Pre-2.0 release, synchronize with HAMMER 61H
[dragonfly.git] / sys / netinet / tcp_usrreq.c
blobc5bd1fd066f9974d4fb9eb58f9cf173da64878bf
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1993
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
66 * From: @(#)tcp_usrreq.c 8.2 (Berkeley) 1/3/94
67 * $FreeBSD: src/sys/netinet/tcp_usrreq.c,v 1.51.2.17 2002/10/11 11:46:44 ume Exp $
68 * $DragonFly: src/sys/netinet/tcp_usrreq.c,v 1.49 2008/06/17 20:50:11 aggelos Exp $
71 #include "opt_ipsec.h"
72 #include "opt_inet6.h"
73 #include "opt_tcpdebug.h"
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/malloc.h>
79 #include <sys/sysctl.h>
80 #include <sys/globaldata.h>
81 #include <sys/thread.h>
83 #include <sys/mbuf.h>
84 #ifdef INET6
85 #include <sys/domain.h>
86 #endif /* INET6 */
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/protosw.h>
91 #include <sys/thread2.h>
92 #include <sys/msgport2.h>
94 #include <net/if.h>
95 #include <net/netisr.h>
96 #include <net/route.h>
98 #include <net/netmsg2.h>
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #ifdef INET6
103 #include <netinet/ip6.h>
104 #endif
105 #include <netinet/in_pcb.h>
106 #ifdef INET6
107 #include <netinet6/in6_pcb.h>
108 #endif
109 #include <netinet/in_var.h>
110 #include <netinet/ip_var.h>
111 #ifdef INET6
112 #include <netinet6/ip6_var.h>
113 #endif
114 #include <netinet/tcp.h>
115 #include <netinet/tcp_fsm.h>
116 #include <netinet/tcp_seq.h>
117 #include <netinet/tcp_timer.h>
118 #include <netinet/tcp_var.h>
119 #include <netinet/tcpip.h>
120 #ifdef TCPDEBUG
121 #include <netinet/tcp_debug.h>
122 #endif
124 #ifdef IPSEC
125 #include <netinet6/ipsec.h>
126 #endif /*IPSEC*/
129 * TCP protocol interface to socket abstraction.
131 extern char *tcpstates[]; /* XXX ??? */
133 static int tcp_attach (struct socket *, struct pru_attach_info *);
134 static int tcp_connect (struct tcpcb *, struct sockaddr *,
135 struct thread *);
136 #ifdef INET6
137 static int tcp6_connect (struct tcpcb *, struct sockaddr *,
138 struct thread *);
139 #endif /* INET6 */
140 static struct tcpcb *
141 tcp_disconnect (struct tcpcb *);
142 static struct tcpcb *
143 tcp_usrclosed (struct tcpcb *);
145 #ifdef TCPDEBUG
146 #define TCPDEBUG0 int ostate = 0
147 #define TCPDEBUG1() ostate = tp ? tp->t_state : 0
148 #define TCPDEBUG2(req) if (tp && (so->so_options & SO_DEBUG)) \
149 tcp_trace(TA_USER, ostate, tp, 0, 0, req)
150 #else
151 #define TCPDEBUG0
152 #define TCPDEBUG1()
153 #define TCPDEBUG2(req)
154 #endif
157 * TCP attaches to socket via pru_attach(), reserving space,
158 * and an internet control block.
160 static int
161 tcp_usr_attach(struct socket *so, int proto, struct pru_attach_info *ai)
163 int error;
164 struct inpcb *inp;
165 struct tcpcb *tp = 0;
166 TCPDEBUG0;
168 crit_enter();
169 inp = so->so_pcb;
170 TCPDEBUG1();
171 if (inp) {
172 error = EISCONN;
173 goto out;
176 error = tcp_attach(so, ai);
177 if (error)
178 goto out;
180 if ((so->so_options & SO_LINGER) && so->so_linger == 0)
181 so->so_linger = TCP_LINGERTIME;
182 tp = sototcpcb(so);
183 out:
184 TCPDEBUG2(PRU_ATTACH);
185 crit_exit();
186 return error;
190 * pru_detach() detaches the TCP protocol from the socket.
191 * If the protocol state is non-embryonic, then can't
192 * do this directly: have to initiate a pru_disconnect(),
193 * which may finish later; embryonic TCB's can just
194 * be discarded here.
196 static int
197 tcp_usr_detach(struct socket *so)
199 int error = 0;
200 struct inpcb *inp;
201 struct tcpcb *tp;
202 TCPDEBUG0;
204 crit_enter();
205 inp = so->so_pcb;
206 if (inp == NULL) {
207 crit_exit();
208 return EINVAL; /* XXX */
212 * It's possible for the tcpcb (tp) to disconnect from the inp due
213 * to tcp_drop()->tcp_close() being called. This may occur *after*
214 * the detach message has been queued so we may find a NULL tp here.
216 if ((tp = intotcpcb(inp)) != NULL) {
217 TCPDEBUG1();
218 tp = tcp_disconnect(tp);
219 TCPDEBUG2(PRU_DETACH);
221 crit_exit();
222 return error;
225 #define COMMON_START(so, inp) \
226 TCPDEBUG0; \
228 crit_enter(); \
229 inp = so->so_pcb; \
230 do { \
231 if (inp == 0) { \
232 crit_exit(); \
233 return EINVAL; \
235 tp = intotcpcb(inp); \
236 TCPDEBUG1(); \
237 } while(0)
239 #define COMMON_END(req) out: TCPDEBUG2(req); crit_exit(); return error; goto out
243 * Give the socket an address.
245 static int
246 tcp_usr_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
248 int error = 0;
249 struct inpcb *inp;
250 struct tcpcb *tp;
251 struct sockaddr_in *sinp;
253 COMMON_START(so, inp);
256 * Must check for multicast addresses and disallow binding
257 * to them.
259 sinp = (struct sockaddr_in *)nam;
260 if (sinp->sin_family == AF_INET &&
261 IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) {
262 error = EAFNOSUPPORT;
263 goto out;
265 error = in_pcbbind(inp, nam, td);
266 if (error)
267 goto out;
268 COMMON_END(PRU_BIND);
272 #ifdef INET6
273 static int
274 tcp6_usr_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
276 int error = 0;
277 struct inpcb *inp;
278 struct tcpcb *tp;
279 struct sockaddr_in6 *sin6p;
281 COMMON_START(so, inp);
284 * Must check for multicast addresses and disallow binding
285 * to them.
287 sin6p = (struct sockaddr_in6 *)nam;
288 if (sin6p->sin6_family == AF_INET6 &&
289 IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr)) {
290 error = EAFNOSUPPORT;
291 goto out;
293 inp->inp_vflag &= ~INP_IPV4;
294 inp->inp_vflag |= INP_IPV6;
295 if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) {
296 if (IN6_IS_ADDR_UNSPECIFIED(&sin6p->sin6_addr))
297 inp->inp_vflag |= INP_IPV4;
298 else if (IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr)) {
299 struct sockaddr_in sin;
301 in6_sin6_2_sin(&sin, sin6p);
302 inp->inp_vflag |= INP_IPV4;
303 inp->inp_vflag &= ~INP_IPV6;
304 error = in_pcbbind(inp, (struct sockaddr *)&sin, td);
305 goto out;
308 error = in6_pcbbind(inp, nam, td);
309 if (error)
310 goto out;
311 COMMON_END(PRU_BIND);
313 #endif /* INET6 */
315 #ifdef SMP
316 struct netmsg_inswildcard {
317 struct netmsg nm_netmsg;
318 struct inpcb *nm_inp;
319 struct inpcbinfo *nm_pcbinfo;
322 static void
323 in_pcbinswildcardhash_handler(struct netmsg *msg0)
325 struct netmsg_inswildcard *msg = (struct netmsg_inswildcard *)msg0;
327 in_pcbinswildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
328 lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
330 #endif
333 * Prepare to accept connections.
335 static int
336 tcp_usr_listen(struct socket *so, struct thread *td)
338 int error = 0;
339 struct inpcb *inp;
340 struct tcpcb *tp;
341 #ifdef SMP
342 int cpu;
343 #endif
345 COMMON_START(so, inp);
346 if (inp->inp_lport == 0) {
347 error = in_pcbbind(inp, NULL, td);
348 if (error != 0)
349 goto out;
352 tp->t_state = TCPS_LISTEN;
353 #ifdef SMP
355 * We have to set the flag because we can't have other cpus
356 * messing with our inp's flags.
358 inp->inp_flags |= INP_WILDCARD_MP;
359 for (cpu = 0; cpu < ncpus2; cpu++) {
360 struct netmsg_inswildcard *msg;
362 if (cpu == mycpu->gd_cpuid) {
363 in_pcbinswildcardhash(inp);
364 continue;
367 msg = kmalloc(sizeof(struct netmsg_inswildcard), M_LWKTMSG,
368 M_INTWAIT);
369 netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
370 in_pcbinswildcardhash_handler);
371 msg->nm_inp = inp;
372 msg->nm_pcbinfo = &tcbinfo[cpu];
373 lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
375 #else
376 in_pcbinswildcardhash(inp);
377 #endif
378 COMMON_END(PRU_LISTEN);
381 #ifdef INET6
382 static int
383 tcp6_usr_listen(struct socket *so, struct thread *td)
385 int error = 0;
386 struct inpcb *inp;
387 struct tcpcb *tp;
388 #ifdef SMP
389 int cpu;
390 #endif
392 COMMON_START(so, inp);
393 if (inp->inp_lport == 0) {
394 if (!(inp->inp_flags & IN6P_IPV6_V6ONLY))
395 inp->inp_vflag |= INP_IPV4;
396 else
397 inp->inp_vflag &= ~INP_IPV4;
398 error = in6_pcbbind(inp, (struct sockaddr *)0, td);
400 if (error == 0)
401 tp->t_state = TCPS_LISTEN;
402 #ifdef SMP
404 * We have to set the flag because we can't have other cpus
405 * messing with our inp's flags.
407 inp->inp_flags |= INP_WILDCARD_MP;
408 for (cpu = 0; cpu < ncpus2; cpu++) {
409 struct netmsg_inswildcard *msg;
411 if (cpu == mycpu->gd_cpuid) {
412 in_pcbinswildcardhash(inp);
413 continue;
416 msg = kmalloc(sizeof(struct netmsg_inswildcard), M_LWKTMSG,
417 M_INTWAIT);
418 netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
419 in_pcbinswildcardhash_handler);
420 msg->nm_inp = inp;
421 msg->nm_pcbinfo = &tcbinfo[cpu];
422 lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
424 #else
425 in_pcbinswildcardhash(inp);
426 #endif
427 COMMON_END(PRU_LISTEN);
429 #endif /* INET6 */
431 #ifdef SMP
432 static void
433 tcp_output_dispatch(struct netmsg *nmsg)
435 struct lwkt_msg *msg = &nmsg->nm_lmsg;
436 struct tcpcb *tp = msg->u.ms_resultp;
437 int error;
439 error = tcp_output(tp);
440 lwkt_replymsg(msg, error);
442 #endif
445 * Initiate connection to peer.
446 * Create a template for use in transmissions on this connection.
447 * Enter SYN_SENT state, and mark socket as connecting.
448 * Start keep-alive timer, and seed output sequence space.
449 * Send initial segment on connection.
451 static int
452 tcp_usr_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
454 int error = 0;
455 struct inpcb *inp;
456 struct tcpcb *tp;
457 struct sockaddr_in *sinp;
458 #ifdef SMP
459 lwkt_port_t port;
460 #endif
462 COMMON_START(so, inp);
465 * Must disallow TCP ``connections'' to multicast addresses.
467 sinp = (struct sockaddr_in *)nam;
468 if (sinp->sin_family == AF_INET
469 && IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) {
470 error = EAFNOSUPPORT;
471 goto out;
474 if (!prison_remote_ip(td, (struct sockaddr*)sinp)) {
475 error = EAFNOSUPPORT; /* IPv6 only jail */
476 goto out;
479 if ((error = tcp_connect(tp, nam, td)) != 0)
480 goto out;
482 #ifdef SMP
483 port = tcp_addrport(inp->inp_faddr.s_addr, inp->inp_fport,
484 inp->inp_laddr.s_addr, inp->inp_lport);
485 if (port != &curthread->td_msgport) {
486 struct netmsg nmsg;
487 struct lwkt_msg *msg;
489 netmsg_init(&nmsg, &curthread->td_msgport, 0,
490 tcp_output_dispatch);
491 msg = &nmsg.nm_lmsg;
492 msg->u.ms_resultp = tp;
494 error = lwkt_domsg(port, msg, 0);
495 } else
496 #endif
497 error = tcp_output(tp);
498 COMMON_END(PRU_CONNECT);
501 #ifdef INET6
502 static int
503 tcp6_usr_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
505 int error = 0;
506 struct inpcb *inp;
507 struct tcpcb *tp;
508 struct sockaddr_in6 *sin6p;
510 COMMON_START(so, inp);
513 * Must disallow TCP ``connections'' to multicast addresses.
515 sin6p = (struct sockaddr_in6 *)nam;
516 if (sin6p->sin6_family == AF_INET6
517 && IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr)) {
518 error = EAFNOSUPPORT;
519 goto out;
522 if (!prison_remote_ip(td, nam)) {
523 error = EAFNOSUPPORT; /* IPv4 only jail */
524 goto out;
527 if (IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr)) {
528 struct sockaddr_in sin;
530 if ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0) {
531 error = EINVAL;
532 goto out;
535 in6_sin6_2_sin(&sin, sin6p);
536 inp->inp_vflag |= INP_IPV4;
537 inp->inp_vflag &= ~INP_IPV6;
538 if ((error = tcp_connect(tp, (struct sockaddr *)&sin, td)) != 0)
539 goto out;
540 error = tcp_output(tp);
541 goto out;
543 inp->inp_vflag &= ~INP_IPV4;
544 inp->inp_vflag |= INP_IPV6;
545 inp->inp_inc.inc_isipv6 = 1;
546 if ((error = tcp6_connect(tp, nam, td)) != 0)
547 goto out;
548 error = tcp_output(tp);
549 COMMON_END(PRU_CONNECT);
551 #endif /* INET6 */
554 * Initiate disconnect from peer.
555 * If connection never passed embryonic stage, just drop;
556 * else if don't need to let data drain, then can just drop anyways,
557 * else have to begin TCP shutdown process: mark socket disconnecting,
558 * drain unread data, state switch to reflect user close, and
559 * send segment (e.g. FIN) to peer. Socket will be really disconnected
560 * when peer sends FIN and acks ours.
562 * SHOULD IMPLEMENT LATER PRU_CONNECT VIA REALLOC TCPCB.
564 static int
565 tcp_usr_disconnect(struct socket *so)
567 int error = 0;
568 struct inpcb *inp;
569 struct tcpcb *tp;
571 COMMON_START(so, inp);
572 tp = tcp_disconnect(tp);
573 COMMON_END(PRU_DISCONNECT);
577 * Accept a connection. Essentially all the work is
578 * done at higher levels; just return the address
579 * of the peer, storing through addr.
581 static int
582 tcp_usr_accept(struct socket *so, struct sockaddr **nam)
584 int error = 0;
585 struct inpcb *inp;
586 struct tcpcb *tp = NULL;
587 TCPDEBUG0;
589 crit_enter();
590 inp = so->so_pcb;
591 if (so->so_state & SS_ISDISCONNECTED) {
592 error = ECONNABORTED;
593 goto out;
595 if (inp == 0) {
596 crit_exit();
597 return (EINVAL);
599 tp = intotcpcb(inp);
600 TCPDEBUG1();
601 in_setpeeraddr(so, nam);
602 COMMON_END(PRU_ACCEPT);
605 #ifdef INET6
606 static int
607 tcp6_usr_accept(struct socket *so, struct sockaddr **nam)
609 int error = 0;
610 struct inpcb *inp;
611 struct tcpcb *tp = NULL;
612 TCPDEBUG0;
614 crit_enter();
615 inp = so->so_pcb;
617 if (so->so_state & SS_ISDISCONNECTED) {
618 error = ECONNABORTED;
619 goto out;
621 if (inp == 0) {
622 crit_exit();
623 return (EINVAL);
625 tp = intotcpcb(inp);
626 TCPDEBUG1();
627 in6_mapped_peeraddr(so, nam);
628 COMMON_END(PRU_ACCEPT);
630 #endif /* INET6 */
632 * Mark the connection as being incapable of further output.
634 static int
635 tcp_usr_shutdown(struct socket *so)
637 int error = 0;
638 struct inpcb *inp;
639 struct tcpcb *tp;
641 COMMON_START(so, inp);
642 socantsendmore(so);
643 tp = tcp_usrclosed(tp);
644 if (tp)
645 error = tcp_output(tp);
646 COMMON_END(PRU_SHUTDOWN);
650 * After a receive, possibly send window update to peer.
652 static int
653 tcp_usr_rcvd(struct socket *so, int flags)
655 int error = 0;
656 struct inpcb *inp;
657 struct tcpcb *tp;
659 COMMON_START(so, inp);
660 tcp_output(tp);
661 COMMON_END(PRU_RCVD);
665 * Do a send by putting data in output queue and updating urgent
666 * marker if URG set. Possibly send more data. Unlike the other
667 * pru_*() routines, the mbuf chains are our responsibility. We
668 * must either enqueue them or free them. The other pru_* routines
669 * generally are caller-frees.
671 static int
672 tcp_usr_send(struct socket *so, int flags, struct mbuf *m,
673 struct sockaddr *nam, struct mbuf *control, struct thread *td)
675 int error = 0;
676 struct inpcb *inp;
677 struct tcpcb *tp;
678 #ifdef INET6
679 int isipv6;
680 #endif
681 TCPDEBUG0;
683 crit_enter();
684 inp = so->so_pcb;
686 if (inp == NULL) {
688 * OOPS! we lost a race, the TCP session got reset after
689 * we checked SS_CANTSENDMORE, eg: while doing uiomove or a
690 * network interrupt in the non-critical section of sosend().
692 if (m)
693 m_freem(m);
694 if (control)
695 m_freem(control);
696 error = ECONNRESET; /* XXX EPIPE? */
697 tp = NULL;
698 TCPDEBUG1();
699 goto out;
701 #ifdef INET6
702 isipv6 = nam && nam->sa_family == AF_INET6;
703 #endif /* INET6 */
704 tp = intotcpcb(inp);
705 TCPDEBUG1();
706 if (control) {
707 /* TCP doesn't do control messages (rights, creds, etc) */
708 if (control->m_len) {
709 m_freem(control);
710 if (m)
711 m_freem(m);
712 error = EINVAL;
713 goto out;
715 m_freem(control); /* empty control, just free it */
717 if(!(flags & PRUS_OOB)) {
718 ssb_appendstream(&so->so_snd, m);
719 if (nam && tp->t_state < TCPS_SYN_SENT) {
721 * Do implied connect if not yet connected,
722 * initialize window to default value, and
723 * initialize maxseg/maxopd using peer's cached
724 * MSS.
726 #ifdef INET6
727 if (isipv6)
728 error = tcp6_connect(tp, nam, td);
729 else
730 #endif /* INET6 */
731 error = tcp_connect(tp, nam, td);
732 if (error)
733 goto out;
734 tp->snd_wnd = TTCP_CLIENT_SND_WND;
735 tcp_mss(tp, -1);
738 if (flags & PRUS_EOF) {
740 * Close the send side of the connection after
741 * the data is sent.
743 socantsendmore(so);
744 tp = tcp_usrclosed(tp);
746 if (tp != NULL) {
747 if (flags & PRUS_MORETOCOME)
748 tp->t_flags |= TF_MORETOCOME;
749 error = tcp_output(tp);
750 if (flags & PRUS_MORETOCOME)
751 tp->t_flags &= ~TF_MORETOCOME;
753 } else {
754 if (ssb_space(&so->so_snd) < -512) {
755 m_freem(m);
756 error = ENOBUFS;
757 goto out;
760 * According to RFC961 (Assigned Protocols),
761 * the urgent pointer points to the last octet
762 * of urgent data. We continue, however,
763 * to consider it to indicate the first octet
764 * of data past the urgent section.
765 * Otherwise, snd_up should be one lower.
767 ssb_appendstream(&so->so_snd, m);
768 if (nam && tp->t_state < TCPS_SYN_SENT) {
770 * Do implied connect if not yet connected,
771 * initialize window to default value, and
772 * initialize maxseg/maxopd using peer's cached
773 * MSS.
775 #ifdef INET6
776 if (isipv6)
777 error = tcp6_connect(tp, nam, td);
778 else
779 #endif /* INET6 */
780 error = tcp_connect(tp, nam, td);
781 if (error)
782 goto out;
783 tp->snd_wnd = TTCP_CLIENT_SND_WND;
784 tcp_mss(tp, -1);
786 tp->snd_up = tp->snd_una + so->so_snd.ssb_cc;
787 tp->t_flags |= TF_FORCE;
788 error = tcp_output(tp);
789 tp->t_flags &= ~TF_FORCE;
791 COMMON_END((flags & PRUS_OOB) ? PRU_SENDOOB :
792 ((flags & PRUS_EOF) ? PRU_SEND_EOF : PRU_SEND));
796 * Abort the TCP.
798 static int
799 tcp_usr_abort(struct socket *so)
801 int error = 0;
802 struct inpcb *inp;
803 struct tcpcb *tp;
805 COMMON_START(so, inp);
806 tp = tcp_drop(tp, ECONNABORTED);
807 COMMON_END(PRU_ABORT);
811 * Receive out-of-band data.
813 static int
814 tcp_usr_rcvoob(struct socket *so, struct mbuf *m, int flags)
816 int error = 0;
817 struct inpcb *inp;
818 struct tcpcb *tp;
820 COMMON_START(so, inp);
821 if ((so->so_oobmark == 0 &&
822 (so->so_state & SS_RCVATMARK) == 0) ||
823 so->so_options & SO_OOBINLINE ||
824 tp->t_oobflags & TCPOOB_HADDATA) {
825 error = EINVAL;
826 goto out;
828 if ((tp->t_oobflags & TCPOOB_HAVEDATA) == 0) {
829 error = EWOULDBLOCK;
830 goto out;
832 m->m_len = 1;
833 *mtod(m, caddr_t) = tp->t_iobc;
834 if ((flags & MSG_PEEK) == 0)
835 tp->t_oobflags ^= (TCPOOB_HAVEDATA | TCPOOB_HADDATA);
836 COMMON_END(PRU_RCVOOB);
839 /* xxx - should be const */
840 struct pr_usrreqs tcp_usrreqs = {
841 .pru_abort = tcp_usr_abort,
842 .pru_accept = tcp_usr_accept,
843 .pru_attach = tcp_usr_attach,
844 .pru_bind = tcp_usr_bind,
845 .pru_connect = tcp_usr_connect,
846 .pru_connect2 = pru_connect2_notsupp,
847 .pru_control = in_control,
848 .pru_detach = tcp_usr_detach,
849 .pru_disconnect = tcp_usr_disconnect,
850 .pru_listen = tcp_usr_listen,
851 .pru_peeraddr = in_setpeeraddr,
852 .pru_rcvd = tcp_usr_rcvd,
853 .pru_rcvoob = tcp_usr_rcvoob,
854 .pru_send = tcp_usr_send,
855 .pru_sense = pru_sense_null,
856 .pru_shutdown = tcp_usr_shutdown,
857 .pru_sockaddr = in_setsockaddr,
858 .pru_sosend = sosend,
859 .pru_soreceive = soreceive,
860 .pru_sopoll = sopoll
863 #ifdef INET6
864 struct pr_usrreqs tcp6_usrreqs = {
865 .pru_abort = tcp_usr_abort,
866 .pru_accept = tcp6_usr_accept,
867 .pru_attach = tcp_usr_attach,
868 .pru_bind = tcp6_usr_bind,
869 .pru_connect = tcp6_usr_connect,
870 .pru_connect2 = pru_connect2_notsupp,
871 .pru_control = in6_control,
872 .pru_detach = tcp_usr_detach,
873 .pru_disconnect = tcp_usr_disconnect,
874 .pru_listen = tcp6_usr_listen,
875 .pru_peeraddr = in6_mapped_peeraddr,
876 .pru_rcvd = tcp_usr_rcvd,
877 .pru_rcvoob = tcp_usr_rcvoob,
878 .pru_send = tcp_usr_send,
879 .pru_sense = pru_sense_null,
880 .pru_shutdown = tcp_usr_shutdown,
881 .pru_sockaddr = in6_mapped_sockaddr,
882 .pru_sosend = sosend,
883 .pru_soreceive = soreceive,
884 .pru_sopoll = sopoll
886 #endif /* INET6 */
888 static int
889 tcp_connect_oncpu(struct tcpcb *tp, struct sockaddr_in *sin,
890 struct sockaddr_in *if_sin)
892 struct inpcb *inp = tp->t_inpcb, *oinp;
893 struct socket *so = inp->inp_socket;
894 struct tcpcb *otp;
895 struct rmxp_tao *taop;
896 struct rmxp_tao tao_noncached;
898 oinp = in_pcblookup_hash(&tcbinfo[mycpu->gd_cpuid],
899 sin->sin_addr, sin->sin_port,
900 inp->inp_laddr.s_addr != INADDR_ANY ?
901 inp->inp_laddr : if_sin->sin_addr,
902 inp->inp_lport, 0, NULL);
903 if (oinp != NULL) {
904 if (oinp != inp && (otp = intotcpcb(oinp)) != NULL &&
905 otp->t_state == TCPS_TIME_WAIT &&
906 (ticks - otp->t_starttime) < tcp_msl &&
907 (otp->t_flags & TF_RCVD_CC))
908 tcp_close(otp);
909 else
910 return (EADDRINUSE);
912 if (inp->inp_laddr.s_addr == INADDR_ANY)
913 inp->inp_laddr = if_sin->sin_addr;
914 inp->inp_faddr = sin->sin_addr;
915 inp->inp_fport = sin->sin_port;
916 inp->inp_cpcbinfo = &tcbinfo[mycpu->gd_cpuid];
917 in_pcbinsconnhash(inp);
919 /* Compute window scaling to request. */
920 while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
921 (TCP_MAXWIN << tp->request_r_scale) < so->so_rcv.ssb_hiwat)
922 tp->request_r_scale++;
924 soisconnecting(so);
925 tcpstat.tcps_connattempt++;
926 tp->t_state = TCPS_SYN_SENT;
927 callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
928 tp->iss = tcp_new_isn(tp);
929 tcp_sendseqinit(tp);
932 * Generate a CC value for this connection and
933 * check whether CC or CCnew should be used.
935 if ((taop = tcp_gettaocache(&tp->t_inpcb->inp_inc)) == NULL) {
936 taop = &tao_noncached;
937 bzero(taop, sizeof *taop);
940 tp->cc_send = CC_INC(tcp_ccgen);
941 if (taop->tao_ccsent != 0 &&
942 CC_GEQ(tp->cc_send, taop->tao_ccsent)) {
943 taop->tao_ccsent = tp->cc_send;
944 } else {
945 taop->tao_ccsent = 0;
946 tp->t_flags |= TF_SENDCCNEW;
949 return (0);
952 #ifdef SMP
954 struct netmsg_tcp_connect {
955 struct netmsg nm_netmsg;
956 struct tcpcb *nm_tp;
957 struct sockaddr_in *nm_sin;
958 struct sockaddr_in *nm_ifsin;
961 static void
962 tcp_connect_handler(netmsg_t netmsg)
964 struct netmsg_tcp_connect *msg = (void *)netmsg;
965 int error;
967 error = tcp_connect_oncpu(msg->nm_tp, msg->nm_sin, msg->nm_ifsin);
968 lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, error);
971 #endif
974 * Common subroutine to open a TCP connection to remote host specified
975 * by struct sockaddr_in in mbuf *nam. Call in_pcbbind to assign a local
976 * port number if needed. Call in_pcbladdr to do the routing and to choose
977 * a local host address (interface). If there is an existing incarnation
978 * of the same connection in TIME-WAIT state and if the remote host was
979 * sending CC options and if the connection duration was < MSL, then
980 * truncate the previous TIME-WAIT state and proceed.
981 * Initialize connection parameters and enter SYN-SENT state.
983 static int
984 tcp_connect(struct tcpcb *tp, struct sockaddr *nam, struct thread *td)
986 struct inpcb *inp = tp->t_inpcb;
987 struct sockaddr_in *sin = (struct sockaddr_in *)nam;
988 struct sockaddr_in *if_sin;
989 int error;
990 #ifdef SMP
991 lwkt_port_t port;
992 #endif
994 if (inp->inp_lport == 0) {
995 error = in_pcbbind(inp, (struct sockaddr *)NULL, td);
996 if (error)
997 return (error);
1001 * Cannot simply call in_pcbconnect, because there might be an
1002 * earlier incarnation of this same connection still in
1003 * TIME_WAIT state, creating an ADDRINUSE error.
1005 error = in_pcbladdr(inp, nam, &if_sin, td);
1006 if (error)
1007 return (error);
1009 #ifdef SMP
1010 port = tcp_addrport(sin->sin_addr.s_addr, sin->sin_port,
1011 inp->inp_laddr.s_addr ?
1012 inp->inp_laddr.s_addr : if_sin->sin_addr.s_addr,
1013 inp->inp_lport);
1015 if (port != &curthread->td_msgport) {
1016 struct netmsg_tcp_connect msg;
1017 struct route *ro = &inp->inp_route;
1020 * in_pcbladdr() may have allocated a route entry for us
1021 * on the current CPU, but we need a route entry on the
1022 * target CPU, so free it here.
1024 if (ro->ro_rt != NULL)
1025 RTFREE(ro->ro_rt);
1026 bzero(ro, sizeof(*ro));
1028 netmsg_init(&msg.nm_netmsg, &curthread->td_msgport, 0,
1029 tcp_connect_handler);
1030 msg.nm_tp = tp;
1031 msg.nm_sin = sin;
1032 msg.nm_ifsin = if_sin;
1033 error = lwkt_domsg(port, &msg.nm_netmsg.nm_lmsg, 0);
1034 } else
1035 #endif
1036 error = tcp_connect_oncpu(tp, sin, if_sin);
1038 return (error);
1041 #ifdef INET6
1042 static int
1043 tcp6_connect(struct tcpcb *tp, struct sockaddr *nam, struct thread *td)
1045 struct inpcb *inp = tp->t_inpcb, *oinp;
1046 struct socket *so = inp->inp_socket;
1047 struct tcpcb *otp;
1048 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam;
1049 struct in6_addr *addr6;
1050 struct rmxp_tao *taop;
1051 struct rmxp_tao tao_noncached;
1052 int error;
1054 if (inp->inp_lport == 0) {
1055 error = in6_pcbbind(inp, (struct sockaddr *)0, td);
1056 if (error)
1057 return error;
1061 * Cannot simply call in_pcbconnect, because there might be an
1062 * earlier incarnation of this same connection still in
1063 * TIME_WAIT state, creating an ADDRINUSE error.
1065 error = in6_pcbladdr(inp, nam, &addr6, td);
1066 if (error)
1067 return error;
1068 oinp = in6_pcblookup_hash(inp->inp_cpcbinfo,
1069 &sin6->sin6_addr, sin6->sin6_port,
1070 IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) ?
1071 addr6 : &inp->in6p_laddr,
1072 inp->inp_lport, 0, NULL);
1073 if (oinp) {
1074 if (oinp != inp && (otp = intotcpcb(oinp)) != NULL &&
1075 otp->t_state == TCPS_TIME_WAIT &&
1076 (ticks - otp->t_starttime) < tcp_msl &&
1077 (otp->t_flags & TF_RCVD_CC))
1078 otp = tcp_close(otp);
1079 else
1080 return (EADDRINUSE);
1082 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
1083 inp->in6p_laddr = *addr6;
1084 inp->in6p_faddr = sin6->sin6_addr;
1085 inp->inp_fport = sin6->sin6_port;
1086 if ((sin6->sin6_flowinfo & IPV6_FLOWINFO_MASK) != 0)
1087 inp->in6p_flowinfo = sin6->sin6_flowinfo;
1088 in_pcbinsconnhash(inp);
1090 /* Compute window scaling to request. */
1091 while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
1092 (TCP_MAXWIN << tp->request_r_scale) < so->so_rcv.ssb_hiwat)
1093 tp->request_r_scale++;
1095 soisconnecting(so);
1096 tcpstat.tcps_connattempt++;
1097 tp->t_state = TCPS_SYN_SENT;
1098 callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
1099 tp->iss = tcp_new_isn(tp);
1100 tcp_sendseqinit(tp);
1103 * Generate a CC value for this connection and
1104 * check whether CC or CCnew should be used.
1106 if ((taop = tcp_gettaocache(&tp->t_inpcb->inp_inc)) == NULL) {
1107 taop = &tao_noncached;
1108 bzero(taop, sizeof *taop);
1111 tp->cc_send = CC_INC(tcp_ccgen);
1112 if (taop->tao_ccsent != 0 &&
1113 CC_GEQ(tp->cc_send, taop->tao_ccsent)) {
1114 taop->tao_ccsent = tp->cc_send;
1115 } else {
1116 taop->tao_ccsent = 0;
1117 tp->t_flags |= TF_SENDCCNEW;
1120 return (0);
1122 #endif /* INET6 */
1125 * The new sockopt interface makes it possible for us to block in the
1126 * copyin/out step (if we take a page fault). Taking a page fault while
1127 * in a critical section is probably a Bad Thing. (Since sockets and pcbs
1128 * both now use TSM, there probably isn't any need for this function to
1129 * run in a critical section any more. This needs more examination.)
1132 tcp_ctloutput(struct socket *so, struct sockopt *sopt)
1134 int error, opt, optval;
1135 struct inpcb *inp;
1136 struct tcpcb *tp;
1138 error = 0;
1139 crit_enter(); /* XXX */
1140 inp = so->so_pcb;
1141 if (inp == NULL) {
1142 crit_exit();
1143 return (ECONNRESET);
1145 if (sopt->sopt_level != IPPROTO_TCP) {
1146 #ifdef INET6
1147 if (INP_CHECK_SOCKAF(so, AF_INET6))
1148 error = ip6_ctloutput(so, sopt);
1149 else
1150 #endif /* INET6 */
1151 error = ip_ctloutput(so, sopt);
1152 crit_exit();
1153 return (error);
1155 tp = intotcpcb(inp);
1157 switch (sopt->sopt_dir) {
1158 case SOPT_SET:
1159 error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1160 sizeof optval);
1161 if (error)
1162 break;
1163 switch (sopt->sopt_name) {
1164 case TCP_NODELAY:
1165 case TCP_NOOPT:
1166 switch (sopt->sopt_name) {
1167 case TCP_NODELAY:
1168 opt = TF_NODELAY;
1169 break;
1170 case TCP_NOOPT:
1171 opt = TF_NOOPT;
1172 break;
1173 default:
1174 opt = 0; /* dead code to fool gcc */
1175 break;
1178 if (optval)
1179 tp->t_flags |= opt;
1180 else
1181 tp->t_flags &= ~opt;
1182 break;
1184 case TCP_NOPUSH:
1185 if (optval)
1186 tp->t_flags |= TF_NOPUSH;
1187 else {
1188 tp->t_flags &= ~TF_NOPUSH;
1189 error = tcp_output(tp);
1191 break;
1193 case TCP_MAXSEG:
1194 if (optval > 0 && optval <= tp->t_maxseg)
1195 tp->t_maxseg = optval;
1196 else
1197 error = EINVAL;
1198 break;
1200 default:
1201 error = ENOPROTOOPT;
1202 break;
1204 break;
1206 case SOPT_GET:
1207 switch (sopt->sopt_name) {
1208 case TCP_NODELAY:
1209 optval = tp->t_flags & TF_NODELAY;
1210 break;
1211 case TCP_MAXSEG:
1212 optval = tp->t_maxseg;
1213 break;
1214 case TCP_NOOPT:
1215 optval = tp->t_flags & TF_NOOPT;
1216 break;
1217 case TCP_NOPUSH:
1218 optval = tp->t_flags & TF_NOPUSH;
1219 break;
1220 default:
1221 error = ENOPROTOOPT;
1222 break;
1224 if (error == 0)
1225 soopt_from_kbuf(sopt, &optval, sizeof optval);
1226 break;
1228 crit_exit();
1229 return (error);
1233 * tcp_sendspace and tcp_recvspace are the default send and receive window
1234 * sizes, respectively. These are obsolescent (this information should
1235 * be set by the route).
1237 u_long tcp_sendspace = 1024*32;
1238 SYSCTL_INT(_net_inet_tcp, TCPCTL_SENDSPACE, sendspace, CTLFLAG_RW,
1239 &tcp_sendspace , 0, "Maximum outgoing TCP datagram size");
1240 u_long tcp_recvspace = 57344; /* largest multiple of PAGE_SIZE < 64k */
1241 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
1242 &tcp_recvspace , 0, "Maximum incoming TCP datagram size");
1245 * Attach TCP protocol to socket, allocating
1246 * internet protocol control block, tcp control block,
1247 * bufer space, and entering LISTEN state if to accept connections.
1249 static int
1250 tcp_attach(struct socket *so, struct pru_attach_info *ai)
1252 struct tcpcb *tp;
1253 struct inpcb *inp;
1254 int error;
1255 int cpu;
1256 #ifdef INET6
1257 int isipv6 = INP_CHECK_SOCKAF(so, AF_INET6) != 0;
1258 #endif
1260 if (so->so_snd.ssb_hiwat == 0 || so->so_rcv.ssb_hiwat == 0) {
1261 error = soreserve(so, tcp_sendspace, tcp_recvspace,
1262 ai->sb_rlimit);
1263 if (error)
1264 return (error);
1266 cpu = mycpu->gd_cpuid;
1267 error = in_pcballoc(so, &tcbinfo[cpu]);
1268 if (error)
1269 return (error);
1270 inp = so->so_pcb;
1271 #ifdef INET6
1272 if (isipv6) {
1273 inp->inp_vflag |= INP_IPV6;
1274 inp->in6p_hops = -1; /* use kernel default */
1276 else
1277 #endif
1278 inp->inp_vflag |= INP_IPV4;
1279 tp = tcp_newtcpcb(inp);
1280 if (tp == 0) {
1281 int nofd = so->so_state & SS_NOFDREF; /* XXX */
1283 so->so_state &= ~SS_NOFDREF; /* don't free the socket yet */
1284 #ifdef INET6
1285 if (isipv6)
1286 in6_pcbdetach(inp);
1287 else
1288 #endif
1289 in_pcbdetach(inp);
1290 so->so_state |= nofd;
1291 return (ENOBUFS);
1293 tp->t_state = TCPS_CLOSED;
1294 return (0);
1298 * Initiate (or continue) disconnect.
1299 * If embryonic state, just send reset (once).
1300 * If in ``let data drain'' option and linger null, just drop.
1301 * Otherwise (hard), mark socket disconnecting and drop
1302 * current input data; switch states based on user close, and
1303 * send segment to peer (with FIN).
1305 static struct tcpcb *
1306 tcp_disconnect(struct tcpcb *tp)
1308 struct socket *so = tp->t_inpcb->inp_socket;
1310 if (tp->t_state < TCPS_ESTABLISHED)
1311 tp = tcp_close(tp);
1312 else if ((so->so_options & SO_LINGER) && so->so_linger == 0)
1313 tp = tcp_drop(tp, 0);
1314 else {
1315 soisdisconnecting(so);
1316 sbflush(&so->so_rcv.sb);
1317 tp = tcp_usrclosed(tp);
1318 if (tp)
1319 tcp_output(tp);
1321 return (tp);
1325 * User issued close, and wish to trail through shutdown states:
1326 * if never received SYN, just forget it. If got a SYN from peer,
1327 * but haven't sent FIN, then go to FIN_WAIT_1 state to send peer a FIN.
1328 * If already got a FIN from peer, then almost done; go to LAST_ACK
1329 * state. In all other cases, have already sent FIN to peer (e.g.
1330 * after PRU_SHUTDOWN), and just have to play tedious game waiting
1331 * for peer to send FIN or not respond to keep-alives, etc.
1332 * We can let the user exit from the close as soon as the FIN is acked.
1334 static struct tcpcb *
1335 tcp_usrclosed(struct tcpcb *tp)
1338 switch (tp->t_state) {
1340 case TCPS_CLOSED:
1341 case TCPS_LISTEN:
1342 tp->t_state = TCPS_CLOSED;
1343 tp = tcp_close(tp);
1344 break;
1346 case TCPS_SYN_SENT:
1347 case TCPS_SYN_RECEIVED:
1348 tp->t_flags |= TF_NEEDFIN;
1349 break;
1351 case TCPS_ESTABLISHED:
1352 tp->t_state = TCPS_FIN_WAIT_1;
1353 break;
1355 case TCPS_CLOSE_WAIT:
1356 tp->t_state = TCPS_LAST_ACK;
1357 break;
1359 if (tp && tp->t_state >= TCPS_FIN_WAIT_2) {
1360 soisdisconnected(tp->t_inpcb->inp_socket);
1361 /* To prevent the connection hanging in FIN_WAIT_2 forever. */
1362 if (tp->t_state == TCPS_FIN_WAIT_2)
1363 callout_reset(tp->tt_2msl, tcp_maxidle,
1364 tcp_timer_2msl, tp);
1366 return (tp);