- Add two fields in lwkt_serialize to profile serializer contention.
[dragonfly.git] / sys / vm / vm_page.h
blobaa450e5025725c71e585e5278119c43c2bf9c10a
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * from: @(#)vm_page.h 8.2 (Berkeley) 12/13/93
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 * Carnegie Mellon requests users of this software to return to
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
64 * $FreeBSD: src/sys/vm/vm_page.h,v 1.75.2.8 2002/03/06 01:07:09 dillon Exp $
65 * $DragonFly: src/sys/vm/vm_page.h,v 1.26 2007/07/02 15:57:48 dillon Exp $
69 * Resident memory system definitions.
72 #ifndef _VM_VM_PAGE_H_
73 #define _VM_VM_PAGE_H_
75 #if !defined(KLD_MODULE) && defined(_KERNEL)
76 #include "opt_vmpage.h"
77 #endif
79 #ifndef _SYS_TYPES_H_
80 #include <sys/types.h>
81 #endif
82 #ifndef _SYS_TREE_H_
83 #include <sys/tree.h>
84 #endif
85 #ifndef _MACHINE_PMAP_H_
86 #include <machine/pmap.h>
87 #endif
88 #ifndef _VM_PMAP_H_
89 #include <vm/pmap.h>
90 #endif
91 #ifndef _MACHINE_ATOMIC_H_
92 #include <machine/atomic.h>
93 #endif
95 #ifdef _KERNEL
97 #ifndef _SYS_SYSTM_H_
98 #include <sys/systm.h>
99 #endif
100 #ifndef _SYS_THREAD2_H_
101 #include <sys/thread2.h>
102 #endif
104 #endif
107 * Management of resident (logical) pages.
109 * A small structure is kept for each resident
110 * page, indexed by page number. Each structure
111 * is an element of several lists:
113 * A hash table bucket used to quickly
114 * perform object/offset lookups
116 * A list of all pages for a given object,
117 * so they can be quickly deactivated at
118 * time of deallocation.
120 * An ordered list of pages due for pageout.
122 * In addition, the structure contains the object
123 * and offset to which this page belongs (for pageout),
124 * and sundry status bits.
126 * Fields in this structure are locked either by the lock on the
127 * object that the page belongs to (O) or by the lock on the page
128 * queues (P).
130 * The 'valid' and 'dirty' fields are distinct. A page may have dirty
131 * bits set without having associated valid bits set. This is used by
132 * NFS to implement piecemeal writes.
135 TAILQ_HEAD(pglist, vm_page);
137 struct msf_buf;
138 struct vm_object;
140 int rb_vm_page_compare(struct vm_page *, struct vm_page *);
142 struct vm_page_rb_tree;
143 RB_PROTOTYPE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare, vm_pindex_t);
145 struct vm_page {
146 TAILQ_ENTRY(vm_page) pageq; /* vm_page_queues[] list (P) */
147 RB_ENTRY(vm_page) rb_entry; /* Red-Black tree based at object */
149 struct vm_object *object; /* which object am I in (O,P)*/
150 vm_pindex_t pindex; /* offset into object (O,P) */
151 vm_paddr_t phys_addr; /* physical address of page */
152 struct md_page md; /* machine dependant stuff */
153 u_short queue; /* page queue index */
154 u_short flags; /* see below */
155 u_short pc; /* page color */
156 u_short wire_count; /* wired down maps refs (P) */
157 int hold_count; /* page hold count */
158 u_char act_count; /* page usage count */
159 u_char busy; /* page busy count */
162 * NOTE that these must support one bit per DEV_BSIZE in a page!!!
163 * so, on normal X86 kernels, they must be at least 8 bits wide.
165 #if PAGE_SIZE == 4096
166 u_char valid; /* map of valid DEV_BSIZE chunks */
167 u_char dirty; /* map of dirty DEV_BSIZE chunks */
168 #elif PAGE_SIZE == 8192
169 u_short valid; /* map of valid DEV_BSIZE chunks */
170 u_short dirty; /* map of dirty DEV_BSIZE chunks */
171 #endif
172 struct msf_buf *msf_hint; /* first page of an msfbuf map */
175 #ifndef __VM_PAGE_T_DEFINED__
176 #define __VM_PAGE_T_DEFINED__
177 typedef struct vm_page *vm_page_t;
178 #endif
181 * note: currently use SWAPBLK_NONE as an absolute value rather then
182 * a flag bit.
184 #define SWAPBLK_MASK ((daddr_t)((u_daddr_t)-1 >> 1)) /* mask */
185 #define SWAPBLK_NONE ((daddr_t)((u_daddr_t)SWAPBLK_MASK + 1))/* flag */
188 * Page coloring parameters. We default to a middle of the road optimization.
189 * Larger selections would not really hurt us but if a machine does not have
190 * a lot of memory it could cause vm_page_alloc() to eat more cpu cycles
191 * looking for free pages.
193 * Page coloring cannot be disabled. Modules do not have access to most PQ
194 * constants because they can change between builds.
196 #if defined(_KERNEL) && !defined(KLD_MODULE)
198 #if !defined(PQ_CACHESIZE)
199 #define PQ_CACHESIZE 256 /* max is 1024 (MB) */
200 #endif
202 #if PQ_CACHESIZE >= 1024
203 #define PQ_PRIME1 31 /* Prime number somewhat less than PQ_HASH_SIZE */
204 #define PQ_PRIME2 23 /* Prime number somewhat less than PQ_HASH_SIZE */
205 #define PQ_L2_SIZE 256 /* A number of colors opt for 1M cache */
207 #elif PQ_CACHESIZE >= 512
208 #define PQ_PRIME1 31 /* Prime number somewhat less than PQ_HASH_SIZE */
209 #define PQ_PRIME2 23 /* Prime number somewhat less than PQ_HASH_SIZE */
210 #define PQ_L2_SIZE 128 /* A number of colors opt for 512K cache */
212 #elif PQ_CACHESIZE >= 256
213 #define PQ_PRIME1 13 /* Prime number somewhat less than PQ_HASH_SIZE */
214 #define PQ_PRIME2 7 /* Prime number somewhat less than PQ_HASH_SIZE */
215 #define PQ_L2_SIZE 64 /* A number of colors opt for 256K cache */
217 #elif PQ_CACHESIZE >= 128
218 #define PQ_PRIME1 9 /* Produces a good PQ_L2_SIZE/3 + PQ_PRIME1 */
219 #define PQ_PRIME2 5 /* Prime number somewhat less than PQ_HASH_SIZE */
220 #define PQ_L2_SIZE 32 /* A number of colors opt for 128k cache */
222 #else
223 #define PQ_PRIME1 5 /* Prime number somewhat less than PQ_HASH_SIZE */
224 #define PQ_PRIME2 3 /* Prime number somewhat less than PQ_HASH_SIZE */
225 #define PQ_L2_SIZE 16 /* A reasonable number of colors (opt for 64K cache) */
227 #endif
229 #define PQ_L2_MASK (PQ_L2_SIZE - 1)
231 #endif /* KERNEL && !KLD_MODULE */
235 * The queue array is always based on PQ_MAXL2_SIZE regardless of the actual
236 * cache size chosen in order to present a uniform interface for modules.
238 #define PQ_MAXL2_SIZE 256 /* fixed maximum (in pages) / module compat */
240 #if PQ_L2_SIZE > PQ_MAXL2_SIZE
241 #error "Illegal PQ_L2_SIZE"
242 #endif
244 #define PQ_NONE 0
245 #define PQ_FREE 1
246 #define PQ_INACTIVE (1 + 1*PQ_MAXL2_SIZE)
247 #define PQ_ACTIVE (2 + 1*PQ_MAXL2_SIZE)
248 #define PQ_CACHE (3 + 1*PQ_MAXL2_SIZE)
249 #define PQ_HOLD (3 + 2*PQ_MAXL2_SIZE)
250 #define PQ_COUNT (4 + 2*PQ_MAXL2_SIZE)
253 * Scan support
255 struct vm_map;
257 struct rb_vm_page_scan_info {
258 vm_pindex_t start_pindex;
259 vm_pindex_t end_pindex;
260 int limit;
261 int desired;
262 int error;
263 int pagerflags;
264 vm_offset_t addr;
265 vm_pindex_t backing_offset_index;
266 struct vm_object *object;
267 struct vm_object *backing_object;
268 struct vm_page *mpte;
269 struct pmap *pmap;
270 struct vm_map *map;
273 int rb_vm_page_scancmp(struct vm_page *, void *);
275 struct vpgqueues {
276 struct pglist pl;
277 int *cnt;
278 int lcnt;
279 int flipflop; /* probably not the best place */
282 extern struct vpgqueues vm_page_queues[PQ_COUNT];
285 * These are the flags defined for vm_page.
287 * Note: PG_UNMANAGED (used by OBJT_PHYS) indicates that the page is
288 * not under PV management but otherwise should be treated as a
289 * normal page. Pages not under PV management cannot be paged out
290 * via the object/vm_page_t because there is no knowledge of their
291 * pte mappings, nor can they be removed from their objects via
292 * the object, and such pages are also not on any PQ queue.
294 #define PG_BUSY 0x0001 /* page is in transit (O) */
295 #define PG_WANTED 0x0002 /* someone is waiting for page (O) */
296 #define PG_WINATCFLS 0x0004 /* flush dirty page on inactive q */
297 #define PG_FICTITIOUS 0x0008 /* physical page doesn't exist (O) */
298 #define PG_WRITEABLE 0x0010 /* page is mapped writeable */
299 #define PG_MAPPED 0x0020 /* page is mapped */
300 #define PG_ZERO 0x0040 /* page is zeroed */
301 #define PG_REFERENCED 0x0080 /* page has been referenced */
302 #define PG_CLEANCHK 0x0100 /* page will be checked for cleaning */
303 #define PG_SWAPINPROG 0x0200 /* swap I/O in progress on page */
304 #define PG_NOSYNC 0x0400 /* do not collect for syncer */
305 #define PG_UNMANAGED 0x0800 /* No PV management for page */
306 #define PG_MARKER 0x1000 /* special queue marker page */
309 * Misc constants.
312 #define ACT_DECLINE 1
313 #define ACT_ADVANCE 3
314 #define ACT_INIT 5
315 #define ACT_MAX 64
317 #ifdef _KERNEL
319 * Each pageable resident page falls into one of four lists:
321 * free
322 * Available for allocation now.
324 * The following are all LRU sorted:
326 * cache
327 * Almost available for allocation. Still in an
328 * object, but clean and immediately freeable at
329 * non-interrupt times.
331 * inactive
332 * Low activity, candidates for reclamation.
333 * This is the list of pages that should be
334 * paged out next.
336 * active
337 * Pages that are "active" i.e. they have been
338 * recently referenced.
340 * zero
341 * Pages that are really free and have been pre-zeroed
345 extern int vm_page_zero_count;
346 extern struct vm_page *vm_page_array; /* First resident page in table */
347 extern int vm_page_array_size; /* number of vm_page_t's */
348 extern long first_page; /* first physical page number */
350 #define VM_PAGE_TO_PHYS(entry) \
351 ((entry)->phys_addr)
353 #define PHYS_TO_VM_PAGE(pa) \
354 (&vm_page_array[atop(pa) - first_page])
357 * Functions implemented as macros
360 static __inline void
361 vm_page_flag_set(vm_page_t m, unsigned int bits)
363 atomic_set_short(&(m)->flags, bits);
366 static __inline void
367 vm_page_flag_clear(vm_page_t m, unsigned int bits)
369 atomic_clear_short(&(m)->flags, bits);
372 static __inline void
373 vm_page_busy(vm_page_t m)
375 KASSERT((m->flags & PG_BUSY) == 0,
376 ("vm_page_busy: page already busy!!!"));
377 vm_page_flag_set(m, PG_BUSY);
381 * vm_page_flash:
383 * wakeup anyone waiting for the page.
386 static __inline void
387 vm_page_flash(vm_page_t m)
389 if (m->flags & PG_WANTED) {
390 vm_page_flag_clear(m, PG_WANTED);
391 wakeup(m);
396 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This
397 * is typically the last call you make on a page before moving onto
398 * other things.
400 static __inline void
401 vm_page_wakeup(vm_page_t m)
403 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
404 vm_page_flag_clear(m, PG_BUSY);
405 vm_page_flash(m);
409 * These routines manipulate the 'soft busy' count for a page. A soft busy
410 * is almost like PG_BUSY except that it allows certain compatible operations
411 * to occur on the page while it is busy. For example, a page undergoing a
412 * write can still be mapped read-only.
414 static __inline void
415 vm_page_io_start(vm_page_t m)
417 atomic_add_char(&(m)->busy, 1);
420 static __inline void
421 vm_page_io_finish(vm_page_t m)
423 atomic_subtract_char(&m->busy, 1);
424 if (m->busy == 0)
425 vm_page_flash(m);
429 #if PAGE_SIZE == 4096
430 #define VM_PAGE_BITS_ALL 0xff
431 #endif
433 #if PAGE_SIZE == 8192
434 #define VM_PAGE_BITS_ALL 0xffff
435 #endif
438 * Note: the code will always use nominally free pages from the free list
439 * before trying other flag-specified sources.
441 * At least one of VM_ALLOC_NORMAL|VM_ALLOC_SYSTEM|VM_ALLOC_INTERRUPT
442 * must be specified. VM_ALLOC_RETRY may only be specified if VM_ALLOC_NORMAL
443 * is also specified.
445 #define VM_ALLOC_NORMAL 0x01 /* ok to use cache pages */
446 #define VM_ALLOC_SYSTEM 0x02 /* ok to exhaust most of free list */
447 #define VM_ALLOC_INTERRUPT 0x04 /* ok to exhaust entire free list */
448 #define VM_ALLOC_ZERO 0x08 /* req pre-zero'd memory if avail */
449 #define VM_ALLOC_RETRY 0x80 /* indefinite block (vm_page_grab()) */
451 void vm_page_unhold(vm_page_t mem);
452 void vm_page_activate (vm_page_t);
453 vm_page_t vm_page_alloc (struct vm_object *, vm_pindex_t, int);
454 vm_page_t vm_page_grab (struct vm_object *, vm_pindex_t, int);
455 void vm_page_cache (vm_page_t);
456 int vm_page_try_to_cache (vm_page_t);
457 int vm_page_try_to_free (vm_page_t);
458 void vm_page_dontneed (vm_page_t);
459 void vm_page_deactivate (vm_page_t);
460 void vm_page_insert (vm_page_t, struct vm_object *, vm_pindex_t);
461 vm_page_t vm_page_lookup (struct vm_object *, vm_pindex_t);
462 void vm_page_remove (vm_page_t);
463 void vm_page_rename (vm_page_t, struct vm_object *, vm_pindex_t);
464 vm_offset_t vm_page_startup (vm_offset_t);
465 vm_page_t vm_add_new_page (vm_paddr_t pa);
466 void vm_page_unmanage (vm_page_t);
467 void vm_page_unwire (vm_page_t, int);
468 void vm_page_wire (vm_page_t);
469 void vm_page_unqueue (vm_page_t);
470 void vm_page_unqueue_nowakeup (vm_page_t);
471 void vm_page_set_validclean (vm_page_t, int, int);
472 void vm_page_set_dirty (vm_page_t, int, int);
473 void vm_page_clear_dirty (vm_page_t, int, int);
474 void vm_page_set_invalid (vm_page_t, int, int);
475 int vm_page_is_valid (vm_page_t, int, int);
476 void vm_page_test_dirty (vm_page_t);
477 int vm_page_bits (int, int);
478 vm_page_t vm_page_list_find(int basequeue, int index, boolean_t prefer_zero);
479 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
480 void vm_page_free_toq(vm_page_t m);
481 vm_offset_t vm_contig_pg_kmap(int, u_long, vm_map_t, int);
482 void vm_contig_pg_free(int, u_long);
485 * Holding a page keeps it from being reused. Other parts of the system
486 * can still disassociate the page from its current object and free it, or
487 * perform read or write I/O on it and/or otherwise manipulate the page,
488 * but if the page is held the VM system will leave the page and its data
489 * intact and not reuse the page for other purposes until the last hold
490 * reference is released. (see vm_page_wire() if you want to prevent the
491 * page from being disassociated from its object too).
493 * This routine must be called while at splvm() or better.
495 * The caller must still validate the contents of the page and, if necessary,
496 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
497 * before manipulating the page.
499 static __inline void
500 vm_page_hold(vm_page_t mem)
502 mem->hold_count++;
506 * Reduce the protection of a page. This routine never raises the
507 * protection and therefore can be safely called if the page is already
508 * at VM_PROT_NONE (it will be a NOP effectively ).
510 * VM_PROT_NONE will remove all user mappings of a page. This is often
511 * necessary when a page changes state (for example, turns into a copy-on-write
512 * page or needs to be frozen for write I/O) in order to force a fault, or
513 * to force a page's dirty bits to be synchronized and avoid hardware
514 * (modified/accessed) bit update races with pmap changes.
516 * Since 'prot' is usually a constant, this inline usually winds up optimizing
517 * out the primary conditional.
519 static __inline void
520 vm_page_protect(vm_page_t mem, int prot)
522 if (prot == VM_PROT_NONE) {
523 if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
524 pmap_page_protect(mem, VM_PROT_NONE);
525 vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
527 } else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
528 pmap_page_protect(mem, VM_PROT_READ);
529 vm_page_flag_clear(mem, PG_WRITEABLE);
534 * Zero-fill the specified page. The entire contents of the page will be
535 * zero'd out.
537 static __inline boolean_t
538 vm_page_zero_fill(vm_page_t m)
540 pmap_zero_page(VM_PAGE_TO_PHYS(m));
541 return (TRUE);
545 * Copy the contents of src_m to dest_m. The pages must be stable but spl
546 * and other protections depend on context.
548 static __inline void
549 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
551 pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
552 dest_m->valid = VM_PAGE_BITS_ALL;
556 * Free a page. The page must be marked BUSY.
558 * The clearing of PG_ZERO is a temporary safety until the code can be
559 * reviewed to determine that PG_ZERO is being properly cleared on
560 * write faults or maps. PG_ZERO was previously cleared in
561 * vm_page_alloc().
563 static __inline void
564 vm_page_free(vm_page_t m)
566 vm_page_flag_clear(m, PG_ZERO);
567 vm_page_free_toq(m);
571 * Free a page to the zerod-pages queue
573 static __inline void
574 vm_page_free_zero(vm_page_t m)
576 vm_page_flag_set(m, PG_ZERO);
577 vm_page_free_toq(m);
581 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
582 * m->busy is zero. Returns TRUE if it had to sleep ( including if
583 * it almost had to sleep and made temporary spl*() mods), FALSE
584 * otherwise.
586 * This routine assumes that interrupts can only remove the busy
587 * status from a page, not set the busy status or change it from
588 * PG_BUSY to m->busy or vise versa (which would create a timing
589 * window).
591 * Note: as an inline, 'also_m_busy' is usually a constant and well
592 * optimized.
594 static __inline int
595 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
597 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
598 crit_enter();
599 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
601 * Page is busy. Wait and retry.
603 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
604 tsleep(m, 0, msg, 0);
606 crit_exit();
607 return(TRUE);
608 /* not reached */
610 return(FALSE);
614 * Make page all dirty
616 static __inline void
617 _vm_page_dirty(vm_page_t m, const char *info)
619 #ifdef INVARIANTS
620 int pqtype = m->queue - m->pc;
621 #endif
622 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
623 ("vm_page_dirty: page in free/cache queue!"));
624 m->dirty = VM_PAGE_BITS_ALL;
627 #define vm_page_dirty(m) _vm_page_dirty(m, __FUNCTION__)
630 * Set page to not be dirty. Note: does not clear pmap modify bits .
632 static __inline void
633 vm_page_undirty(vm_page_t m)
635 m->dirty = 0;
638 #endif /* _KERNEL */
639 #endif /* !_VM_VM_PAGE_H_ */