kernel - Force NFSv3 for diskless nfs mount
[dragonfly.git] / sys / kern / usched_bsd4.c
blob0494e91aa83d6610c3b3d66425babd405eee2f3d
1 /*
2 * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
26 * $DragonFly: src/sys/kern/usched_bsd4.c,v 1.26 2008/11/01 23:31:19 dillon Exp $
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/lock.h>
33 #include <sys/queue.h>
34 #include <sys/proc.h>
35 #include <sys/rtprio.h>
36 #include <sys/uio.h>
37 #include <sys/sysctl.h>
38 #include <sys/resourcevar.h>
39 #include <sys/spinlock.h>
40 #include <machine/cpu.h>
41 #include <machine/smp.h>
43 #include <sys/thread2.h>
44 #include <sys/spinlock2.h>
45 #include <sys/mplock2.h>
48 * Priorities. Note that with 32 run queues per scheduler each queue
49 * represents four priority levels.
52 #define MAXPRI 128
53 #define PRIMASK (MAXPRI - 1)
54 #define PRIBASE_REALTIME 0
55 #define PRIBASE_NORMAL MAXPRI
56 #define PRIBASE_IDLE (MAXPRI * 2)
57 #define PRIBASE_THREAD (MAXPRI * 3)
58 #define PRIBASE_NULL (MAXPRI * 4)
60 #define NQS 32 /* 32 run queues. */
61 #define PPQ (MAXPRI / NQS) /* priorities per queue */
62 #define PPQMASK (PPQ - 1)
65 * NICEPPQ - number of nice units per priority queue
66 * ESTCPURAMP - number of scheduler ticks for estcpu to switch queues
68 * ESTCPUPPQ - number of estcpu units per priority queue
69 * ESTCPUMAX - number of estcpu units
70 * ESTCPUINCR - amount we have to increment p_estcpu per scheduling tick at
71 * 100% cpu.
73 #define NICEPPQ 2
74 #define ESTCPURAMP 4
75 #define ESTCPUPPQ 512
76 #define ESTCPUMAX (ESTCPUPPQ * NQS)
77 #define ESTCPUINCR (ESTCPUPPQ / ESTCPURAMP)
78 #define PRIO_RANGE (PRIO_MAX - PRIO_MIN + 1)
80 #define ESTCPULIM(v) min((v), ESTCPUMAX)
82 TAILQ_HEAD(rq, lwp);
84 #define lwp_priority lwp_usdata.bsd4.priority
85 #define lwp_rqindex lwp_usdata.bsd4.rqindex
86 #define lwp_origcpu lwp_usdata.bsd4.origcpu
87 #define lwp_estcpu lwp_usdata.bsd4.estcpu
88 #define lwp_rqtype lwp_usdata.bsd4.rqtype
90 static void bsd4_acquire_curproc(struct lwp *lp);
91 static void bsd4_release_curproc(struct lwp *lp);
92 static void bsd4_select_curproc(globaldata_t gd);
93 static void bsd4_setrunqueue(struct lwp *lp);
94 static void bsd4_schedulerclock(struct lwp *lp, sysclock_t period,
95 sysclock_t cpstamp);
96 static void bsd4_recalculate_estcpu(struct lwp *lp);
97 static void bsd4_resetpriority(struct lwp *lp);
98 static void bsd4_forking(struct lwp *plp, struct lwp *lp);
99 static void bsd4_exiting(struct lwp *plp, struct lwp *lp);
100 static void bsd4_yield(struct lwp *lp);
102 #ifdef SMP
103 static void need_user_resched_remote(void *dummy);
104 #endif
105 static struct lwp *chooseproc_locked(struct lwp *chklp);
106 static void bsd4_remrunqueue_locked(struct lwp *lp);
107 static void bsd4_setrunqueue_locked(struct lwp *lp);
109 struct usched usched_bsd4 = {
110 { NULL },
111 "bsd4", "Original DragonFly Scheduler",
112 NULL, /* default registration */
113 NULL, /* default deregistration */
114 bsd4_acquire_curproc,
115 bsd4_release_curproc,
116 bsd4_setrunqueue,
117 bsd4_schedulerclock,
118 bsd4_recalculate_estcpu,
119 bsd4_resetpriority,
120 bsd4_forking,
121 bsd4_exiting,
122 NULL, /* setcpumask not supported */
123 bsd4_yield
126 struct usched_bsd4_pcpu {
127 struct thread helper_thread;
128 short rrcount;
129 short upri;
130 struct lwp *uschedcp;
133 typedef struct usched_bsd4_pcpu *bsd4_pcpu_t;
136 * We have NQS (32) run queues per scheduling class. For the normal
137 * class, there are 128 priorities scaled onto these 32 queues. New
138 * processes are added to the last entry in each queue, and processes
139 * are selected for running by taking them from the head and maintaining
140 * a simple FIFO arrangement. Realtime and Idle priority processes have
141 * and explicit 0-31 priority which maps directly onto their class queue
142 * index. When a queue has something in it, the corresponding bit is
143 * set in the queuebits variable, allowing a single read to determine
144 * the state of all 32 queues and then a ffs() to find the first busy
145 * queue.
147 static struct rq bsd4_queues[NQS];
148 static struct rq bsd4_rtqueues[NQS];
149 static struct rq bsd4_idqueues[NQS];
150 static u_int32_t bsd4_queuebits;
151 static u_int32_t bsd4_rtqueuebits;
152 static u_int32_t bsd4_idqueuebits;
153 static cpumask_t bsd4_curprocmask = -1; /* currently running a user process */
154 static cpumask_t bsd4_rdyprocmask; /* ready to accept a user process */
155 static int bsd4_runqcount;
156 #ifdef SMP
157 static volatile int bsd4_scancpu;
158 #endif
159 static struct spinlock bsd4_spin;
160 static struct usched_bsd4_pcpu bsd4_pcpu[MAXCPU];
162 SYSCTL_INT(_debug, OID_AUTO, bsd4_runqcount, CTLFLAG_RD, &bsd4_runqcount, 0, "");
163 #ifdef INVARIANTS
164 static int usched_nonoptimal;
165 SYSCTL_INT(_debug, OID_AUTO, usched_nonoptimal, CTLFLAG_RW,
166 &usched_nonoptimal, 0, "acquire_curproc() was not optimal");
167 static int usched_optimal;
168 SYSCTL_INT(_debug, OID_AUTO, usched_optimal, CTLFLAG_RW,
169 &usched_optimal, 0, "acquire_curproc() was optimal");
170 #endif
171 static int usched_debug = -1;
172 SYSCTL_INT(_debug, OID_AUTO, scdebug, CTLFLAG_RW, &usched_debug, 0, "");
173 #ifdef SMP
174 static int remote_resched_nonaffinity;
175 static int remote_resched_affinity;
176 static int choose_affinity;
177 SYSCTL_INT(_debug, OID_AUTO, remote_resched_nonaffinity, CTLFLAG_RD,
178 &remote_resched_nonaffinity, 0, "Number of remote rescheds");
179 SYSCTL_INT(_debug, OID_AUTO, remote_resched_affinity, CTLFLAG_RD,
180 &remote_resched_affinity, 0, "Number of remote rescheds");
181 SYSCTL_INT(_debug, OID_AUTO, choose_affinity, CTLFLAG_RD,
182 &choose_affinity, 0, "chooseproc() was smart");
183 #endif
185 static int usched_bsd4_rrinterval = (ESTCPUFREQ + 9) / 10;
186 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_rrinterval, CTLFLAG_RW,
187 &usched_bsd4_rrinterval, 0, "");
188 static int usched_bsd4_decay = ESTCPUINCR / 2;
189 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_decay, CTLFLAG_RW,
190 &usched_bsd4_decay, 0, "");
193 * Initialize the run queues at boot time.
195 static void
196 rqinit(void *dummy)
198 int i;
200 spin_init(&bsd4_spin);
201 for (i = 0; i < NQS; i++) {
202 TAILQ_INIT(&bsd4_queues[i]);
203 TAILQ_INIT(&bsd4_rtqueues[i]);
204 TAILQ_INIT(&bsd4_idqueues[i]);
206 atomic_clear_int(&bsd4_curprocmask, 1);
208 SYSINIT(runqueue, SI_BOOT2_USCHED, SI_ORDER_FIRST, rqinit, NULL)
211 * BSD4_ACQUIRE_CURPROC
213 * This function is called when the kernel intends to return to userland.
214 * It is responsible for making the thread the current designated userland
215 * thread for this cpu, blocking if necessary.
217 * The kernel has already depressed our LWKT priority so we must not switch
218 * until we have either assigned or disposed of the thread.
220 * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
221 * TO ANOTHER CPU! Because most of the kernel assumes that no migration will
222 * occur, this function is called only under very controlled circumstances.
224 * MPSAFE
226 static void
227 bsd4_acquire_curproc(struct lwp *lp)
229 globaldata_t gd;
230 bsd4_pcpu_t dd;
231 struct lwp *olp;
233 crit_enter();
234 bsd4_recalculate_estcpu(lp);
237 * If a reschedule was requested give another thread the
238 * driver's seat.
240 if (user_resched_wanted()) {
241 clear_user_resched();
242 bsd4_release_curproc(lp);
246 * Loop until we are the current user thread
248 do {
250 * Reload after a switch or setrunqueue/switch possibly
251 * moved us to another cpu.
253 clear_lwkt_resched();
254 gd = mycpu;
255 dd = &bsd4_pcpu[gd->gd_cpuid];
258 * Become the currently scheduled user thread for this cpu
259 * if we can do so trivially.
261 * We can steal another thread's current thread designation
262 * on this cpu since if we are running that other thread
263 * must not be, so we can safely deschedule it.
265 if (dd->uschedcp == lp) {
266 dd->upri = lp->lwp_priority;
267 } else if (dd->uschedcp == NULL) {
268 atomic_set_int(&bsd4_curprocmask, gd->gd_cpumask);
269 dd->uschedcp = lp;
270 dd->upri = lp->lwp_priority;
271 } else if (dd->upri > lp->lwp_priority) {
272 olp = dd->uschedcp;
273 dd->uschedcp = lp;
274 dd->upri = lp->lwp_priority;
275 lwkt_deschedule(olp->lwp_thread);
276 bsd4_setrunqueue(olp);
277 } else {
278 lwkt_deschedule(lp->lwp_thread);
279 bsd4_setrunqueue(lp);
280 lwkt_switch();
284 * Other threads at our current user priority have already
285 * put in their bids, but we must run any kernel threads
286 * at higher priorities, and we could lose our bid to
287 * another thread trying to return to user mode in the
288 * process.
290 * If we lose our bid we will be descheduled and put on
291 * the run queue. When we are reactivated we will have
292 * another chance.
294 lwkt_switch();
295 } while (dd->uschedcp != lp);
297 crit_exit();
298 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
302 * BSD4_RELEASE_CURPROC
304 * This routine detaches the current thread from the userland scheduler,
305 * usually because the thread needs to run or block in the kernel (at
306 * kernel priority) for a while.
308 * This routine is also responsible for selecting a new thread to
309 * make the current thread.
311 * NOTE: This implementation differs from the dummy example in that
312 * bsd4_select_curproc() is able to select the current process, whereas
313 * dummy_select_curproc() is not able to select the current process.
314 * This means we have to NULL out uschedcp.
316 * Additionally, note that we may already be on a run queue if releasing
317 * via the lwkt_switch() in bsd4_setrunqueue().
319 * WARNING! The MP lock may be in an unsynchronized state due to the
320 * way get_mplock() works and the fact that this function may be called
321 * from a passive release during a lwkt_switch(). try_mplock() will deal
322 * with this for us but you should be aware that td_mpcount may not be
323 * useable.
325 * MPSAFE
327 static void
328 bsd4_release_curproc(struct lwp *lp)
330 globaldata_t gd = mycpu;
331 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
333 if (dd->uschedcp == lp) {
334 crit_enter();
335 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
336 dd->uschedcp = NULL; /* don't let lp be selected */
337 dd->upri = PRIBASE_NULL;
338 atomic_clear_int(&bsd4_curprocmask, gd->gd_cpumask);
339 bsd4_select_curproc(gd);
340 crit_exit();
345 * BSD4_SELECT_CURPROC
347 * Select a new current process for this cpu and clear any pending user
348 * reschedule request. The cpu currently has no current process.
350 * This routine is also responsible for equal-priority round-robining,
351 * typically triggered from bsd4_schedulerclock(). In our dummy example
352 * all the 'user' threads are LWKT scheduled all at once and we just
353 * call lwkt_switch().
355 * The calling process is not on the queue and cannot be selected.
357 * MPSAFE
359 static
360 void
361 bsd4_select_curproc(globaldata_t gd)
363 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
364 struct lwp *nlp;
365 int cpuid = gd->gd_cpuid;
367 crit_enter_gd(gd);
369 spin_lock(&bsd4_spin);
370 if ((nlp = chooseproc_locked(dd->uschedcp)) != NULL) {
371 atomic_set_int(&bsd4_curprocmask, 1 << cpuid);
372 dd->upri = nlp->lwp_priority;
373 dd->uschedcp = nlp;
374 spin_unlock(&bsd4_spin);
375 #ifdef SMP
376 lwkt_acquire(nlp->lwp_thread);
377 #endif
378 lwkt_schedule(nlp->lwp_thread);
379 } else if (bsd4_runqcount && (bsd4_rdyprocmask & (1 << cpuid))) {
380 atomic_clear_int(&bsd4_rdyprocmask, 1 << cpuid);
381 spin_unlock(&bsd4_spin);
382 lwkt_schedule(&dd->helper_thread);
383 } else {
384 spin_unlock(&bsd4_spin);
386 crit_exit_gd(gd);
390 * BSD4_SETRUNQUEUE
392 * Place the specified lwp on the user scheduler's run queue. This routine
393 * must be called with the thread descheduled. The lwp must be runnable.
395 * The thread may be the current thread as a special case.
397 * MPSAFE
399 static void
400 bsd4_setrunqueue(struct lwp *lp)
402 globaldata_t gd;
403 bsd4_pcpu_t dd;
404 #ifdef SMP
405 int cpuid;
406 cpumask_t mask;
407 cpumask_t tmpmask;
408 #endif
411 * First validate the process state relative to the current cpu.
412 * We don't need the spinlock for this, just a critical section.
413 * We are in control of the process.
415 crit_enter();
416 KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
417 KASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0,
418 ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
419 lp->lwp_tid, lp->lwp_proc->p_flag, lp->lwp_flag));
420 KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
423 * Note: gd and dd are relative to the target thread's last cpu,
424 * NOT our current cpu.
426 gd = lp->lwp_thread->td_gd;
427 dd = &bsd4_pcpu[gd->gd_cpuid];
430 * This process is not supposed to be scheduled anywhere or assigned
431 * as the current process anywhere. Assert the condition.
433 KKASSERT(dd->uschedcp != lp);
435 #ifndef SMP
437 * If we are not SMP we do not have a scheduler helper to kick
438 * and must directly activate the process if none are scheduled.
440 * This is really only an issue when bootstrapping init since
441 * the caller in all other cases will be a user process, and
442 * even if released (dd->uschedcp == NULL), that process will
443 * kickstart the scheduler when it returns to user mode from
444 * the kernel.
446 if (dd->uschedcp == NULL) {
447 atomic_set_int(&bsd4_curprocmask, gd->gd_cpumask);
448 dd->uschedcp = lp;
449 dd->upri = lp->lwp_priority;
450 lwkt_schedule(lp->lwp_thread);
451 crit_exit();
452 return;
454 #endif
456 #ifdef SMP
458 * XXX fixme. Could be part of a remrunqueue/setrunqueue
459 * operation when the priority is recalculated, so TDF_MIGRATING
460 * may already be set.
462 if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
463 lwkt_giveaway(lp->lwp_thread);
464 #endif
467 * We lose control of lp the moment we release the spinlock after
468 * having placed lp on the queue. i.e. another cpu could pick it
469 * up and it could exit, or its priority could be further adjusted,
470 * or something like that.
472 spin_lock(&bsd4_spin);
473 bsd4_setrunqueue_locked(lp);
475 #ifdef SMP
477 * Kick the scheduler helper on one of the other cpu's
478 * and request a reschedule if appropriate.
480 cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
481 ++bsd4_scancpu;
482 mask = ~bsd4_curprocmask & bsd4_rdyprocmask &
483 lp->lwp_cpumask & smp_active_mask;
484 spin_unlock(&bsd4_spin);
486 while (mask) {
487 tmpmask = ~((1 << cpuid) - 1);
488 if (mask & tmpmask)
489 cpuid = bsfl(mask & tmpmask);
490 else
491 cpuid = bsfl(mask);
492 gd = globaldata_find(cpuid);
493 dd = &bsd4_pcpu[cpuid];
495 if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
496 if (gd == mycpu)
497 need_user_resched_remote(NULL);
498 else
499 lwkt_send_ipiq(gd, need_user_resched_remote, NULL);
500 break;
502 mask &= ~(1 << cpuid);
504 #else
506 * Request a reschedule if appropriate.
508 spin_unlock(&bsd4_spin);
509 if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
510 need_user_resched();
512 #endif
513 crit_exit();
517 * This routine is called from a systimer IPI. It MUST be MP-safe and
518 * the BGL IS NOT HELD ON ENTRY. This routine is called at ESTCPUFREQ on
519 * each cpu.
521 * MPSAFE
523 static
524 void
525 bsd4_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
527 globaldata_t gd = mycpu;
528 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
531 * Do we need to round-robin? We round-robin 10 times a second.
532 * This should only occur for cpu-bound batch processes.
534 if (++dd->rrcount >= usched_bsd4_rrinterval) {
535 dd->rrcount = 0;
536 need_user_resched();
540 * As the process accumulates cpu time p_estcpu is bumped and may
541 * push the process into another scheduling queue. It typically
542 * takes 4 ticks to bump the queue.
544 lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
547 * Reducing p_origcpu over time causes more of our estcpu to be
548 * returned to the parent when we exit. This is a small tweak
549 * for the batch detection heuristic.
551 if (lp->lwp_origcpu)
552 --lp->lwp_origcpu;
555 * Spinlocks also hold a critical section so there should not be
556 * any active.
558 KKASSERT(gd->gd_spinlocks_wr == 0);
560 bsd4_resetpriority(lp);
561 #if 0
563 * if we can't call bsd4_resetpriority for some reason we must call
564 * need user_resched().
566 need_user_resched();
567 #endif
571 * Called from acquire and from kern_synch's one-second timer (one of the
572 * callout helper threads) with a critical section held.
574 * Decay p_estcpu based on the number of ticks we haven't been running
575 * and our p_nice. As the load increases each process observes a larger
576 * number of idle ticks (because other processes are running in them).
577 * This observation leads to a larger correction which tends to make the
578 * system more 'batchy'.
580 * Note that no recalculation occurs for a process which sleeps and wakes
581 * up in the same tick. That is, a system doing thousands of context
582 * switches per second will still only do serious estcpu calculations
583 * ESTCPUFREQ times per second.
585 * MPSAFE
587 static
588 void
589 bsd4_recalculate_estcpu(struct lwp *lp)
591 globaldata_t gd = mycpu;
592 sysclock_t cpbase;
593 int loadfac;
594 int ndecay;
595 int nticks;
596 int nleft;
599 * We have to subtract periodic to get the last schedclock
600 * timeout time, otherwise we would get the upcoming timeout.
601 * Keep in mind that a process can migrate between cpus and
602 * while the scheduler clock should be very close, boundary
603 * conditions could lead to a small negative delta.
605 cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
607 if (lp->lwp_slptime > 1) {
609 * Too much time has passed, do a coarse correction.
611 lp->lwp_estcpu = lp->lwp_estcpu >> 1;
612 bsd4_resetpriority(lp);
613 lp->lwp_cpbase = cpbase;
614 lp->lwp_cpticks = 0;
615 } else if (lp->lwp_cpbase != cpbase) {
617 * Adjust estcpu if we are in a different tick. Don't waste
618 * time if we are in the same tick.
620 * First calculate the number of ticks in the measurement
621 * interval. The nticks calculation can wind up 0 due to
622 * a bug in the handling of lwp_slptime (as yet not found),
623 * so make sure we do not get a divide by 0 panic.
625 nticks = (cpbase - lp->lwp_cpbase) / gd->gd_schedclock.periodic;
626 if (nticks <= 0)
627 nticks = 1;
628 updatepcpu(lp, lp->lwp_cpticks, nticks);
630 if ((nleft = nticks - lp->lwp_cpticks) < 0)
631 nleft = 0;
632 if (usched_debug == lp->lwp_proc->p_pid) {
633 kprintf("pid %d tid %d estcpu %d cpticks %d nticks %d nleft %d",
634 lp->lwp_proc->p_pid, lp->lwp_tid, lp->lwp_estcpu,
635 lp->lwp_cpticks, nticks, nleft);
639 * Calculate a decay value based on ticks remaining scaled
640 * down by the instantanious load and p_nice.
642 if ((loadfac = bsd4_runqcount) < 2)
643 loadfac = 2;
644 ndecay = nleft * usched_bsd4_decay * 2 *
645 (PRIO_MAX * 2 - lp->lwp_proc->p_nice) / (loadfac * PRIO_MAX * 2);
648 * Adjust p_estcpu. Handle a border case where batch jobs
649 * can get stalled long enough to decay to zero when they
650 * shouldn't.
652 if (lp->lwp_estcpu > ndecay * 2)
653 lp->lwp_estcpu -= ndecay;
654 else
655 lp->lwp_estcpu >>= 1;
657 if (usched_debug == lp->lwp_proc->p_pid)
658 kprintf(" ndecay %d estcpu %d\n", ndecay, lp->lwp_estcpu);
659 bsd4_resetpriority(lp);
660 lp->lwp_cpbase = cpbase;
661 lp->lwp_cpticks = 0;
666 * Compute the priority of a process when running in user mode.
667 * Arrange to reschedule if the resulting priority is better
668 * than that of the current process.
670 * This routine may be called with any process.
672 * This routine is called by fork1() for initial setup with the process
673 * of the run queue, and also may be called normally with the process on or
674 * off the run queue.
676 * MPSAFE
678 static void
679 bsd4_resetpriority(struct lwp *lp)
681 bsd4_pcpu_t dd;
682 int newpriority;
683 u_short newrqtype;
684 int reschedcpu;
687 * Calculate the new priority and queue type
689 crit_enter();
690 spin_lock(&bsd4_spin);
692 newrqtype = lp->lwp_rtprio.type;
694 switch(newrqtype) {
695 case RTP_PRIO_REALTIME:
696 case RTP_PRIO_FIFO:
697 newpriority = PRIBASE_REALTIME +
698 (lp->lwp_rtprio.prio & PRIMASK);
699 break;
700 case RTP_PRIO_NORMAL:
701 newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
702 newpriority += lp->lwp_estcpu * PPQ / ESTCPUPPQ;
703 newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
704 NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
705 newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
706 break;
707 case RTP_PRIO_IDLE:
708 newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
709 break;
710 case RTP_PRIO_THREAD:
711 newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
712 break;
713 default:
714 panic("Bad RTP_PRIO %d", newrqtype);
715 /* NOT REACHED */
719 * The newpriority incorporates the queue type so do a simple masked
720 * check to determine if the process has moved to another queue. If
721 * it has, and it is currently on a run queue, then move it.
723 if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
724 lp->lwp_priority = newpriority;
725 if (lp->lwp_flag & LWP_ONRUNQ) {
726 bsd4_remrunqueue_locked(lp);
727 lp->lwp_rqtype = newrqtype;
728 lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
729 bsd4_setrunqueue_locked(lp);
730 reschedcpu = lp->lwp_thread->td_gd->gd_cpuid;
731 } else {
732 lp->lwp_rqtype = newrqtype;
733 lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
734 reschedcpu = -1;
736 } else {
737 lp->lwp_priority = newpriority;
738 reschedcpu = -1;
740 spin_unlock(&bsd4_spin);
743 * Determine if we need to reschedule the target cpu. This only
744 * occurs if the LWP is already on a scheduler queue, which means
745 * that idle cpu notification has already occured. At most we
746 * need only issue a need_user_resched() on the appropriate cpu.
748 * The LWP may be owned by a CPU different from the current one,
749 * in which case dd->uschedcp may be modified without an MP lock
750 * or a spinlock held. The worst that happens is that the code
751 * below causes a spurious need_user_resched() on the target CPU
752 * and dd->pri to be wrong for a short period of time, both of
753 * which are harmless.
755 if (reschedcpu >= 0) {
756 dd = &bsd4_pcpu[reschedcpu];
757 if ((dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK)) {
758 dd->upri = lp->lwp_priority;
759 #ifdef SMP
760 if (reschedcpu == mycpu->gd_cpuid) {
761 need_user_resched();
762 } else {
763 lwkt_send_ipiq(lp->lwp_thread->td_gd,
764 need_user_resched_remote, NULL);
766 #else
767 need_user_resched();
768 #endif
771 crit_exit();
775 * MPSAFE
777 static
778 void
779 bsd4_yield(struct lwp *lp)
781 #if 0
782 /* FUTURE (or something similar) */
783 switch(lp->lwp_rqtype) {
784 case RTP_PRIO_NORMAL:
785 lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
786 break;
787 default:
788 break;
790 #endif
791 need_user_resched();
795 * Called from fork1() when a new child process is being created.
797 * Give the child process an initial estcpu that is more batch then
798 * its parent and dock the parent for the fork (but do not
799 * reschedule the parent). This comprises the main part of our batch
800 * detection heuristic for both parallel forking and sequential execs.
802 * Interactive processes will decay the boosted estcpu quickly while batch
803 * processes will tend to compound it.
804 * XXX lwp should be "spawning" instead of "forking"
806 * MPSAFE
808 static void
809 bsd4_forking(struct lwp *plp, struct lwp *lp)
811 lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
812 lp->lwp_origcpu = lp->lwp_estcpu;
813 plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
817 * Called when the parent reaps a child. Propogate cpu use by the child
818 * back to the parent.
820 * MPSAFE
822 static void
823 bsd4_exiting(struct lwp *plp, struct lwp *lp)
825 int delta;
827 if (plp->lwp_proc->p_pid != 1) {
828 delta = lp->lwp_estcpu - lp->lwp_origcpu;
829 if (delta > 0)
830 plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + delta);
836 * chooseproc() is called when a cpu needs a user process to LWKT schedule,
837 * it selects a user process and returns it. If chklp is non-NULL and chklp
838 * has a better or equal priority then the process that would otherwise be
839 * chosen, NULL is returned.
841 * Until we fix the RUNQ code the chklp test has to be strict or we may
842 * bounce between processes trying to acquire the current process designation.
844 * MPSAFE - must be called with bsd4_spin exclusive held. The spinlock is
845 * left intact through the entire routine.
847 static
848 struct lwp *
849 chooseproc_locked(struct lwp *chklp)
851 struct lwp *lp;
852 struct rq *q;
853 u_int32_t *which, *which2;
854 u_int32_t pri;
855 u_int32_t rtqbits;
856 u_int32_t tsqbits;
857 u_int32_t idqbits;
858 cpumask_t cpumask;
860 rtqbits = bsd4_rtqueuebits;
861 tsqbits = bsd4_queuebits;
862 idqbits = bsd4_idqueuebits;
863 cpumask = mycpu->gd_cpumask;
865 #ifdef SMP
866 again:
867 #endif
868 if (rtqbits) {
869 pri = bsfl(rtqbits);
870 q = &bsd4_rtqueues[pri];
871 which = &bsd4_rtqueuebits;
872 which2 = &rtqbits;
873 } else if (tsqbits) {
874 pri = bsfl(tsqbits);
875 q = &bsd4_queues[pri];
876 which = &bsd4_queuebits;
877 which2 = &tsqbits;
878 } else if (idqbits) {
879 pri = bsfl(idqbits);
880 q = &bsd4_idqueues[pri];
881 which = &bsd4_idqueuebits;
882 which2 = &idqbits;
883 } else {
884 return NULL;
886 lp = TAILQ_FIRST(q);
887 KASSERT(lp, ("chooseproc: no lwp on busy queue"));
889 #ifdef SMP
890 while ((lp->lwp_cpumask & cpumask) == 0) {
891 lp = TAILQ_NEXT(lp, lwp_procq);
892 if (lp == NULL) {
893 *which2 &= ~(1 << pri);
894 goto again;
897 #endif
900 * If the passed lwp <chklp> is reasonably close to the selected
901 * lwp <lp>, return NULL (indicating that <chklp> should be kept).
903 * Note that we must error on the side of <chklp> to avoid bouncing
904 * between threads in the acquire code.
906 if (chklp) {
907 if (chklp->lwp_priority < lp->lwp_priority + PPQ)
908 return(NULL);
911 #ifdef SMP
913 * If the chosen lwp does not reside on this cpu spend a few
914 * cycles looking for a better candidate at the same priority level.
915 * This is a fallback check, setrunqueue() tries to wakeup the
916 * correct cpu and is our front-line affinity.
918 if (lp->lwp_thread->td_gd != mycpu &&
919 (chklp = TAILQ_NEXT(lp, lwp_procq)) != NULL
921 if (chklp->lwp_thread->td_gd == mycpu) {
922 ++choose_affinity;
923 lp = chklp;
926 #endif
928 TAILQ_REMOVE(q, lp, lwp_procq);
929 --bsd4_runqcount;
930 if (TAILQ_EMPTY(q))
931 *which &= ~(1 << pri);
932 KASSERT((lp->lwp_flag & LWP_ONRUNQ) != 0, ("not on runq6!"));
933 lp->lwp_flag &= ~LWP_ONRUNQ;
934 return lp;
937 #ifdef SMP
940 * Called via an ipi message to reschedule on another cpu. If no
941 * user thread is active on the target cpu we wake the scheduler
942 * helper thread up to help schedule one.
944 * MPSAFE
946 static
947 void
948 need_user_resched_remote(void *dummy)
950 globaldata_t gd = mycpu;
951 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
953 if (dd->uschedcp == NULL && (bsd4_rdyprocmask & gd->gd_cpumask)) {
954 atomic_clear_int(&bsd4_rdyprocmask, gd->gd_cpumask);
955 lwkt_schedule(&dd->helper_thread);
956 } else {
957 need_user_resched();
961 #endif
964 * bsd4_remrunqueue_locked() removes a given process from the run queue
965 * that it is on, clearing the queue busy bit if it becomes empty.
967 * Note that user process scheduler is different from the LWKT schedule.
968 * The user process scheduler only manages user processes but it uses LWKT
969 * underneath, and a user process operating in the kernel will often be
970 * 'released' from our management.
972 * MPSAFE - bsd4_spin must be held exclusively on call
974 static void
975 bsd4_remrunqueue_locked(struct lwp *lp)
977 struct rq *q;
978 u_int32_t *which;
979 u_int8_t pri;
981 KKASSERT(lp->lwp_flag & LWP_ONRUNQ);
982 lp->lwp_flag &= ~LWP_ONRUNQ;
983 --bsd4_runqcount;
984 KKASSERT(bsd4_runqcount >= 0);
986 pri = lp->lwp_rqindex;
987 switch(lp->lwp_rqtype) {
988 case RTP_PRIO_NORMAL:
989 q = &bsd4_queues[pri];
990 which = &bsd4_queuebits;
991 break;
992 case RTP_PRIO_REALTIME:
993 case RTP_PRIO_FIFO:
994 q = &bsd4_rtqueues[pri];
995 which = &bsd4_rtqueuebits;
996 break;
997 case RTP_PRIO_IDLE:
998 q = &bsd4_idqueues[pri];
999 which = &bsd4_idqueuebits;
1000 break;
1001 default:
1002 panic("remrunqueue: invalid rtprio type");
1003 /* NOT REACHED */
1005 TAILQ_REMOVE(q, lp, lwp_procq);
1006 if (TAILQ_EMPTY(q)) {
1007 KASSERT((*which & (1 << pri)) != 0,
1008 ("remrunqueue: remove from empty queue"));
1009 *which &= ~(1 << pri);
1014 * bsd4_setrunqueue_locked()
1016 * Add a process whos rqtype and rqindex had previously been calculated
1017 * onto the appropriate run queue. Determine if the addition requires
1018 * a reschedule on a cpu and return the cpuid or -1.
1020 * NOTE: Lower priorities are better priorities.
1022 * MPSAFE - bsd4_spin must be held exclusively on call
1024 static void
1025 bsd4_setrunqueue_locked(struct lwp *lp)
1027 struct rq *q;
1028 u_int32_t *which;
1029 int pri;
1031 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
1032 lp->lwp_flag |= LWP_ONRUNQ;
1033 ++bsd4_runqcount;
1035 pri = lp->lwp_rqindex;
1037 switch(lp->lwp_rqtype) {
1038 case RTP_PRIO_NORMAL:
1039 q = &bsd4_queues[pri];
1040 which = &bsd4_queuebits;
1041 break;
1042 case RTP_PRIO_REALTIME:
1043 case RTP_PRIO_FIFO:
1044 q = &bsd4_rtqueues[pri];
1045 which = &bsd4_rtqueuebits;
1046 break;
1047 case RTP_PRIO_IDLE:
1048 q = &bsd4_idqueues[pri];
1049 which = &bsd4_idqueuebits;
1050 break;
1051 default:
1052 panic("remrunqueue: invalid rtprio type");
1053 /* NOT REACHED */
1057 * Add to the correct queue and set the appropriate bit. If no
1058 * lower priority (i.e. better) processes are in the queue then
1059 * we want a reschedule, calculate the best cpu for the job.
1061 * Always run reschedules on the LWPs original cpu.
1063 TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1064 *which |= 1 << pri;
1067 #ifdef SMP
1070 * For SMP systems a user scheduler helper thread is created for each
1071 * cpu and is used to allow one cpu to wakeup another for the purposes of
1072 * scheduling userland threads from setrunqueue().
1074 * UP systems do not need the helper since there is only one cpu.
1076 * We can't use the idle thread for this because we might block.
1077 * Additionally, doing things this way allows us to HLT idle cpus
1078 * on MP systems.
1080 * MPSAFE
1082 static void
1083 sched_thread(void *dummy)
1085 globaldata_t gd;
1086 bsd4_pcpu_t dd;
1087 struct lwp *nlp;
1088 cpumask_t cpumask;
1089 int cpuid;
1090 #if 0
1091 cpumask_t tmpmask;
1092 int tmpid;
1093 #endif
1095 gd = mycpu;
1096 cpuid = gd->gd_cpuid; /* doesn't change */
1097 cpumask = gd->gd_cpumask; /* doesn't change */
1098 dd = &bsd4_pcpu[cpuid];
1101 * Since we are woken up only when no user processes are scheduled
1102 * on a cpu, we can run at an ultra low priority.
1104 lwkt_setpri_self(TDPRI_USER_SCHEDULER);
1106 for (;;) {
1108 * We use the LWKT deschedule-interlock trick to avoid racing
1109 * bsd4_rdyprocmask. This means we cannot block through to the
1110 * manual lwkt_switch() call we make below.
1112 crit_enter_gd(gd);
1113 lwkt_deschedule_self(gd->gd_curthread);
1114 spin_lock(&bsd4_spin);
1115 atomic_set_int(&bsd4_rdyprocmask, cpumask);
1117 clear_user_resched(); /* This satisfied the reschedule request */
1118 dd->rrcount = 0; /* Reset the round-robin counter */
1120 if ((bsd4_curprocmask & cpumask) == 0) {
1122 * No thread is currently scheduled.
1124 KKASSERT(dd->uschedcp == NULL);
1125 if ((nlp = chooseproc_locked(NULL)) != NULL) {
1126 atomic_set_int(&bsd4_curprocmask, cpumask);
1127 dd->upri = nlp->lwp_priority;
1128 dd->uschedcp = nlp;
1129 spin_unlock(&bsd4_spin);
1130 lwkt_acquire(nlp->lwp_thread);
1131 lwkt_schedule(nlp->lwp_thread);
1132 } else {
1133 spin_unlock(&bsd4_spin);
1135 #if 0
1137 * Disabled for now, this can create an infinite loop.
1139 } else if (bsd4_runqcount) {
1141 * Someone scheduled us but raced. In order to not lose
1142 * track of the fact that there may be a LWP ready to go,
1143 * forward the request to another cpu if available.
1145 * Rotate through cpus starting with cpuid + 1. Since cpuid
1146 * is already masked out by gd_other_cpus, just use ~cpumask.
1148 tmpmask = bsd4_rdyprocmask & mycpu->gd_other_cpus &
1149 ~bsd4_curprocmask;
1150 if (tmpmask) {
1151 if (tmpmask & ~(cpumask - 1))
1152 tmpid = bsfl(tmpmask & ~(cpumask - 1));
1153 else
1154 tmpid = bsfl(tmpmask);
1155 bsd4_scancpu = tmpid;
1156 atomic_clear_int(&bsd4_rdyprocmask, 1 << tmpid);
1157 spin_unlock_wr(&bsd4_spin);
1158 lwkt_schedule(&bsd4_pcpu[tmpid].helper_thread);
1159 } else {
1160 spin_unlock_wr(&bsd4_spin);
1162 #endif
1163 } else {
1165 * The runq is empty.
1167 spin_unlock(&bsd4_spin);
1169 crit_exit_gd(gd);
1170 lwkt_switch();
1175 * Setup our scheduler helpers. Note that curprocmask bit 0 has already
1176 * been cleared by rqinit() and we should not mess with it further.
1178 static void
1179 sched_thread_cpu_init(void)
1181 int i;
1183 if (bootverbose)
1184 kprintf("start scheduler helpers on cpus:");
1186 for (i = 0; i < ncpus; ++i) {
1187 bsd4_pcpu_t dd = &bsd4_pcpu[i];
1188 cpumask_t mask = 1 << i;
1190 if ((mask & smp_active_mask) == 0)
1191 continue;
1193 if (bootverbose)
1194 kprintf(" %d", i);
1196 lwkt_create(sched_thread, NULL, NULL, &dd->helper_thread,
1197 TDF_STOPREQ, i, "usched %d", i);
1200 * Allow user scheduling on the target cpu. cpu #0 has already
1201 * been enabled in rqinit().
1203 if (i)
1204 atomic_clear_int(&bsd4_curprocmask, mask);
1205 atomic_set_int(&bsd4_rdyprocmask, mask);
1206 dd->upri = PRIBASE_NULL;
1208 if (bootverbose)
1209 kprintf("\n");
1211 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
1212 sched_thread_cpu_init, NULL)
1214 #endif