * Permission to use, copy, modify and distribute this software and
52 * its documentation is hereby granted, provided that both the copyright
53 * notice and this permission notice appear in all copies of the
54 * software, derivative works or modified versions, and any portions
55 * thereof, and that both notices appear in supporting documentation.
57 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61 * Carnegie Mellon requests users of this software to return to
63 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
64 * School of Computer Science
65 * Carnegie Mellon University
66 * Pittsburgh PA 15213-3890
68 * any improvements or extensions that they make and grant Carnegie the
69 * rights to redistribute these changes.
71 * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
72 * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
76 * Page fault handling module.
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
83 #include <sys/vnode.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vkernel.h>
88 #include <sys/sysctl.h>
90 #include <cpu/lwbuf.h>
93 #include <vm/vm_param.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vnode_pager.h>
102 #include <vm/vm_extern.h>
104 #include <sys/thread2.h>
105 #include <vm/vm_page2.h>
113 vm_object_t first_object
;
114 vm_prot_t first_prot
;
116 vm_map_entry_t entry
;
117 int lookup_still_valid
;
126 static int vm_fast_fault
= 1;
127 SYSCTL_INT(_vm
, OID_AUTO
, fast_fault
, CTLFLAG_RW
, &vm_fast_fault
, 0,
128 "Burst fault zero-fill regions");
129 static int debug_cluster
= 0;
130 SYSCTL_INT(_vm
, OID_AUTO
, debug_cluster
, CTLFLAG_RW
, &debug_cluster
, 0, "");
132 static int vm_fault_object(struct faultstate
*, vm_pindex_t
, vm_prot_t
);
133 static int vm_fault_vpagetable(struct faultstate
*, vm_pindex_t
*, vpte_t
, int);
135 static int vm_fault_additional_pages (vm_page_t
, int, int, vm_page_t
*, int *);
137 static int vm_fault_ratelimit(struct vmspace
*);
138 static void vm_set_nosync(vm_page_t m
, vm_map_entry_t entry
);
139 static void vm_prefault(pmap_t pmap
, vm_offset_t addra
, vm_map_entry_t entry
,
143 * The caller must hold vm_token.
146 release_page(struct faultstate
*fs
)
148 vm_page_deactivate(fs
->m
);
149 vm_page_wakeup(fs
->m
);
154 * The caller must hold vm_token.
157 unlock_map(struct faultstate
*fs
)
159 if (fs
->lookup_still_valid
&& fs
->map
) {
160 vm_map_lookup_done(fs
->map
, fs
->entry
, 0);
161 fs
->lookup_still_valid
= FALSE
;
166 * Clean up after a successful call to vm_fault_object() so another call
167 * to vm_fault_object() can be made.
169 * The caller must hold vm_token.
172 _cleanup_successful_fault(struct faultstate
*fs
, int relock
)
174 if (fs
->object
!= fs
->first_object
) {
175 vm_page_free(fs
->first_m
);
176 vm_object_pip_wakeup(fs
->object
);
179 fs
->object
= fs
->first_object
;
180 if (relock
&& fs
->lookup_still_valid
== FALSE
) {
182 vm_map_lock_read(fs
->map
);
183 fs
->lookup_still_valid
= TRUE
;
188 * The caller must hold vm_token.
191 _unlock_things(struct faultstate
*fs
, int dealloc
)
193 vm_object_pip_wakeup(fs
->first_object
);
194 _cleanup_successful_fault(fs
, 0);
196 vm_object_deallocate(fs
->first_object
);
197 fs
->first_object
= NULL
;
200 if (fs
->vp
!= NULL
) {
206 #define unlock_things(fs) _unlock_things(fs, 0)
207 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
208 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
213 * Determine if the pager for the current object *might* contain the page.
215 * We only need to try the pager if this is not a default object (default
216 * objects are zero-fill and have no real pager), and if we are not taking
217 * a wiring fault or if the FS entry is wired.
219 #define TRYPAGER(fs) \
220 (fs->object->type != OBJT_DEFAULT && \
221 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
226 * Handle a page fault occuring at the given address, requiring the given
227 * permissions, in the map specified. If successful, the page is inserted
228 * into the associated physical map.
230 * NOTE: The given address should be truncated to the proper page address.
232 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
233 * a standard error specifying why the fault is fatal is returned.
235 * The map in question must be referenced, and remains so.
236 * The caller may hold no locks.
237 * No other requirements.
240 vm_fault(vm_map_t map
, vm_offset_t vaddr
, vm_prot_t fault_type
, int fault_flags
)
243 vm_pindex_t first_pindex
;
244 struct faultstate fs
;
247 mycpu
->gd_cnt
.v_vm_faults
++;
251 fs
.fault_flags
= fault_flags
;
256 * Find the vm_map_entry representing the backing store and resolve
257 * the top level object and page index. This may have the side
258 * effect of executing a copy-on-write on the map entry and/or
259 * creating a shadow object, but will not COW any actual VM pages.
261 * On success fs.map is left read-locked and various other fields
262 * are initialized but not otherwise referenced or locked.
264 * NOTE! vm_map_lookup will try to upgrade the fault_type to
265 * VM_FAULT_WRITE if the map entry is a virtual page table and also
266 * writable, so we can set the 'A'accessed bit in the virtual page
270 result
= vm_map_lookup(&fs
.map
, vaddr
, fault_type
,
271 &fs
.entry
, &fs
.first_object
,
272 &first_pindex
, &fs
.first_prot
, &fs
.wired
);
275 * If the lookup failed or the map protections are incompatible,
276 * the fault generally fails. However, if the caller is trying
277 * to do a user wiring we have more work to do.
279 if (result
!= KERN_SUCCESS
) {
280 if (result
!= KERN_PROTECTION_FAILURE
||
281 (fs
.fault_flags
& VM_FAULT_WIRE_MASK
) != VM_FAULT_USER_WIRE
)
283 if (result
== KERN_INVALID_ADDRESS
&& growstack
&&
284 map
!= &kernel_map
&& curproc
!= NULL
) {
285 result
= vm_map_growstack(curproc
, vaddr
);
286 if (result
!= KERN_SUCCESS
)
287 return (KERN_FAILURE
);
295 * If we are user-wiring a r/w segment, and it is COW, then
296 * we need to do the COW operation. Note that we don't
297 * currently COW RO sections now, because it is NOT desirable
298 * to COW .text. We simply keep .text from ever being COW'ed
299 * and take the heat that one cannot debug wired .text sections.
301 result
= vm_map_lookup(&fs
.map
, vaddr
,
302 VM_PROT_READ
|VM_PROT_WRITE
|
303 VM_PROT_OVERRIDE_WRITE
,
304 &fs
.entry
, &fs
.first_object
,
305 &first_pindex
, &fs
.first_prot
,
307 if (result
!= KERN_SUCCESS
)
311 * If we don't COW now, on a user wire, the user will never
312 * be able to write to the mapping. If we don't make this
313 * restriction, the bookkeeping would be nearly impossible.
315 if ((fs
.entry
->protection
& VM_PROT_WRITE
) == 0)
316 fs
.entry
->max_protection
&= ~VM_PROT_WRITE
;
320 * fs.map is read-locked
322 * Misc checks. Save the map generation number to detect races.
324 fs
.map_generation
= fs
.map
->timestamp
;
326 if (fs
.entry
->eflags
& MAP_ENTRY_NOFAULT
) {
327 panic("vm_fault: fault on nofault entry, addr: %lx",
332 * A system map entry may return a NULL object. No object means
333 * no pager means an unrecoverable kernel fault.
335 if (fs
.first_object
== NULL
) {
336 panic("vm_fault: unrecoverable fault at %p in entry %p",
337 (void *)vaddr
, fs
.entry
);
341 * Make a reference to this object to prevent its disposal while we
342 * are messing with it. Once we have the reference, the map is free
343 * to be diddled. Since objects reference their shadows (and copies),
344 * they will stay around as well.
346 * Bump the paging-in-progress count to prevent size changes (e.g.
347 * truncation operations) during I/O. This must be done after
348 * obtaining the vnode lock in order to avoid possible deadlocks.
350 * The vm_token is needed to manipulate the vm_object
352 lwkt_gettoken(&vm_token
);
353 vm_object_reference(fs
.first_object
);
354 fs
.vp
= vnode_pager_lock(fs
.first_object
);
355 vm_object_pip_add(fs
.first_object
, 1);
356 lwkt_reltoken(&vm_token
);
358 fs
.lookup_still_valid
= TRUE
;
360 fs
.object
= fs
.first_object
; /* so unlock_and_deallocate works */
363 * If the entry is wired we cannot change the page protection.
366 fault_type
= fs
.first_prot
;
369 * The page we want is at (first_object, first_pindex), but if the
370 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
371 * page table to figure out the actual pindex.
373 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
376 if (fs
.entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
377 result
= vm_fault_vpagetable(&fs
, &first_pindex
,
378 fs
.entry
->aux
.master_pde
,
380 if (result
== KERN_TRY_AGAIN
)
382 if (result
!= KERN_SUCCESS
)
387 * Now we have the actual (object, pindex), fault in the page. If
388 * vm_fault_object() fails it will unlock and deallocate the FS
389 * data. If it succeeds everything remains locked and fs->object
390 * will have an additional PIP count if it is not equal to
393 * vm_fault_object will set fs->prot for the pmap operation. It is
394 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
395 * page can be safely written. However, it will force a read-only
396 * mapping for a read fault if the memory is managed by a virtual
399 result
= vm_fault_object(&fs
, first_pindex
, fault_type
);
401 if (result
== KERN_TRY_AGAIN
)
403 if (result
!= KERN_SUCCESS
)
407 * On success vm_fault_object() does not unlock or deallocate, and fs.m
408 * will contain a busied page.
410 * Enter the page into the pmap and do pmap-related adjustments.
412 pmap_enter(fs
.map
->pmap
, vaddr
, fs
.m
, fs
.prot
, fs
.wired
);
415 * Burst in a few more pages if possible. The fs.map should still
418 if (fault_flags
& VM_FAULT_BURST
) {
419 if ((fs
.fault_flags
& VM_FAULT_WIRE_MASK
) == 0 &&
421 vm_prefault(fs
.map
->pmap
, vaddr
, fs
.entry
, fs
.prot
);
426 vm_page_flag_clear(fs
.m
, PG_ZERO
);
427 vm_page_flag_set(fs
.m
, PG_REFERENCED
);
430 * If the page is not wired down, then put it where the pageout daemon
433 * We do not really need to get vm_token here but since all the
434 * vm_*() calls have to doing it here improves efficiency.
436 lwkt_gettoken(&vm_token
);
437 if (fs
.fault_flags
& VM_FAULT_WIRE_MASK
) {
441 vm_page_unwire(fs
.m
, 1);
443 vm_page_activate(fs
.m
);
446 if (curthread
->td_lwp
) {
448 curthread
->td_lwp
->lwp_ru
.ru_majflt
++;
450 curthread
->td_lwp
->lwp_ru
.ru_minflt
++;
455 * Unlock everything, and return
457 vm_page_wakeup(fs
.m
);
458 vm_object_deallocate(fs
.first_object
);
459 lwkt_reltoken(&vm_token
);
461 return (KERN_SUCCESS
);
465 * Fault in the specified virtual address in the current process map,
466 * returning a held VM page or NULL. See vm_fault_page() for more
472 vm_fault_page_quick(vm_offset_t va
, vm_prot_t fault_type
, int *errorp
)
474 struct lwp
*lp
= curthread
->td_lwp
;
477 m
= vm_fault_page(&lp
->lwp_vmspace
->vm_map
, va
,
478 fault_type
, VM_FAULT_NORMAL
, errorp
);
483 * Fault in the specified virtual address in the specified map, doing all
484 * necessary manipulation of the object store and all necessary I/O. Return
485 * a held VM page or NULL, and set *errorp. The related pmap is not
488 * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
489 * and marked PG_REFERENCED as well.
491 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
492 * error will be returned.
497 vm_fault_page(vm_map_t map
, vm_offset_t vaddr
, vm_prot_t fault_type
,
498 int fault_flags
, int *errorp
)
500 vm_pindex_t first_pindex
;
501 struct faultstate fs
;
503 vm_prot_t orig_fault_type
= fault_type
;
505 mycpu
->gd_cnt
.v_vm_faults
++;
509 fs
.fault_flags
= fault_flags
;
510 KKASSERT((fault_flags
& VM_FAULT_WIRE_MASK
) == 0);
514 * Find the vm_map_entry representing the backing store and resolve
515 * the top level object and page index. This may have the side
516 * effect of executing a copy-on-write on the map entry and/or
517 * creating a shadow object, but will not COW any actual VM pages.
519 * On success fs.map is left read-locked and various other fields
520 * are initialized but not otherwise referenced or locked.
522 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
523 * if the map entry is a virtual page table and also writable,
524 * so we can set the 'A'accessed bit in the virtual page table entry.
527 result
= vm_map_lookup(&fs
.map
, vaddr
, fault_type
,
528 &fs
.entry
, &fs
.first_object
,
529 &first_pindex
, &fs
.first_prot
, &fs
.wired
);
531 if (result
!= KERN_SUCCESS
) {
537 * fs.map is read-locked
539 * Misc checks. Save the map generation number to detect races.
541 fs
.map_generation
= fs
.map
->timestamp
;
543 if (fs
.entry
->eflags
& MAP_ENTRY_NOFAULT
) {
544 panic("vm_fault: fault on nofault entry, addr: %lx",
549 * A system map entry may return a NULL object. No object means
550 * no pager means an unrecoverable kernel fault.
552 if (fs
.first_object
== NULL
) {
553 panic("vm_fault: unrecoverable fault at %p in entry %p",
554 (void *)vaddr
, fs
.entry
);
558 * Make a reference to this object to prevent its disposal while we
559 * are messing with it. Once we have the reference, the map is free
560 * to be diddled. Since objects reference their shadows (and copies),
561 * they will stay around as well.
563 * Bump the paging-in-progress count to prevent size changes (e.g.
564 * truncation operations) during I/O. This must be done after
565 * obtaining the vnode lock in order to avoid possible deadlocks.
567 * The vm_token is needed to manipulate the vm_object
569 lwkt_gettoken(&vm_token
);
570 vm_object_reference(fs
.first_object
);
571 fs
.vp
= vnode_pager_lock(fs
.first_object
);
572 vm_object_pip_add(fs
.first_object
, 1);
573 lwkt_reltoken(&vm_token
);
575 fs
.lookup_still_valid
= TRUE
;
577 fs
.object
= fs
.first_object
; /* so unlock_and_deallocate works */
580 * If the entry is wired we cannot change the page protection.
583 fault_type
= fs
.first_prot
;
586 * The page we want is at (first_object, first_pindex), but if the
587 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
588 * page table to figure out the actual pindex.
590 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
593 if (fs
.entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
594 result
= vm_fault_vpagetable(&fs
, &first_pindex
,
595 fs
.entry
->aux
.master_pde
,
597 if (result
== KERN_TRY_AGAIN
)
599 if (result
!= KERN_SUCCESS
) {
606 * Now we have the actual (object, pindex), fault in the page. If
607 * vm_fault_object() fails it will unlock and deallocate the FS
608 * data. If it succeeds everything remains locked and fs->object
609 * will have an additinal PIP count if it is not equal to
612 result
= vm_fault_object(&fs
, first_pindex
, fault_type
);
614 if (result
== KERN_TRY_AGAIN
)
616 if (result
!= KERN_SUCCESS
) {
621 if ((orig_fault_type
& VM_PROT_WRITE
) &&
622 (fs
.prot
& VM_PROT_WRITE
) == 0) {
623 *errorp
= KERN_PROTECTION_FAILURE
;
624 unlock_and_deallocate(&fs
);
629 * On success vm_fault_object() does not unlock or deallocate, and fs.m
630 * will contain a busied page.
635 * Return a held page. We are not doing any pmap manipulation so do
636 * not set PG_MAPPED. However, adjust the page flags according to
637 * the fault type because the caller may not use a managed pmapping
638 * (so we don't want to lose the fact that the page will be dirtied
639 * if a write fault was specified).
641 lwkt_gettoken(&vm_token
);
643 vm_page_flag_clear(fs
.m
, PG_ZERO
);
644 if (fault_type
& VM_PROT_WRITE
)
648 * Update the pmap. We really only have to do this if a COW
649 * occured to replace the read-only page with the new page. For
650 * now just do it unconditionally. XXX
652 pmap_enter(fs
.map
->pmap
, vaddr
, fs
.m
, fs
.prot
, fs
.wired
);
653 vm_page_flag_set(fs
.m
, PG_REFERENCED
);
656 * Unbusy the page by activating it. It remains held and will not
659 vm_page_activate(fs
.m
);
661 if (curthread
->td_lwp
) {
663 curthread
->td_lwp
->lwp_ru
.ru_majflt
++;
665 curthread
->td_lwp
->lwp_ru
.ru_minflt
++;
670 * Unlock everything, and return the held page.
672 vm_page_wakeup(fs
.m
);
673 vm_object_deallocate(fs
.first_object
);
674 lwkt_reltoken(&vm_token
);
681 * Fault in the specified (object,offset), dirty the returned page as
682 * needed. If the requested fault_type cannot be done NULL and an
685 * A held (but not busied) page is returned.
690 vm_fault_object_page(vm_object_t object
, vm_ooffset_t offset
,
691 vm_prot_t fault_type
, int fault_flags
, int *errorp
)
694 vm_pindex_t first_pindex
;
695 struct faultstate fs
;
696 struct vm_map_entry entry
;
698 bzero(&entry
, sizeof(entry
));
699 entry
.object
.vm_object
= object
;
700 entry
.maptype
= VM_MAPTYPE_NORMAL
;
701 entry
.protection
= entry
.max_protection
= fault_type
;
705 fs
.fault_flags
= fault_flags
;
707 KKASSERT((fault_flags
& VM_FAULT_WIRE_MASK
) == 0);
711 fs
.first_object
= object
;
712 first_pindex
= OFF_TO_IDX(offset
);
714 fs
.first_prot
= fault_type
;
716 /*fs.map_generation = 0; unused */
719 * Make a reference to this object to prevent its disposal while we
720 * are messing with it. Once we have the reference, the map is free
721 * to be diddled. Since objects reference their shadows (and copies),
722 * they will stay around as well.
724 * Bump the paging-in-progress count to prevent size changes (e.g.
725 * truncation operations) during I/O. This must be done after
726 * obtaining the vnode lock in order to avoid possible deadlocks.
728 lwkt_gettoken(&vm_token
);
729 vm_object_reference(fs
.first_object
);
730 fs
.vp
= vnode_pager_lock(fs
.first_object
);
731 vm_object_pip_add(fs
.first_object
, 1);
732 lwkt_reltoken(&vm_token
);
734 fs
.lookup_still_valid
= TRUE
;
736 fs
.object
= fs
.first_object
; /* so unlock_and_deallocate works */
739 /* XXX future - ability to operate on VM object using vpagetable */
740 if (fs
.entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
741 result
= vm_fault_vpagetable(&fs
, &first_pindex
,
742 fs
.entry
->aux
.master_pde
,
744 if (result
== KERN_TRY_AGAIN
)
746 if (result
!= KERN_SUCCESS
) {
754 * Now we have the actual (object, pindex), fault in the page. If
755 * vm_fault_object() fails it will unlock and deallocate the FS
756 * data. If it succeeds everything remains locked and fs->object
757 * will have an additinal PIP count if it is not equal to
760 result
= vm_fault_object(&fs
, first_pindex
, fault_type
);
762 if (result
== KERN_TRY_AGAIN
)
764 if (result
!= KERN_SUCCESS
) {
769 if ((fault_type
& VM_PROT_WRITE
) && (fs
.prot
& VM_PROT_WRITE
) == 0) {
770 *errorp
= KERN_PROTECTION_FAILURE
;
771 unlock_and_deallocate(&fs
);
776 * On success vm_fault_object() does not unlock or deallocate, and fs.m
777 * will contain a busied page.
782 * Return a held page. We are not doing any pmap manipulation so do
783 * not set PG_MAPPED. However, adjust the page flags according to
784 * the fault type because the caller may not use a managed pmapping
785 * (so we don't want to lose the fact that the page will be dirtied
786 * if a write fault was specified).
788 lwkt_gettoken(&vm_token
);
790 vm_page_flag_clear(fs
.m
, PG_ZERO
);
791 if (fault_type
& VM_PROT_WRITE
)
794 if (fault_flags
& VM_FAULT_DIRTY
)
796 if (fault_flags
& VM_FAULT_UNSWAP
)
797 swap_pager_unswapped(fs
.m
);
800 * Indicate that the page was accessed.
802 vm_page_flag_set(fs
.m
, PG_REFERENCED
);
805 * Unbusy the page by activating it. It remains held and will not
808 vm_page_activate(fs
.m
);
810 if (curthread
->td_lwp
) {
812 mycpu
->gd_cnt
.v_vm_faults
++;
813 curthread
->td_lwp
->lwp_ru
.ru_majflt
++;
815 curthread
->td_lwp
->lwp_ru
.ru_minflt
++;
820 * Unlock everything, and return the held page.
822 vm_page_wakeup(fs
.m
);
823 vm_object_deallocate(fs
.first_object
);
824 lwkt_reltoken(&vm_token
);
831 * Translate the virtual page number (first_pindex) that is relative
832 * to the address space into a logical page number that is relative to the
833 * backing object. Use the virtual page table pointed to by (vpte).
835 * This implements an N-level page table. Any level can terminate the
836 * scan by setting VPTE_PS. A linear mapping is accomplished by setting
837 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
839 * No requirements (vm_token need not be held).
843 vm_fault_vpagetable(struct faultstate
*fs
, vm_pindex_t
*pindex
,
844 vpte_t vpte
, int fault_type
)
847 int vshift
= VPTE_FRAME_END
- PAGE_SHIFT
; /* index bits remaining */
848 int result
= KERN_SUCCESS
;
853 * We cannot proceed if the vpte is not valid, not readable
854 * for a read fault, or not writable for a write fault.
856 if ((vpte
& VPTE_V
) == 0) {
857 unlock_and_deallocate(fs
);
858 return (KERN_FAILURE
);
860 if ((fault_type
& VM_PROT_READ
) && (vpte
& VPTE_R
) == 0) {
861 unlock_and_deallocate(fs
);
862 return (KERN_FAILURE
);
864 if ((fault_type
& VM_PROT_WRITE
) && (vpte
& VPTE_W
) == 0) {
865 unlock_and_deallocate(fs
);
866 return (KERN_FAILURE
);
868 if ((vpte
& VPTE_PS
) || vshift
== 0)
870 KKASSERT(vshift
>= VPTE_PAGE_BITS
);
873 * Get the page table page. Nominally we only read the page
874 * table, but since we are actively setting VPTE_M and VPTE_A,
875 * tell vm_fault_object() that we are writing it.
877 * There is currently no real need to optimize this.
879 result
= vm_fault_object(fs
, (vpte
& VPTE_FRAME
) >> PAGE_SHIFT
,
880 VM_PROT_READ
|VM_PROT_WRITE
);
881 if (result
!= KERN_SUCCESS
)
885 * Process the returned fs.m and look up the page table
886 * entry in the page table page.
888 vshift
-= VPTE_PAGE_BITS
;
889 lwb
= lwbuf_alloc(fs
->m
);
890 ptep
= ((vpte_t
*)lwbuf_kva(lwb
) +
891 ((*pindex
>> vshift
) & VPTE_PAGE_MASK
));
895 * Page table write-back. If the vpte is valid for the
896 * requested operation, do a write-back to the page table.
898 * XXX VPTE_M is not set properly for page directory pages.
899 * It doesn't get set in the page directory if the page table
900 * is modified during a read access.
902 if ((fault_type
& VM_PROT_WRITE
) && (vpte
& VPTE_V
) &&
904 if ((vpte
& (VPTE_M
|VPTE_A
)) != (VPTE_M
|VPTE_A
)) {
905 atomic_set_long(ptep
, VPTE_M
| VPTE_A
);
906 vm_page_dirty(fs
->m
);
909 if ((fault_type
& VM_PROT_READ
) && (vpte
& VPTE_V
) &&
911 if ((vpte
& VPTE_A
) == 0) {
912 atomic_set_long(ptep
, VPTE_A
);
913 vm_page_dirty(fs
->m
);
917 vm_page_flag_set(fs
->m
, PG_REFERENCED
);
918 vm_page_activate(fs
->m
);
919 vm_page_wakeup(fs
->m
);
920 cleanup_successful_fault(fs
);
923 * Combine remaining address bits with the vpte.
925 /* JG how many bits from each? */
926 *pindex
= ((vpte
& VPTE_FRAME
) >> PAGE_SHIFT
) +
927 (*pindex
& ((1L << vshift
) - 1));
928 return (KERN_SUCCESS
);
933 * This is the core of the vm_fault code.
935 * Do all operations required to fault-in (fs.first_object, pindex). Run
936 * through the shadow chain as necessary and do required COW or virtual
937 * copy operations. The caller has already fully resolved the vm_map_entry
938 * and, if appropriate, has created a copy-on-write layer. All we need to
939 * do is iterate the object chain.
941 * On failure (fs) is unlocked and deallocated and the caller may return or
942 * retry depending on the failure code. On success (fs) is NOT unlocked or
943 * deallocated, fs.m will contained a resolved, busied page, and fs.object
944 * will have an additional PIP count if it is not equal to fs.first_object.
950 vm_fault_object(struct faultstate
*fs
,
951 vm_pindex_t first_pindex
, vm_prot_t fault_type
)
953 vm_object_t next_object
;
956 fs
->prot
= fs
->first_prot
;
957 fs
->object
= fs
->first_object
;
958 pindex
= first_pindex
;
961 * If a read fault occurs we try to make the page writable if
962 * possible. There are three cases where we cannot make the
963 * page mapping writable:
965 * (1) The mapping is read-only or the VM object is read-only,
966 * fs->prot above will simply not have VM_PROT_WRITE set.
968 * (2) If the mapping is a virtual page table we need to be able
969 * to detect writes so we can set VPTE_M in the virtual page
972 * (3) If the VM page is read-only or copy-on-write, upgrading would
973 * just result in an unnecessary COW fault.
975 * VM_PROT_VPAGED is set if faulting via a virtual page table and
976 * causes adjustments to the 'M'odify bit to also turn off write
977 * access to force a re-fault.
979 if (fs
->entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
980 if ((fault_type
& VM_PROT_WRITE
) == 0)
981 fs
->prot
&= ~VM_PROT_WRITE
;
984 lwkt_gettoken(&vm_token
);
988 * If the object is dead, we stop here
990 if (fs
->object
->flags
& OBJ_DEAD
) {
991 unlock_and_deallocate(fs
);
992 lwkt_reltoken(&vm_token
);
993 return (KERN_PROTECTION_FAILURE
);
997 * See if page is resident. spl protection is required
998 * to avoid an interrupt unbusy/free race against our
999 * lookup. We must hold the protection through a page
1000 * allocation or busy.
1003 fs
->m
= vm_page_lookup(fs
->object
, pindex
);
1004 if (fs
->m
!= NULL
) {
1007 * Wait/Retry if the page is busy. We have to do this
1008 * if the page is busy via either PG_BUSY or
1009 * vm_page_t->busy because the vm_pager may be using
1010 * vm_page_t->busy for pageouts ( and even pageins if
1011 * it is the vnode pager ), and we could end up trying
1012 * to pagein and pageout the same page simultaneously.
1014 * We can theoretically allow the busy case on a read
1015 * fault if the page is marked valid, but since such
1016 * pages are typically already pmap'd, putting that
1017 * special case in might be more effort then it is
1018 * worth. We cannot under any circumstances mess
1019 * around with a vm_page_t->busy page except, perhaps,
1022 if ((fs
->m
->flags
& PG_BUSY
) || fs
->m
->busy
) {
1024 vm_page_sleep_busy(fs
->m
, TRUE
, "vmpfw");
1025 mycpu
->gd_cnt
.v_intrans
++;
1026 vm_object_deallocate(fs
->first_object
);
1027 fs
->first_object
= NULL
;
1028 lwkt_reltoken(&vm_token
);
1030 return (KERN_TRY_AGAIN
);
1034 * If reactivating a page from PQ_CACHE we may have
1037 queue
= fs
->m
->queue
;
1038 vm_page_unqueue_nowakeup(fs
->m
);
1040 if ((queue
- fs
->m
->pc
) == PQ_CACHE
&&
1041 vm_page_count_severe()) {
1042 vm_page_activate(fs
->m
);
1043 unlock_and_deallocate(fs
);
1045 lwkt_reltoken(&vm_token
);
1047 return (KERN_TRY_AGAIN
);
1051 * Mark page busy for other processes, and the
1052 * pagedaemon. If it still isn't completely valid
1053 * (readable), or if a read-ahead-mark is set on
1054 * the VM page, jump to readrest, else we found the
1055 * page and can return.
1057 * We can release the spl once we have marked the
1060 vm_page_busy(fs
->m
);
1063 if (fs
->m
->object
!= &kernel_object
) {
1064 if ((fs
->m
->valid
& VM_PAGE_BITS_ALL
) !=
1068 if (fs
->m
->flags
& PG_RAM
) {
1071 vm_page_flag_clear(fs
->m
, PG_RAM
);
1075 break; /* break to PAGE HAS BEEN FOUND */
1079 * Page is not resident, If this is the search termination
1080 * or the pager might contain the page, allocate a new page.
1082 * NOTE: We are still in a critical section.
1084 if (TRYPAGER(fs
) || fs
->object
== fs
->first_object
) {
1086 * If the page is beyond the object size we fail
1088 if (pindex
>= fs
->object
->size
) {
1089 lwkt_reltoken(&vm_token
);
1091 unlock_and_deallocate(fs
);
1092 return (KERN_PROTECTION_FAILURE
);
1098 if (fs
->didlimit
== 0 && curproc
!= NULL
) {
1101 limticks
= vm_fault_ratelimit(curproc
->p_vmspace
);
1103 lwkt_reltoken(&vm_token
);
1105 unlock_and_deallocate(fs
);
1106 tsleep(curproc
, 0, "vmrate", limticks
);
1108 return (KERN_TRY_AGAIN
);
1113 * Allocate a new page for this object/offset pair.
1116 if (!vm_page_count_severe()) {
1117 fs
->m
= vm_page_alloc(fs
->object
, pindex
,
1118 (fs
->vp
|| fs
->object
->backing_object
) ? VM_ALLOC_NORMAL
: VM_ALLOC_NORMAL
| VM_ALLOC_ZERO
);
1120 if (fs
->m
== NULL
) {
1121 lwkt_reltoken(&vm_token
);
1123 unlock_and_deallocate(fs
);
1125 return (KERN_TRY_AGAIN
);
1132 * We have found an invalid or partially valid page, a
1133 * page with a read-ahead mark which might be partially or
1134 * fully valid (and maybe dirty too), or we have allocated
1137 * Attempt to fault-in the page if there is a chance that the
1138 * pager has it, and potentially fault in additional pages
1141 * We are NOT in splvm here and if TRYPAGER is true then
1142 * fs.m will be non-NULL and will be PG_BUSY for us.
1147 u_char behavior
= vm_map_entry_behavior(fs
->entry
);
1149 if (behavior
== MAP_ENTRY_BEHAV_RANDOM
)
1155 * If sequential access is detected then attempt
1156 * to deactivate/cache pages behind the scan to
1157 * prevent resource hogging.
1159 * Use of PG_RAM to detect sequential access
1160 * also simulates multi-zone sequential access
1161 * detection for free.
1163 * NOTE: Partially valid dirty pages cannot be
1164 * deactivated without causing NFS picemeal
1167 if ((fs
->first_object
->type
!= OBJT_DEVICE
) &&
1168 (behavior
== MAP_ENTRY_BEHAV_SEQUENTIAL
||
1169 (behavior
!= MAP_ENTRY_BEHAV_RANDOM
&&
1170 (fs
->m
->flags
& PG_RAM
)))
1172 vm_pindex_t scan_pindex
;
1173 int scan_count
= 16;
1175 if (first_pindex
< 16) {
1179 scan_pindex
= first_pindex
- 16;
1180 if (scan_pindex
< 16)
1181 scan_count
= scan_pindex
;
1187 while (scan_count
) {
1190 mt
= vm_page_lookup(fs
->first_object
,
1193 (mt
->valid
!= VM_PAGE_BITS_ALL
)) {
1197 (mt
->flags
& (PG_BUSY
| PG_FICTITIOUS
| PG_UNMANAGED
)) ||
1203 vm_page_test_dirty(mt
);
1208 vm_page_deactivate(mt
);
1223 * Avoid deadlocking against the map when doing I/O.
1224 * fs.object and the page is PG_BUSY'd.
1229 * Acquire the page data. We still hold a ref on
1230 * fs.object and the page has been PG_BUSY's.
1232 * The pager may replace the page (for example, in
1233 * order to enter a fictitious page into the
1234 * object). If it does so it is responsible for
1235 * cleaning up the passed page and properly setting
1236 * the new page PG_BUSY.
1238 * If we got here through a PG_RAM read-ahead
1239 * mark the page may be partially dirty and thus
1240 * not freeable. Don't bother checking to see
1241 * if the pager has the page because we can't free
1242 * it anyway. We have to depend on the get_page
1243 * operation filling in any gaps whether there is
1244 * backing store or not.
1246 rv
= vm_pager_get_page(fs
->object
, &fs
->m
, seqaccess
);
1248 if (rv
== VM_PAGER_OK
) {
1250 * Relookup in case pager changed page. Pager
1251 * is responsible for disposition of old page
1254 * XXX other code segments do relookups too.
1255 * It's a bad abstraction that needs to be
1258 fs
->m
= vm_page_lookup(fs
->object
, pindex
);
1259 if (fs
->m
== NULL
) {
1260 lwkt_reltoken(&vm_token
);
1261 unlock_and_deallocate(fs
);
1262 return (KERN_TRY_AGAIN
);
1266 break; /* break to PAGE HAS BEEN FOUND */
1270 * Remove the bogus page (which does not exist at this
1271 * object/offset); before doing so, we must get back
1272 * our object lock to preserve our invariant.
1274 * Also wake up any other process that may want to bring
1277 * If this is the top-level object, we must leave the
1278 * busy page to prevent another process from rushing
1279 * past us, and inserting the page in that object at
1280 * the same time that we are.
1282 if (rv
== VM_PAGER_ERROR
) {
1284 kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc
->p_pid
, curproc
->p_comm
);
1286 kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread
, curproc
->p_comm
);
1290 * Data outside the range of the pager or an I/O error
1292 * The page may have been wired during the pagein,
1293 * e.g. by the buffer cache, and cannot simply be
1294 * freed. Call vnode_pager_freepage() to deal with it.
1297 * XXX - the check for kernel_map is a kludge to work
1298 * around having the machine panic on a kernel space
1299 * fault w/ I/O error.
1301 if (((fs
->map
!= &kernel_map
) &&
1302 (rv
== VM_PAGER_ERROR
)) || (rv
== VM_PAGER_BAD
)) {
1303 vnode_pager_freepage(fs
->m
);
1304 lwkt_reltoken(&vm_token
);
1306 unlock_and_deallocate(fs
);
1307 if (rv
== VM_PAGER_ERROR
)
1308 return (KERN_FAILURE
);
1310 return (KERN_PROTECTION_FAILURE
);
1313 if (fs
->object
!= fs
->first_object
) {
1314 vnode_pager_freepage(fs
->m
);
1317 * XXX - we cannot just fall out at this
1318 * point, m has been freed and is invalid!
1324 * We get here if the object has a default pager (or unwiring)
1325 * or the pager doesn't have the page.
1327 if (fs
->object
== fs
->first_object
)
1328 fs
->first_m
= fs
->m
;
1331 * Move on to the next object. Lock the next object before
1332 * unlocking the current one.
1334 pindex
+= OFF_TO_IDX(fs
->object
->backing_object_offset
);
1335 next_object
= fs
->object
->backing_object
;
1336 if (next_object
== NULL
) {
1338 * If there's no object left, fill the page in the top
1339 * object with zeros.
1341 if (fs
->object
!= fs
->first_object
) {
1342 vm_object_pip_wakeup(fs
->object
);
1344 fs
->object
= fs
->first_object
;
1345 pindex
= first_pindex
;
1346 fs
->m
= fs
->first_m
;
1351 * Zero the page if necessary and mark it valid.
1353 if ((fs
->m
->flags
& PG_ZERO
) == 0) {
1354 vm_page_zero_fill(fs
->m
);
1356 mycpu
->gd_cnt
.v_ozfod
++;
1358 mycpu
->gd_cnt
.v_zfod
++;
1359 fs
->m
->valid
= VM_PAGE_BITS_ALL
;
1360 break; /* break to PAGE HAS BEEN FOUND */
1362 if (fs
->object
!= fs
->first_object
) {
1363 vm_object_pip_wakeup(fs
->object
);
1365 KASSERT(fs
->object
!= next_object
,
1366 ("object loop %p", next_object
));
1367 fs
->object
= next_object
;
1368 vm_object_pip_add(fs
->object
, 1);
1372 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1375 * vm_token is still held
1377 * If the page is being written, but isn't already owned by the
1378 * top-level object, we have to copy it into a new page owned by the
1381 KASSERT((fs
->m
->flags
& PG_BUSY
) != 0,
1382 ("vm_fault: not busy after main loop"));
1384 if (fs
->object
!= fs
->first_object
) {
1386 * We only really need to copy if we want to write it.
1388 if (fault_type
& VM_PROT_WRITE
) {
1390 * This allows pages to be virtually copied from a
1391 * backing_object into the first_object, where the
1392 * backing object has no other refs to it, and cannot
1393 * gain any more refs. Instead of a bcopy, we just
1394 * move the page from the backing object to the
1395 * first object. Note that we must mark the page
1396 * dirty in the first object so that it will go out
1397 * to swap when needed.
1401 * Map, if present, has not changed
1404 fs
->map_generation
== fs
->map
->timestamp
) &&
1406 * Only one shadow object
1408 (fs
->object
->shadow_count
== 1) &&
1410 * No COW refs, except us
1412 (fs
->object
->ref_count
== 1) &&
1414 * No one else can look this object up
1416 (fs
->object
->handle
== NULL
) &&
1418 * No other ways to look the object up
1420 ((fs
->object
->type
== OBJT_DEFAULT
) ||
1421 (fs
->object
->type
== OBJT_SWAP
)) &&
1423 * We don't chase down the shadow chain
1425 (fs
->object
== fs
->first_object
->backing_object
) &&
1428 * grab the lock if we need to
1430 (fs
->lookup_still_valid
||
1432 lockmgr(&fs
->map
->lock
, LK_EXCLUSIVE
|LK_NOWAIT
) == 0)
1435 fs
->lookup_still_valid
= 1;
1437 * get rid of the unnecessary page
1439 vm_page_protect(fs
->first_m
, VM_PROT_NONE
);
1440 vm_page_free(fs
->first_m
);
1444 * grab the page and put it into the
1445 * process'es object. The page is
1446 * automatically made dirty.
1448 vm_page_rename(fs
->m
, fs
->first_object
, first_pindex
);
1449 fs
->first_m
= fs
->m
;
1450 vm_page_busy(fs
->first_m
);
1452 mycpu
->gd_cnt
.v_cow_optim
++;
1455 * Oh, well, lets copy it.
1457 vm_page_copy(fs
->m
, fs
->first_m
);
1458 vm_page_event(fs
->m
, VMEVENT_COW
);
1463 * We no longer need the old page or object.
1469 * fs->object != fs->first_object due to above
1472 vm_object_pip_wakeup(fs
->object
);
1475 * Only use the new page below...
1478 mycpu
->gd_cnt
.v_cow_faults
++;
1479 fs
->m
= fs
->first_m
;
1480 fs
->object
= fs
->first_object
;
1481 pindex
= first_pindex
;
1484 * If it wasn't a write fault avoid having to copy
1485 * the page by mapping it read-only.
1487 fs
->prot
&= ~VM_PROT_WRITE
;
1492 * We may have had to unlock a map to do I/O. If we did then
1493 * lookup_still_valid will be FALSE. If the map generation count
1494 * also changed then all sorts of things could have happened while
1495 * we were doing the I/O and we need to retry.
1498 if (!fs
->lookup_still_valid
&&
1500 (fs
->map
->timestamp
!= fs
->map_generation
)) {
1502 lwkt_reltoken(&vm_token
);
1503 unlock_and_deallocate(fs
);
1504 return (KERN_TRY_AGAIN
);
1508 * If the fault is a write, we know that this page is being
1509 * written NOW so dirty it explicitly to save on pmap_is_modified()
1512 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1513 * if the page is already dirty to prevent data written with
1514 * the expectation of being synced from not being synced.
1515 * Likewise if this entry does not request NOSYNC then make
1516 * sure the page isn't marked NOSYNC. Applications sharing
1517 * data should use the same flags to avoid ping ponging.
1519 * Also tell the backing pager, if any, that it should remove
1520 * any swap backing since the page is now dirty.
1522 if (fs
->prot
& VM_PROT_WRITE
) {
1523 vm_object_set_writeable_dirty(fs
->m
->object
);
1524 vm_set_nosync(fs
->m
, fs
->entry
);
1525 if (fs
->fault_flags
& VM_FAULT_DIRTY
) {
1527 vm_page_dirty(fs
->m
);
1528 swap_pager_unswapped(fs
->m
);
1533 lwkt_reltoken(&vm_token
);
1536 * Page had better still be busy. We are still locked up and
1537 * fs->object will have another PIP reference if it is not equal
1538 * to fs->first_object.
1540 KASSERT(fs
->m
->flags
& PG_BUSY
,
1541 ("vm_fault: page %p not busy!", fs
->m
));
1544 * Sanity check: page must be completely valid or it is not fit to
1545 * map into user space. vm_pager_get_pages() ensures this.
1547 if (fs
->m
->valid
!= VM_PAGE_BITS_ALL
) {
1548 vm_page_zero_invalid(fs
->m
, TRUE
);
1549 kprintf("Warning: page %p partially invalid on fault\n", fs
->m
);
1552 return (KERN_SUCCESS
);
1556 * Wire down a range of virtual addresses in a map. The entry in question
1557 * should be marked in-transition and the map must be locked. We must
1558 * release the map temporarily while faulting-in the page to avoid a
1559 * deadlock. Note that the entry may be clipped while we are blocked but
1560 * will never be freed.
1565 vm_fault_wire(vm_map_t map
, vm_map_entry_t entry
, boolean_t user_wire
)
1567 boolean_t fictitious
;
1575 pmap
= vm_map_pmap(map
);
1576 start
= entry
->start
;
1578 fictitious
= entry
->object
.vm_object
&&
1579 (entry
->object
.vm_object
->type
== OBJT_DEVICE
);
1581 lwkt_gettoken(&vm_token
);
1586 * We simulate a fault to get the page and enter it in the physical
1589 for (va
= start
; va
< end
; va
+= PAGE_SIZE
) {
1591 rv
= vm_fault(map
, va
, VM_PROT_READ
,
1592 VM_FAULT_USER_WIRE
);
1594 rv
= vm_fault(map
, va
, VM_PROT_READ
|VM_PROT_WRITE
,
1595 VM_FAULT_CHANGE_WIRING
);
1598 while (va
> start
) {
1600 if ((pa
= pmap_extract(pmap
, va
)) == 0)
1602 pmap_change_wiring(pmap
, va
, FALSE
);
1604 vm_page_unwire(PHYS_TO_VM_PAGE(pa
), 1);
1607 lwkt_reltoken(&vm_token
);
1612 lwkt_reltoken(&vm_token
);
1613 return (KERN_SUCCESS
);
1617 * Unwire a range of virtual addresses in a map. The map should be
1621 vm_fault_unwire(vm_map_t map
, vm_map_entry_t entry
)
1623 boolean_t fictitious
;
1630 pmap
= vm_map_pmap(map
);
1631 start
= entry
->start
;
1633 fictitious
= entry
->object
.vm_object
&&
1634 (entry
->object
.vm_object
->type
== OBJT_DEVICE
);
1637 * Since the pages are wired down, we must be able to get their
1638 * mappings from the physical map system.
1640 lwkt_gettoken(&vm_token
);
1641 for (va
= start
; va
< end
; va
+= PAGE_SIZE
) {
1642 pa
= pmap_extract(pmap
, va
);
1644 pmap_change_wiring(pmap
, va
, FALSE
);
1646 vm_page_unwire(PHYS_TO_VM_PAGE(pa
), 1);
1649 lwkt_reltoken(&vm_token
);
1653 * Reduce the rate at which memory is allocated to a process based
1654 * on the perceived load on the VM system. As the load increases
1655 * the allocation burst rate goes down and the delay increases.
1657 * Rate limiting does not apply when faulting active or inactive
1658 * pages. When faulting 'cache' pages, rate limiting only applies
1659 * if the system currently has a severe page deficit.
1661 * XXX vm_pagesupply should be increased when a page is freed.
1663 * We sleep up to 1/10 of a second.
1666 vm_fault_ratelimit(struct vmspace
*vmspace
)
1668 if (vm_load_enable
== 0)
1670 if (vmspace
->vm_pagesupply
> 0) {
1671 --vmspace
->vm_pagesupply
; /* SMP race ok */
1675 if (vm_load_debug
) {
1676 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1678 (1000 - vm_load
) / 10, vm_load
* hz
/ 10000,
1679 curproc
->p_pid
, curproc
->p_comm
);
1682 vmspace
->vm_pagesupply
= (1000 - vm_load
) / 10;
1683 return(vm_load
* hz
/ 10000);
1687 * Copy all of the pages from a wired-down map entry to another.
1689 * The source and destination maps must be locked for write.
1690 * The source map entry must be wired down (or be a sharing map
1691 * entry corresponding to a main map entry that is wired down).
1693 * No other requirements.
1696 vm_fault_copy_entry(vm_map_t dst_map
, vm_map_t src_map
,
1697 vm_map_entry_t dst_entry
, vm_map_entry_t src_entry
)
1699 vm_object_t dst_object
;
1700 vm_object_t src_object
;
1701 vm_ooffset_t dst_offset
;
1702 vm_ooffset_t src_offset
;
1712 src_object
= src_entry
->object
.vm_object
;
1713 src_offset
= src_entry
->offset
;
1716 * Create the top-level object for the destination entry. (Doesn't
1717 * actually shadow anything - we copy the pages directly.)
1719 vm_map_entry_allocate_object(dst_entry
);
1720 dst_object
= dst_entry
->object
.vm_object
;
1722 prot
= dst_entry
->max_protection
;
1725 * Loop through all of the pages in the entry's range, copying each
1726 * one from the source object (it should be there) to the destination
1729 for (vaddr
= dst_entry
->start
, dst_offset
= 0;
1730 vaddr
< dst_entry
->end
;
1731 vaddr
+= PAGE_SIZE
, dst_offset
+= PAGE_SIZE
) {
1734 * Allocate a page in the destination object
1737 dst_m
= vm_page_alloc(dst_object
,
1738 OFF_TO_IDX(dst_offset
), VM_ALLOC_NORMAL
);
1739 if (dst_m
== NULL
) {
1742 } while (dst_m
== NULL
);
1745 * Find the page in the source object, and copy it in.
1746 * (Because the source is wired down, the page will be in
1749 src_m
= vm_page_lookup(src_object
,
1750 OFF_TO_IDX(dst_offset
+ src_offset
));
1752 panic("vm_fault_copy_wired: page missing");
1754 vm_page_copy(src_m
, dst_m
);
1755 vm_page_event(src_m
, VMEVENT_COW
);
1758 * Enter it in the pmap...
1761 vm_page_flag_clear(dst_m
, PG_ZERO
);
1762 pmap_enter(dst_map
->pmap
, vaddr
, dst_m
, prot
, FALSE
);
1765 * Mark it no longer busy, and put it on the active list.
1767 vm_page_activate(dst_m
);
1768 vm_page_wakeup(dst_m
);
1775 * This routine checks around the requested page for other pages that
1776 * might be able to be faulted in. This routine brackets the viable
1777 * pages for the pages to be paged in.
1780 * m, rbehind, rahead
1783 * marray (array of vm_page_t), reqpage (index of requested page)
1786 * number of pages in marray
1789 vm_fault_additional_pages(vm_page_t m
, int rbehind
, int rahead
,
1790 vm_page_t
*marray
, int *reqpage
)
1794 vm_pindex_t pindex
, startpindex
, endpindex
, tpindex
;
1796 int cbehind
, cahead
;
1802 * we don't fault-ahead for device pager
1804 if (object
->type
== OBJT_DEVICE
) {
1811 * if the requested page is not available, then give up now
1813 if (!vm_pager_has_page(object
, pindex
, &cbehind
, &cahead
)) {
1814 *reqpage
= 0; /* not used by caller, fix compiler warn */
1818 if ((cbehind
== 0) && (cahead
== 0)) {
1824 if (rahead
> cahead
) {
1828 if (rbehind
> cbehind
) {
1833 * Do not do any readahead if we have insufficient free memory.
1835 * XXX code was broken disabled before and has instability
1836 * with this conditonal fixed, so shortcut for now.
1838 if (burst_fault
== 0 || vm_page_count_severe()) {
1845 * scan backward for the read behind pages -- in memory
1847 * Assume that if the page is not found an interrupt will not
1848 * create it. Theoretically interrupts can only remove (busy)
1849 * pages, not create new associations.
1852 if (rbehind
> pindex
) {
1856 startpindex
= pindex
- rbehind
;
1860 lwkt_gettoken(&vm_token
);
1861 for (tpindex
= pindex
; tpindex
> startpindex
; --tpindex
) {
1862 if (vm_page_lookup(object
, tpindex
- 1))
1867 while (tpindex
< pindex
) {
1868 rtm
= vm_page_alloc(object
, tpindex
, VM_ALLOC_SYSTEM
);
1870 lwkt_reltoken(&vm_token
);
1872 for (j
= 0; j
< i
; j
++) {
1873 vm_page_free(marray
[j
]);
1883 lwkt_reltoken(&vm_token
);
1890 * Assign requested page
1897 * Scan forwards for read-ahead pages
1899 tpindex
= pindex
+ 1;
1900 endpindex
= tpindex
+ rahead
;
1901 if (endpindex
> object
->size
)
1902 endpindex
= object
->size
;
1905 lwkt_gettoken(&vm_token
);
1906 while (tpindex
< endpindex
) {
1907 if (vm_page_lookup(object
, tpindex
))
1909 rtm
= vm_page_alloc(object
, tpindex
, VM_ALLOC_SYSTEM
);
1916 lwkt_reltoken(&vm_token
);
1925 * vm_prefault() provides a quick way of clustering pagefaults into a
1926 * processes address space. It is a "cousin" of pmap_object_init_pt,
1927 * except it runs at page fault time instead of mmap time.
1929 * This code used to be per-platform pmap_prefault(). It is now
1930 * machine-independent and enhanced to also pre-fault zero-fill pages
1931 * (see vm.fast_fault) as well as make them writable, which greatly
1932 * reduces the number of page faults programs incur.
1934 * Application performance when pre-faulting zero-fill pages is heavily
1935 * dependent on the application. Very tiny applications like /bin/echo
1936 * lose a little performance while applications of any appreciable size
1937 * gain performance. Prefaulting multiple pages also reduces SMP
1938 * congestion and can improve SMP performance significantly.
1940 * NOTE! prot may allow writing but this only applies to the top level
1941 * object. If we wind up mapping a page extracted from a backing
1942 * object we have to make sure it is read-only.
1944 * NOTE! The caller has already handled any COW operations on the
1945 * vm_map_entry via the normal fault code. Do NOT call this
1946 * shortcut unless the normal fault code has run on this entry.
1948 * No other requirements.
1952 #define PAGEORDER_SIZE (PFBAK+PFFOR)
1954 static int vm_prefault_pageorder
[] = {
1955 -PAGE_SIZE
, PAGE_SIZE
,
1956 -2 * PAGE_SIZE
, 2 * PAGE_SIZE
,
1957 -3 * PAGE_SIZE
, 3 * PAGE_SIZE
,
1958 -4 * PAGE_SIZE
, 4 * PAGE_SIZE
1962 * Set PG_NOSYNC if the map entry indicates so, but only if the page
1963 * is not already dirty by other means. This will prevent passive
1964 * filesystem syncing as well as 'sync' from writing out the page.
1967 vm_set_nosync(vm_page_t m
, vm_map_entry_t entry
)
1969 if (entry
->eflags
& MAP_ENTRY_NOSYNC
) {
1971 vm_page_flag_set(m
, PG_NOSYNC
);
1973 vm_page_flag_clear(m
, PG_NOSYNC
);
1978 vm_prefault(pmap_t pmap
, vm_offset_t addra
, vm_map_entry_t entry
, int prot
)
1991 * We do not currently prefault mappings that use virtual page
1992 * tables. We do not prefault foreign pmaps.
1994 if (entry
->maptype
== VM_MAPTYPE_VPAGETABLE
)
1996 lp
= curthread
->td_lwp
;
1997 if (lp
== NULL
|| (pmap
!= vmspace_pmap(lp
->lwp_vmspace
)))
2000 object
= entry
->object
.vm_object
;
2002 starta
= addra
- PFBAK
* PAGE_SIZE
;
2003 if (starta
< entry
->start
)
2004 starta
= entry
->start
;
2005 else if (starta
> addra
)
2009 * critical section protection is required to maintain the
2010 * page/object association, interrupts can free pages and remove
2011 * them from their objects.
2014 lwkt_gettoken(&vm_token
);
2015 for (i
= 0; i
< PAGEORDER_SIZE
; i
++) {
2016 vm_object_t lobject
;
2019 addr
= addra
+ vm_prefault_pageorder
[i
];
2020 if (addr
> addra
+ (PFFOR
* PAGE_SIZE
))
2023 if (addr
< starta
|| addr
>= entry
->end
)
2026 if (pmap_prefault_ok(pmap
, addr
) == 0)
2030 * Follow the VM object chain to obtain the page to be mapped
2033 * If we reach the terminal object without finding a page
2034 * and we determine it would be advantageous, then allocate
2035 * a zero-fill page for the base object. The base object
2036 * is guaranteed to be OBJT_DEFAULT for this case.
2038 * In order to not have to check the pager via *haspage*()
2039 * we stop if any non-default object is encountered. e.g.
2040 * a vnode or swap object would stop the loop.
2042 index
= ((addr
- entry
->start
) + entry
->offset
) >> PAGE_SHIFT
;
2047 while ((m
= vm_page_lookup(lobject
, pindex
)) == NULL
) {
2048 if (lobject
->type
!= OBJT_DEFAULT
)
2050 if (lobject
->backing_object
== NULL
) {
2051 if (vm_fast_fault
== 0)
2053 if (vm_prefault_pageorder
[i
] < 0 ||
2054 (prot
& VM_PROT_WRITE
) == 0 ||
2055 vm_page_count_min(0)) {
2058 /* note: allocate from base object */
2059 m
= vm_page_alloc(object
, index
,
2060 VM_ALLOC_NORMAL
| VM_ALLOC_ZERO
);
2062 if ((m
->flags
& PG_ZERO
) == 0) {
2063 vm_page_zero_fill(m
);
2065 vm_page_flag_clear(m
, PG_ZERO
);
2066 mycpu
->gd_cnt
.v_ozfod
++;
2068 mycpu
->gd_cnt
.v_zfod
++;
2069 m
->valid
= VM_PAGE_BITS_ALL
;
2072 /* lobject = object .. not needed */
2075 if (lobject
->backing_object_offset
& PAGE_MASK
)
2077 pindex
+= lobject
->backing_object_offset
>> PAGE_SHIFT
;
2078 lobject
= lobject
->backing_object
;
2079 pprot
&= ~VM_PROT_WRITE
;
2082 * NOTE: lobject now invalid (if we did a zero-fill we didn't
2083 * bother assigning lobject = object).
2085 * Give-up if the page is not available.
2091 * Do not conditionalize on PG_RAM. If pages are present in
2092 * the VM system we assume optimal caching. If caching is
2093 * not optimal the I/O gravy train will be restarted when we
2094 * hit an unavailable page. We do not want to try to restart
2095 * the gravy train now because we really don't know how much
2096 * of the object has been cached. The cost for restarting
2097 * the gravy train should be low (since accesses will likely
2098 * be I/O bound anyway).
2100 * The object must be marked dirty if we are mapping a
2103 if (pprot
& VM_PROT_WRITE
)
2104 vm_object_set_writeable_dirty(m
->object
);
2107 * Enter the page into the pmap if appropriate. If we had
2108 * allocated the page we have to place it on a queue. If not
2109 * we just have to make sure it isn't on the cache queue
2110 * (pages on the cache queue are not allowed to be mapped).
2113 if (pprot
& VM_PROT_WRITE
)
2114 vm_set_nosync(m
, entry
);
2115 pmap_enter(pmap
, addr
, m
, pprot
, 0);
2116 vm_page_deactivate(m
);
2118 } else if (((m
->valid
& VM_PAGE_BITS_ALL
) == VM_PAGE_BITS_ALL
) &&
2120 (m
->flags
& (PG_BUSY
| PG_FICTITIOUS
)) == 0) {
2122 if ((m
->queue
- m
->pc
) == PQ_CACHE
) {
2123 vm_page_deactivate(m
);
2126 if (pprot
& VM_PROT_WRITE
)
2127 vm_set_nosync(m
, entry
);
2128 pmap_enter(pmap
, addr
, m
, pprot
, 0);
2132 lwkt_reltoken(&vm_token
);