hammer2 - Revamp flush and xopq mechanism, stabilization
[dragonfly.git] / sys / vfs / hammer2 / hammer2_flush.c
blob9c21cda4d6815d0996731b03c62c493ac0c0fdff
1 /*
2 * Copyright (c) 2011-2015 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@dragonflybsd.org>
6 * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific, prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
36 * TRANSACTION AND FLUSH HANDLING
38 * Deceptively simple but actually fairly difficult to implement properly is
39 * how I would describe it.
41 * Flushing generally occurs bottom-up but requires a top-down scan to
42 * locate chains with MODIFIED and/or UPDATE bits set. The ONFLUSH flag
43 * tells how to recurse downward to find these chains.
46 #include <sys/cdefs.h>
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/types.h>
50 #include <sys/lock.h>
51 #include <sys/uuid.h>
53 #include "hammer2.h"
55 #define FLUSH_DEBUG 0
57 #define HAMMER2_FLUSH_DEPTH_LIMIT 10 /* stack recursion limit */
61 * Recursively flush the specified chain. The chain is locked and
62 * referenced by the caller and will remain so on return. The chain
63 * will remain referenced throughout but can temporarily lose its
64 * lock during the recursion to avoid unnecessarily stalling user
65 * processes.
67 struct hammer2_flush_info {
68 hammer2_chain_t *parent;
69 int depth;
70 int diddeferral;
71 int cache_index;
72 int flags;
73 struct h2_flush_list flushq;
74 hammer2_chain_t *debug;
77 typedef struct hammer2_flush_info hammer2_flush_info_t;
79 static void hammer2_flush_core(hammer2_flush_info_t *info,
80 hammer2_chain_t *chain, int flags);
81 static int hammer2_flush_recurse(hammer2_chain_t *child, void *data);
84 * Any per-pfs transaction initialization goes here.
86 void
87 hammer2_trans_manage_init(hammer2_pfs_t *pmp)
92 * Transaction support for any modifying operation. Transactions are used
93 * in the pmp layer by the frontend and in the spmp layer by the backend.
95 * 0 - Normal transaction, interlocked against flush
96 * transaction.
98 * TRANS_ISFLUSH - Flush transaction, interlocked against normal
99 * transaction.
101 * TRANS_BUFCACHE - Buffer cache transaction, no interlock.
103 * Initializing a new transaction allocates a transaction ID. Typically
104 * passed a pmp (hmp passed as NULL), indicating a cluster transaction. Can
105 * be passed a NULL pmp and non-NULL hmp to indicate a transaction on a single
106 * media target. The latter mode is used by the recovery code.
108 * TWO TRANSACTION IDs can run concurrently, where one is a flush and the
109 * other is a set of any number of concurrent filesystem operations. We
110 * can either have <running_fs_ops> + <waiting_flush> + <blocked_fs_ops>
111 * or we can have <running_flush> + <concurrent_fs_ops>.
113 * During a flush, new fs_ops are only blocked until the fs_ops prior to
114 * the flush complete. The new fs_ops can then run concurrent with the flush.
116 * Buffer-cache transactions operate as fs_ops but never block. A
117 * buffer-cache flush will run either before or after the current pending
118 * flush depending on its state.
120 void
121 hammer2_trans_init(hammer2_pfs_t *pmp, uint32_t flags)
123 uint32_t oflags;
124 uint32_t nflags;
125 int dowait;
127 for (;;) {
128 oflags = pmp->trans.flags;
129 cpu_ccfence();
130 dowait = 0;
132 if (flags & HAMMER2_TRANS_ISFLUSH) {
134 * Requesting flush transaction. Wait for all
135 * currently running transactions to finish.
136 * Afterwords, normal transactions will be
137 * interlocked.
139 if (oflags & HAMMER2_TRANS_MASK) {
140 nflags = oflags | HAMMER2_TRANS_FPENDING |
141 HAMMER2_TRANS_WAITING;
142 dowait = 1;
143 } else {
144 nflags = (oflags | flags) + 1;
146 } else if (flags & HAMMER2_TRANS_BUFCACHE) {
148 * Requesting strategy transaction from buffer-cache,
149 * or a VM getpages/putpages through the buffer cache.
150 * We must allow such transactions in all situations
151 * to avoid deadlocks.
153 nflags = (oflags | flags) + 1;
154 #if 0
156 * (old) previous code interlocked against the main
157 * flush pass.
159 if ((oflags & (HAMMER2_TRANS_ISFLUSH |
160 HAMMER2_TRANS_PREFLUSH)) ==
161 HAMMER2_TRANS_ISFLUSH) {
162 nflags = oflags | HAMMER2_TRANS_WAITING;
163 dowait = 1;
164 } else {
165 nflags = (oflags | flags) + 1;
167 #endif
168 } else {
170 * Requesting normal modifying transaction (read-only
171 * operations do not use transactions). Waits for
172 * any flush to finish before allowing. Multiple
173 * modifying transactions can run concurrently.
175 if (oflags & HAMMER2_TRANS_ISFLUSH) {
176 nflags = oflags | HAMMER2_TRANS_WAITING;
177 dowait = 1;
178 } else {
179 nflags = (oflags | flags) + 1;
182 if (dowait)
183 tsleep_interlock(&pmp->trans.sync_wait, 0);
184 if (atomic_cmpset_int(&pmp->trans.flags, oflags, nflags)) {
185 if (dowait == 0)
186 break;
187 tsleep(&pmp->trans.sync_wait, PINTERLOCKED,
188 "h2trans", hz);
189 } else {
190 cpu_pause();
192 /* retry */
197 * Start a sub-transaction, there is no 'subdone' function. This will
198 * issue a new modify_tid (mtid) for the current transaction, which is a
199 * CLC (cluster level change) id and not a per-node id.
201 * This function must be called for each XOP when multiple XOPs are run in
202 * sequence within a transaction.
204 * Callers typically update the inode with the transaction mtid manually
205 * to enforce sequencing.
207 hammer2_tid_t
208 hammer2_trans_sub(hammer2_pfs_t *pmp)
210 hammer2_tid_t mtid;
212 mtid = atomic_fetchadd_64(&pmp->modify_tid, 1);
214 return (mtid);
217 void
218 hammer2_trans_done(hammer2_pfs_t *pmp)
220 uint32_t oflags;
221 uint32_t nflags;
223 for (;;) {
224 oflags = pmp->trans.flags;
225 cpu_ccfence();
226 KKASSERT(oflags & HAMMER2_TRANS_MASK);
227 if ((oflags & HAMMER2_TRANS_MASK) == 1) {
229 * This was the last transaction
231 nflags = (oflags - 1) & ~(HAMMER2_TRANS_ISFLUSH |
232 HAMMER2_TRANS_BUFCACHE |
233 HAMMER2_TRANS_FPENDING |
234 HAMMER2_TRANS_WAITING);
235 } else {
237 * Still transactions pending
239 nflags = oflags - 1;
241 if (atomic_cmpset_int(&pmp->trans.flags, oflags, nflags)) {
242 if ((nflags & HAMMER2_TRANS_MASK) == 0 &&
243 (oflags & HAMMER2_TRANS_WAITING)) {
244 wakeup(&pmp->trans.sync_wait);
246 break;
247 } else {
248 cpu_pause();
250 /* retry */
255 * Obtain new, unique inode number (not serialized by caller).
257 hammer2_tid_t
258 hammer2_trans_newinum(hammer2_pfs_t *pmp)
260 hammer2_tid_t tid;
262 tid = atomic_fetchadd_64(&pmp->inode_tid, 1);
264 return tid;
268 * Assert that a strategy call is ok here. Currently we allow strategy
269 * calls in all situations, including during flushes. Previously:
270 * (old) (1) In a normal transaction.
271 * (old) (2) In a flush transaction only if PREFLUSH is also set.
273 void
274 hammer2_trans_assert_strategy(hammer2_pfs_t *pmp)
276 #if 0
277 KKASSERT((pmp->trans.flags & HAMMER2_TRANS_ISFLUSH) == 0 ||
278 (pmp->trans.flags & HAMMER2_TRANS_PREFLUSH));
279 #endif
284 * Chains undergoing destruction are removed from the in-memory topology.
285 * To avoid getting lost these chains are placed on the delayed flush
286 * queue which will properly dispose of them.
288 * We do this instead of issuing an immediate flush in order to give
289 * recursive deletions (rm -rf, etc) a chance to remove more of the
290 * hierarchy, potentially allowing an enormous amount of write I/O to
291 * be avoided.
293 void
294 hammer2_delayed_flush(hammer2_chain_t *chain)
296 if ((chain->flags & HAMMER2_CHAIN_DELAYED) == 0) {
297 hammer2_spin_ex(&chain->hmp->list_spin);
298 if ((chain->flags & (HAMMER2_CHAIN_DELAYED |
299 HAMMER2_CHAIN_DEFERRED)) == 0) {
300 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELAYED |
301 HAMMER2_CHAIN_DEFERRED);
302 TAILQ_INSERT_TAIL(&chain->hmp->flushq,
303 chain, flush_node);
304 hammer2_chain_ref(chain);
306 hammer2_spin_unex(&chain->hmp->list_spin);
307 hammer2_voldata_modify(chain->hmp);
312 * Flush the chain and all modified sub-chains through the specified
313 * synchronization point, propagating blockref updates back up. As
314 * part of this propagation, mirror_tid and inode/data usage statistics
315 * propagates back upward.
317 * modify_tid (clc - cluster level change) is not propagated.
319 * update_tid (clc) is used for validation and is not propagated by this
320 * function.
322 * This routine can be called from several places but the most important
323 * is from VFS_SYNC (frontend) via hammer2_inode_xop_flush (backend).
325 * chain is locked on call and will remain locked on return. The chain's
326 * UPDATE flag indicates that its parent's block table (which is not yet
327 * part of the flush) should be updated. The chain may be replaced by
328 * the call if it was modified.
330 void
331 hammer2_flush(hammer2_chain_t *chain, int flags)
333 hammer2_chain_t *scan;
334 hammer2_flush_info_t info;
335 hammer2_dev_t *hmp;
336 int loops;
339 * Execute the recursive flush and handle deferrals.
341 * Chains can be ridiculously long (thousands deep), so to
342 * avoid blowing out the kernel stack the recursive flush has a
343 * depth limit. Elements at the limit are placed on a list
344 * for re-execution after the stack has been popped.
346 bzero(&info, sizeof(info));
347 TAILQ_INIT(&info.flushq);
348 info.cache_index = -1;
349 info.flags = flags & ~HAMMER2_FLUSH_TOP;
352 * Calculate parent (can be NULL), if not NULL the flush core
353 * expects the parent to be referenced so it can easily lock/unlock
354 * it without it getting ripped up.
356 if ((info.parent = chain->parent) != NULL)
357 hammer2_chain_ref(info.parent);
360 * Extra ref needed because flush_core expects it when replacing
361 * chain.
363 hammer2_chain_ref(chain);
364 hmp = chain->hmp;
365 loops = 0;
367 for (;;) {
369 * Move hmp->flushq to info.flushq if non-empty so it can
370 * be processed.
372 if (TAILQ_FIRST(&hmp->flushq) != NULL) {
373 hammer2_spin_ex(&chain->hmp->list_spin);
374 TAILQ_CONCAT(&info.flushq, &hmp->flushq, flush_node);
375 hammer2_spin_unex(&chain->hmp->list_spin);
379 * Unwind deep recursions which had been deferred. This
380 * can leave the FLUSH_* bits set for these chains, which
381 * will be handled when we [re]flush chain after the unwind.
383 while ((scan = TAILQ_FIRST(&info.flushq)) != NULL) {
384 KKASSERT(scan->flags & HAMMER2_CHAIN_DEFERRED);
385 TAILQ_REMOVE(&info.flushq, scan, flush_node);
386 atomic_clear_int(&scan->flags, HAMMER2_CHAIN_DEFERRED |
387 HAMMER2_CHAIN_DELAYED);
390 * Now that we've popped back up we can do a secondary
391 * recursion on the deferred elements.
393 * NOTE: hammer2_flush() may replace scan.
395 if (hammer2_debug & 0x0040)
396 kprintf("deferred flush %p\n", scan);
397 hammer2_chain_lock(scan, HAMMER2_RESOLVE_MAYBE);
398 hammer2_flush(scan, flags & ~HAMMER2_FLUSH_TOP);
399 hammer2_chain_unlock(scan);
400 hammer2_chain_drop(scan); /* ref from deferral */
404 * [re]flush chain.
406 info.diddeferral = 0;
407 hammer2_flush_core(&info, chain, flags);
410 * Only loop if deep recursions have been deferred.
412 if (TAILQ_EMPTY(&info.flushq))
413 break;
415 if (++loops % 1000 == 0) {
416 kprintf("hammer2_flush: excessive loops on %p\n",
417 chain);
418 if (hammer2_debug & 0x100000)
419 Debugger("hell4");
422 hammer2_chain_drop(chain);
423 if (info.parent)
424 hammer2_chain_drop(info.parent);
428 * This is the core of the chain flushing code. The chain is locked by the
429 * caller and must also have an extra ref on it by the caller, and remains
430 * locked and will have an extra ref on return. Upon return, the caller can
431 * test the UPDATE bit on the child to determine if the parent needs updating.
433 * (1) Determine if this node is a candidate for the flush, return if it is
434 * not. fchain and vchain are always candidates for the flush.
436 * (2) If we recurse too deep the chain is entered onto the deferral list and
437 * the current flush stack is aborted until after the deferral list is
438 * run.
440 * (3) Recursively flush live children (rbtree). This can create deferrals.
441 * A successful flush clears the MODIFIED and UPDATE bits on the children
442 * and typically causes the parent to be marked MODIFIED as the children
443 * update the parent's block table. A parent might already be marked
444 * MODIFIED due to a deletion (whos blocktable update in the parent is
445 * handled by the frontend), or if the parent itself is modified by the
446 * frontend for other reasons.
448 * (4) Permanently disconnected sub-trees are cleaned up by the front-end.
449 * Deleted-but-open inodes can still be individually flushed via the
450 * filesystem syncer.
452 * (5) Delete parents on the way back up if they are normal indirect blocks
453 * and have no children.
455 * (6) Note that an unmodified child may still need the block table in its
456 * parent updated (e.g. rename/move). The child will have UPDATE set
457 * in this case.
459 * WARNING ON BREF MODIFY_TID/MIRROR_TID
461 * blockref.modify_tid is consistent only within a PFS, and will not be
462 * consistent during synchronization. mirror_tid is consistent across the
463 * block device regardless of the PFS.
465 static void
466 hammer2_flush_core(hammer2_flush_info_t *info, hammer2_chain_t *chain,
467 int flags)
469 hammer2_chain_t *parent;
470 hammer2_dev_t *hmp;
471 int diddeferral;
474 * (1) Optimize downward recursion to locate nodes needing action.
475 * Nothing to do if none of these flags are set.
477 if ((chain->flags & HAMMER2_CHAIN_FLUSH_MASK) == 0) {
478 if (hammer2_debug & 0x200) {
479 if (info->debug == NULL)
480 info->debug = chain;
481 } else {
482 return;
486 hmp = chain->hmp;
487 diddeferral = info->diddeferral;
488 parent = info->parent; /* can be NULL */
491 * Downward search recursion
493 if (chain->flags & (HAMMER2_CHAIN_DEFERRED | HAMMER2_CHAIN_DELAYED)) {
495 * Already deferred.
497 ++info->diddeferral;
498 } else if ((chain->flags & HAMMER2_CHAIN_PFSBOUNDARY) &&
499 (flags & HAMMER2_FLUSH_ALL) == 0 &&
500 (flags & HAMMER2_FLUSH_TOP) == 0) {
502 * We do not recurse through PFSROOTs. PFSROOT flushes are
503 * handled by the related pmp's (whether mounted or not,
504 * including during recovery).
506 * But we must still process the PFSROOT chains for block
507 * table updates in their parent (which IS part of our flush).
509 * Note that the volume root, vchain, does not set this flag.
510 * Note the logic here requires that this test be done before
511 * the depth-limit test, else it might become the top on a
512 * flushq iteration.
515 } else if (info->depth == HAMMER2_FLUSH_DEPTH_LIMIT) {
517 * Recursion depth reached.
519 KKASSERT((chain->flags & HAMMER2_CHAIN_DELAYED) == 0);
520 hammer2_chain_ref(chain);
521 TAILQ_INSERT_TAIL(&info->flushq, chain, flush_node);
522 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DEFERRED);
523 ++info->diddeferral;
524 } else if (chain->flags & (HAMMER2_CHAIN_ONFLUSH |
525 HAMMER2_CHAIN_DESTROY)) {
527 * Downward recursion search (actual flush occurs bottom-up).
528 * pre-clear ONFLUSH. It can get set again due to races,
529 * which we want so the scan finds us again in the next flush.
531 * We must also recurse if DESTROY is set so we can finally
532 * get rid of the related children, otherwise the node will
533 * just get re-flushed on lastdrop.
535 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
536 info->parent = chain;
537 hammer2_spin_ex(&chain->core.spin);
538 RB_SCAN(hammer2_chain_tree, &chain->core.rbtree,
539 NULL, hammer2_flush_recurse, info);
540 hammer2_spin_unex(&chain->core.spin);
541 info->parent = parent;
542 if (info->diddeferral)
543 hammer2_chain_setflush(chain);
547 * Now we are in the bottom-up part of the recursion.
549 * Do not update chain if lower layers were deferred.
551 if (info->diddeferral)
552 goto done;
555 * Propagate the DESTROY flag downwards. This dummies up the flush
556 * code and tries to invalidate related buffer cache buffers to
557 * avoid the disk write.
559 if (parent && (parent->flags & HAMMER2_CHAIN_DESTROY))
560 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
563 * Chain was already modified or has become modified, flush it out.
565 again:
566 if ((hammer2_debug & 0x200) &&
567 info->debug &&
568 (chain->flags & (HAMMER2_CHAIN_MODIFIED | HAMMER2_CHAIN_UPDATE))) {
569 hammer2_chain_t *scan = chain;
571 kprintf("DISCONNECTED FLUSH %p->%p\n", info->debug, chain);
572 while (scan) {
573 kprintf(" chain %p [%08x] bref=%016jx:%02x\n",
574 scan, scan->flags,
575 scan->bref.key, scan->bref.type);
576 if (scan == info->debug)
577 break;
578 scan = scan->parent;
582 if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
584 * Dispose of the modified bit.
586 * If parent is present, the UPDATE bit should already be set.
587 * UPDATE should already be set.
588 * bref.mirror_tid should already be set.
590 KKASSERT((chain->flags & HAMMER2_CHAIN_UPDATE) ||
591 chain->parent == NULL);
592 if (hammer2_debug & 0x800000) {
593 hammer2_chain_t *pp;
595 for (pp = chain; pp->parent; pp = pp->parent)
597 kprintf("FLUSH CHAIN %p (p=%p pp=%p/%d) TYPE %d FLAGS %08x (%s)\n",
598 chain, chain->parent, pp, pp->bref.type,
599 chain->bref.type, chain->flags,
600 (chain->bref.type == 1 ? (const char *)chain->data->ipdata.filename : "?")
603 print_backtrace(10);
605 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
606 atomic_add_long(&hammer2_count_modified_chains, -1);
609 * Manage threads waiting for excessive dirty memory to
610 * be retired.
612 if (chain->pmp)
613 hammer2_pfs_memory_wakeup(chain->pmp);
615 #if 0
616 if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0 &&
617 chain != &hmp->vchain &&
618 chain != &hmp->fchain) {
620 * Set UPDATE bit indicating that the parent block
621 * table requires updating.
623 atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
625 #endif
628 * Issue the flush. This is indirect via the DIO.
630 * NOTE: A DELETED node that reaches this point must be
631 * flushed for synchronization point consistency.
633 * NOTE: Even though MODIFIED was already set, the related DIO
634 * might not be dirty due to a system buffer cache
635 * flush and must be set dirty if we are going to make
636 * further modifications to the buffer. Chains with
637 * embedded data don't need this.
639 if (hammer2_debug & 0x1000) {
640 kprintf("Flush %p.%d %016jx/%d data=%016jx\n",
641 chain, chain->bref.type,
642 (uintmax_t)chain->bref.key,
643 chain->bref.keybits,
644 (uintmax_t)chain->bref.data_off);
646 if (hammer2_debug & 0x2000) {
647 Debugger("Flush hell");
651 * Update chain CRCs for flush.
653 * NOTE: Volume headers are NOT flushed here as they require
654 * special processing.
656 switch(chain->bref.type) {
657 case HAMMER2_BREF_TYPE_FREEMAP:
659 * Update the volume header's freemap_tid to the
660 * freemap's flushing mirror_tid.
662 * (note: embedded data, do not call setdirty)
664 KKASSERT(hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED);
665 KKASSERT(chain == &hmp->fchain);
666 hmp->voldata.freemap_tid = chain->bref.mirror_tid;
667 if (hammer2_debug & 0x8000) {
668 /* debug only, avoid syslogd loop */
669 kprintf("sync freemap mirror_tid %08jx\n",
670 (intmax_t)chain->bref.mirror_tid);
674 * The freemap can be flushed independently of the
675 * main topology, but for the case where it is
676 * flushed in the same transaction, and flushed
677 * before vchain (a case we want to allow for
678 * performance reasons), make sure modifications
679 * made during the flush under vchain use a new
680 * transaction id.
682 * Otherwise the mount recovery code will get confused.
684 ++hmp->voldata.mirror_tid;
685 break;
686 case HAMMER2_BREF_TYPE_VOLUME:
688 * The free block table is flushed by
689 * hammer2_vfs_sync() before it flushes vchain.
690 * We must still hold fchain locked while copying
691 * voldata to volsync, however.
693 * (note: embedded data, do not call setdirty)
695 hammer2_chain_lock(&hmp->fchain,
696 HAMMER2_RESOLVE_ALWAYS);
697 hammer2_voldata_lock(hmp);
698 if (hammer2_debug & 0x8000) {
699 /* debug only, avoid syslogd loop */
700 kprintf("sync volume mirror_tid %08jx\n",
701 (intmax_t)chain->bref.mirror_tid);
705 * Update the volume header's mirror_tid to the
706 * main topology's flushing mirror_tid. It is
707 * possible that voldata.mirror_tid is already
708 * beyond bref.mirror_tid due to the bump we made
709 * above in BREF_TYPE_FREEMAP.
711 if (hmp->voldata.mirror_tid < chain->bref.mirror_tid) {
712 hmp->voldata.mirror_tid =
713 chain->bref.mirror_tid;
717 * The volume header is flushed manually by the
718 * syncer, not here. All we do here is adjust the
719 * crc's.
721 KKASSERT(chain->data != NULL);
722 KKASSERT(chain->dio == NULL);
724 hmp->voldata.icrc_sects[HAMMER2_VOL_ICRC_SECT1]=
725 hammer2_icrc32(
726 (char *)&hmp->voldata +
727 HAMMER2_VOLUME_ICRC1_OFF,
728 HAMMER2_VOLUME_ICRC1_SIZE);
729 hmp->voldata.icrc_sects[HAMMER2_VOL_ICRC_SECT0]=
730 hammer2_icrc32(
731 (char *)&hmp->voldata +
732 HAMMER2_VOLUME_ICRC0_OFF,
733 HAMMER2_VOLUME_ICRC0_SIZE);
734 hmp->voldata.icrc_volheader =
735 hammer2_icrc32(
736 (char *)&hmp->voldata +
737 HAMMER2_VOLUME_ICRCVH_OFF,
738 HAMMER2_VOLUME_ICRCVH_SIZE);
740 if (hammer2_debug & 0x8000) {
741 /* debug only, avoid syslogd loop */
742 kprintf("syncvolhdr %016jx %016jx\n",
743 hmp->voldata.mirror_tid,
744 hmp->vchain.bref.mirror_tid);
746 hmp->volsync = hmp->voldata;
747 atomic_set_int(&chain->flags, HAMMER2_CHAIN_VOLUMESYNC);
748 hammer2_voldata_unlock(hmp);
749 hammer2_chain_unlock(&hmp->fchain);
750 break;
751 case HAMMER2_BREF_TYPE_DATA:
753 * Data elements have already been flushed via the
754 * logical file buffer cache. Their hash was set in
755 * the bref by the vop_write code. Do not re-dirty.
757 * Make sure any device buffer(s) have been flushed
758 * out here (there aren't usually any to flush) XXX.
760 break;
761 case HAMMER2_BREF_TYPE_INDIRECT:
762 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
763 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
765 * Buffer I/O will be cleaned up when the volume is
766 * flushed (but the kernel is free to flush it before
767 * then, as well).
769 KKASSERT((chain->flags & HAMMER2_CHAIN_EMBEDDED) == 0);
770 hammer2_chain_setcheck(chain, chain->data);
771 break;
772 case HAMMER2_BREF_TYPE_INODE:
774 * NOTE: We must call io_setdirty() to make any late
775 * changes to the inode data, the system might
776 * have already flushed the buffer.
778 if (chain->data->ipdata.meta.op_flags &
779 HAMMER2_OPFLAG_PFSROOT) {
781 * non-NULL pmp if mounted as a PFS. We must
782 * sync fields cached in the pmp? XXX
784 hammer2_inode_data_t *ipdata;
786 hammer2_io_setdirty(chain->dio);
787 ipdata = &chain->data->ipdata;
788 if (chain->pmp) {
789 ipdata->meta.pfs_inum =
790 chain->pmp->inode_tid;
792 } else {
793 /* can't be mounted as a PFS */
796 KKASSERT((chain->flags & HAMMER2_CHAIN_EMBEDDED) == 0);
797 hammer2_chain_setcheck(chain, chain->data);
798 break;
799 default:
800 KKASSERT(chain->flags & HAMMER2_CHAIN_EMBEDDED);
801 panic("hammer2_flush_core: unsupported "
802 "embedded bref %d",
803 chain->bref.type);
804 /* NOT REACHED */
808 * If the chain was destroyed try to avoid unnecessary I/O.
809 * The DIO system buffer may silently disallow the
810 * invalidation.
812 if (chain->flags & HAMMER2_CHAIN_DESTROY) {
813 hammer2_io_t *dio;
815 if (chain->dio) {
816 hammer2_io_setinval(chain->dio,
817 chain->bref.data_off,
818 chain->bytes);
819 } else if ((dio = hammer2_io_getquick(hmp,
820 chain->bref.data_off,
821 chain->bytes)) != NULL) {
822 hammer2_io_setinval(dio,
823 chain->bref.data_off,
824 chain->bytes);
825 hammer2_io_putblk(&dio);
831 * If UPDATE is set the parent block table may need to be updated.
833 * NOTE: UPDATE may be set on vchain or fchain in which case
834 * parent could be NULL. It's easiest to allow the case
835 * and test for NULL. parent can also wind up being NULL
836 * due to a deletion so we need to handle the case anyway.
838 * If no parent exists we can just clear the UPDATE bit. If the
839 * chain gets reattached later on the bit will simply get set
840 * again.
842 if ((chain->flags & HAMMER2_CHAIN_UPDATE) && parent == NULL)
843 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
846 * The chain may need its blockrefs updated in the parent. This
847 * requires some fancy footwork.
849 if (chain->flags & HAMMER2_CHAIN_UPDATE) {
850 hammer2_blockref_t *base;
851 int count;
854 * Both parent and chain must be locked. This requires
855 * temporarily unlocking the chain. We have to deal with
856 * the case where the chain might be reparented or modified
857 * while it was unlocked.
859 hammer2_chain_unlock(chain);
860 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
861 hammer2_chain_lock(chain, HAMMER2_RESOLVE_MAYBE);
862 if (chain->parent != parent) {
863 kprintf("PARENT MISMATCH ch=%p p=%p/%p\n",
864 chain, chain->parent, parent);
865 hammer2_chain_unlock(parent);
866 goto done;
870 * Check race condition. If someone got in and modified
871 * it again while it was unlocked, we have to loop up.
873 if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
874 hammer2_chain_unlock(parent);
875 kprintf("hammer2_flush: chain %p flush-mod race\n",
876 chain);
877 goto again;
881 * Clear UPDATE flag, mark parent modified, update its
882 * modify_tid if necessary, and adjust the parent blockmap.
884 if (chain->flags & HAMMER2_CHAIN_UPDATE)
885 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
888 * (optional code)
890 * Avoid actually modifying and updating the parent if it
891 * was flagged for destruction. This can greatly reduce
892 * disk I/O in large tree removals because the
893 * hammer2_io_setinval() call in the upward recursion
894 * (see MODIFIED code above) can only handle a few cases.
896 if (parent->flags & HAMMER2_CHAIN_DESTROY) {
897 if (parent->bref.modify_tid < chain->bref.modify_tid) {
898 parent->bref.modify_tid =
899 chain->bref.modify_tid;
901 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
902 HAMMER2_CHAIN_BMAPUPD);
903 hammer2_chain_unlock(parent);
904 goto skipupdate;
908 * (semi-optional code)
910 * The flusher is responsible for deleting empty indirect
911 * blocks at this point. If we don't do this, no major harm
912 * will be done but the empty indirect blocks will stay in
913 * the topology and make it a bit messy.
915 if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT &&
916 chain->core.live_count == 0 &&
917 (chain->flags & (HAMMER2_CHAIN_INITIAL |
918 HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
919 base = &chain->data->npdata[0];
920 count = chain->bytes / sizeof(hammer2_blockref_t);
921 hammer2_chain_countbrefs(chain, base, count);
923 if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT &&
924 chain->core.live_count == 0) {
925 #if 0
926 kprintf("DELETE CHAIN %016jx.%02x %016jx/%d refs=%d\n",
927 chain->bref.data_off, chain->bref.type,
928 chain->bref.key, chain->bref.keybits,
929 chain->refs);
930 #endif
931 hammer2_chain_delete(parent, chain,
932 chain->bref.modify_tid,
933 HAMMER2_DELETE_PERMANENT);
934 hammer2_chain_unlock(parent);
935 goto skipupdate;
939 * We are updating the parent's blockmap, the parent must
940 * be set modified.
942 hammer2_chain_modify(parent, 0, 0, 0);
943 if (parent->bref.modify_tid < chain->bref.modify_tid)
944 parent->bref.modify_tid = chain->bref.modify_tid;
947 * Calculate blockmap pointer
949 switch(parent->bref.type) {
950 case HAMMER2_BREF_TYPE_INODE:
952 * Access the inode's block array. However, there is
953 * no block array if the inode is flagged DIRECTDATA.
955 if (parent->data &&
956 (parent->data->ipdata.meta.op_flags &
957 HAMMER2_OPFLAG_DIRECTDATA) == 0) {
958 base = &parent->data->
959 ipdata.u.blockset.blockref[0];
960 } else {
961 base = NULL;
963 count = HAMMER2_SET_COUNT;
964 break;
965 case HAMMER2_BREF_TYPE_INDIRECT:
966 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
967 if (parent->data)
968 base = &parent->data->npdata[0];
969 else
970 base = NULL;
971 count = parent->bytes / sizeof(hammer2_blockref_t);
972 break;
973 case HAMMER2_BREF_TYPE_VOLUME:
974 base = &chain->hmp->voldata.sroot_blockset.blockref[0];
975 count = HAMMER2_SET_COUNT;
976 break;
977 case HAMMER2_BREF_TYPE_FREEMAP:
978 base = &parent->data->npdata[0];
979 count = HAMMER2_SET_COUNT;
980 break;
981 default:
982 base = NULL;
983 count = 0;
984 panic("hammer2_flush_core: "
985 "unrecognized blockref type: %d",
986 parent->bref.type);
990 * Blocktable updates
992 * We synchronize pending statistics at this time. Delta
993 * adjustments designated for the current and upper level
994 * are synchronized.
996 if (base && (chain->flags & HAMMER2_CHAIN_BMAPUPD)) {
997 if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
998 hammer2_spin_ex(&parent->core.spin);
999 hammer2_base_delete(parent, base, count,
1000 &info->cache_index, chain);
1001 hammer2_spin_unex(&parent->core.spin);
1002 /* base_delete clears both bits */
1003 } else {
1004 atomic_clear_int(&chain->flags,
1005 HAMMER2_CHAIN_BMAPUPD);
1008 if (base && (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
1009 hammer2_spin_ex(&parent->core.spin);
1010 hammer2_base_insert(parent, base, count,
1011 &info->cache_index, chain);
1012 hammer2_spin_unex(&parent->core.spin);
1013 /* base_insert sets BMAPPED */
1015 hammer2_chain_unlock(parent);
1017 skipupdate:
1021 * Final cleanup after flush
1023 done:
1024 KKASSERT(chain->refs > 0);
1025 if (hammer2_debug & 0x200) {
1026 if (info->debug == chain)
1027 info->debug = NULL;
1032 * Flush recursion helper, called from flush_core, calls flush_core.
1034 * Flushes the children of the caller's chain (info->parent), restricted
1035 * by sync_tid. Set info->domodify if the child's blockref must propagate
1036 * back up to the parent.
1038 * Ripouts can move child from rbtree to dbtree or dbq but the caller's
1039 * flush scan order prevents any chains from being lost. A child can be
1040 * executes more than once.
1042 * WARNING! If we do not call hammer2_flush_core() we must update
1043 * bref.mirror_tid ourselves to indicate that the flush has
1044 * processed the child.
1046 * WARNING! parent->core spinlock is held on entry and return.
1048 static int
1049 hammer2_flush_recurse(hammer2_chain_t *child, void *data)
1051 hammer2_flush_info_t *info = data;
1052 hammer2_chain_t *parent = info->parent;
1055 * (child can never be fchain or vchain so a special check isn't
1056 * needed).
1058 * We must ref the child before unlocking the spinlock.
1060 * The caller has added a ref to the parent so we can temporarily
1061 * unlock it in order to lock the child.
1063 hammer2_chain_ref(child);
1064 hammer2_spin_unex(&parent->core.spin);
1066 hammer2_chain_unlock(parent);
1067 hammer2_chain_lock(child, HAMMER2_RESOLVE_MAYBE);
1070 * Must propagate the DESTROY flag downwards, otherwise the
1071 * parent could end up never being removed because it will
1072 * be requeued to the flusher if it survives this run due to
1073 * the flag.
1075 if (parent && (parent->flags & HAMMER2_CHAIN_DESTROY))
1076 atomic_set_int(&child->flags, HAMMER2_CHAIN_DESTROY);
1079 * Recurse and collect deferral data. We're in the media flush,
1080 * this can cross PFS boundaries.
1082 if (child->flags & HAMMER2_CHAIN_FLUSH_MASK) {
1083 ++info->depth;
1084 hammer2_flush_core(info, child, info->flags);
1085 --info->depth;
1086 } else if (hammer2_debug & 0x200) {
1087 if (info->debug == NULL)
1088 info->debug = child;
1089 ++info->depth;
1090 hammer2_flush_core(info, child, info->flags);
1091 --info->depth;
1092 if (info->debug == child)
1093 info->debug = NULL;
1097 * Relock to continue the loop
1099 hammer2_chain_unlock(child);
1100 hammer2_chain_lock(parent, HAMMER2_RESOLVE_MAYBE);
1101 hammer2_chain_drop(child);
1102 KKASSERT(info->parent == parent);
1103 hammer2_spin_ex(&parent->core.spin);
1105 return (0);
1109 * flush helper (direct)
1111 * Quickly flushes any dirty chains for a device. This will update our
1112 * concept of the volume root but does NOT flush the actual volume root
1113 * and does not flush dirty device buffers.
1115 * This function is primarily used by the bulkfree code to allow it to
1116 * create a snapshot for the pass. It doesn't care about any pending
1117 * work (dirty vnodes, dirty inodes, dirty logical buffers) for which blocks
1118 * have not yet been allocated.
1120 void
1121 hammer2_flush_quick(hammer2_dev_t *hmp)
1123 hammer2_chain_t *chain;
1125 hammer2_trans_init(hmp->spmp, HAMMER2_TRANS_ISFLUSH);
1127 hammer2_chain_ref(&hmp->vchain);
1128 hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1129 if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1130 chain = &hmp->vchain;
1131 hammer2_flush(chain, HAMMER2_FLUSH_TOP |
1132 HAMMER2_FLUSH_ALL);
1133 KKASSERT(chain == &hmp->vchain);
1135 hammer2_chain_unlock(&hmp->vchain);
1136 hammer2_chain_drop(&hmp->vchain);
1138 hammer2_trans_done(hmp->spmp); /* spmp trans */
1142 * flush helper (backend threaded)
1144 * Flushes core chains, issues disk sync, flushes volume roots.
1146 * Primarily called from vfs_sync().
1148 void
1149 hammer2_inode_xop_flush(hammer2_xop_t *arg, int clindex)
1151 hammer2_xop_flush_t *xop = &arg->xop_flush;
1152 hammer2_chain_t *chain;
1153 hammer2_chain_t *parent;
1154 hammer2_dev_t *hmp;
1155 int error = 0;
1156 int total_error = 0;
1157 int j;
1160 * Flush core chains
1162 chain = hammer2_inode_chain(xop->head.ip1, clindex,
1163 HAMMER2_RESOLVE_ALWAYS);
1164 if (chain) {
1165 hmp = chain->hmp;
1166 if ((chain->flags & HAMMER2_CHAIN_FLUSH_MASK) ||
1167 TAILQ_FIRST(&hmp->flushq) != NULL) {
1168 hammer2_flush(chain, HAMMER2_FLUSH_TOP);
1169 parent = chain->parent;
1170 KKASSERT(chain->pmp != parent->pmp);
1171 hammer2_chain_setflush(parent);
1173 hammer2_chain_unlock(chain);
1174 hammer2_chain_drop(chain);
1175 chain = NULL;
1176 } else {
1177 hmp = NULL;
1181 * Flush volume roots. Avoid replication, we only want to
1182 * flush each hammer2_dev (hmp) once.
1184 for (j = clindex - 1; j >= 0; --j) {
1185 if ((chain = xop->head.ip1->cluster.array[j].chain) != NULL) {
1186 if (chain->hmp == hmp) {
1187 chain = NULL; /* safety */
1188 goto skip;
1192 chain = NULL; /* safety */
1195 * spmp transaction. The super-root is never directly mounted so
1196 * there shouldn't be any vnodes, let alone any dirty vnodes
1197 * associated with it, so we shouldn't have to mess around with any
1198 * vnode flushes here.
1200 hammer2_trans_init(hmp->spmp, HAMMER2_TRANS_ISFLUSH);
1203 * Media mounts have two 'roots', vchain for the topology
1204 * and fchain for the free block table. Flush both.
1206 * Note that the topology and free block table are handled
1207 * independently, so the free block table can wind up being
1208 * ahead of the topology. We depend on the bulk free scan
1209 * code to deal with any loose ends.
1211 hammer2_chain_ref(&hmp->vchain);
1212 hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1213 hammer2_chain_ref(&hmp->fchain);
1214 hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS);
1215 if (hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1217 * This will also modify vchain as a side effect,
1218 * mark vchain as modified now.
1220 hammer2_voldata_modify(hmp);
1221 chain = &hmp->fchain;
1222 hammer2_flush(chain, HAMMER2_FLUSH_TOP);
1223 KKASSERT(chain == &hmp->fchain);
1225 hammer2_chain_unlock(&hmp->fchain);
1226 hammer2_chain_unlock(&hmp->vchain);
1227 hammer2_chain_drop(&hmp->fchain);
1228 /* vchain dropped down below */
1230 hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1231 if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1232 chain = &hmp->vchain;
1233 hammer2_flush(chain, HAMMER2_FLUSH_TOP);
1234 KKASSERT(chain == &hmp->vchain);
1236 hammer2_chain_unlock(&hmp->vchain);
1237 hammer2_chain_drop(&hmp->vchain);
1239 error = 0;
1242 * We can't safely flush the volume header until we have
1243 * flushed any device buffers which have built up.
1245 * XXX this isn't being incremental
1247 vn_lock(hmp->devvp, LK_EXCLUSIVE | LK_RETRY);
1248 error = VOP_FSYNC(hmp->devvp, MNT_WAIT, 0);
1249 vn_unlock(hmp->devvp);
1252 * The flush code sets CHAIN_VOLUMESYNC to indicate that the
1253 * volume header needs synchronization via hmp->volsync.
1255 * XXX synchronize the flag & data with only this flush XXX
1257 if (error == 0 &&
1258 (hmp->vchain.flags & HAMMER2_CHAIN_VOLUMESYNC)) {
1259 struct buf *bp;
1262 * Synchronize the disk before flushing the volume
1263 * header.
1265 bp = getpbuf(NULL);
1266 bp->b_bio1.bio_offset = 0;
1267 bp->b_bufsize = 0;
1268 bp->b_bcount = 0;
1269 bp->b_cmd = BUF_CMD_FLUSH;
1270 bp->b_bio1.bio_done = biodone_sync;
1271 bp->b_bio1.bio_flags |= BIO_SYNC;
1272 vn_strategy(hmp->devvp, &bp->b_bio1);
1273 biowait(&bp->b_bio1, "h2vol");
1274 relpbuf(bp, NULL);
1277 * Then we can safely flush the version of the
1278 * volume header synchronized by the flush code.
1280 j = hmp->volhdrno + 1;
1281 if (j >= HAMMER2_NUM_VOLHDRS)
1282 j = 0;
1283 if (j * HAMMER2_ZONE_BYTES64 + HAMMER2_SEGSIZE >
1284 hmp->volsync.volu_size) {
1285 j = 0;
1287 if (hammer2_debug & 0x8000) {
1288 /* debug only, avoid syslogd loop */
1289 kprintf("sync volhdr %d %jd\n",
1290 j, (intmax_t)hmp->volsync.volu_size);
1292 bp = getblk(hmp->devvp, j * HAMMER2_ZONE_BYTES64,
1293 HAMMER2_PBUFSIZE, 0, 0);
1294 atomic_clear_int(&hmp->vchain.flags,
1295 HAMMER2_CHAIN_VOLUMESYNC);
1296 bcopy(&hmp->volsync, bp->b_data, HAMMER2_PBUFSIZE);
1297 bawrite(bp);
1298 hmp->volhdrno = j;
1300 if (error)
1301 total_error = error;
1303 hammer2_trans_done(hmp->spmp); /* spmp trans */
1304 skip:
1305 error = hammer2_xop_feed(&xop->head, NULL, clindex, total_error);