kernel - Force NFSv3 for diskless nfs mount
[dragonfly.git] / sys / vm / vm_fault.c
blob1cea05498b831ba4944fb1574ceb395222cb74f0
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
12 * This code is derived from software contributed to Berkeley by
13 * The Mach Operating System project at Carnegie-Mellon University.
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 * must display the following acknowledgement:
25 * This product includes software developed by the University of
26 * California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
43 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
46 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47 * All rights reserved.
49 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51 * Permission to use, copy, modify and distribute this software and
52 * its documentation is hereby granted, provided that both the copyright
53 * notice and this permission notice appear in all copies of the
54 * software, derivative works or modified versions, and any portions
55 * thereof, and that both notices appear in supporting documentation.
57 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61 * Carnegie Mellon requests users of this software to return to
63 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
64 * School of Computer Science
65 * Carnegie Mellon University
66 * Pittsburgh PA 15213-3890
68 * any improvements or extensions that they make and grant Carnegie the
69 * rights to redistribute these changes.
71 * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
72 * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
76 * Page fault handling module.
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vkernel.h>
87 #include <sys/lock.h>
88 #include <sys/sysctl.h>
90 #include <cpu/lwbuf.h>
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vnode_pager.h>
102 #include <vm/vm_extern.h>
104 #include <sys/thread2.h>
105 #include <vm/vm_page2.h>
107 struct faultstate {
108 vm_page_t m;
109 vm_object_t object;
110 vm_pindex_t pindex;
111 vm_prot_t prot;
112 vm_page_t first_m;
113 vm_object_t first_object;
114 vm_prot_t first_prot;
115 vm_map_t map;
116 vm_map_entry_t entry;
117 int lookup_still_valid;
118 int didlimit;
119 int hardfault;
120 int fault_flags;
121 int map_generation;
122 boolean_t wired;
123 struct vnode *vp;
126 static int vm_fast_fault = 1;
127 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
128 "Burst fault zero-fill regions");
129 static int debug_cluster = 0;
130 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
132 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
133 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
134 #if 0
135 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
136 #endif
137 static int vm_fault_ratelimit(struct vmspace *);
138 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
139 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry,
140 int prot);
143 * The caller must hold vm_token.
145 static __inline void
146 release_page(struct faultstate *fs)
148 vm_page_deactivate(fs->m);
149 vm_page_wakeup(fs->m);
150 fs->m = NULL;
154 * The caller must hold vm_token.
156 static __inline void
157 unlock_map(struct faultstate *fs)
159 if (fs->lookup_still_valid && fs->map) {
160 vm_map_lookup_done(fs->map, fs->entry, 0);
161 fs->lookup_still_valid = FALSE;
166 * Clean up after a successful call to vm_fault_object() so another call
167 * to vm_fault_object() can be made.
169 * The caller must hold vm_token.
171 static void
172 _cleanup_successful_fault(struct faultstate *fs, int relock)
174 if (fs->object != fs->first_object) {
175 vm_page_free(fs->first_m);
176 vm_object_pip_wakeup(fs->object);
177 fs->first_m = NULL;
179 fs->object = fs->first_object;
180 if (relock && fs->lookup_still_valid == FALSE) {
181 if (fs->map)
182 vm_map_lock_read(fs->map);
183 fs->lookup_still_valid = TRUE;
188 * The caller must hold vm_token.
190 static void
191 _unlock_things(struct faultstate *fs, int dealloc)
193 vm_object_pip_wakeup(fs->first_object);
194 _cleanup_successful_fault(fs, 0);
195 if (dealloc) {
196 vm_object_deallocate(fs->first_object);
197 fs->first_object = NULL;
199 unlock_map(fs);
200 if (fs->vp != NULL) {
201 vput(fs->vp);
202 fs->vp = NULL;
206 #define unlock_things(fs) _unlock_things(fs, 0)
207 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
208 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
211 * TRYPAGER
213 * Determine if the pager for the current object *might* contain the page.
215 * We only need to try the pager if this is not a default object (default
216 * objects are zero-fill and have no real pager), and if we are not taking
217 * a wiring fault or if the FS entry is wired.
219 #define TRYPAGER(fs) \
220 (fs->object->type != OBJT_DEFAULT && \
221 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
224 * vm_fault:
226 * Handle a page fault occuring at the given address, requiring the given
227 * permissions, in the map specified. If successful, the page is inserted
228 * into the associated physical map.
230 * NOTE: The given address should be truncated to the proper page address.
232 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
233 * a standard error specifying why the fault is fatal is returned.
235 * The map in question must be referenced, and remains so.
236 * The caller may hold no locks.
237 * No other requirements.
240 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
242 int result;
243 vm_pindex_t first_pindex;
244 struct faultstate fs;
245 int growstack;
247 mycpu->gd_cnt.v_vm_faults++;
249 fs.didlimit = 0;
250 fs.hardfault = 0;
251 fs.fault_flags = fault_flags;
252 growstack = 1;
254 RetryFault:
256 * Find the vm_map_entry representing the backing store and resolve
257 * the top level object and page index. This may have the side
258 * effect of executing a copy-on-write on the map entry and/or
259 * creating a shadow object, but will not COW any actual VM pages.
261 * On success fs.map is left read-locked and various other fields
262 * are initialized but not otherwise referenced or locked.
264 * NOTE! vm_map_lookup will try to upgrade the fault_type to
265 * VM_FAULT_WRITE if the map entry is a virtual page table and also
266 * writable, so we can set the 'A'accessed bit in the virtual page
267 * table entry.
269 fs.map = map;
270 result = vm_map_lookup(&fs.map, vaddr, fault_type,
271 &fs.entry, &fs.first_object,
272 &first_pindex, &fs.first_prot, &fs.wired);
275 * If the lookup failed or the map protections are incompatible,
276 * the fault generally fails. However, if the caller is trying
277 * to do a user wiring we have more work to do.
279 if (result != KERN_SUCCESS) {
280 if (result != KERN_PROTECTION_FAILURE ||
281 (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
283 if (result == KERN_INVALID_ADDRESS && growstack &&
284 map != &kernel_map && curproc != NULL) {
285 result = vm_map_growstack(curproc, vaddr);
286 if (result != KERN_SUCCESS)
287 return (KERN_FAILURE);
288 growstack = 0;
289 goto RetryFault;
291 return (result);
295 * If we are user-wiring a r/w segment, and it is COW, then
296 * we need to do the COW operation. Note that we don't
297 * currently COW RO sections now, because it is NOT desirable
298 * to COW .text. We simply keep .text from ever being COW'ed
299 * and take the heat that one cannot debug wired .text sections.
301 result = vm_map_lookup(&fs.map, vaddr,
302 VM_PROT_READ|VM_PROT_WRITE|
303 VM_PROT_OVERRIDE_WRITE,
304 &fs.entry, &fs.first_object,
305 &first_pindex, &fs.first_prot,
306 &fs.wired);
307 if (result != KERN_SUCCESS)
308 return result;
311 * If we don't COW now, on a user wire, the user will never
312 * be able to write to the mapping. If we don't make this
313 * restriction, the bookkeeping would be nearly impossible.
315 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
316 fs.entry->max_protection &= ~VM_PROT_WRITE;
320 * fs.map is read-locked
322 * Misc checks. Save the map generation number to detect races.
324 fs.map_generation = fs.map->timestamp;
326 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
327 panic("vm_fault: fault on nofault entry, addr: %lx",
328 (u_long)vaddr);
332 * A system map entry may return a NULL object. No object means
333 * no pager means an unrecoverable kernel fault.
335 if (fs.first_object == NULL) {
336 panic("vm_fault: unrecoverable fault at %p in entry %p",
337 (void *)vaddr, fs.entry);
341 * Make a reference to this object to prevent its disposal while we
342 * are messing with it. Once we have the reference, the map is free
343 * to be diddled. Since objects reference their shadows (and copies),
344 * they will stay around as well.
346 * Bump the paging-in-progress count to prevent size changes (e.g.
347 * truncation operations) during I/O. This must be done after
348 * obtaining the vnode lock in order to avoid possible deadlocks.
350 * The vm_token is needed to manipulate the vm_object
352 lwkt_gettoken(&vm_token);
353 vm_object_reference(fs.first_object);
354 fs.vp = vnode_pager_lock(fs.first_object);
355 vm_object_pip_add(fs.first_object, 1);
356 lwkt_reltoken(&vm_token);
358 fs.lookup_still_valid = TRUE;
359 fs.first_m = NULL;
360 fs.object = fs.first_object; /* so unlock_and_deallocate works */
363 * If the entry is wired we cannot change the page protection.
365 if (fs.wired)
366 fault_type = fs.first_prot;
369 * The page we want is at (first_object, first_pindex), but if the
370 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
371 * page table to figure out the actual pindex.
373 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
374 * ONLY
376 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
377 result = vm_fault_vpagetable(&fs, &first_pindex,
378 fs.entry->aux.master_pde,
379 fault_type);
380 if (result == KERN_TRY_AGAIN)
381 goto RetryFault;
382 if (result != KERN_SUCCESS)
383 return (result);
387 * Now we have the actual (object, pindex), fault in the page. If
388 * vm_fault_object() fails it will unlock and deallocate the FS
389 * data. If it succeeds everything remains locked and fs->object
390 * will have an additional PIP count if it is not equal to
391 * fs->first_object
393 * vm_fault_object will set fs->prot for the pmap operation. It is
394 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
395 * page can be safely written. However, it will force a read-only
396 * mapping for a read fault if the memory is managed by a virtual
397 * page table.
399 result = vm_fault_object(&fs, first_pindex, fault_type);
401 if (result == KERN_TRY_AGAIN)
402 goto RetryFault;
403 if (result != KERN_SUCCESS)
404 return (result);
407 * On success vm_fault_object() does not unlock or deallocate, and fs.m
408 * will contain a busied page.
410 * Enter the page into the pmap and do pmap-related adjustments.
412 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
415 * Burst in a few more pages if possible. The fs.map should still
416 * be locked.
418 if (fault_flags & VM_FAULT_BURST) {
419 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
420 fs.wired == 0) {
421 vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot);
424 unlock_things(&fs);
426 vm_page_flag_clear(fs.m, PG_ZERO);
427 vm_page_flag_set(fs.m, PG_REFERENCED);
430 * If the page is not wired down, then put it where the pageout daemon
431 * can find it.
433 * We do not really need to get vm_token here but since all the
434 * vm_*() calls have to doing it here improves efficiency.
436 lwkt_gettoken(&vm_token);
437 if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
438 if (fs.wired)
439 vm_page_wire(fs.m);
440 else
441 vm_page_unwire(fs.m, 1);
442 } else {
443 vm_page_activate(fs.m);
446 if (curthread->td_lwp) {
447 if (fs.hardfault) {
448 curthread->td_lwp->lwp_ru.ru_majflt++;
449 } else {
450 curthread->td_lwp->lwp_ru.ru_minflt++;
455 * Unlock everything, and return
457 vm_page_wakeup(fs.m);
458 vm_object_deallocate(fs.first_object);
459 lwkt_reltoken(&vm_token);
461 return (KERN_SUCCESS);
465 * Fault in the specified virtual address in the current process map,
466 * returning a held VM page or NULL. See vm_fault_page() for more
467 * information.
469 * No requirements.
471 vm_page_t
472 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
474 struct lwp *lp = curthread->td_lwp;
475 vm_page_t m;
477 m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
478 fault_type, VM_FAULT_NORMAL, errorp);
479 return(m);
483 * Fault in the specified virtual address in the specified map, doing all
484 * necessary manipulation of the object store and all necessary I/O. Return
485 * a held VM page or NULL, and set *errorp. The related pmap is not
486 * updated.
488 * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
489 * and marked PG_REFERENCED as well.
491 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
492 * error will be returned.
494 * No requirements.
496 vm_page_t
497 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
498 int fault_flags, int *errorp)
500 vm_pindex_t first_pindex;
501 struct faultstate fs;
502 int result;
503 vm_prot_t orig_fault_type = fault_type;
505 mycpu->gd_cnt.v_vm_faults++;
507 fs.didlimit = 0;
508 fs.hardfault = 0;
509 fs.fault_flags = fault_flags;
510 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
512 RetryFault:
514 * Find the vm_map_entry representing the backing store and resolve
515 * the top level object and page index. This may have the side
516 * effect of executing a copy-on-write on the map entry and/or
517 * creating a shadow object, but will not COW any actual VM pages.
519 * On success fs.map is left read-locked and various other fields
520 * are initialized but not otherwise referenced or locked.
522 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
523 * if the map entry is a virtual page table and also writable,
524 * so we can set the 'A'accessed bit in the virtual page table entry.
526 fs.map = map;
527 result = vm_map_lookup(&fs.map, vaddr, fault_type,
528 &fs.entry, &fs.first_object,
529 &first_pindex, &fs.first_prot, &fs.wired);
531 if (result != KERN_SUCCESS) {
532 *errorp = result;
533 return (NULL);
537 * fs.map is read-locked
539 * Misc checks. Save the map generation number to detect races.
541 fs.map_generation = fs.map->timestamp;
543 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
544 panic("vm_fault: fault on nofault entry, addr: %lx",
545 (u_long)vaddr);
549 * A system map entry may return a NULL object. No object means
550 * no pager means an unrecoverable kernel fault.
552 if (fs.first_object == NULL) {
553 panic("vm_fault: unrecoverable fault at %p in entry %p",
554 (void *)vaddr, fs.entry);
558 * Make a reference to this object to prevent its disposal while we
559 * are messing with it. Once we have the reference, the map is free
560 * to be diddled. Since objects reference their shadows (and copies),
561 * they will stay around as well.
563 * Bump the paging-in-progress count to prevent size changes (e.g.
564 * truncation operations) during I/O. This must be done after
565 * obtaining the vnode lock in order to avoid possible deadlocks.
567 * The vm_token is needed to manipulate the vm_object
569 lwkt_gettoken(&vm_token);
570 vm_object_reference(fs.first_object);
571 fs.vp = vnode_pager_lock(fs.first_object);
572 vm_object_pip_add(fs.first_object, 1);
573 lwkt_reltoken(&vm_token);
575 fs.lookup_still_valid = TRUE;
576 fs.first_m = NULL;
577 fs.object = fs.first_object; /* so unlock_and_deallocate works */
580 * If the entry is wired we cannot change the page protection.
582 if (fs.wired)
583 fault_type = fs.first_prot;
586 * The page we want is at (first_object, first_pindex), but if the
587 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
588 * page table to figure out the actual pindex.
590 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
591 * ONLY
593 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
594 result = vm_fault_vpagetable(&fs, &first_pindex,
595 fs.entry->aux.master_pde,
596 fault_type);
597 if (result == KERN_TRY_AGAIN)
598 goto RetryFault;
599 if (result != KERN_SUCCESS) {
600 *errorp = result;
601 return (NULL);
606 * Now we have the actual (object, pindex), fault in the page. If
607 * vm_fault_object() fails it will unlock and deallocate the FS
608 * data. If it succeeds everything remains locked and fs->object
609 * will have an additinal PIP count if it is not equal to
610 * fs->first_object
612 result = vm_fault_object(&fs, first_pindex, fault_type);
614 if (result == KERN_TRY_AGAIN)
615 goto RetryFault;
616 if (result != KERN_SUCCESS) {
617 *errorp = result;
618 return(NULL);
621 if ((orig_fault_type & VM_PROT_WRITE) &&
622 (fs.prot & VM_PROT_WRITE) == 0) {
623 *errorp = KERN_PROTECTION_FAILURE;
624 unlock_and_deallocate(&fs);
625 return(NULL);
629 * On success vm_fault_object() does not unlock or deallocate, and fs.m
630 * will contain a busied page.
632 unlock_things(&fs);
635 * Return a held page. We are not doing any pmap manipulation so do
636 * not set PG_MAPPED. However, adjust the page flags according to
637 * the fault type because the caller may not use a managed pmapping
638 * (so we don't want to lose the fact that the page will be dirtied
639 * if a write fault was specified).
641 lwkt_gettoken(&vm_token);
642 vm_page_hold(fs.m);
643 vm_page_flag_clear(fs.m, PG_ZERO);
644 if (fault_type & VM_PROT_WRITE)
645 vm_page_dirty(fs.m);
648 * Update the pmap. We really only have to do this if a COW
649 * occured to replace the read-only page with the new page. For
650 * now just do it unconditionally. XXX
652 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
653 vm_page_flag_set(fs.m, PG_REFERENCED);
656 * Unbusy the page by activating it. It remains held and will not
657 * be reclaimed.
659 vm_page_activate(fs.m);
661 if (curthread->td_lwp) {
662 if (fs.hardfault) {
663 curthread->td_lwp->lwp_ru.ru_majflt++;
664 } else {
665 curthread->td_lwp->lwp_ru.ru_minflt++;
670 * Unlock everything, and return the held page.
672 vm_page_wakeup(fs.m);
673 vm_object_deallocate(fs.first_object);
674 lwkt_reltoken(&vm_token);
676 *errorp = 0;
677 return(fs.m);
681 * Fault in the specified (object,offset), dirty the returned page as
682 * needed. If the requested fault_type cannot be done NULL and an
683 * error is returned.
685 * A held (but not busied) page is returned.
687 * No requirements.
689 vm_page_t
690 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
691 vm_prot_t fault_type, int fault_flags, int *errorp)
693 int result;
694 vm_pindex_t first_pindex;
695 struct faultstate fs;
696 struct vm_map_entry entry;
698 bzero(&entry, sizeof(entry));
699 entry.object.vm_object = object;
700 entry.maptype = VM_MAPTYPE_NORMAL;
701 entry.protection = entry.max_protection = fault_type;
703 fs.didlimit = 0;
704 fs.hardfault = 0;
705 fs.fault_flags = fault_flags;
706 fs.map = NULL;
707 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
709 RetryFault:
711 fs.first_object = object;
712 first_pindex = OFF_TO_IDX(offset);
713 fs.entry = &entry;
714 fs.first_prot = fault_type;
715 fs.wired = 0;
716 /*fs.map_generation = 0; unused */
719 * Make a reference to this object to prevent its disposal while we
720 * are messing with it. Once we have the reference, the map is free
721 * to be diddled. Since objects reference their shadows (and copies),
722 * they will stay around as well.
724 * Bump the paging-in-progress count to prevent size changes (e.g.
725 * truncation operations) during I/O. This must be done after
726 * obtaining the vnode lock in order to avoid possible deadlocks.
728 lwkt_gettoken(&vm_token);
729 vm_object_reference(fs.first_object);
730 fs.vp = vnode_pager_lock(fs.first_object);
731 vm_object_pip_add(fs.first_object, 1);
732 lwkt_reltoken(&vm_token);
734 fs.lookup_still_valid = TRUE;
735 fs.first_m = NULL;
736 fs.object = fs.first_object; /* so unlock_and_deallocate works */
738 #if 0
739 /* XXX future - ability to operate on VM object using vpagetable */
740 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
741 result = vm_fault_vpagetable(&fs, &first_pindex,
742 fs.entry->aux.master_pde,
743 fault_type);
744 if (result == KERN_TRY_AGAIN)
745 goto RetryFault;
746 if (result != KERN_SUCCESS) {
747 *errorp = result;
748 return (NULL);
751 #endif
754 * Now we have the actual (object, pindex), fault in the page. If
755 * vm_fault_object() fails it will unlock and deallocate the FS
756 * data. If it succeeds everything remains locked and fs->object
757 * will have an additinal PIP count if it is not equal to
758 * fs->first_object
760 result = vm_fault_object(&fs, first_pindex, fault_type);
762 if (result == KERN_TRY_AGAIN)
763 goto RetryFault;
764 if (result != KERN_SUCCESS) {
765 *errorp = result;
766 return(NULL);
769 if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
770 *errorp = KERN_PROTECTION_FAILURE;
771 unlock_and_deallocate(&fs);
772 return(NULL);
776 * On success vm_fault_object() does not unlock or deallocate, and fs.m
777 * will contain a busied page.
779 unlock_things(&fs);
782 * Return a held page. We are not doing any pmap manipulation so do
783 * not set PG_MAPPED. However, adjust the page flags according to
784 * the fault type because the caller may not use a managed pmapping
785 * (so we don't want to lose the fact that the page will be dirtied
786 * if a write fault was specified).
788 lwkt_gettoken(&vm_token);
789 vm_page_hold(fs.m);
790 vm_page_flag_clear(fs.m, PG_ZERO);
791 if (fault_type & VM_PROT_WRITE)
792 vm_page_dirty(fs.m);
794 if (fault_flags & VM_FAULT_DIRTY)
795 vm_page_dirty(fs.m);
796 if (fault_flags & VM_FAULT_UNSWAP)
797 swap_pager_unswapped(fs.m);
800 * Indicate that the page was accessed.
802 vm_page_flag_set(fs.m, PG_REFERENCED);
805 * Unbusy the page by activating it. It remains held and will not
806 * be reclaimed.
808 vm_page_activate(fs.m);
810 if (curthread->td_lwp) {
811 if (fs.hardfault) {
812 mycpu->gd_cnt.v_vm_faults++;
813 curthread->td_lwp->lwp_ru.ru_majflt++;
814 } else {
815 curthread->td_lwp->lwp_ru.ru_minflt++;
820 * Unlock everything, and return the held page.
822 vm_page_wakeup(fs.m);
823 vm_object_deallocate(fs.first_object);
824 lwkt_reltoken(&vm_token);
826 *errorp = 0;
827 return(fs.m);
831 * Translate the virtual page number (first_pindex) that is relative
832 * to the address space into a logical page number that is relative to the
833 * backing object. Use the virtual page table pointed to by (vpte).
835 * This implements an N-level page table. Any level can terminate the
836 * scan by setting VPTE_PS. A linear mapping is accomplished by setting
837 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
839 * No requirements (vm_token need not be held).
841 static
843 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
844 vpte_t vpte, int fault_type)
846 struct lwbuf *lwb;
847 int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
848 int result = KERN_SUCCESS;
849 vpte_t *ptep;
851 for (;;) {
853 * We cannot proceed if the vpte is not valid, not readable
854 * for a read fault, or not writable for a write fault.
856 if ((vpte & VPTE_V) == 0) {
857 unlock_and_deallocate(fs);
858 return (KERN_FAILURE);
860 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
861 unlock_and_deallocate(fs);
862 return (KERN_FAILURE);
864 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
865 unlock_and_deallocate(fs);
866 return (KERN_FAILURE);
868 if ((vpte & VPTE_PS) || vshift == 0)
869 break;
870 KKASSERT(vshift >= VPTE_PAGE_BITS);
873 * Get the page table page. Nominally we only read the page
874 * table, but since we are actively setting VPTE_M and VPTE_A,
875 * tell vm_fault_object() that we are writing it.
877 * There is currently no real need to optimize this.
879 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
880 VM_PROT_READ|VM_PROT_WRITE);
881 if (result != KERN_SUCCESS)
882 return (result);
885 * Process the returned fs.m and look up the page table
886 * entry in the page table page.
888 vshift -= VPTE_PAGE_BITS;
889 lwb = lwbuf_alloc(fs->m);
890 ptep = ((vpte_t *)lwbuf_kva(lwb) +
891 ((*pindex >> vshift) & VPTE_PAGE_MASK));
892 vpte = *ptep;
895 * Page table write-back. If the vpte is valid for the
896 * requested operation, do a write-back to the page table.
898 * XXX VPTE_M is not set properly for page directory pages.
899 * It doesn't get set in the page directory if the page table
900 * is modified during a read access.
902 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
903 (vpte & VPTE_W)) {
904 if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
905 atomic_set_long(ptep, VPTE_M | VPTE_A);
906 vm_page_dirty(fs->m);
909 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
910 (vpte & VPTE_R)) {
911 if ((vpte & VPTE_A) == 0) {
912 atomic_set_long(ptep, VPTE_A);
913 vm_page_dirty(fs->m);
916 lwbuf_free(lwb);
917 vm_page_flag_set(fs->m, PG_REFERENCED);
918 vm_page_activate(fs->m);
919 vm_page_wakeup(fs->m);
920 cleanup_successful_fault(fs);
923 * Combine remaining address bits with the vpte.
925 /* JG how many bits from each? */
926 *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
927 (*pindex & ((1L << vshift) - 1));
928 return (KERN_SUCCESS);
933 * This is the core of the vm_fault code.
935 * Do all operations required to fault-in (fs.first_object, pindex). Run
936 * through the shadow chain as necessary and do required COW or virtual
937 * copy operations. The caller has already fully resolved the vm_map_entry
938 * and, if appropriate, has created a copy-on-write layer. All we need to
939 * do is iterate the object chain.
941 * On failure (fs) is unlocked and deallocated and the caller may return or
942 * retry depending on the failure code. On success (fs) is NOT unlocked or
943 * deallocated, fs.m will contained a resolved, busied page, and fs.object
944 * will have an additional PIP count if it is not equal to fs.first_object.
946 * No requirements.
948 static
950 vm_fault_object(struct faultstate *fs,
951 vm_pindex_t first_pindex, vm_prot_t fault_type)
953 vm_object_t next_object;
954 vm_pindex_t pindex;
956 fs->prot = fs->first_prot;
957 fs->object = fs->first_object;
958 pindex = first_pindex;
961 * If a read fault occurs we try to make the page writable if
962 * possible. There are three cases where we cannot make the
963 * page mapping writable:
965 * (1) The mapping is read-only or the VM object is read-only,
966 * fs->prot above will simply not have VM_PROT_WRITE set.
968 * (2) If the mapping is a virtual page table we need to be able
969 * to detect writes so we can set VPTE_M in the virtual page
970 * table.
972 * (3) If the VM page is read-only or copy-on-write, upgrading would
973 * just result in an unnecessary COW fault.
975 * VM_PROT_VPAGED is set if faulting via a virtual page table and
976 * causes adjustments to the 'M'odify bit to also turn off write
977 * access to force a re-fault.
979 if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
980 if ((fault_type & VM_PROT_WRITE) == 0)
981 fs->prot &= ~VM_PROT_WRITE;
984 lwkt_gettoken(&vm_token);
986 for (;;) {
988 * If the object is dead, we stop here
990 if (fs->object->flags & OBJ_DEAD) {
991 unlock_and_deallocate(fs);
992 lwkt_reltoken(&vm_token);
993 return (KERN_PROTECTION_FAILURE);
997 * See if page is resident. spl protection is required
998 * to avoid an interrupt unbusy/free race against our
999 * lookup. We must hold the protection through a page
1000 * allocation or busy.
1002 crit_enter();
1003 fs->m = vm_page_lookup(fs->object, pindex);
1004 if (fs->m != NULL) {
1005 int queue;
1007 * Wait/Retry if the page is busy. We have to do this
1008 * if the page is busy via either PG_BUSY or
1009 * vm_page_t->busy because the vm_pager may be using
1010 * vm_page_t->busy for pageouts ( and even pageins if
1011 * it is the vnode pager ), and we could end up trying
1012 * to pagein and pageout the same page simultaneously.
1014 * We can theoretically allow the busy case on a read
1015 * fault if the page is marked valid, but since such
1016 * pages are typically already pmap'd, putting that
1017 * special case in might be more effort then it is
1018 * worth. We cannot under any circumstances mess
1019 * around with a vm_page_t->busy page except, perhaps,
1020 * to pmap it.
1022 if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
1023 unlock_things(fs);
1024 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1025 mycpu->gd_cnt.v_intrans++;
1026 vm_object_deallocate(fs->first_object);
1027 fs->first_object = NULL;
1028 lwkt_reltoken(&vm_token);
1029 crit_exit();
1030 return (KERN_TRY_AGAIN);
1034 * If reactivating a page from PQ_CACHE we may have
1035 * to rate-limit.
1037 queue = fs->m->queue;
1038 vm_page_unqueue_nowakeup(fs->m);
1040 if ((queue - fs->m->pc) == PQ_CACHE &&
1041 vm_page_count_severe()) {
1042 vm_page_activate(fs->m);
1043 unlock_and_deallocate(fs);
1044 vm_waitpfault();
1045 lwkt_reltoken(&vm_token);
1046 crit_exit();
1047 return (KERN_TRY_AGAIN);
1051 * Mark page busy for other processes, and the
1052 * pagedaemon. If it still isn't completely valid
1053 * (readable), or if a read-ahead-mark is set on
1054 * the VM page, jump to readrest, else we found the
1055 * page and can return.
1057 * We can release the spl once we have marked the
1058 * page busy.
1060 vm_page_busy(fs->m);
1061 crit_exit();
1063 if (fs->m->object != &kernel_object) {
1064 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1065 VM_PAGE_BITS_ALL) {
1066 goto readrest;
1068 if (fs->m->flags & PG_RAM) {
1069 if (debug_cluster)
1070 kprintf("R");
1071 vm_page_flag_clear(fs->m, PG_RAM);
1072 goto readrest;
1075 break; /* break to PAGE HAS BEEN FOUND */
1079 * Page is not resident, If this is the search termination
1080 * or the pager might contain the page, allocate a new page.
1082 * NOTE: We are still in a critical section.
1084 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1086 * If the page is beyond the object size we fail
1088 if (pindex >= fs->object->size) {
1089 lwkt_reltoken(&vm_token);
1090 crit_exit();
1091 unlock_and_deallocate(fs);
1092 return (KERN_PROTECTION_FAILURE);
1096 * Ratelimit.
1098 if (fs->didlimit == 0 && curproc != NULL) {
1099 int limticks;
1101 limticks = vm_fault_ratelimit(curproc->p_vmspace);
1102 if (limticks) {
1103 lwkt_reltoken(&vm_token);
1104 crit_exit();
1105 unlock_and_deallocate(fs);
1106 tsleep(curproc, 0, "vmrate", limticks);
1107 fs->didlimit = 1;
1108 return (KERN_TRY_AGAIN);
1113 * Allocate a new page for this object/offset pair.
1115 fs->m = NULL;
1116 if (!vm_page_count_severe()) {
1117 fs->m = vm_page_alloc(fs->object, pindex,
1118 (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1120 if (fs->m == NULL) {
1121 lwkt_reltoken(&vm_token);
1122 crit_exit();
1123 unlock_and_deallocate(fs);
1124 vm_waitpfault();
1125 return (KERN_TRY_AGAIN);
1128 crit_exit();
1130 readrest:
1132 * We have found an invalid or partially valid page, a
1133 * page with a read-ahead mark which might be partially or
1134 * fully valid (and maybe dirty too), or we have allocated
1135 * a new page.
1137 * Attempt to fault-in the page if there is a chance that the
1138 * pager has it, and potentially fault in additional pages
1139 * at the same time.
1141 * We are NOT in splvm here and if TRYPAGER is true then
1142 * fs.m will be non-NULL and will be PG_BUSY for us.
1144 if (TRYPAGER(fs)) {
1145 int rv;
1146 int seqaccess;
1147 u_char behavior = vm_map_entry_behavior(fs->entry);
1149 if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1150 seqaccess = 0;
1151 else
1152 seqaccess = -1;
1155 * If sequential access is detected then attempt
1156 * to deactivate/cache pages behind the scan to
1157 * prevent resource hogging.
1159 * Use of PG_RAM to detect sequential access
1160 * also simulates multi-zone sequential access
1161 * detection for free.
1163 * NOTE: Partially valid dirty pages cannot be
1164 * deactivated without causing NFS picemeal
1165 * writes to barf.
1167 if ((fs->first_object->type != OBJT_DEVICE) &&
1168 (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1169 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1170 (fs->m->flags & PG_RAM)))
1172 vm_pindex_t scan_pindex;
1173 int scan_count = 16;
1175 if (first_pindex < 16) {
1176 scan_pindex = 0;
1177 scan_count = 0;
1178 } else {
1179 scan_pindex = first_pindex - 16;
1180 if (scan_pindex < 16)
1181 scan_count = scan_pindex;
1182 else
1183 scan_count = 16;
1186 crit_enter();
1187 while (scan_count) {
1188 vm_page_t mt;
1190 mt = vm_page_lookup(fs->first_object,
1191 scan_pindex);
1192 if (mt == NULL ||
1193 (mt->valid != VM_PAGE_BITS_ALL)) {
1194 break;
1196 if (mt->busy ||
1197 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1198 mt->hold_count ||
1199 mt->wire_count) {
1200 goto skip;
1202 if (mt->dirty == 0)
1203 vm_page_test_dirty(mt);
1204 if (mt->dirty) {
1205 vm_page_busy(mt);
1206 vm_page_protect(mt,
1207 VM_PROT_NONE);
1208 vm_page_deactivate(mt);
1209 vm_page_wakeup(mt);
1210 } else {
1211 vm_page_cache(mt);
1213 skip:
1214 --scan_count;
1215 --scan_pindex;
1217 crit_exit();
1219 seqaccess = 1;
1223 * Avoid deadlocking against the map when doing I/O.
1224 * fs.object and the page is PG_BUSY'd.
1226 unlock_map(fs);
1229 * Acquire the page data. We still hold a ref on
1230 * fs.object and the page has been PG_BUSY's.
1232 * The pager may replace the page (for example, in
1233 * order to enter a fictitious page into the
1234 * object). If it does so it is responsible for
1235 * cleaning up the passed page and properly setting
1236 * the new page PG_BUSY.
1238 * If we got here through a PG_RAM read-ahead
1239 * mark the page may be partially dirty and thus
1240 * not freeable. Don't bother checking to see
1241 * if the pager has the page because we can't free
1242 * it anyway. We have to depend on the get_page
1243 * operation filling in any gaps whether there is
1244 * backing store or not.
1246 rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1248 if (rv == VM_PAGER_OK) {
1250 * Relookup in case pager changed page. Pager
1251 * is responsible for disposition of old page
1252 * if moved.
1254 * XXX other code segments do relookups too.
1255 * It's a bad abstraction that needs to be
1256 * fixed/removed.
1258 fs->m = vm_page_lookup(fs->object, pindex);
1259 if (fs->m == NULL) {
1260 lwkt_reltoken(&vm_token);
1261 unlock_and_deallocate(fs);
1262 return (KERN_TRY_AGAIN);
1265 ++fs->hardfault;
1266 break; /* break to PAGE HAS BEEN FOUND */
1270 * Remove the bogus page (which does not exist at this
1271 * object/offset); before doing so, we must get back
1272 * our object lock to preserve our invariant.
1274 * Also wake up any other process that may want to bring
1275 * in this page.
1277 * If this is the top-level object, we must leave the
1278 * busy page to prevent another process from rushing
1279 * past us, and inserting the page in that object at
1280 * the same time that we are.
1282 if (rv == VM_PAGER_ERROR) {
1283 if (curproc)
1284 kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1285 else
1286 kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1290 * Data outside the range of the pager or an I/O error
1292 * The page may have been wired during the pagein,
1293 * e.g. by the buffer cache, and cannot simply be
1294 * freed. Call vnode_pager_freepage() to deal with it.
1297 * XXX - the check for kernel_map is a kludge to work
1298 * around having the machine panic on a kernel space
1299 * fault w/ I/O error.
1301 if (((fs->map != &kernel_map) &&
1302 (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1303 vnode_pager_freepage(fs->m);
1304 lwkt_reltoken(&vm_token);
1305 fs->m = NULL;
1306 unlock_and_deallocate(fs);
1307 if (rv == VM_PAGER_ERROR)
1308 return (KERN_FAILURE);
1309 else
1310 return (KERN_PROTECTION_FAILURE);
1311 /* NOT REACHED */
1313 if (fs->object != fs->first_object) {
1314 vnode_pager_freepage(fs->m);
1315 fs->m = NULL;
1317 * XXX - we cannot just fall out at this
1318 * point, m has been freed and is invalid!
1324 * We get here if the object has a default pager (or unwiring)
1325 * or the pager doesn't have the page.
1327 if (fs->object == fs->first_object)
1328 fs->first_m = fs->m;
1331 * Move on to the next object. Lock the next object before
1332 * unlocking the current one.
1334 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1335 next_object = fs->object->backing_object;
1336 if (next_object == NULL) {
1338 * If there's no object left, fill the page in the top
1339 * object with zeros.
1341 if (fs->object != fs->first_object) {
1342 vm_object_pip_wakeup(fs->object);
1344 fs->object = fs->first_object;
1345 pindex = first_pindex;
1346 fs->m = fs->first_m;
1348 fs->first_m = NULL;
1351 * Zero the page if necessary and mark it valid.
1353 if ((fs->m->flags & PG_ZERO) == 0) {
1354 vm_page_zero_fill(fs->m);
1355 } else {
1356 mycpu->gd_cnt.v_ozfod++;
1358 mycpu->gd_cnt.v_zfod++;
1359 fs->m->valid = VM_PAGE_BITS_ALL;
1360 break; /* break to PAGE HAS BEEN FOUND */
1362 if (fs->object != fs->first_object) {
1363 vm_object_pip_wakeup(fs->object);
1365 KASSERT(fs->object != next_object,
1366 ("object loop %p", next_object));
1367 fs->object = next_object;
1368 vm_object_pip_add(fs->object, 1);
1372 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1373 * is held.]
1375 * vm_token is still held
1377 * If the page is being written, but isn't already owned by the
1378 * top-level object, we have to copy it into a new page owned by the
1379 * top-level object.
1381 KASSERT((fs->m->flags & PG_BUSY) != 0,
1382 ("vm_fault: not busy after main loop"));
1384 if (fs->object != fs->first_object) {
1386 * We only really need to copy if we want to write it.
1388 if (fault_type & VM_PROT_WRITE) {
1390 * This allows pages to be virtually copied from a
1391 * backing_object into the first_object, where the
1392 * backing object has no other refs to it, and cannot
1393 * gain any more refs. Instead of a bcopy, we just
1394 * move the page from the backing object to the
1395 * first object. Note that we must mark the page
1396 * dirty in the first object so that it will go out
1397 * to swap when needed.
1399 if (
1401 * Map, if present, has not changed
1403 (fs->map == NULL ||
1404 fs->map_generation == fs->map->timestamp) &&
1406 * Only one shadow object
1408 (fs->object->shadow_count == 1) &&
1410 * No COW refs, except us
1412 (fs->object->ref_count == 1) &&
1414 * No one else can look this object up
1416 (fs->object->handle == NULL) &&
1418 * No other ways to look the object up
1420 ((fs->object->type == OBJT_DEFAULT) ||
1421 (fs->object->type == OBJT_SWAP)) &&
1423 * We don't chase down the shadow chain
1425 (fs->object == fs->first_object->backing_object) &&
1428 * grab the lock if we need to
1430 (fs->lookup_still_valid ||
1431 fs->map == NULL ||
1432 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1435 fs->lookup_still_valid = 1;
1437 * get rid of the unnecessary page
1439 vm_page_protect(fs->first_m, VM_PROT_NONE);
1440 vm_page_free(fs->first_m);
1441 fs->first_m = NULL;
1444 * grab the page and put it into the
1445 * process'es object. The page is
1446 * automatically made dirty.
1448 vm_page_rename(fs->m, fs->first_object, first_pindex);
1449 fs->first_m = fs->m;
1450 vm_page_busy(fs->first_m);
1451 fs->m = NULL;
1452 mycpu->gd_cnt.v_cow_optim++;
1453 } else {
1455 * Oh, well, lets copy it.
1457 vm_page_copy(fs->m, fs->first_m);
1458 vm_page_event(fs->m, VMEVENT_COW);
1461 if (fs->m) {
1463 * We no longer need the old page or object.
1465 release_page(fs);
1469 * fs->object != fs->first_object due to above
1470 * conditional
1472 vm_object_pip_wakeup(fs->object);
1475 * Only use the new page below...
1478 mycpu->gd_cnt.v_cow_faults++;
1479 fs->m = fs->first_m;
1480 fs->object = fs->first_object;
1481 pindex = first_pindex;
1482 } else {
1484 * If it wasn't a write fault avoid having to copy
1485 * the page by mapping it read-only.
1487 fs->prot &= ~VM_PROT_WRITE;
1492 * We may have had to unlock a map to do I/O. If we did then
1493 * lookup_still_valid will be FALSE. If the map generation count
1494 * also changed then all sorts of things could have happened while
1495 * we were doing the I/O and we need to retry.
1498 if (!fs->lookup_still_valid &&
1499 fs->map != NULL &&
1500 (fs->map->timestamp != fs->map_generation)) {
1501 release_page(fs);
1502 lwkt_reltoken(&vm_token);
1503 unlock_and_deallocate(fs);
1504 return (KERN_TRY_AGAIN);
1508 * If the fault is a write, we know that this page is being
1509 * written NOW so dirty it explicitly to save on pmap_is_modified()
1510 * calls later.
1512 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1513 * if the page is already dirty to prevent data written with
1514 * the expectation of being synced from not being synced.
1515 * Likewise if this entry does not request NOSYNC then make
1516 * sure the page isn't marked NOSYNC. Applications sharing
1517 * data should use the same flags to avoid ping ponging.
1519 * Also tell the backing pager, if any, that it should remove
1520 * any swap backing since the page is now dirty.
1522 if (fs->prot & VM_PROT_WRITE) {
1523 vm_object_set_writeable_dirty(fs->m->object);
1524 vm_set_nosync(fs->m, fs->entry);
1525 if (fs->fault_flags & VM_FAULT_DIRTY) {
1526 crit_enter();
1527 vm_page_dirty(fs->m);
1528 swap_pager_unswapped(fs->m);
1529 crit_exit();
1533 lwkt_reltoken(&vm_token);
1536 * Page had better still be busy. We are still locked up and
1537 * fs->object will have another PIP reference if it is not equal
1538 * to fs->first_object.
1540 KASSERT(fs->m->flags & PG_BUSY,
1541 ("vm_fault: page %p not busy!", fs->m));
1544 * Sanity check: page must be completely valid or it is not fit to
1545 * map into user space. vm_pager_get_pages() ensures this.
1547 if (fs->m->valid != VM_PAGE_BITS_ALL) {
1548 vm_page_zero_invalid(fs->m, TRUE);
1549 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1552 return (KERN_SUCCESS);
1556 * Wire down a range of virtual addresses in a map. The entry in question
1557 * should be marked in-transition and the map must be locked. We must
1558 * release the map temporarily while faulting-in the page to avoid a
1559 * deadlock. Note that the entry may be clipped while we are blocked but
1560 * will never be freed.
1562 * No requirements.
1565 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1567 boolean_t fictitious;
1568 vm_offset_t start;
1569 vm_offset_t end;
1570 vm_offset_t va;
1571 vm_paddr_t pa;
1572 pmap_t pmap;
1573 int rv;
1575 pmap = vm_map_pmap(map);
1576 start = entry->start;
1577 end = entry->end;
1578 fictitious = entry->object.vm_object &&
1579 (entry->object.vm_object->type == OBJT_DEVICE);
1581 lwkt_gettoken(&vm_token);
1582 vm_map_unlock(map);
1583 map->timestamp++;
1586 * We simulate a fault to get the page and enter it in the physical
1587 * map.
1589 for (va = start; va < end; va += PAGE_SIZE) {
1590 if (user_wire) {
1591 rv = vm_fault(map, va, VM_PROT_READ,
1592 VM_FAULT_USER_WIRE);
1593 } else {
1594 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1595 VM_FAULT_CHANGE_WIRING);
1597 if (rv) {
1598 while (va > start) {
1599 va -= PAGE_SIZE;
1600 if ((pa = pmap_extract(pmap, va)) == 0)
1601 continue;
1602 pmap_change_wiring(pmap, va, FALSE);
1603 if (!fictitious)
1604 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1606 vm_map_lock(map);
1607 lwkt_reltoken(&vm_token);
1608 return (rv);
1611 vm_map_lock(map);
1612 lwkt_reltoken(&vm_token);
1613 return (KERN_SUCCESS);
1617 * Unwire a range of virtual addresses in a map. The map should be
1618 * locked.
1620 void
1621 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1623 boolean_t fictitious;
1624 vm_offset_t start;
1625 vm_offset_t end;
1626 vm_offset_t va;
1627 vm_paddr_t pa;
1628 pmap_t pmap;
1630 pmap = vm_map_pmap(map);
1631 start = entry->start;
1632 end = entry->end;
1633 fictitious = entry->object.vm_object &&
1634 (entry->object.vm_object->type == OBJT_DEVICE);
1637 * Since the pages are wired down, we must be able to get their
1638 * mappings from the physical map system.
1640 lwkt_gettoken(&vm_token);
1641 for (va = start; va < end; va += PAGE_SIZE) {
1642 pa = pmap_extract(pmap, va);
1643 if (pa != 0) {
1644 pmap_change_wiring(pmap, va, FALSE);
1645 if (!fictitious)
1646 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1649 lwkt_reltoken(&vm_token);
1653 * Reduce the rate at which memory is allocated to a process based
1654 * on the perceived load on the VM system. As the load increases
1655 * the allocation burst rate goes down and the delay increases.
1657 * Rate limiting does not apply when faulting active or inactive
1658 * pages. When faulting 'cache' pages, rate limiting only applies
1659 * if the system currently has a severe page deficit.
1661 * XXX vm_pagesupply should be increased when a page is freed.
1663 * We sleep up to 1/10 of a second.
1665 static int
1666 vm_fault_ratelimit(struct vmspace *vmspace)
1668 if (vm_load_enable == 0)
1669 return(0);
1670 if (vmspace->vm_pagesupply > 0) {
1671 --vmspace->vm_pagesupply; /* SMP race ok */
1672 return(0);
1674 #ifdef INVARIANTS
1675 if (vm_load_debug) {
1676 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1677 vm_load,
1678 (1000 - vm_load ) / 10, vm_load * hz / 10000,
1679 curproc->p_pid, curproc->p_comm);
1681 #endif
1682 vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1683 return(vm_load * hz / 10000);
1687 * Copy all of the pages from a wired-down map entry to another.
1689 * The source and destination maps must be locked for write.
1690 * The source map entry must be wired down (or be a sharing map
1691 * entry corresponding to a main map entry that is wired down).
1693 * No other requirements.
1695 void
1696 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1697 vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1699 vm_object_t dst_object;
1700 vm_object_t src_object;
1701 vm_ooffset_t dst_offset;
1702 vm_ooffset_t src_offset;
1703 vm_prot_t prot;
1704 vm_offset_t vaddr;
1705 vm_page_t dst_m;
1706 vm_page_t src_m;
1708 #ifdef lint
1709 src_map++;
1710 #endif /* lint */
1712 src_object = src_entry->object.vm_object;
1713 src_offset = src_entry->offset;
1716 * Create the top-level object for the destination entry. (Doesn't
1717 * actually shadow anything - we copy the pages directly.)
1719 vm_map_entry_allocate_object(dst_entry);
1720 dst_object = dst_entry->object.vm_object;
1722 prot = dst_entry->max_protection;
1725 * Loop through all of the pages in the entry's range, copying each
1726 * one from the source object (it should be there) to the destination
1727 * object.
1729 for (vaddr = dst_entry->start, dst_offset = 0;
1730 vaddr < dst_entry->end;
1731 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1734 * Allocate a page in the destination object
1736 do {
1737 dst_m = vm_page_alloc(dst_object,
1738 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1739 if (dst_m == NULL) {
1740 vm_wait(0);
1742 } while (dst_m == NULL);
1745 * Find the page in the source object, and copy it in.
1746 * (Because the source is wired down, the page will be in
1747 * memory.)
1749 src_m = vm_page_lookup(src_object,
1750 OFF_TO_IDX(dst_offset + src_offset));
1751 if (src_m == NULL)
1752 panic("vm_fault_copy_wired: page missing");
1754 vm_page_copy(src_m, dst_m);
1755 vm_page_event(src_m, VMEVENT_COW);
1758 * Enter it in the pmap...
1761 vm_page_flag_clear(dst_m, PG_ZERO);
1762 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1765 * Mark it no longer busy, and put it on the active list.
1767 vm_page_activate(dst_m);
1768 vm_page_wakeup(dst_m);
1772 #if 0
1775 * This routine checks around the requested page for other pages that
1776 * might be able to be faulted in. This routine brackets the viable
1777 * pages for the pages to be paged in.
1779 * Inputs:
1780 * m, rbehind, rahead
1782 * Outputs:
1783 * marray (array of vm_page_t), reqpage (index of requested page)
1785 * Return value:
1786 * number of pages in marray
1788 static int
1789 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1790 vm_page_t *marray, int *reqpage)
1792 int i,j;
1793 vm_object_t object;
1794 vm_pindex_t pindex, startpindex, endpindex, tpindex;
1795 vm_page_t rtm;
1796 int cbehind, cahead;
1798 object = m->object;
1799 pindex = m->pindex;
1802 * we don't fault-ahead for device pager
1804 if (object->type == OBJT_DEVICE) {
1805 *reqpage = 0;
1806 marray[0] = m;
1807 return 1;
1811 * if the requested page is not available, then give up now
1813 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1814 *reqpage = 0; /* not used by caller, fix compiler warn */
1815 return 0;
1818 if ((cbehind == 0) && (cahead == 0)) {
1819 *reqpage = 0;
1820 marray[0] = m;
1821 return 1;
1824 if (rahead > cahead) {
1825 rahead = cahead;
1828 if (rbehind > cbehind) {
1829 rbehind = cbehind;
1833 * Do not do any readahead if we have insufficient free memory.
1835 * XXX code was broken disabled before and has instability
1836 * with this conditonal fixed, so shortcut for now.
1838 if (burst_fault == 0 || vm_page_count_severe()) {
1839 marray[0] = m;
1840 *reqpage = 0;
1841 return 1;
1845 * scan backward for the read behind pages -- in memory
1847 * Assume that if the page is not found an interrupt will not
1848 * create it. Theoretically interrupts can only remove (busy)
1849 * pages, not create new associations.
1851 if (pindex > 0) {
1852 if (rbehind > pindex) {
1853 rbehind = pindex;
1854 startpindex = 0;
1855 } else {
1856 startpindex = pindex - rbehind;
1859 crit_enter();
1860 lwkt_gettoken(&vm_token);
1861 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
1862 if (vm_page_lookup(object, tpindex - 1))
1863 break;
1866 i = 0;
1867 while (tpindex < pindex) {
1868 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1869 if (rtm == NULL) {
1870 lwkt_reltoken(&vm_token);
1871 crit_exit();
1872 for (j = 0; j < i; j++) {
1873 vm_page_free(marray[j]);
1875 marray[0] = m;
1876 *reqpage = 0;
1877 return 1;
1879 marray[i] = rtm;
1880 ++i;
1881 ++tpindex;
1883 lwkt_reltoken(&vm_token);
1884 crit_exit();
1885 } else {
1886 i = 0;
1890 * Assign requested page
1892 marray[i] = m;
1893 *reqpage = i;
1894 ++i;
1897 * Scan forwards for read-ahead pages
1899 tpindex = pindex + 1;
1900 endpindex = tpindex + rahead;
1901 if (endpindex > object->size)
1902 endpindex = object->size;
1904 crit_enter();
1905 lwkt_gettoken(&vm_token);
1906 while (tpindex < endpindex) {
1907 if (vm_page_lookup(object, tpindex))
1908 break;
1909 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1910 if (rtm == NULL)
1911 break;
1912 marray[i] = rtm;
1913 ++i;
1914 ++tpindex;
1916 lwkt_reltoken(&vm_token);
1917 crit_exit();
1919 return (i);
1922 #endif
1925 * vm_prefault() provides a quick way of clustering pagefaults into a
1926 * processes address space. It is a "cousin" of pmap_object_init_pt,
1927 * except it runs at page fault time instead of mmap time.
1929 * This code used to be per-platform pmap_prefault(). It is now
1930 * machine-independent and enhanced to also pre-fault zero-fill pages
1931 * (see vm.fast_fault) as well as make them writable, which greatly
1932 * reduces the number of page faults programs incur.
1934 * Application performance when pre-faulting zero-fill pages is heavily
1935 * dependent on the application. Very tiny applications like /bin/echo
1936 * lose a little performance while applications of any appreciable size
1937 * gain performance. Prefaulting multiple pages also reduces SMP
1938 * congestion and can improve SMP performance significantly.
1940 * NOTE! prot may allow writing but this only applies to the top level
1941 * object. If we wind up mapping a page extracted from a backing
1942 * object we have to make sure it is read-only.
1944 * NOTE! The caller has already handled any COW operations on the
1945 * vm_map_entry via the normal fault code. Do NOT call this
1946 * shortcut unless the normal fault code has run on this entry.
1948 * No other requirements.
1950 #define PFBAK 4
1951 #define PFFOR 4
1952 #define PAGEORDER_SIZE (PFBAK+PFFOR)
1954 static int vm_prefault_pageorder[] = {
1955 -PAGE_SIZE, PAGE_SIZE,
1956 -2 * PAGE_SIZE, 2 * PAGE_SIZE,
1957 -3 * PAGE_SIZE, 3 * PAGE_SIZE,
1958 -4 * PAGE_SIZE, 4 * PAGE_SIZE
1962 * Set PG_NOSYNC if the map entry indicates so, but only if the page
1963 * is not already dirty by other means. This will prevent passive
1964 * filesystem syncing as well as 'sync' from writing out the page.
1966 static void
1967 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
1969 if (entry->eflags & MAP_ENTRY_NOSYNC) {
1970 if (m->dirty == 0)
1971 vm_page_flag_set(m, PG_NOSYNC);
1972 } else {
1973 vm_page_flag_clear(m, PG_NOSYNC);
1977 static void
1978 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot)
1980 struct lwp *lp;
1981 vm_page_t m;
1982 vm_offset_t starta;
1983 vm_offset_t addr;
1984 vm_pindex_t index;
1985 vm_pindex_t pindex;
1986 vm_object_t object;
1987 int pprot;
1988 int i;
1991 * We do not currently prefault mappings that use virtual page
1992 * tables. We do not prefault foreign pmaps.
1994 if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
1995 return;
1996 lp = curthread->td_lwp;
1997 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
1998 return;
2000 object = entry->object.vm_object;
2002 starta = addra - PFBAK * PAGE_SIZE;
2003 if (starta < entry->start)
2004 starta = entry->start;
2005 else if (starta > addra)
2006 starta = 0;
2009 * critical section protection is required to maintain the
2010 * page/object association, interrupts can free pages and remove
2011 * them from their objects.
2013 crit_enter();
2014 lwkt_gettoken(&vm_token);
2015 for (i = 0; i < PAGEORDER_SIZE; i++) {
2016 vm_object_t lobject;
2017 int allocated = 0;
2019 addr = addra + vm_prefault_pageorder[i];
2020 if (addr > addra + (PFFOR * PAGE_SIZE))
2021 addr = 0;
2023 if (addr < starta || addr >= entry->end)
2024 continue;
2026 if (pmap_prefault_ok(pmap, addr) == 0)
2027 continue;
2030 * Follow the VM object chain to obtain the page to be mapped
2031 * into the pmap.
2033 * If we reach the terminal object without finding a page
2034 * and we determine it would be advantageous, then allocate
2035 * a zero-fill page for the base object. The base object
2036 * is guaranteed to be OBJT_DEFAULT for this case.
2038 * In order to not have to check the pager via *haspage*()
2039 * we stop if any non-default object is encountered. e.g.
2040 * a vnode or swap object would stop the loop.
2042 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2043 lobject = object;
2044 pindex = index;
2045 pprot = prot;
2047 while ((m = vm_page_lookup(lobject, pindex)) == NULL) {
2048 if (lobject->type != OBJT_DEFAULT)
2049 break;
2050 if (lobject->backing_object == NULL) {
2051 if (vm_fast_fault == 0)
2052 break;
2053 if (vm_prefault_pageorder[i] < 0 ||
2054 (prot & VM_PROT_WRITE) == 0 ||
2055 vm_page_count_min(0)) {
2056 break;
2058 /* note: allocate from base object */
2059 m = vm_page_alloc(object, index,
2060 VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
2062 if ((m->flags & PG_ZERO) == 0) {
2063 vm_page_zero_fill(m);
2064 } else {
2065 vm_page_flag_clear(m, PG_ZERO);
2066 mycpu->gd_cnt.v_ozfod++;
2068 mycpu->gd_cnt.v_zfod++;
2069 m->valid = VM_PAGE_BITS_ALL;
2070 allocated = 1;
2071 pprot = prot;
2072 /* lobject = object .. not needed */
2073 break;
2075 if (lobject->backing_object_offset & PAGE_MASK)
2076 break;
2077 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2078 lobject = lobject->backing_object;
2079 pprot &= ~VM_PROT_WRITE;
2082 * NOTE: lobject now invalid (if we did a zero-fill we didn't
2083 * bother assigning lobject = object).
2085 * Give-up if the page is not available.
2087 if (m == NULL)
2088 break;
2091 * Do not conditionalize on PG_RAM. If pages are present in
2092 * the VM system we assume optimal caching. If caching is
2093 * not optimal the I/O gravy train will be restarted when we
2094 * hit an unavailable page. We do not want to try to restart
2095 * the gravy train now because we really don't know how much
2096 * of the object has been cached. The cost for restarting
2097 * the gravy train should be low (since accesses will likely
2098 * be I/O bound anyway).
2100 * The object must be marked dirty if we are mapping a
2101 * writable page.
2103 if (pprot & VM_PROT_WRITE)
2104 vm_object_set_writeable_dirty(m->object);
2107 * Enter the page into the pmap if appropriate. If we had
2108 * allocated the page we have to place it on a queue. If not
2109 * we just have to make sure it isn't on the cache queue
2110 * (pages on the cache queue are not allowed to be mapped).
2112 if (allocated) {
2113 if (pprot & VM_PROT_WRITE)
2114 vm_set_nosync(m, entry);
2115 pmap_enter(pmap, addr, m, pprot, 0);
2116 vm_page_deactivate(m);
2117 vm_page_wakeup(m);
2118 } else if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2119 (m->busy == 0) &&
2120 (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2122 if ((m->queue - m->pc) == PQ_CACHE) {
2123 vm_page_deactivate(m);
2125 vm_page_busy(m);
2126 if (pprot & VM_PROT_WRITE)
2127 vm_set_nosync(m, entry);
2128 pmap_enter(pmap, addr, m, pprot, 0);
2129 vm_page_wakeup(m);
2132 lwkt_reltoken(&vm_token);
2133 crit_exit();