kernel - Force NFSv3 for diskless nfs mount
[dragonfly.git] / sys / netinet / tcp_subr.c
blob686a8dec4f7617cb9a637d7455b1c20924b049d6
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
66 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
67 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
68 * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.63 2008/11/11 10:46:58 sephe Exp $
71 #include "opt_compat.h"
72 #include "opt_inet.h"
73 #include "opt_inet6.h"
74 #include "opt_ipsec.h"
75 #include "opt_tcpdebug.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/callout.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mpipe.h>
84 #include <sys/mbuf.h>
85 #ifdef INET6
86 #include <sys/domain.h>
87 #endif
88 #include <sys/proc.h>
89 #include <sys/priv.h>
90 #include <sys/socket.h>
91 #include <sys/socketvar.h>
92 #include <sys/protosw.h>
93 #include <sys/random.h>
94 #include <sys/in_cksum.h>
95 #include <sys/ktr.h>
97 #include <net/route.h>
98 #include <net/if.h>
99 #include <net/netisr.h>
101 #define _IP_VHL
102 #include <netinet/in.h>
103 #include <netinet/in_systm.h>
104 #include <netinet/ip.h>
105 #include <netinet/ip6.h>
106 #include <netinet/in_pcb.h>
107 #include <netinet6/in6_pcb.h>
108 #include <netinet/in_var.h>
109 #include <netinet/ip_var.h>
110 #include <netinet6/ip6_var.h>
111 #include <netinet/ip_icmp.h>
112 #ifdef INET6
113 #include <netinet/icmp6.h>
114 #endif
115 #include <netinet/tcp.h>
116 #include <netinet/tcp_fsm.h>
117 #include <netinet/tcp_seq.h>
118 #include <netinet/tcp_timer.h>
119 #include <netinet/tcp_timer2.h>
120 #include <netinet/tcp_var.h>
121 #include <netinet6/tcp6_var.h>
122 #include <netinet/tcpip.h>
123 #ifdef TCPDEBUG
124 #include <netinet/tcp_debug.h>
125 #endif
126 #include <netinet6/ip6protosw.h>
128 #ifdef IPSEC
129 #include <netinet6/ipsec.h>
130 #include <netproto/key/key.h>
131 #ifdef INET6
132 #include <netinet6/ipsec6.h>
133 #endif
134 #endif
136 #ifdef FAST_IPSEC
137 #include <netproto/ipsec/ipsec.h>
138 #ifdef INET6
139 #include <netproto/ipsec/ipsec6.h>
140 #endif
141 #define IPSEC
142 #endif
144 #include <sys/md5.h>
145 #include <machine/smp.h>
147 #include <sys/msgport2.h>
148 #include <sys/mplock2.h>
149 #include <net/netmsg2.h>
151 #if !defined(KTR_TCP)
152 #define KTR_TCP KTR_ALL
153 #endif
154 KTR_INFO_MASTER(tcp);
156 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
157 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
158 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
160 #define logtcp(name) KTR_LOG(tcp_ ## name)
162 struct inpcbinfo tcbinfo[MAXCPU];
163 struct tcpcbackqhead tcpcbackq[MAXCPU];
165 static struct lwkt_token tcp_port_token =
166 LWKT_TOKEN_MP_INITIALIZER(tcp_port_token);
168 int tcp_mssdflt = TCP_MSS;
169 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
170 &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
172 #ifdef INET6
173 int tcp_v6mssdflt = TCP6_MSS;
174 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
175 &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
176 #endif
179 * Minimum MSS we accept and use. This prevents DoS attacks where
180 * we are forced to a ridiculous low MSS like 20 and send hundreds
181 * of packets instead of one. The effect scales with the available
182 * bandwidth and quickly saturates the CPU and network interface
183 * with packet generation and sending. Set to zero to disable MINMSS
184 * checking. This setting prevents us from sending too small packets.
186 int tcp_minmss = TCP_MINMSS;
187 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
188 &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
190 #if 0
191 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
192 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
193 &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
194 #endif
196 int tcp_do_rfc1323 = 1;
197 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
198 &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
200 static int tcp_tcbhashsize = 0;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
202 &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
204 static int do_tcpdrain = 1;
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
206 "Enable tcp_drain routine for extra help when low on mbufs");
208 static int icmp_may_rst = 1;
209 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
210 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
212 static int tcp_isn_reseed_interval = 0;
213 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
214 &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
217 * TCP bandwidth limiting sysctls. The inflight limiter is now turned on
218 * by default, but with generous values which should allow maximal
219 * bandwidth. In particular, the slop defaults to 50 (5 packets).
221 * The reason for doing this is that the limiter is the only mechanism we
222 * have which seems to do a really good job preventing receiver RX rings
223 * on network interfaces from getting blown out. Even though GigE/10GigE
224 * is supposed to flow control it looks like either it doesn't actually
225 * do it or Open Source drivers do not properly enable it.
227 * People using the limiter to reduce bottlenecks on slower WAN connections
228 * should set the slop to 20 (2 packets).
230 static int tcp_inflight_enable = 1;
231 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
232 &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
234 static int tcp_inflight_debug = 0;
235 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
236 &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
238 static int tcp_inflight_min = 6144;
239 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
240 &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
242 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
243 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
244 &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
246 static int tcp_inflight_stab = 50;
247 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
248 &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 3 packets)");
250 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
251 static struct malloc_pipe tcptemp_mpipe;
253 static void tcp_willblock(void);
254 static void tcp_notify (struct inpcb *, int);
256 struct tcp_stats tcpstats_percpu[MAXCPU];
257 #ifdef SMP
258 static int
259 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
261 int cpu, error = 0;
263 for (cpu = 0; cpu < ncpus; ++cpu) {
264 if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
265 sizeof(struct tcp_stats))))
266 break;
267 if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
268 sizeof(struct tcp_stats))))
269 break;
272 return (error);
274 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
275 0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
276 #else
277 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
278 &tcpstat, tcp_stats, "TCP statistics");
279 #endif
282 * Target size of TCP PCB hash tables. Must be a power of two.
284 * Note that this can be overridden by the kernel environment
285 * variable net.inet.tcp.tcbhashsize
287 #ifndef TCBHASHSIZE
288 #define TCBHASHSIZE 512
289 #endif
292 * This is the actual shape of what we allocate using the zone
293 * allocator. Doing it this way allows us to protect both structures
294 * using the same generation count, and also eliminates the overhead
295 * of allocating tcpcbs separately. By hiding the structure here,
296 * we avoid changing most of the rest of the code (although it needs
297 * to be changed, eventually, for greater efficiency).
299 #define ALIGNMENT 32
300 #define ALIGNM1 (ALIGNMENT - 1)
301 struct inp_tp {
302 union {
303 struct inpcb inp;
304 char align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
305 } inp_tp_u;
306 struct tcpcb tcb;
307 struct tcp_callout inp_tp_rexmt;
308 struct tcp_callout inp_tp_persist;
309 struct tcp_callout inp_tp_keep;
310 struct tcp_callout inp_tp_2msl;
311 struct tcp_callout inp_tp_delack;
312 struct netmsg_tcp_timer inp_tp_timermsg;
314 #undef ALIGNMENT
315 #undef ALIGNM1
318 * Tcp initialization
320 void
321 tcp_init(void)
323 struct inpcbporthead *porthashbase;
324 struct inpcbinfo *ticb;
325 u_long porthashmask;
326 int hashsize = TCBHASHSIZE;
327 int cpu;
330 * note: tcptemp is used for keepalives, and it is ok for an
331 * allocation to fail so do not specify MPF_INT.
333 mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
334 25, -1, 0, NULL);
336 tcp_delacktime = TCPTV_DELACK;
337 tcp_keepinit = TCPTV_KEEP_INIT;
338 tcp_keepidle = TCPTV_KEEP_IDLE;
339 tcp_keepintvl = TCPTV_KEEPINTVL;
340 tcp_maxpersistidle = TCPTV_KEEP_IDLE;
341 tcp_msl = TCPTV_MSL;
342 tcp_rexmit_min = TCPTV_MIN;
343 tcp_rexmit_slop = TCPTV_CPU_VAR;
345 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
346 if (!powerof2(hashsize)) {
347 kprintf("WARNING: TCB hash size not a power of 2\n");
348 hashsize = 512; /* safe default */
350 tcp_tcbhashsize = hashsize;
351 porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
353 for (cpu = 0; cpu < ncpus2; cpu++) {
354 ticb = &tcbinfo[cpu];
355 in_pcbinfo_init(ticb);
356 ticb->cpu = cpu;
357 ticb->hashbase = hashinit(hashsize, M_PCB,
358 &ticb->hashmask);
359 ticb->porthashbase = porthashbase;
360 ticb->porthashmask = porthashmask;
361 ticb->porttoken = &tcp_port_token;
362 #if 0
363 ticb->porthashbase = hashinit(hashsize, M_PCB,
364 &ticb->porthashmask);
365 #endif
366 ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
367 &ticb->wildcardhashmask);
368 ticb->ipi_size = sizeof(struct inp_tp);
369 TAILQ_INIT(&tcpcbackq[cpu]);
372 tcp_reass_maxseg = nmbclusters / 16;
373 TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
375 #ifdef INET6
376 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
377 #else
378 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
379 #endif
380 if (max_protohdr < TCP_MINPROTOHDR)
381 max_protohdr = TCP_MINPROTOHDR;
382 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
383 panic("tcp_init");
384 #undef TCP_MINPROTOHDR
387 * Initialize TCP statistics counters for each CPU.
389 #ifdef SMP
390 for (cpu = 0; cpu < ncpus; ++cpu) {
391 bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
393 #else
394 bzero(&tcpstat, sizeof(struct tcp_stats));
395 #endif
397 syncache_init();
398 netisr_register_rollup(tcp_willblock);
401 static void
402 tcp_willblock(void)
404 struct tcpcb *tp;
405 int cpu = mycpu->gd_cpuid;
407 while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
408 KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
409 tp->t_flags &= ~TF_ONOUTPUTQ;
410 TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
411 tcp_output(tp);
416 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
417 * tcp_template used to store this data in mbufs, but we now recopy it out
418 * of the tcpcb each time to conserve mbufs.
420 void
421 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
423 struct inpcb *inp = tp->t_inpcb;
424 struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
426 #ifdef INET6
427 if (inp->inp_vflag & INP_IPV6) {
428 struct ip6_hdr *ip6;
430 ip6 = (struct ip6_hdr *)ip_ptr;
431 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
432 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
433 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
434 (IPV6_VERSION & IPV6_VERSION_MASK);
435 ip6->ip6_nxt = IPPROTO_TCP;
436 ip6->ip6_plen = sizeof(struct tcphdr);
437 ip6->ip6_src = inp->in6p_laddr;
438 ip6->ip6_dst = inp->in6p_faddr;
439 tcp_hdr->th_sum = 0;
440 } else
441 #endif
443 struct ip *ip = (struct ip *) ip_ptr;
445 ip->ip_vhl = IP_VHL_BORING;
446 ip->ip_tos = 0;
447 ip->ip_len = 0;
448 ip->ip_id = 0;
449 ip->ip_off = 0;
450 ip->ip_ttl = 0;
451 ip->ip_sum = 0;
452 ip->ip_p = IPPROTO_TCP;
453 ip->ip_src = inp->inp_laddr;
454 ip->ip_dst = inp->inp_faddr;
455 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
456 ip->ip_dst.s_addr,
457 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
460 tcp_hdr->th_sport = inp->inp_lport;
461 tcp_hdr->th_dport = inp->inp_fport;
462 tcp_hdr->th_seq = 0;
463 tcp_hdr->th_ack = 0;
464 tcp_hdr->th_x2 = 0;
465 tcp_hdr->th_off = 5;
466 tcp_hdr->th_flags = 0;
467 tcp_hdr->th_win = 0;
468 tcp_hdr->th_urp = 0;
472 * Create template to be used to send tcp packets on a connection.
473 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
474 * use for this function is in keepalives, which use tcp_respond.
476 struct tcptemp *
477 tcp_maketemplate(struct tcpcb *tp)
479 struct tcptemp *tmp;
481 if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
482 return (NULL);
483 tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
484 return (tmp);
487 void
488 tcp_freetemplate(struct tcptemp *tmp)
490 mpipe_free(&tcptemp_mpipe, tmp);
494 * Send a single message to the TCP at address specified by
495 * the given TCP/IP header. If m == NULL, then we make a copy
496 * of the tcpiphdr at ti and send directly to the addressed host.
497 * This is used to force keep alive messages out using the TCP
498 * template for a connection. If flags are given then we send
499 * a message back to the TCP which originated the * segment ti,
500 * and discard the mbuf containing it and any other attached mbufs.
502 * In any case the ack and sequence number of the transmitted
503 * segment are as specified by the parameters.
505 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
507 void
508 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
509 tcp_seq ack, tcp_seq seq, int flags)
511 int tlen;
512 int win = 0;
513 struct route *ro = NULL;
514 struct route sro;
515 struct ip *ip = ipgen;
516 struct tcphdr *nth;
517 int ipflags = 0;
518 struct route_in6 *ro6 = NULL;
519 struct route_in6 sro6;
520 struct ip6_hdr *ip6 = ipgen;
521 boolean_t use_tmpro = TRUE;
522 #ifdef INET6
523 boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
524 #else
525 const boolean_t isipv6 = FALSE;
526 #endif
528 if (tp != NULL) {
529 if (!(flags & TH_RST)) {
530 win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
531 if (win < 0)
532 win = 0;
533 if (win > (long)TCP_MAXWIN << tp->rcv_scale)
534 win = (long)TCP_MAXWIN << tp->rcv_scale;
537 * Don't use the route cache of a listen socket,
538 * it is not MPSAFE; use temporary route cache.
540 if (tp->t_state != TCPS_LISTEN) {
541 if (isipv6)
542 ro6 = &tp->t_inpcb->in6p_route;
543 else
544 ro = &tp->t_inpcb->inp_route;
545 use_tmpro = FALSE;
548 if (use_tmpro) {
549 if (isipv6) {
550 ro6 = &sro6;
551 bzero(ro6, sizeof *ro6);
552 } else {
553 ro = &sro;
554 bzero(ro, sizeof *ro);
557 if (m == NULL) {
558 m = m_gethdr(MB_DONTWAIT, MT_HEADER);
559 if (m == NULL)
560 return;
561 tlen = 0;
562 m->m_data += max_linkhdr;
563 if (isipv6) {
564 bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
565 ip6 = mtod(m, struct ip6_hdr *);
566 nth = (struct tcphdr *)(ip6 + 1);
567 } else {
568 bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
569 ip = mtod(m, struct ip *);
570 nth = (struct tcphdr *)(ip + 1);
572 bcopy(th, nth, sizeof(struct tcphdr));
573 flags = TH_ACK;
574 } else {
575 m_freem(m->m_next);
576 m->m_next = NULL;
577 m->m_data = (caddr_t)ipgen;
578 /* m_len is set later */
579 tlen = 0;
580 #define xchg(a, b, type) { type t; t = a; a = b; b = t; }
581 if (isipv6) {
582 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
583 nth = (struct tcphdr *)(ip6 + 1);
584 } else {
585 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
586 nth = (struct tcphdr *)(ip + 1);
588 if (th != nth) {
590 * this is usually a case when an extension header
591 * exists between the IPv6 header and the
592 * TCP header.
594 nth->th_sport = th->th_sport;
595 nth->th_dport = th->th_dport;
597 xchg(nth->th_dport, nth->th_sport, n_short);
598 #undef xchg
600 if (isipv6) {
601 ip6->ip6_flow = 0;
602 ip6->ip6_vfc = IPV6_VERSION;
603 ip6->ip6_nxt = IPPROTO_TCP;
604 ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
605 tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
606 } else {
607 tlen += sizeof(struct tcpiphdr);
608 ip->ip_len = tlen;
609 ip->ip_ttl = ip_defttl;
611 m->m_len = tlen;
612 m->m_pkthdr.len = tlen;
613 m->m_pkthdr.rcvif = NULL;
614 nth->th_seq = htonl(seq);
615 nth->th_ack = htonl(ack);
616 nth->th_x2 = 0;
617 nth->th_off = sizeof(struct tcphdr) >> 2;
618 nth->th_flags = flags;
619 if (tp != NULL)
620 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
621 else
622 nth->th_win = htons((u_short)win);
623 nth->th_urp = 0;
624 if (isipv6) {
625 nth->th_sum = 0;
626 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
627 sizeof(struct ip6_hdr),
628 tlen - sizeof(struct ip6_hdr));
629 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
630 (ro6 && ro6->ro_rt) ?
631 ro6->ro_rt->rt_ifp : NULL);
632 } else {
633 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
634 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
635 m->m_pkthdr.csum_flags = CSUM_TCP;
636 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
638 #ifdef TCPDEBUG
639 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
640 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
641 #endif
642 if (isipv6) {
643 ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
644 tp ? tp->t_inpcb : NULL);
645 if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
646 RTFREE(ro6->ro_rt);
647 ro6->ro_rt = NULL;
649 } else {
650 ipflags |= IP_DEBUGROUTE;
651 ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
652 if ((ro == &sro) && (ro->ro_rt != NULL)) {
653 RTFREE(ro->ro_rt);
654 ro->ro_rt = NULL;
660 * Create a new TCP control block, making an
661 * empty reassembly queue and hooking it to the argument
662 * protocol control block. The `inp' parameter must have
663 * come from the zone allocator set up in tcp_init().
665 struct tcpcb *
666 tcp_newtcpcb(struct inpcb *inp)
668 struct inp_tp *it;
669 struct tcpcb *tp;
670 #ifdef INET6
671 boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
672 #else
673 const boolean_t isipv6 = FALSE;
674 #endif
676 it = (struct inp_tp *)inp;
677 tp = &it->tcb;
678 bzero(tp, sizeof(struct tcpcb));
679 LIST_INIT(&tp->t_segq);
680 tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
682 /* Set up our timeouts. */
683 tp->tt_rexmt = &it->inp_tp_rexmt;
684 tp->tt_persist = &it->inp_tp_persist;
685 tp->tt_keep = &it->inp_tp_keep;
686 tp->tt_2msl = &it->inp_tp_2msl;
687 tp->tt_delack = &it->inp_tp_delack;
688 tcp_inittimers(tp);
691 * Zero out timer message. We don't create it here,
692 * since the current CPU may not be the owner of this
693 * inpcb.
695 tp->tt_msg = &it->inp_tp_timermsg;
696 bzero(tp->tt_msg, sizeof(*tp->tt_msg));
698 if (tcp_do_rfc1323)
699 tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
700 tp->t_inpcb = inp; /* XXX */
701 tp->t_state = TCPS_CLOSED;
703 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
704 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
705 * reasonable initial retransmit time.
707 tp->t_srtt = TCPTV_SRTTBASE;
708 tp->t_rttvar =
709 ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
710 tp->t_rttmin = tcp_rexmit_min;
711 tp->t_rxtcur = TCPTV_RTOBASE;
712 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
713 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
714 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
715 tp->t_rcvtime = ticks;
717 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
718 * because the socket may be bound to an IPv6 wildcard address,
719 * which may match an IPv4-mapped IPv6 address.
721 inp->inp_ip_ttl = ip_defttl;
722 inp->inp_ppcb = tp;
723 tcp_sack_tcpcb_init(tp);
724 return (tp); /* XXX */
728 * Drop a TCP connection, reporting the specified error.
729 * If connection is synchronized, then send a RST to peer.
731 struct tcpcb *
732 tcp_drop(struct tcpcb *tp, int error)
734 struct socket *so = tp->t_inpcb->inp_socket;
736 if (TCPS_HAVERCVDSYN(tp->t_state)) {
737 tp->t_state = TCPS_CLOSED;
738 tcp_output(tp);
739 tcpstat.tcps_drops++;
740 } else
741 tcpstat.tcps_conndrops++;
742 if (error == ETIMEDOUT && tp->t_softerror)
743 error = tp->t_softerror;
744 so->so_error = error;
745 return (tcp_close(tp));
748 #ifdef SMP
750 struct netmsg_remwildcard {
751 struct netmsg_base base;
752 struct inpcb *nm_inp;
753 struct inpcbinfo *nm_pcbinfo;
754 #if defined(INET6)
755 int nm_isinet6;
756 #else
757 int nm_unused01;
758 #endif
762 * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
763 * inp can be detached. We do this by cycling through the cpus, ending up
764 * on the cpu controlling the inp last and then doing the disconnect.
766 static void
767 in_pcbremwildcardhash_handler(netmsg_t msg)
769 struct netmsg_remwildcard *nmsg = (struct netmsg_remwildcard *)msg;
770 int cpu;
772 cpu = nmsg->nm_pcbinfo->cpu;
774 if (cpu == nmsg->nm_inp->inp_pcbinfo->cpu) {
775 /* note: detach removes any wildcard hash entry */
776 #ifdef INET6
777 if (nmsg->nm_isinet6)
778 in6_pcbdetach(nmsg->nm_inp);
779 else
780 #endif
781 in_pcbdetach(nmsg->nm_inp);
782 lwkt_replymsg(&nmsg->base.lmsg, 0);
783 } else {
784 in_pcbremwildcardhash_oncpu(nmsg->nm_inp, nmsg->nm_pcbinfo);
785 cpu = (cpu + 1) % ncpus2;
786 nmsg->nm_pcbinfo = &tcbinfo[cpu];
787 lwkt_forwardmsg(cpu_portfn(cpu), &nmsg->base.lmsg);
791 #endif
794 * Close a TCP control block:
795 * discard all space held by the tcp
796 * discard internet protocol block
797 * wake up any sleepers
799 struct tcpcb *
800 tcp_close(struct tcpcb *tp)
802 struct tseg_qent *q;
803 struct inpcb *inp = tp->t_inpcb;
804 struct socket *so = inp->inp_socket;
805 struct rtentry *rt;
806 boolean_t dosavessthresh;
807 #ifdef SMP
808 int cpu;
809 #endif
810 #ifdef INET6
811 boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
812 boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
813 #else
814 const boolean_t isipv6 = FALSE;
815 #endif
818 * The tp is not instantly destroyed in the wildcard case. Setting
819 * the state to TCPS_TERMINATING will prevent the TCP stack from
820 * messing with it, though it should be noted that this change may
821 * not take effect on other cpus until we have chained the wildcard
822 * hash removal.
824 * XXX we currently depend on the BGL to synchronize the tp->t_state
825 * update and prevent other tcp protocol threads from accepting new
826 * connections on the listen socket we might be trying to close down.
828 KKASSERT(tp->t_state != TCPS_TERMINATING);
829 tp->t_state = TCPS_TERMINATING;
832 * Make sure that all of our timers are stopped before we
833 * delete the PCB. For listen TCP socket (tp->tt_msg == NULL),
834 * timers are never used. If timer message is never created
835 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
837 if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
838 tcp_callout_stop(tp, tp->tt_rexmt);
839 tcp_callout_stop(tp, tp->tt_persist);
840 tcp_callout_stop(tp, tp->tt_keep);
841 tcp_callout_stop(tp, tp->tt_2msl);
842 tcp_callout_stop(tp, tp->tt_delack);
845 if (tp->t_flags & TF_ONOUTPUTQ) {
846 KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
847 TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
848 tp->t_flags &= ~TF_ONOUTPUTQ;
852 * If we got enough samples through the srtt filter,
853 * save the rtt and rttvar in the routing entry.
854 * 'Enough' is arbitrarily defined as the 16 samples.
855 * 16 samples is enough for the srtt filter to converge
856 * to within 5% of the correct value; fewer samples and
857 * we could save a very bogus rtt.
859 * Don't update the default route's characteristics and don't
860 * update anything that the user "locked".
862 if (tp->t_rttupdated >= 16) {
863 u_long i = 0;
865 if (isipv6) {
866 struct sockaddr_in6 *sin6;
868 if ((rt = inp->in6p_route.ro_rt) == NULL)
869 goto no_valid_rt;
870 sin6 = (struct sockaddr_in6 *)rt_key(rt);
871 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
872 goto no_valid_rt;
873 } else
874 if ((rt = inp->inp_route.ro_rt) == NULL ||
875 ((struct sockaddr_in *)rt_key(rt))->
876 sin_addr.s_addr == INADDR_ANY)
877 goto no_valid_rt;
879 if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
880 i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
881 if (rt->rt_rmx.rmx_rtt && i)
883 * filter this update to half the old & half
884 * the new values, converting scale.
885 * See route.h and tcp_var.h for a
886 * description of the scaling constants.
888 rt->rt_rmx.rmx_rtt =
889 (rt->rt_rmx.rmx_rtt + i) / 2;
890 else
891 rt->rt_rmx.rmx_rtt = i;
892 tcpstat.tcps_cachedrtt++;
894 if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
895 i = tp->t_rttvar *
896 (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
897 if (rt->rt_rmx.rmx_rttvar && i)
898 rt->rt_rmx.rmx_rttvar =
899 (rt->rt_rmx.rmx_rttvar + i) / 2;
900 else
901 rt->rt_rmx.rmx_rttvar = i;
902 tcpstat.tcps_cachedrttvar++;
905 * The old comment here said:
906 * update the pipelimit (ssthresh) if it has been updated
907 * already or if a pipesize was specified & the threshhold
908 * got below half the pipesize. I.e., wait for bad news
909 * before we start updating, then update on both good
910 * and bad news.
912 * But we want to save the ssthresh even if no pipesize is
913 * specified explicitly in the route, because such
914 * connections still have an implicit pipesize specified
915 * by the global tcp_sendspace. In the absence of a reliable
916 * way to calculate the pipesize, it will have to do.
918 i = tp->snd_ssthresh;
919 if (rt->rt_rmx.rmx_sendpipe != 0)
920 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
921 else
922 dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
923 if (dosavessthresh ||
924 (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
925 (rt->rt_rmx.rmx_ssthresh != 0))) {
927 * convert the limit from user data bytes to
928 * packets then to packet data bytes.
930 i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
931 if (i < 2)
932 i = 2;
933 i *= tp->t_maxseg +
934 (isipv6 ?
935 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
936 sizeof(struct tcpiphdr));
937 if (rt->rt_rmx.rmx_ssthresh)
938 rt->rt_rmx.rmx_ssthresh =
939 (rt->rt_rmx.rmx_ssthresh + i) / 2;
940 else
941 rt->rt_rmx.rmx_ssthresh = i;
942 tcpstat.tcps_cachedssthresh++;
946 no_valid_rt:
947 /* free the reassembly queue, if any */
948 while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
949 LIST_REMOVE(q, tqe_q);
950 m_freem(q->tqe_m);
951 FREE(q, M_TSEGQ);
952 atomic_add_int(&tcp_reass_qsize, -1);
954 /* throw away SACK blocks in scoreboard*/
955 if (TCP_DO_SACK(tp))
956 tcp_sack_cleanup(&tp->scb);
958 inp->inp_ppcb = NULL;
959 soisdisconnected(so);
960 /* note: pcb detached later on */
962 tcp_destroy_timermsg(tp);
963 if (tp->t_flags & TF_SYNCACHE)
964 syncache_destroy(tp);
967 * Discard the inp. In the SMP case a wildcard inp's hash (created
968 * by a listen socket or an INADDR_ANY udp socket) is replicated
969 * for each protocol thread and must be removed in the context of
970 * that thread. This is accomplished by chaining the message
971 * through the cpus.
973 * If the inp is not wildcarded we simply detach, which will remove
974 * the any hashes still present for this inp.
976 #ifdef SMP
977 if (inp->inp_flags & INP_WILDCARD_MP) {
978 struct netmsg_remwildcard *nmsg;
980 cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
981 nmsg = kmalloc(sizeof(struct netmsg_remwildcard),
982 M_LWKTMSG, M_INTWAIT);
983 netmsg_init(&nmsg->base, NULL, &netisr_afree_rport,
984 0, in_pcbremwildcardhash_handler);
985 #ifdef INET6
986 nmsg->nm_isinet6 = isafinet6;
987 #endif
988 nmsg->nm_inp = inp;
989 nmsg->nm_pcbinfo = &tcbinfo[cpu];
990 lwkt_sendmsg(cpu_portfn(cpu), &nmsg->base.lmsg);
991 } else
992 #endif
994 /* note: detach removes any wildcard hash entry */
995 #ifdef INET6
996 if (isafinet6)
997 in6_pcbdetach(inp);
998 else
999 #endif
1000 in_pcbdetach(inp);
1002 tcpstat.tcps_closed++;
1003 return (NULL);
1006 static __inline void
1007 tcp_drain_oncpu(struct inpcbhead *head)
1009 struct inpcb *marker;
1010 struct inpcb *inpb;
1011 struct tcpcb *tcpb;
1012 struct tseg_qent *te;
1015 * Allows us to block while running the list
1017 marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1018 marker->inp_flags |= INP_PLACEMARKER;
1019 LIST_INSERT_HEAD(head, marker, inp_list);
1021 while ((inpb = LIST_NEXT(marker, inp_list)) != NULL) {
1022 if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
1023 (tcpb = intotcpcb(inpb)) != NULL &&
1024 (te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
1025 LIST_REMOVE(te, tqe_q);
1026 m_freem(te->tqe_m);
1027 FREE(te, M_TSEGQ);
1028 atomic_add_int(&tcp_reass_qsize, -1);
1029 /* retry */
1030 } else {
1031 LIST_REMOVE(marker, inp_list);
1032 LIST_INSERT_AFTER(inpb, marker, inp_list);
1035 LIST_REMOVE(marker, inp_list);
1036 kfree(marker, M_TEMP);
1039 #ifdef SMP
1040 struct netmsg_tcp_drain {
1041 struct netmsg_base base;
1042 struct inpcbhead *nm_head;
1045 static void
1046 tcp_drain_handler(netmsg_t msg)
1048 struct netmsg_tcp_drain *nm = (void *)msg;
1050 tcp_drain_oncpu(nm->nm_head);
1051 lwkt_replymsg(&nm->base.lmsg, 0);
1053 #endif
1055 void
1056 tcp_drain(void)
1058 #ifdef SMP
1059 int cpu;
1060 #endif
1062 if (!do_tcpdrain)
1063 return;
1066 * Walk the tcpbs, if existing, and flush the reassembly queue,
1067 * if there is one...
1068 * XXX: The "Net/3" implementation doesn't imply that the TCP
1069 * reassembly queue should be flushed, but in a situation
1070 * where we're really low on mbufs, this is potentially
1071 * useful.
1073 #ifdef SMP
1074 for (cpu = 0; cpu < ncpus2; cpu++) {
1075 struct netmsg_tcp_drain *nm;
1077 if (cpu == mycpu->gd_cpuid) {
1078 tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1079 } else {
1080 nm = kmalloc(sizeof(struct netmsg_tcp_drain),
1081 M_LWKTMSG, M_NOWAIT);
1082 if (nm == NULL)
1083 continue;
1084 netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1085 0, tcp_drain_handler);
1086 nm->nm_head = &tcbinfo[cpu].pcblisthead;
1087 lwkt_sendmsg(cpu_portfn(cpu), &nm->base.lmsg);
1090 #else
1091 tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1092 #endif
1096 * Notify a tcp user of an asynchronous error;
1097 * store error as soft error, but wake up user
1098 * (for now, won't do anything until can select for soft error).
1100 * Do not wake up user since there currently is no mechanism for
1101 * reporting soft errors (yet - a kqueue filter may be added).
1103 static void
1104 tcp_notify(struct inpcb *inp, int error)
1106 struct tcpcb *tp = intotcpcb(inp);
1109 * Ignore some errors if we are hooked up.
1110 * If connection hasn't completed, has retransmitted several times,
1111 * and receives a second error, give up now. This is better
1112 * than waiting a long time to establish a connection that
1113 * can never complete.
1115 if (tp->t_state == TCPS_ESTABLISHED &&
1116 (error == EHOSTUNREACH || error == ENETUNREACH ||
1117 error == EHOSTDOWN)) {
1118 return;
1119 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1120 tp->t_softerror)
1121 tcp_drop(tp, error);
1122 else
1123 tp->t_softerror = error;
1124 #if 0
1125 wakeup(&so->so_timeo);
1126 sorwakeup(so);
1127 sowwakeup(so);
1128 #endif
1131 static int
1132 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1134 int error, i, n;
1135 struct inpcb *marker;
1136 struct inpcb *inp;
1137 inp_gen_t gencnt;
1138 globaldata_t gd;
1139 int origcpu, ccpu;
1141 error = 0;
1142 n = 0;
1145 * The process of preparing the TCB list is too time-consuming and
1146 * resource-intensive to repeat twice on every request.
1148 if (req->oldptr == NULL) {
1149 for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1150 gd = globaldata_find(ccpu);
1151 n += tcbinfo[gd->gd_cpuid].ipi_count;
1153 req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1154 return (0);
1157 if (req->newptr != NULL)
1158 return (EPERM);
1160 marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1161 marker->inp_flags |= INP_PLACEMARKER;
1164 * OK, now we're committed to doing something. Run the inpcb list
1165 * for each cpu in the system and construct the output. Use a
1166 * list placemarker to deal with list changes occuring during
1167 * copyout blockages (but otherwise depend on being on the correct
1168 * cpu to avoid races).
1170 origcpu = mycpu->gd_cpuid;
1171 for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1172 globaldata_t rgd;
1173 caddr_t inp_ppcb;
1174 struct xtcpcb xt;
1175 int cpu_id;
1177 cpu_id = (origcpu + ccpu) % ncpus;
1178 if ((smp_active_mask & (1 << cpu_id)) == 0)
1179 continue;
1180 rgd = globaldata_find(cpu_id);
1181 lwkt_setcpu_self(rgd);
1183 gencnt = tcbinfo[cpu_id].ipi_gencnt;
1184 n = tcbinfo[cpu_id].ipi_count;
1186 LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1187 i = 0;
1188 while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1190 * process a snapshot of pcbs, ignoring placemarkers
1191 * and using our own to allow SYSCTL_OUT to block.
1193 LIST_REMOVE(marker, inp_list);
1194 LIST_INSERT_AFTER(inp, marker, inp_list);
1196 if (inp->inp_flags & INP_PLACEMARKER)
1197 continue;
1198 if (inp->inp_gencnt > gencnt)
1199 continue;
1200 if (prison_xinpcb(req->td, inp))
1201 continue;
1203 xt.xt_len = sizeof xt;
1204 bcopy(inp, &xt.xt_inp, sizeof *inp);
1205 inp_ppcb = inp->inp_ppcb;
1206 if (inp_ppcb != NULL)
1207 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1208 else
1209 bzero(&xt.xt_tp, sizeof xt.xt_tp);
1210 if (inp->inp_socket)
1211 sotoxsocket(inp->inp_socket, &xt.xt_socket);
1212 if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1213 break;
1214 ++i;
1216 LIST_REMOVE(marker, inp_list);
1217 if (error == 0 && i < n) {
1218 bzero(&xt, sizeof xt);
1219 xt.xt_len = sizeof xt;
1220 while (i < n) {
1221 error = SYSCTL_OUT(req, &xt, sizeof xt);
1222 if (error)
1223 break;
1224 ++i;
1230 * Make sure we are on the same cpu we were on originally, since
1231 * higher level callers expect this. Also don't pollute caches with
1232 * migrated userland data by (eventually) returning to userland
1233 * on a different cpu.
1235 lwkt_setcpu_self(globaldata_find(origcpu));
1236 kfree(marker, M_TEMP);
1237 return (error);
1240 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1241 tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1243 static int
1244 tcp_getcred(SYSCTL_HANDLER_ARGS)
1246 struct sockaddr_in addrs[2];
1247 struct inpcb *inp;
1248 int cpu;
1249 int error;
1251 error = priv_check(req->td, PRIV_ROOT);
1252 if (error != 0)
1253 return (error);
1254 error = SYSCTL_IN(req, addrs, sizeof addrs);
1255 if (error != 0)
1256 return (error);
1257 crit_enter();
1258 cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1259 addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1260 inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1261 addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1262 if (inp == NULL || inp->inp_socket == NULL) {
1263 error = ENOENT;
1264 goto out;
1266 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1267 out:
1268 crit_exit();
1269 return (error);
1272 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1273 0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1275 #ifdef INET6
1276 static int
1277 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1279 struct sockaddr_in6 addrs[2];
1280 struct inpcb *inp;
1281 int error;
1282 boolean_t mapped = FALSE;
1284 error = priv_check(req->td, PRIV_ROOT);
1285 if (error != 0)
1286 return (error);
1287 error = SYSCTL_IN(req, addrs, sizeof addrs);
1288 if (error != 0)
1289 return (error);
1290 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1291 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1292 mapped = TRUE;
1293 else
1294 return (EINVAL);
1296 crit_enter();
1297 if (mapped) {
1298 inp = in_pcblookup_hash(&tcbinfo[0],
1299 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1300 addrs[1].sin6_port,
1301 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1302 addrs[0].sin6_port,
1303 0, NULL);
1304 } else {
1305 inp = in6_pcblookup_hash(&tcbinfo[0],
1306 &addrs[1].sin6_addr, addrs[1].sin6_port,
1307 &addrs[0].sin6_addr, addrs[0].sin6_port,
1308 0, NULL);
1310 if (inp == NULL || inp->inp_socket == NULL) {
1311 error = ENOENT;
1312 goto out;
1314 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1315 out:
1316 crit_exit();
1317 return (error);
1320 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1321 0, 0,
1322 tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1323 #endif
1325 struct netmsg_tcp_notify {
1326 struct netmsg_base base;
1327 void (*nm_notify)(struct inpcb *, int);
1328 struct in_addr nm_faddr;
1329 int nm_arg;
1332 static void
1333 tcp_notifyall_oncpu(netmsg_t msg)
1335 struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1336 int nextcpu;
1338 in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nm->nm_faddr,
1339 nm->nm_arg, nm->nm_notify);
1341 nextcpu = mycpuid + 1;
1342 if (nextcpu < ncpus2)
1343 lwkt_forwardmsg(cpu_portfn(nextcpu), &nm->base.lmsg);
1344 else
1345 lwkt_replymsg(&nm->base.lmsg, 0);
1348 void
1349 tcp_ctlinput(netmsg_t msg)
1351 int cmd = msg->ctlinput.nm_cmd;
1352 struct sockaddr *sa = msg->ctlinput.nm_arg;
1353 struct ip *ip = msg->ctlinput.nm_extra;
1354 struct tcphdr *th;
1355 struct in_addr faddr;
1356 struct inpcb *inp;
1357 struct tcpcb *tp;
1358 void (*notify)(struct inpcb *, int) = tcp_notify;
1359 tcp_seq icmpseq;
1360 int arg, cpu;
1362 if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1363 goto done;
1366 faddr = ((struct sockaddr_in *)sa)->sin_addr;
1367 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1368 goto done;
1370 arg = inetctlerrmap[cmd];
1371 if (cmd == PRC_QUENCH) {
1372 notify = tcp_quench;
1373 } else if (icmp_may_rst &&
1374 (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1375 cmd == PRC_UNREACH_PORT ||
1376 cmd == PRC_TIMXCEED_INTRANS) &&
1377 ip != NULL) {
1378 notify = tcp_drop_syn_sent;
1379 } else if (cmd == PRC_MSGSIZE) {
1380 struct icmp *icmp = (struct icmp *)
1381 ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1383 arg = ntohs(icmp->icmp_nextmtu);
1384 notify = tcp_mtudisc;
1385 } else if (PRC_IS_REDIRECT(cmd)) {
1386 ip = NULL;
1387 notify = in_rtchange;
1388 } else if (cmd == PRC_HOSTDEAD) {
1389 ip = NULL;
1392 if (ip != NULL) {
1393 crit_enter();
1394 th = (struct tcphdr *)((caddr_t)ip +
1395 (IP_VHL_HL(ip->ip_vhl) << 2));
1396 cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1397 ip->ip_src.s_addr, th->th_sport);
1398 inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1399 ip->ip_src, th->th_sport, 0, NULL);
1400 if ((inp != NULL) && (inp->inp_socket != NULL)) {
1401 icmpseq = htonl(th->th_seq);
1402 tp = intotcpcb(inp);
1403 if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1404 SEQ_LT(icmpseq, tp->snd_max))
1405 (*notify)(inp, arg);
1406 } else {
1407 struct in_conninfo inc;
1409 inc.inc_fport = th->th_dport;
1410 inc.inc_lport = th->th_sport;
1411 inc.inc_faddr = faddr;
1412 inc.inc_laddr = ip->ip_src;
1413 #ifdef INET6
1414 inc.inc_isipv6 = 0;
1415 #endif
1416 syncache_unreach(&inc, th);
1418 crit_exit();
1419 } else {
1420 struct netmsg_tcp_notify *nm;
1422 KKASSERT(&curthread->td_msgport == cpu_portfn(0));
1423 nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1424 netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1425 0, tcp_notifyall_oncpu);
1426 nm->nm_faddr = faddr;
1427 nm->nm_arg = arg;
1428 nm->nm_notify = notify;
1430 lwkt_sendmsg(cpu_portfn(0), &nm->base.lmsg);
1432 done:
1433 lwkt_replymsg(&msg->lmsg, 0);
1436 #ifdef INET6
1438 void
1439 tcp6_ctlinput(netmsg_t msg)
1441 int cmd = msg->ctlinput.nm_cmd;
1442 struct sockaddr *sa = msg->ctlinput.nm_arg;
1443 void *d = msg->ctlinput.nm_extra;
1444 struct tcphdr th;
1445 void (*notify) (struct inpcb *, int) = tcp_notify;
1446 struct ip6_hdr *ip6;
1447 struct mbuf *m;
1448 struct ip6ctlparam *ip6cp = NULL;
1449 const struct sockaddr_in6 *sa6_src = NULL;
1450 int off;
1451 struct tcp_portonly {
1452 u_int16_t th_sport;
1453 u_int16_t th_dport;
1454 } *thp;
1455 int arg;
1457 if (sa->sa_family != AF_INET6 ||
1458 sa->sa_len != sizeof(struct sockaddr_in6)) {
1459 goto out;
1462 arg = 0;
1463 if (cmd == PRC_QUENCH)
1464 notify = tcp_quench;
1465 else if (cmd == PRC_MSGSIZE) {
1466 struct ip6ctlparam *ip6cp = d;
1467 struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1469 arg = ntohl(icmp6->icmp6_mtu);
1470 notify = tcp_mtudisc;
1471 } else if (!PRC_IS_REDIRECT(cmd) &&
1472 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1473 goto out;
1476 /* if the parameter is from icmp6, decode it. */
1477 if (d != NULL) {
1478 ip6cp = (struct ip6ctlparam *)d;
1479 m = ip6cp->ip6c_m;
1480 ip6 = ip6cp->ip6c_ip6;
1481 off = ip6cp->ip6c_off;
1482 sa6_src = ip6cp->ip6c_src;
1483 } else {
1484 m = NULL;
1485 ip6 = NULL;
1486 off = 0; /* fool gcc */
1487 sa6_src = &sa6_any;
1490 if (ip6 != NULL) {
1491 struct in_conninfo inc;
1493 * XXX: We assume that when IPV6 is non NULL,
1494 * M and OFF are valid.
1497 /* check if we can safely examine src and dst ports */
1498 if (m->m_pkthdr.len < off + sizeof *thp)
1499 goto out;
1501 bzero(&th, sizeof th);
1502 m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1504 in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1505 (struct sockaddr *)ip6cp->ip6c_src,
1506 th.th_sport, cmd, arg, notify);
1508 inc.inc_fport = th.th_dport;
1509 inc.inc_lport = th.th_sport;
1510 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1511 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1512 inc.inc_isipv6 = 1;
1513 syncache_unreach(&inc, &th);
1514 } else {
1515 in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1516 (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1518 out:
1519 lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1522 #endif
1525 * Following is where TCP initial sequence number generation occurs.
1527 * There are two places where we must use initial sequence numbers:
1528 * 1. In SYN-ACK packets.
1529 * 2. In SYN packets.
1531 * All ISNs for SYN-ACK packets are generated by the syncache. See
1532 * tcp_syncache.c for details.
1534 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1535 * depends on this property. In addition, these ISNs should be
1536 * unguessable so as to prevent connection hijacking. To satisfy
1537 * the requirements of this situation, the algorithm outlined in
1538 * RFC 1948 is used to generate sequence numbers.
1540 * Implementation details:
1542 * Time is based off the system timer, and is corrected so that it
1543 * increases by one megabyte per second. This allows for proper
1544 * recycling on high speed LANs while still leaving over an hour
1545 * before rollover.
1547 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1548 * between seeding of isn_secret. This is normally set to zero,
1549 * as reseeding should not be necessary.
1553 #define ISN_BYTES_PER_SECOND 1048576
1555 u_char isn_secret[32];
1556 int isn_last_reseed;
1557 MD5_CTX isn_ctx;
1559 tcp_seq
1560 tcp_new_isn(struct tcpcb *tp)
1562 u_int32_t md5_buffer[4];
1563 tcp_seq new_isn;
1565 /* Seed if this is the first use, reseed if requested. */
1566 if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1567 (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1568 < (u_int)ticks))) {
1569 read_random_unlimited(&isn_secret, sizeof isn_secret);
1570 isn_last_reseed = ticks;
1573 /* Compute the md5 hash and return the ISN. */
1574 MD5Init(&isn_ctx);
1575 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1576 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1577 #ifdef INET6
1578 if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1579 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1580 sizeof(struct in6_addr));
1581 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1582 sizeof(struct in6_addr));
1583 } else
1584 #endif
1586 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1587 sizeof(struct in_addr));
1588 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1589 sizeof(struct in_addr));
1591 MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1592 MD5Final((u_char *) &md5_buffer, &isn_ctx);
1593 new_isn = (tcp_seq) md5_buffer[0];
1594 new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1595 return (new_isn);
1599 * When a source quench is received, close congestion window
1600 * to one segment. We will gradually open it again as we proceed.
1602 void
1603 tcp_quench(struct inpcb *inp, int error)
1605 struct tcpcb *tp = intotcpcb(inp);
1607 if (tp != NULL) {
1608 tp->snd_cwnd = tp->t_maxseg;
1609 tp->snd_wacked = 0;
1614 * When a specific ICMP unreachable message is received and the
1615 * connection state is SYN-SENT, drop the connection. This behavior
1616 * is controlled by the icmp_may_rst sysctl.
1618 void
1619 tcp_drop_syn_sent(struct inpcb *inp, int error)
1621 struct tcpcb *tp = intotcpcb(inp);
1623 if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1624 tcp_drop(tp, error);
1628 * When a `need fragmentation' ICMP is received, update our idea of the MSS
1629 * based on the new value in the route. Also nudge TCP to send something,
1630 * since we know the packet we just sent was dropped.
1631 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1633 void
1634 tcp_mtudisc(struct inpcb *inp, int mtu)
1636 struct tcpcb *tp = intotcpcb(inp);
1637 struct rtentry *rt;
1638 struct socket *so = inp->inp_socket;
1639 int maxopd, mss;
1640 #ifdef INET6
1641 boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1642 #else
1643 const boolean_t isipv6 = FALSE;
1644 #endif
1646 if (tp == NULL)
1647 return;
1650 * If no MTU is provided in the ICMP message, use the
1651 * next lower likely value, as specified in RFC 1191.
1653 if (mtu == 0) {
1654 int oldmtu;
1656 oldmtu = tp->t_maxopd +
1657 (isipv6 ?
1658 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1659 sizeof(struct tcpiphdr));
1660 mtu = ip_next_mtu(oldmtu, 0);
1663 if (isipv6)
1664 rt = tcp_rtlookup6(&inp->inp_inc);
1665 else
1666 rt = tcp_rtlookup(&inp->inp_inc);
1667 if (rt != NULL) {
1668 if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1669 mtu = rt->rt_rmx.rmx_mtu;
1671 maxopd = mtu -
1672 (isipv6 ?
1673 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1674 sizeof(struct tcpiphdr));
1677 * XXX - The following conditional probably violates the TCP
1678 * spec. The problem is that, since we don't know the
1679 * other end's MSS, we are supposed to use a conservative
1680 * default. But, if we do that, then MTU discovery will
1681 * never actually take place, because the conservative
1682 * default is much less than the MTUs typically seen
1683 * on the Internet today. For the moment, we'll sweep
1684 * this under the carpet.
1686 * The conservative default might not actually be a problem
1687 * if the only case this occurs is when sending an initial
1688 * SYN with options and data to a host we've never talked
1689 * to before. Then, they will reply with an MSS value which
1690 * will get recorded and the new parameters should get
1691 * recomputed. For Further Study.
1693 if (rt->rt_rmx.rmx_mssopt && rt->rt_rmx.rmx_mssopt < maxopd)
1694 maxopd = rt->rt_rmx.rmx_mssopt;
1695 } else
1696 maxopd = mtu -
1697 (isipv6 ?
1698 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1699 sizeof(struct tcpiphdr));
1701 if (tp->t_maxopd <= maxopd)
1702 return;
1703 tp->t_maxopd = maxopd;
1705 mss = maxopd;
1706 if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1707 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1708 mss -= TCPOLEN_TSTAMP_APPA;
1710 /* round down to multiple of MCLBYTES */
1711 #if (MCLBYTES & (MCLBYTES - 1)) == 0 /* test if MCLBYTES power of 2 */
1712 if (mss > MCLBYTES)
1713 mss &= ~(MCLBYTES - 1);
1714 #else
1715 if (mss > MCLBYTES)
1716 mss = (mss / MCLBYTES) * MCLBYTES;
1717 #endif
1719 if (so->so_snd.ssb_hiwat < mss)
1720 mss = so->so_snd.ssb_hiwat;
1722 tp->t_maxseg = mss;
1723 tp->t_rtttime = 0;
1724 tp->snd_nxt = tp->snd_una;
1725 tcp_output(tp);
1726 tcpstat.tcps_mturesent++;
1730 * Look-up the routing entry to the peer of this inpcb. If no route
1731 * is found and it cannot be allocated the return NULL. This routine
1732 * is called by TCP routines that access the rmx structure and by tcp_mss
1733 * to get the interface MTU.
1735 struct rtentry *
1736 tcp_rtlookup(struct in_conninfo *inc)
1738 struct route *ro = &inc->inc_route;
1740 if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1741 /* No route yet, so try to acquire one */
1742 if (inc->inc_faddr.s_addr != INADDR_ANY) {
1744 * unused portions of the structure MUST be zero'd
1745 * out because rtalloc() treats it as opaque data
1747 bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1748 ro->ro_dst.sa_family = AF_INET;
1749 ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1750 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1751 inc->inc_faddr;
1752 rtalloc(ro);
1755 return (ro->ro_rt);
1758 #ifdef INET6
1759 struct rtentry *
1760 tcp_rtlookup6(struct in_conninfo *inc)
1762 struct route_in6 *ro6 = &inc->inc6_route;
1764 if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1765 /* No route yet, so try to acquire one */
1766 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1768 * unused portions of the structure MUST be zero'd
1769 * out because rtalloc() treats it as opaque data
1771 bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1772 ro6->ro_dst.sin6_family = AF_INET6;
1773 ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1774 ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1775 rtalloc((struct route *)ro6);
1778 return (ro6->ro_rt);
1780 #endif
1782 #ifdef IPSEC
1783 /* compute ESP/AH header size for TCP, including outer IP header. */
1784 size_t
1785 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1787 struct inpcb *inp;
1788 struct mbuf *m;
1789 size_t hdrsiz;
1790 struct ip *ip;
1791 struct tcphdr *th;
1793 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1794 return (0);
1795 MGETHDR(m, MB_DONTWAIT, MT_DATA);
1796 if (!m)
1797 return (0);
1799 #ifdef INET6
1800 if (inp->inp_vflag & INP_IPV6) {
1801 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1803 th = (struct tcphdr *)(ip6 + 1);
1804 m->m_pkthdr.len = m->m_len =
1805 sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1806 tcp_fillheaders(tp, ip6, th);
1807 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1808 } else
1809 #endif
1811 ip = mtod(m, struct ip *);
1812 th = (struct tcphdr *)(ip + 1);
1813 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1814 tcp_fillheaders(tp, ip, th);
1815 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1818 m_free(m);
1819 return (hdrsiz);
1821 #endif
1824 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1826 * This code attempts to calculate the bandwidth-delay product as a
1827 * means of determining the optimal window size to maximize bandwidth,
1828 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1829 * routers. This code also does a fairly good job keeping RTTs in check
1830 * across slow links like modems. We implement an algorithm which is very
1831 * similar (but not meant to be) TCP/Vegas. The code operates on the
1832 * transmitter side of a TCP connection and so only effects the transmit
1833 * side of the connection.
1835 * BACKGROUND: TCP makes no provision for the management of buffer space
1836 * at the end points or at the intermediate routers and switches. A TCP
1837 * stream, whether using NewReno or not, will eventually buffer as
1838 * many packets as it is able and the only reason this typically works is
1839 * due to the fairly small default buffers made available for a connection
1840 * (typicaly 16K or 32K). As machines use larger windows and/or window
1841 * scaling it is now fairly easy for even a single TCP connection to blow-out
1842 * all available buffer space not only on the local interface, but on
1843 * intermediate routers and switches as well. NewReno makes a misguided
1844 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1845 * then backing off, then steadily increasing the window again until another
1846 * failure occurs, ad-infinitum. This results in terrible oscillation that
1847 * is only made worse as network loads increase and the idea of intentionally
1848 * blowing out network buffers is, frankly, a terrible way to manage network
1849 * resources.
1851 * It is far better to limit the transmit window prior to the failure
1852 * condition being achieved. There are two general ways to do this: First
1853 * you can 'scan' through different transmit window sizes and locate the
1854 * point where the RTT stops increasing, indicating that you have filled the
1855 * pipe, then scan backwards until you note that RTT stops decreasing, then
1856 * repeat ad-infinitum. This method works in principle but has severe
1857 * implementation issues due to RTT variances, timer granularity, and
1858 * instability in the algorithm which can lead to many false positives and
1859 * create oscillations as well as interact badly with other TCP streams
1860 * implementing the same algorithm.
1862 * The second method is to limit the window to the bandwidth delay product
1863 * of the link. This is the method we implement. RTT variances and our
1864 * own manipulation of the congestion window, bwnd, can potentially
1865 * destabilize the algorithm. For this reason we have to stabilize the
1866 * elements used to calculate the window. We do this by using the minimum
1867 * observed RTT, the long term average of the observed bandwidth, and
1868 * by adding two segments worth of slop. It isn't perfect but it is able
1869 * to react to changing conditions and gives us a very stable basis on
1870 * which to extend the algorithm.
1872 void
1873 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1875 u_long bw;
1876 u_long bwnd;
1877 int save_ticks;
1878 int delta_ticks;
1881 * If inflight_enable is disabled in the middle of a tcp connection,
1882 * make sure snd_bwnd is effectively disabled.
1884 if (!tcp_inflight_enable) {
1885 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1886 tp->snd_bandwidth = 0;
1887 return;
1891 * Validate the delta time. If a connection is new or has been idle
1892 * a long time we have to reset the bandwidth calculator.
1894 save_ticks = ticks;
1895 delta_ticks = save_ticks - tp->t_bw_rtttime;
1896 if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1897 tp->t_bw_rtttime = ticks;
1898 tp->t_bw_rtseq = ack_seq;
1899 if (tp->snd_bandwidth == 0)
1900 tp->snd_bandwidth = tcp_inflight_min;
1901 return;
1903 if (delta_ticks == 0)
1904 return;
1907 * Sanity check, plus ignore pure window update acks.
1909 if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1910 return;
1913 * Figure out the bandwidth. Due to the tick granularity this
1914 * is a very rough number and it MUST be averaged over a fairly
1915 * long period of time. XXX we need to take into account a link
1916 * that is not using all available bandwidth, but for now our
1917 * slop will ramp us up if this case occurs and the bandwidth later
1918 * increases.
1920 bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1921 tp->t_bw_rtttime = save_ticks;
1922 tp->t_bw_rtseq = ack_seq;
1923 bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1925 tp->snd_bandwidth = bw;
1928 * Calculate the semi-static bandwidth delay product, plus two maximal
1929 * segments. The additional slop puts us squarely in the sweet
1930 * spot and also handles the bandwidth run-up case. Without the
1931 * slop we could be locking ourselves into a lower bandwidth.
1933 * Situations Handled:
1934 * (1) Prevents over-queueing of packets on LANs, especially on
1935 * high speed LANs, allowing larger TCP buffers to be
1936 * specified, and also does a good job preventing
1937 * over-queueing of packets over choke points like modems
1938 * (at least for the transmit side).
1940 * (2) Is able to handle changing network loads (bandwidth
1941 * drops so bwnd drops, bandwidth increases so bwnd
1942 * increases).
1944 * (3) Theoretically should stabilize in the face of multiple
1945 * connections implementing the same algorithm (this may need
1946 * a little work).
1948 * (4) Stability value (defaults to 20 = 2 maximal packets) can
1949 * be adjusted with a sysctl but typically only needs to be on
1950 * very slow connections. A value no smaller then 5 should
1951 * be used, but only reduce this default if you have no other
1952 * choice.
1955 #define USERTT ((tp->t_srtt + tp->t_rttbest) / 2)
1956 bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1957 tcp_inflight_stab * (int)tp->t_maxseg / 10;
1958 #undef USERTT
1960 if (tcp_inflight_debug > 0) {
1961 static int ltime;
1962 if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1963 ltime = ticks;
1964 kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1965 tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1968 if ((long)bwnd < tcp_inflight_min)
1969 bwnd = tcp_inflight_min;
1970 if (bwnd > tcp_inflight_max)
1971 bwnd = tcp_inflight_max;
1972 if ((long)bwnd < tp->t_maxseg * 2)
1973 bwnd = tp->t_maxseg * 2;
1974 tp->snd_bwnd = bwnd;
1977 #ifdef TCP_SIGNATURE
1979 * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1981 * We do this over ip, tcphdr, segment data, and the key in the SADB.
1982 * When called from tcp_input(), we can be sure that th_sum has been
1983 * zeroed out and verified already.
1985 * Return 0 if successful, otherwise return -1.
1987 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1988 * search with the destination IP address, and a 'magic SPI' to be
1989 * determined by the application. This is hardcoded elsewhere to 1179
1990 * right now. Another branch of this code exists which uses the SPD to
1991 * specify per-application flows but it is unstable.
1994 tcpsignature_compute(
1995 struct mbuf *m, /* mbuf chain */
1996 int len, /* length of TCP data */
1997 int optlen, /* length of TCP options */
1998 u_char *buf, /* storage for MD5 digest */
1999 u_int direction) /* direction of flow */
2001 struct ippseudo ippseudo;
2002 MD5_CTX ctx;
2003 int doff;
2004 struct ip *ip;
2005 struct ipovly *ipovly;
2006 struct secasvar *sav;
2007 struct tcphdr *th;
2008 #ifdef INET6
2009 struct ip6_hdr *ip6;
2010 struct in6_addr in6;
2011 uint32_t plen;
2012 uint16_t nhdr;
2013 #endif /* INET6 */
2014 u_short savecsum;
2016 KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2017 KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2019 * Extract the destination from the IP header in the mbuf.
2021 ip = mtod(m, struct ip *);
2022 #ifdef INET6
2023 ip6 = NULL; /* Make the compiler happy. */
2024 #endif /* INET6 */
2026 * Look up an SADB entry which matches the address found in
2027 * the segment.
2029 switch (IP_VHL_V(ip->ip_vhl)) {
2030 case IPVERSION:
2031 sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2032 IPPROTO_TCP, htonl(TCP_SIG_SPI));
2033 break;
2034 #ifdef INET6
2035 case (IPV6_VERSION >> 4):
2036 ip6 = mtod(m, struct ip6_hdr *);
2037 sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2038 IPPROTO_TCP, htonl(TCP_SIG_SPI));
2039 break;
2040 #endif /* INET6 */
2041 default:
2042 return (EINVAL);
2043 /* NOTREACHED */
2044 break;
2046 if (sav == NULL) {
2047 kprintf("%s: SADB lookup failed\n", __func__);
2048 return (EINVAL);
2050 MD5Init(&ctx);
2053 * Step 1: Update MD5 hash with IP pseudo-header.
2055 * XXX The ippseudo header MUST be digested in network byte order,
2056 * or else we'll fail the regression test. Assume all fields we've
2057 * been doing arithmetic on have been in host byte order.
2058 * XXX One cannot depend on ipovly->ih_len here. When called from
2059 * tcp_output(), the underlying ip_len member has not yet been set.
2061 switch (IP_VHL_V(ip->ip_vhl)) {
2062 case IPVERSION:
2063 ipovly = (struct ipovly *)ip;
2064 ippseudo.ippseudo_src = ipovly->ih_src;
2065 ippseudo.ippseudo_dst = ipovly->ih_dst;
2066 ippseudo.ippseudo_pad = 0;
2067 ippseudo.ippseudo_p = IPPROTO_TCP;
2068 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2069 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2070 th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2071 doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2072 break;
2073 #ifdef INET6
2075 * RFC 2385, 2.0 Proposal
2076 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2077 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2078 * extended next header value (to form 32 bits), and 32-bit segment
2079 * length.
2080 * Note: Upper-Layer Packet Length comes before Next Header.
2082 case (IPV6_VERSION >> 4):
2083 in6 = ip6->ip6_src;
2084 in6_clearscope(&in6);
2085 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2086 in6 = ip6->ip6_dst;
2087 in6_clearscope(&in6);
2088 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2089 plen = htonl(len + sizeof(struct tcphdr) + optlen);
2090 MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2091 nhdr = 0;
2092 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2093 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2094 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2095 nhdr = IPPROTO_TCP;
2096 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2097 th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2098 doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2099 break;
2100 #endif /* INET6 */
2101 default:
2102 return (EINVAL);
2103 /* NOTREACHED */
2104 break;
2107 * Step 2: Update MD5 hash with TCP header, excluding options.
2108 * The TCP checksum must be set to zero.
2110 savecsum = th->th_sum;
2111 th->th_sum = 0;
2112 MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2113 th->th_sum = savecsum;
2115 * Step 3: Update MD5 hash with TCP segment data.
2116 * Use m_apply() to avoid an early m_pullup().
2118 if (len > 0)
2119 m_apply(m, doff, len, tcpsignature_apply, &ctx);
2121 * Step 4: Update MD5 hash with shared secret.
2123 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2124 MD5Final(buf, &ctx);
2125 key_sa_recordxfer(sav, m);
2126 key_freesav(sav);
2127 return (0);
2131 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2134 MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2135 return (0);
2137 #endif /* TCP_SIGNATURE */