i386 removal, part 54/x: Remove perfmon(4) remains.
[dragonfly.git] / sys / platform / pc64 / x86_64 / machdep.c
blob69b407b7ba50812f35d6212d90b27d1f5104e214
1 /*-
2 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 2003 Peter Wemm.
5 * Copyright (c) 2008 The DragonFly Project.
6 * All rights reserved.
8 * This code is derived from software contributed to Berkeley by
9 * William Jolitz.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the University of
22 * California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
39 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
40 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_compat.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_directio.h"
49 #include "opt_inet.h"
50 #include "opt_msgbuf.h"
51 #include "opt_swap.h"
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/sysproto.h>
56 #include <sys/signalvar.h>
57 #include <sys/kernel.h>
58 #include <sys/linker.h>
59 #include <sys/malloc.h>
60 #include <sys/proc.h>
61 #include <sys/priv.h>
62 #include <sys/buf.h>
63 #include <sys/reboot.h>
64 #include <sys/mbuf.h>
65 #include <sys/msgbuf.h>
66 #include <sys/sysent.h>
67 #include <sys/sysctl.h>
68 #include <sys/vmmeter.h>
69 #include <sys/bus.h>
70 #include <sys/usched.h>
71 #include <sys/reg.h>
72 #include <sys/sbuf.h>
73 #include <sys/ctype.h>
74 #include <sys/serialize.h>
75 #include <sys/systimer.h>
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_pager.h>
85 #include <vm/vm_extern.h>
87 #include <sys/thread2.h>
88 #include <sys/mplock2.h>
89 #include <sys/mutex2.h>
91 #include <sys/user.h>
92 #include <sys/exec.h>
93 #include <sys/cons.h>
95 #include <sys/efi.h>
97 #include <ddb/ddb.h>
99 #include <machine/cpu.h>
100 #include <machine/clock.h>
101 #include <machine/specialreg.h>
102 #if 0 /* JG */
103 #include <machine/bootinfo.h>
104 #endif
105 #include <machine/md_var.h>
106 #include <machine/metadata.h>
107 #include <machine/pc/bios.h>
108 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
109 #include <machine/globaldata.h> /* CPU_prvspace */
110 #include <machine/smp.h>
111 #include <machine/cputypes.h>
112 #include <machine/intr_machdep.h>
113 #include <machine/framebuffer.h>
115 #ifdef OLD_BUS_ARCH
116 #include <bus/isa/isa_device.h>
117 #endif
118 #include <machine_base/isa/isa_intr.h>
119 #include <bus/isa/rtc.h>
120 #include <sys/random.h>
121 #include <sys/ptrace.h>
122 #include <machine/sigframe.h>
124 #include <sys/machintr.h>
125 #include <machine_base/icu/icu_abi.h>
126 #include <machine_base/icu/elcr_var.h>
127 #include <machine_base/apic/lapic.h>
128 #include <machine_base/apic/ioapic.h>
129 #include <machine_base/apic/ioapic_abi.h>
130 #include <machine/mptable.h>
132 #define PHYSMAP_ENTRIES 10
134 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
136 extern void printcpuinfo(void); /* XXX header file */
137 extern void identify_cpu(void);
138 #if 0 /* JG */
139 extern void finishidentcpu(void);
140 #endif
141 extern void panicifcpuunsupported(void);
143 static void cpu_startup(void *);
144 static void pic_finish(void *);
145 static void cpu_finish(void *);
147 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
148 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
149 #ifdef DIRECTIO
150 extern void ffs_rawread_setup(void);
151 #endif /* DIRECTIO */
152 static void init_locks(void);
154 extern void pcpu_timer_always(struct intrframe *);
156 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
157 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
158 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
160 #ifdef DDB
161 extern vm_offset_t ksym_start, ksym_end;
162 #endif
164 struct privatespace CPU_prvspace_bsp __aligned(4096);
165 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
167 int _udatasel, _ucodesel, _ucode32sel;
168 u_long atdevbase;
169 int64_t tsc_offsets[MAXCPU];
170 cpumask_t smp_idleinvl_mask;
171 cpumask_t smp_idleinvl_reqs;
173 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
175 #if defined(SWTCH_OPTIM_STATS)
176 extern int swtch_optim_stats;
177 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
178 CTLFLAG_RD, &swtch_optim_stats, 0, "");
179 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
180 CTLFLAG_RD, &tlb_flush_count, 0, "");
181 #endif
182 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
183 CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
184 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
185 "monitor/mwait target state");
187 #define CPU_MWAIT_HAS_CX \
188 ((cpu_feature2 & CPUID2_MON) && \
189 (cpu_mwait_feature & CPUID_MWAIT_EXT))
191 #define CPU_MWAIT_CX_NAMELEN 16
193 #define CPU_MWAIT_C1 1
194 #define CPU_MWAIT_C2 2
195 #define CPU_MWAIT_C3 3
196 #define CPU_MWAIT_CX_MAX 8
198 #define CPU_MWAIT_HINT_AUTO -1 /* C1 and C2 */
199 #define CPU_MWAIT_HINT_AUTODEEP -2 /* C3+ */
201 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
202 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
204 struct cpu_mwait_cx {
205 int subcnt;
206 char name[4];
207 struct sysctl_ctx_list sysctl_ctx;
208 struct sysctl_oid *sysctl_tree;
210 static struct cpu_mwait_cx cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
211 static char cpu_mwait_cx_supported[256];
213 static int cpu_mwait_c1_hints_cnt;
214 static int cpu_mwait_hints_cnt;
215 static int *cpu_mwait_hints;
217 static int cpu_mwait_deep_hints_cnt;
218 static int *cpu_mwait_deep_hints;
220 #define CPU_IDLE_REPEAT_DEFAULT 750
222 static u_int cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
223 static u_long cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
224 static u_int cpu_mwait_repeat_shift = 1;
226 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB 0x1
227 #define CPU_MWAIT_C3_PREAMBLE_BM_STS 0x2
229 static int cpu_mwait_c3_preamble =
230 CPU_MWAIT_C3_PREAMBLE_BM_ARB |
231 CPU_MWAIT_C3_PREAMBLE_BM_STS;
233 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
234 cpu_mwait_cx_supported, 0, "MWAIT supported C states");
235 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
236 &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
238 static int cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
239 int *, boolean_t);
240 static int cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
241 static int cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
242 static int cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
244 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
245 NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
246 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
247 NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
248 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
249 &cpu_mwait_repeat_shift, 0, "");
251 long physmem = 0;
253 u_long ebda_addr = 0;
255 int imcr_present = 0;
257 int naps = 0; /* # of Applications processors */
259 u_int base_memory;
260 struct mtx dt_lock; /* lock for GDT and LDT */
262 static int
263 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
265 u_long pmem = ctob(physmem);
267 int error = sysctl_handle_long(oidp, &pmem, 0, req);
268 return (error);
271 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
272 0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
274 static int
275 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
277 int error = sysctl_handle_int(oidp, 0,
278 ctob(physmem - vmstats.v_wire_count), req);
279 return (error);
282 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
283 0, 0, sysctl_hw_usermem, "IU", "");
285 static int
286 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
288 int error = sysctl_handle_int(oidp, 0,
289 x86_64_btop(avail_end - avail_start), req);
290 return (error);
293 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
294 0, 0, sysctl_hw_availpages, "I", "");
296 vm_paddr_t Maxmem;
297 vm_paddr_t Realmem;
300 * The number of PHYSMAP entries must be one less than the number of
301 * PHYSSEG entries because the PHYSMAP entry that spans the largest
302 * physical address that is accessible by ISA DMA is split into two
303 * PHYSSEG entries.
305 #define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1))
307 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
308 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
310 /* must be 2 less so 0 0 can signal end of chunks */
311 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
312 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
314 static vm_offset_t buffer_sva, buffer_eva;
315 vm_offset_t clean_sva, clean_eva;
316 static vm_offset_t pager_sva, pager_eva;
317 static struct trapframe proc0_tf;
319 static void
320 cpu_startup(void *dummy)
322 caddr_t v;
323 vm_size_t size = 0;
324 vm_offset_t firstaddr;
327 * Good {morning,afternoon,evening,night}.
329 kprintf("%s", version);
330 startrtclock();
331 printcpuinfo();
332 panicifcpuunsupported();
333 kprintf("real memory = %ju (%ju MB)\n",
334 (intmax_t)Realmem,
335 (intmax_t)Realmem / 1024 / 1024);
337 * Display any holes after the first chunk of extended memory.
339 if (bootverbose) {
340 int indx;
342 kprintf("Physical memory chunk(s):\n");
343 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
344 vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
346 kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
347 (intmax_t)phys_avail[indx],
348 (intmax_t)phys_avail[indx + 1] - 1,
349 (intmax_t)size1,
350 (intmax_t)(size1 / PAGE_SIZE));
355 * Allocate space for system data structures.
356 * The first available kernel virtual address is in "v".
357 * As pages of kernel virtual memory are allocated, "v" is incremented.
358 * As pages of memory are allocated and cleared,
359 * "firstaddr" is incremented.
360 * An index into the kernel page table corresponding to the
361 * virtual memory address maintained in "v" is kept in "mapaddr".
365 * Make two passes. The first pass calculates how much memory is
366 * needed and allocates it. The second pass assigns virtual
367 * addresses to the various data structures.
369 firstaddr = 0;
370 again:
371 v = (caddr_t)firstaddr;
373 #define valloc(name, type, num) \
374 (name) = (type *)v; v = (caddr_t)((name)+(num))
375 #define valloclim(name, type, num, lim) \
376 (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
379 * The nominal buffer size (and minimum KVA allocation) is MAXBSIZE.
380 * For the first 64MB of ram nominally allocate sufficient buffers to
381 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
382 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing
383 * the buffer cache we limit the eventual kva reservation to
384 * maxbcache bytes.
386 * factor represents the 1/4 x ram conversion.
388 if (nbuf == 0) {
389 long factor = 4 * NBUFCALCSIZE / 1024;
390 long kbytes = physmem * (PAGE_SIZE / 1024);
392 nbuf = 50;
393 if (kbytes > 4096)
394 nbuf += min((kbytes - 4096) / factor, 65536 / factor);
395 if (kbytes > 65536)
396 nbuf += (kbytes - 65536) * 2 / (factor * 5);
397 if (maxbcache && nbuf > maxbcache / NBUFCALCSIZE)
398 nbuf = maxbcache / NBUFCALCSIZE;
402 * Do not allow the buffer_map to be more then 1/2 the size of the
403 * kernel_map.
405 if (nbuf > (virtual_end - virtual_start +
406 virtual2_end - virtual2_start) / (MAXBSIZE * 2)) {
407 nbuf = (virtual_end - virtual_start +
408 virtual2_end - virtual2_start) / (MAXBSIZE * 2);
409 kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
413 * Do not allow the buffer_map to use more than 50% of available
414 * physical-equivalent memory. Since the VM pages which back
415 * individual buffers are typically wired, having too many bufs
416 * can prevent the system from paging properly.
418 if (nbuf > physmem * PAGE_SIZE / (NBUFCALCSIZE * 2)) {
419 nbuf = physmem * PAGE_SIZE / (NBUFCALCSIZE * 2);
420 kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
424 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
425 * the valloc space which is just the virtual_end - virtual_start
426 * section. We use valloc() to allocate the buf header array.
428 if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
429 nbuf = (virtual_end - virtual_start) /
430 sizeof(struct buf) / 2;
431 kprintf("Warning: nbufs capped at %ld due to valloc "
432 "considerations\n", nbuf);
435 nswbuf_mem = lmax(lmin(nbuf / 32, 512), 8);
436 #ifdef NSWBUF_MIN
437 if (nswbuf_mem < NSWBUF_MIN)
438 nswbuf_mem = NSWBUF_MIN;
439 #endif
440 nswbuf_kva = lmax(lmin(nbuf / 4, 512), 16);
441 #ifdef NSWBUF_MIN
442 if (nswbuf_kva < NSWBUF_MIN)
443 nswbuf_kva = NSWBUF_MIN;
444 #endif
445 #ifdef DIRECTIO
446 ffs_rawread_setup();
447 #endif
449 valloc(swbuf_mem, struct buf, nswbuf_mem);
450 valloc(swbuf_kva, struct buf, nswbuf_kva);
451 valloc(buf, struct buf, nbuf);
454 * End of first pass, size has been calculated so allocate memory
456 if (firstaddr == 0) {
457 size = (vm_size_t)(v - firstaddr);
458 firstaddr = kmem_alloc(&kernel_map, round_page(size));
459 if (firstaddr == 0)
460 panic("startup: no room for tables");
461 goto again;
465 * End of second pass, addresses have been assigned
467 * nbuf is an int, make sure we don't overflow the field.
469 * On 64-bit systems we always reserve maximal allocations for
470 * buffer cache buffers and there are no fragmentation issues,
471 * so the KVA segment does not have to be excessively oversized.
473 if ((vm_size_t)(v - firstaddr) != size)
474 panic("startup: table size inconsistency");
476 kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
477 ((vm_offset_t)(nbuf + 16) * MAXBSIZE) +
478 ((nswbuf_mem + nswbuf_kva) * MAXPHYS) + pager_map_size);
479 kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
480 ((vm_offset_t)(nbuf + 16) * MAXBSIZE));
481 buffer_map.system_map = 1;
482 kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
483 ((vm_offset_t)(nswbuf_mem + nswbuf_kva) * MAXPHYS) +
484 pager_map_size);
485 pager_map.system_map = 1;
486 kprintf("avail memory = %ju (%ju MB)\n",
487 (uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
488 (uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
489 1024 / 1024);
492 struct cpu_idle_stat {
493 int hint;
494 int reserved;
495 u_long halt;
496 u_long spin;
497 u_long repeat;
498 u_long repeat_last;
499 u_long repeat_delta;
500 u_long mwait_cx[CPU_MWAIT_CX_MAX];
501 } __cachealign;
503 #define CPU_IDLE_STAT_HALT -1
504 #define CPU_IDLE_STAT_SPIN -2
506 static struct cpu_idle_stat cpu_idle_stats[MAXCPU];
508 static int
509 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
511 int idx = arg2, cpu, error;
512 u_long val = 0;
514 if (idx == CPU_IDLE_STAT_HALT) {
515 for (cpu = 0; cpu < ncpus; ++cpu)
516 val += cpu_idle_stats[cpu].halt;
517 } else if (idx == CPU_IDLE_STAT_SPIN) {
518 for (cpu = 0; cpu < ncpus; ++cpu)
519 val += cpu_idle_stats[cpu].spin;
520 } else {
521 KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
522 ("invalid index %d", idx));
523 for (cpu = 0; cpu < ncpus; ++cpu)
524 val += cpu_idle_stats[cpu].mwait_cx[idx];
527 error = sysctl_handle_quad(oidp, &val, 0, req);
528 if (error || req->newptr == NULL)
529 return error;
531 if (idx == CPU_IDLE_STAT_HALT) {
532 for (cpu = 0; cpu < ncpus; ++cpu)
533 cpu_idle_stats[cpu].halt = 0;
534 cpu_idle_stats[0].halt = val;
535 } else if (idx == CPU_IDLE_STAT_SPIN) {
536 for (cpu = 0; cpu < ncpus; ++cpu)
537 cpu_idle_stats[cpu].spin = 0;
538 cpu_idle_stats[0].spin = val;
539 } else {
540 KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
541 ("invalid index %d", idx));
542 for (cpu = 0; cpu < ncpus; ++cpu)
543 cpu_idle_stats[cpu].mwait_cx[idx] = 0;
544 cpu_idle_stats[0].mwait_cx[idx] = val;
546 return 0;
549 static void
550 cpu_mwait_attach(void)
552 struct sbuf sb;
553 int hint_idx, i;
555 if (!CPU_MWAIT_HAS_CX)
556 return;
558 if (cpu_vendor_id == CPU_VENDOR_INTEL &&
559 (CPUID_TO_FAMILY(cpu_id) > 0xf ||
560 (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
561 CPUID_TO_MODEL(cpu_id) >= 0xf))) {
562 int bm_sts = 1;
565 * Pentium dual-core, Core 2 and beyond do not need any
566 * additional activities to enter deep C-state, i.e. C3(+).
568 cpu_mwait_cx_no_bmarb();
570 TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
571 if (!bm_sts)
572 cpu_mwait_cx_no_bmsts();
575 sbuf_new(&sb, cpu_mwait_cx_supported,
576 sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
578 for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
579 struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
580 int sub;
582 ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
584 sysctl_ctx_init(&cx->sysctl_ctx);
585 cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
586 SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
587 cx->name, CTLFLAG_RW, NULL, "Cx control/info");
588 if (cx->sysctl_tree == NULL)
589 continue;
591 cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
592 SYSCTL_ADD_INT(&cx->sysctl_ctx,
593 SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
594 "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
595 "sub-state count");
596 SYSCTL_ADD_PROC(&cx->sysctl_ctx,
597 SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
598 "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
599 i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
601 for (sub = 0; sub < cx->subcnt; ++sub)
602 sbuf_printf(&sb, "C%d/%d ", i, sub);
604 sbuf_trim(&sb);
605 sbuf_finish(&sb);
608 * Non-deep C-states
610 cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
611 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
612 cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
613 cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
614 M_DEVBUF, M_WAITOK);
616 hint_idx = 0;
617 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
618 int j, subcnt;
620 subcnt = cpu_mwait_cx_info[i].subcnt;
621 for (j = 0; j < subcnt; ++j) {
622 KASSERT(hint_idx < cpu_mwait_hints_cnt,
623 ("invalid mwait hint index %d", hint_idx));
624 cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
625 ++hint_idx;
628 KASSERT(hint_idx == cpu_mwait_hints_cnt,
629 ("mwait hint count %d != index %d",
630 cpu_mwait_hints_cnt, hint_idx));
632 if (bootverbose) {
633 kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
634 for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
635 int hint = cpu_mwait_hints[i];
637 kprintf(" C%d/%d hint 0x%04x\n",
638 MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
639 hint);
644 * Deep C-states
646 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
647 cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
648 cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
649 M_DEVBUF, M_WAITOK);
651 hint_idx = 0;
652 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
653 int j, subcnt;
655 subcnt = cpu_mwait_cx_info[i].subcnt;
656 for (j = 0; j < subcnt; ++j) {
657 KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
658 ("invalid mwait deep hint index %d", hint_idx));
659 cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
660 ++hint_idx;
663 KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
664 ("mwait deep hint count %d != index %d",
665 cpu_mwait_deep_hints_cnt, hint_idx));
667 if (bootverbose) {
668 kprintf("MWAIT deep hints:\n");
669 for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
670 int hint = cpu_mwait_deep_hints[i];
672 kprintf(" C%d/%d hint 0x%04x\n",
673 MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
674 hint);
677 cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
679 for (i = 0; i < ncpus; ++i) {
680 char name[16];
682 ksnprintf(name, sizeof(name), "idle%d", i);
683 SYSCTL_ADD_PROC(NULL,
684 SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
685 name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
686 0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
690 static void
691 cpu_finish(void *dummy __unused)
693 cpu_setregs();
694 cpu_mwait_attach();
697 static void
698 pic_finish(void *dummy __unused)
700 /* Log ELCR information */
701 elcr_dump();
703 /* Log MPTABLE information */
704 mptable_pci_int_dump();
706 /* Finalize PCI */
707 MachIntrABI.finalize();
711 * Send an interrupt to process.
713 * Stack is set up to allow sigcode stored
714 * at top to call routine, followed by kcall
715 * to sigreturn routine below. After sigreturn
716 * resets the signal mask, the stack, and the
717 * frame pointer, it returns to the user
718 * specified pc, psl.
720 void
721 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
723 struct lwp *lp = curthread->td_lwp;
724 struct proc *p = lp->lwp_proc;
725 struct trapframe *regs;
726 struct sigacts *psp = p->p_sigacts;
727 struct sigframe sf, *sfp;
728 int oonstack;
729 char *sp;
731 regs = lp->lwp_md.md_regs;
732 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
734 /* Save user context */
735 bzero(&sf, sizeof(struct sigframe));
736 sf.sf_uc.uc_sigmask = *mask;
737 sf.sf_uc.uc_stack = lp->lwp_sigstk;
738 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
739 KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
740 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
742 /* Make the size of the saved context visible to userland */
743 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
745 /* Allocate and validate space for the signal handler context. */
746 if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
747 SIGISMEMBER(psp->ps_sigonstack, sig)) {
748 sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
749 sizeof(struct sigframe));
750 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
751 } else {
752 /* We take red zone into account */
753 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
757 * XXX AVX needs 64-byte alignment but sigframe has other fields and
758 * the embedded ucontext is not at the front, so aligning this won't
759 * help us. Fortunately we bcopy in/out of the sigframe, so the
760 * kernel is ok.
762 * The problem though is if userland winds up trying to use the
763 * context directly.
765 sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
767 /* Translate the signal is appropriate */
768 if (p->p_sysent->sv_sigtbl) {
769 if (sig <= p->p_sysent->sv_sigsize)
770 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
774 * Build the argument list for the signal handler.
776 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
778 regs->tf_rdi = sig; /* argument 1 */
779 regs->tf_rdx = (register_t)&sfp->sf_uc; /* argument 3 */
781 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
783 * Signal handler installed with SA_SIGINFO.
785 * action(signo, siginfo, ucontext)
787 regs->tf_rsi = (register_t)&sfp->sf_si; /* argument 2 */
788 regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
789 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
791 /* fill siginfo structure */
792 sf.sf_si.si_signo = sig;
793 sf.sf_si.si_code = code;
794 sf.sf_si.si_addr = (void *)regs->tf_addr;
795 } else {
797 * Old FreeBSD-style arguments.
799 * handler (signo, code, [uc], addr)
801 regs->tf_rsi = (register_t)code; /* argument 2 */
802 regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
803 sf.sf_ahu.sf_handler = catcher;
807 * If we're a vm86 process, we want to save the segment registers.
808 * We also change eflags to be our emulated eflags, not the actual
809 * eflags.
811 #if 0 /* JG */
812 if (regs->tf_eflags & PSL_VM) {
813 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
814 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
816 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
817 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
818 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
819 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
821 if (vm86->vm86_has_vme == 0)
822 sf.sf_uc.uc_mcontext.mc_eflags =
823 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
824 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
827 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
828 * syscalls made by the signal handler. This just avoids
829 * wasting time for our lazy fixup of such faults. PSL_NT
830 * does nothing in vm86 mode, but vm86 programs can set it
831 * almost legitimately in probes for old cpu types.
833 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
835 #endif
838 * Save the FPU state and reinit the FP unit
840 npxpush(&sf.sf_uc.uc_mcontext);
843 * Copy the sigframe out to the user's stack.
845 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
847 * Something is wrong with the stack pointer.
848 * ...Kill the process.
850 sigexit(lp, SIGILL);
853 regs->tf_rsp = (register_t)sfp;
854 regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
857 * i386 abi specifies that the direction flag must be cleared
858 * on function entry
860 regs->tf_rflags &= ~(PSL_T|PSL_D);
863 * 64 bit mode has a code and stack selector but
864 * no data or extra selector. %fs and %gs are not
865 * stored in-context.
867 regs->tf_cs = _ucodesel;
868 regs->tf_ss = _udatasel;
869 clear_quickret();
873 * Sanitize the trapframe for a virtual kernel passing control to a custom
874 * VM context. Remove any items that would otherwise create a privilage
875 * issue.
877 * XXX at the moment we allow userland to set the resume flag. Is this a
878 * bad idea?
881 cpu_sanitize_frame(struct trapframe *frame)
883 frame->tf_cs = _ucodesel;
884 frame->tf_ss = _udatasel;
885 /* XXX VM (8086) mode not supported? */
886 frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
887 frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
889 return(0);
893 * Sanitize the tls so loading the descriptor does not blow up
894 * on us. For x86_64 we don't have to do anything.
897 cpu_sanitize_tls(struct savetls *tls)
899 return(0);
903 * sigreturn(ucontext_t *sigcntxp)
905 * System call to cleanup state after a signal
906 * has been taken. Reset signal mask and
907 * stack state from context left by sendsig (above).
908 * Return to previous pc and psl as specified by
909 * context left by sendsig. Check carefully to
910 * make sure that the user has not modified the
911 * state to gain improper privileges.
913 * MPSAFE
915 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
916 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
919 sys_sigreturn(struct sigreturn_args *uap)
921 struct lwp *lp = curthread->td_lwp;
922 struct trapframe *regs;
923 ucontext_t uc;
924 ucontext_t *ucp;
925 register_t rflags;
926 int cs;
927 int error;
930 * We have to copy the information into kernel space so userland
931 * can't modify it while we are sniffing it.
933 regs = lp->lwp_md.md_regs;
934 error = copyin(uap->sigcntxp, &uc, sizeof(uc));
935 if (error)
936 return (error);
937 ucp = &uc;
938 rflags = ucp->uc_mcontext.mc_rflags;
940 /* VM (8086) mode not supported */
941 rflags &= ~PSL_VM_UNSUPP;
943 #if 0 /* JG */
944 if (eflags & PSL_VM) {
945 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
946 struct vm86_kernel *vm86;
949 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
950 * set up the vm86 area, and we can't enter vm86 mode.
952 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
953 return (EINVAL);
954 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
955 if (vm86->vm86_inited == 0)
956 return (EINVAL);
958 /* go back to user mode if both flags are set */
959 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
960 trapsignal(lp, SIGBUS, 0);
962 if (vm86->vm86_has_vme) {
963 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
964 (eflags & VME_USERCHANGE) | PSL_VM;
965 } else {
966 vm86->vm86_eflags = eflags; /* save VIF, VIP */
967 eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
968 (eflags & VM_USERCHANGE) | PSL_VM;
970 bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
971 tf->tf_eflags = eflags;
972 tf->tf_vm86_ds = tf->tf_ds;
973 tf->tf_vm86_es = tf->tf_es;
974 tf->tf_vm86_fs = tf->tf_fs;
975 tf->tf_vm86_gs = tf->tf_gs;
976 tf->tf_ds = _udatasel;
977 tf->tf_es = _udatasel;
978 tf->tf_fs = _udatasel;
979 tf->tf_gs = _udatasel;
980 } else
981 #endif
984 * Don't allow users to change privileged or reserved flags.
987 * XXX do allow users to change the privileged flag PSL_RF.
988 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
989 * should sometimes set it there too. tf_eflags is kept in
990 * the signal context during signal handling and there is no
991 * other place to remember it, so the PSL_RF bit may be
992 * corrupted by the signal handler without us knowing.
993 * Corruption of the PSL_RF bit at worst causes one more or
994 * one less debugger trap, so allowing it is fairly harmless.
996 if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
997 kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
998 return(EINVAL);
1002 * Don't allow users to load a valid privileged %cs. Let the
1003 * hardware check for invalid selectors, excess privilege in
1004 * other selectors, invalid %eip's and invalid %esp's.
1006 cs = ucp->uc_mcontext.mc_cs;
1007 if (!CS_SECURE(cs)) {
1008 kprintf("sigreturn: cs = 0x%x\n", cs);
1009 trapsignal(lp, SIGBUS, T_PROTFLT);
1010 return(EINVAL);
1012 bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1016 * Restore the FPU state from the frame
1018 crit_enter();
1019 npxpop(&ucp->uc_mcontext);
1021 if (ucp->uc_mcontext.mc_onstack & 1)
1022 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1023 else
1024 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1026 lp->lwp_sigmask = ucp->uc_sigmask;
1027 SIG_CANTMASK(lp->lwp_sigmask);
1028 clear_quickret();
1029 crit_exit();
1030 return(EJUSTRETURN);
1034 * Machine dependent boot() routine
1036 * I haven't seen anything to put here yet
1037 * Possibly some stuff might be grafted back here from boot()
1039 void
1040 cpu_boot(int howto)
1045 * Shutdown the CPU as much as possible
1047 void
1048 cpu_halt(void)
1050 for (;;)
1051 __asm__ __volatile("hlt");
1055 * cpu_idle() represents the idle LWKT. You cannot return from this function
1056 * (unless you want to blow things up!). Instead we look for runnable threads
1057 * and loop or halt as appropriate. Giant is not held on entry to the thread.
1059 * The main loop is entered with a critical section held, we must release
1060 * the critical section before doing anything else. lwkt_switch() will
1061 * check for pending interrupts due to entering and exiting its own
1062 * critical section.
1064 * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1065 * However, there are cases where the idlethread will be entered with
1066 * the possibility that no IPI will occur and in such cases
1067 * lwkt_switch() sets TDF_IDLE_NOHLT.
1069 * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1070 * must occur before it starts using ACPI halt.
1072 * NOTE: Value overridden in hammer_time().
1074 static int cpu_idle_hlt = 2;
1075 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1076 &cpu_idle_hlt, 0, "Idle loop HLT enable");
1077 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1078 &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1080 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1081 0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1082 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1083 0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1085 static void
1086 cpu_idle_default_hook(void)
1089 * We must guarentee that hlt is exactly the instruction
1090 * following the sti.
1092 __asm __volatile("sti; hlt");
1095 /* Other subsystems (e.g., ACPI) can hook this later. */
1096 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1098 static __inline int
1099 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1101 int hint, cx_idx;
1102 u_int idx;
1104 hint = stat->hint;
1105 if (hint >= 0)
1106 goto done;
1108 idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1109 cpu_mwait_repeat_shift;
1110 if (idx >= cpu_mwait_c1_hints_cnt) {
1111 /* Step up faster, once we walked through all C1 states */
1112 stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1114 if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1115 if (idx >= cpu_mwait_deep_hints_cnt)
1116 idx = cpu_mwait_deep_hints_cnt - 1;
1117 hint = cpu_mwait_deep_hints[idx];
1118 } else {
1119 if (idx >= cpu_mwait_hints_cnt)
1120 idx = cpu_mwait_hints_cnt - 1;
1121 hint = cpu_mwait_hints[idx];
1123 done:
1124 cx_idx = MWAIT_EAX_TO_CX(hint);
1125 if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1126 stat->mwait_cx[cx_idx]++;
1127 return hint;
1130 void
1131 cpu_idle(void)
1133 globaldata_t gd = mycpu;
1134 struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1135 struct thread *td __debugvar = gd->gd_curthread;
1136 int reqflags;
1137 int quick;
1139 stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1141 crit_exit();
1142 KKASSERT(td->td_critcount == 0);
1144 for (;;) {
1146 * See if there are any LWKTs ready to go.
1148 lwkt_switch();
1151 * When halting inside a cli we must check for reqflags
1152 * races, particularly [re]schedule requests. Running
1153 * splz() does the job.
1155 * cpu_idle_hlt:
1156 * 0 Never halt, just spin
1158 * 1 Always use HLT (or MONITOR/MWAIT if avail).
1160 * Better default for modern (Haswell+) Intel
1161 * cpus.
1163 * 2 Use HLT/MONITOR/MWAIT up to a point and then
1164 * use the ACPI halt (default). This is a hybrid
1165 * approach. See machdep.cpu_idle_repeat.
1167 * Better default for modern AMD cpus and older
1168 * Intel cpus.
1170 * 3 Always use the ACPI halt. This typically
1171 * eats the least amount of power but the cpu
1172 * will be slow waking up. Slows down e.g.
1173 * compiles and other pipe/event oriented stuff.
1175 * 4 Always use HLT.
1177 * NOTE: Interrupts are enabled and we are not in a critical
1178 * section.
1180 * NOTE: Preemptions do not reset gd_idle_repeat. Also we
1181 * don't bother capping gd_idle_repeat, it is ok if
1182 * it overflows.
1184 * Implement optimized invltlb operations when halted
1185 * in idle. By setting the bit in smp_idleinvl_mask
1186 * we inform other cpus that they can set _reqs to
1187 * request an invltlb. Current the code to do that
1188 * sets the bits in _reqs anyway, but then check _mask
1189 * to determine if they can assume the invltlb will execute.
1191 * A critical section is required to ensure that interrupts
1192 * do not fully run until after we've had a chance to execute
1193 * the request.
1195 if (gd->gd_idle_repeat == 0) {
1196 stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1197 if (stat->repeat > cpu_idle_repeat_max)
1198 stat->repeat = cpu_idle_repeat_max;
1199 stat->repeat_last = 0;
1200 stat->repeat_delta = 0;
1202 ++stat->repeat_last;
1204 ++gd->gd_idle_repeat;
1205 reqflags = gd->gd_reqflags;
1206 quick = (cpu_idle_hlt == 1) ||
1207 (cpu_idle_hlt < 3 &&
1208 gd->gd_idle_repeat < cpu_idle_repeat);
1210 if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1211 (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1212 splz(); /* XXX */
1213 crit_enter_gd(gd);
1214 ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1215 cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1216 cpu_mwait_cx_hint(stat), 0);
1217 stat->halt++;
1218 ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1219 if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1220 gd->gd_cpuid)) {
1221 cpu_invltlb();
1222 cpu_mfence();
1224 crit_exit_gd(gd);
1225 } else if (cpu_idle_hlt) {
1226 __asm __volatile("cli");
1227 splz();
1228 crit_enter_gd(gd);
1229 ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1230 if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1231 if (quick)
1232 cpu_idle_default_hook();
1233 else
1234 cpu_idle_hook();
1236 __asm __volatile("sti");
1237 stat->halt++;
1238 ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1239 if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1240 gd->gd_cpuid)) {
1241 cpu_invltlb();
1242 cpu_mfence();
1244 crit_exit_gd(gd);
1245 } else {
1246 splz();
1247 __asm __volatile("sti");
1248 stat->spin++;
1254 * This routine is called if a spinlock has been held through the
1255 * exponential backoff period and is seriously contested. On a real cpu
1256 * we let it spin.
1258 void
1259 cpu_spinlock_contested(void)
1261 cpu_pause();
1265 * Clear registers on exec
1267 void
1268 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1270 struct thread *td = curthread;
1271 struct lwp *lp = td->td_lwp;
1272 struct pcb *pcb = td->td_pcb;
1273 struct trapframe *regs = lp->lwp_md.md_regs;
1275 /* was i386_user_cleanup() in NetBSD */
1276 user_ldt_free(pcb);
1278 clear_quickret();
1279 bzero((char *)regs, sizeof(struct trapframe));
1280 regs->tf_rip = entry;
1281 regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1282 regs->tf_rdi = stack; /* argv */
1283 regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1284 regs->tf_ss = _udatasel;
1285 regs->tf_cs = _ucodesel;
1286 regs->tf_rbx = ps_strings;
1289 * Reset the hardware debug registers if they were in use.
1290 * They won't have any meaning for the newly exec'd process.
1292 if (pcb->pcb_flags & PCB_DBREGS) {
1293 pcb->pcb_dr0 = 0;
1294 pcb->pcb_dr1 = 0;
1295 pcb->pcb_dr2 = 0;
1296 pcb->pcb_dr3 = 0;
1297 pcb->pcb_dr6 = 0;
1298 pcb->pcb_dr7 = 0; /* JG set bit 10? */
1299 if (pcb == td->td_pcb) {
1301 * Clear the debug registers on the running
1302 * CPU, otherwise they will end up affecting
1303 * the next process we switch to.
1305 reset_dbregs();
1307 pcb->pcb_flags &= ~PCB_DBREGS;
1311 * Initialize the math emulator (if any) for the current process.
1312 * Actually, just clear the bit that says that the emulator has
1313 * been initialized. Initialization is delayed until the process
1314 * traps to the emulator (if it is done at all) mainly because
1315 * emulators don't provide an entry point for initialization.
1317 pcb->pcb_flags &= ~FP_SOFTFP;
1320 * NOTE: do not set CR0_TS here. npxinit() must do it after clearing
1321 * gd_npxthread. Otherwise a preemptive interrupt thread
1322 * may panic in npxdna().
1324 crit_enter();
1325 load_cr0(rcr0() | CR0_MP);
1328 * NOTE: The MSR values must be correct so we can return to
1329 * userland. gd_user_fs/gs must be correct so the switch
1330 * code knows what the current MSR values are.
1332 pcb->pcb_fsbase = 0; /* Values loaded from PCB on switch */
1333 pcb->pcb_gsbase = 0;
1334 mdcpu->gd_user_fs = 0; /* Cache of current MSR values */
1335 mdcpu->gd_user_gs = 0;
1336 wrmsr(MSR_FSBASE, 0); /* Set MSR values for return to userland */
1337 wrmsr(MSR_KGSBASE, 0);
1339 /* Initialize the npx (if any) for the current process. */
1340 npxinit();
1341 crit_exit();
1343 pcb->pcb_ds = _udatasel;
1344 pcb->pcb_es = _udatasel;
1345 pcb->pcb_fs = _udatasel;
1346 pcb->pcb_gs = _udatasel;
1349 void
1350 cpu_setregs(void)
1352 register_t cr0;
1354 cr0 = rcr0();
1355 cr0 |= CR0_NE; /* Done by npxinit() */
1356 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
1357 cr0 |= CR0_WP | CR0_AM;
1358 load_cr0(cr0);
1359 load_gs(_udatasel);
1362 static int
1363 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1365 int error;
1366 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1367 req);
1368 if (!error && req->newptr)
1369 resettodr();
1370 return (error);
1373 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1374 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1376 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1377 CTLFLAG_RW, &disable_rtc_set, 0, "");
1379 #if 0 /* JG */
1380 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1381 CTLFLAG_RD, &bootinfo, bootinfo, "");
1382 #endif
1384 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1385 CTLFLAG_RW, &wall_cmos_clock, 0, "");
1387 extern u_long bootdev; /* not a cdev_t - encoding is different */
1388 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1389 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1392 * Initialize 386 and configure to run kernel
1396 * Initialize segments & interrupt table
1399 int _default_ldt;
1400 struct user_segment_descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */
1401 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1402 #if 0 /* JG */
1403 union descriptor ldt[NLDT]; /* local descriptor table */
1404 #endif
1406 /* table descriptors - used to load tables by cpu */
1407 struct region_descriptor r_gdt;
1408 struct region_descriptor r_idt_arr[MAXCPU];
1410 /* JG proc0paddr is a virtual address */
1411 void *proc0paddr;
1412 /* JG alignment? */
1413 char proc0paddr_buff[LWKT_THREAD_STACK];
1416 /* software prototypes -- in more palatable form */
1417 struct soft_segment_descriptor gdt_segs[] = {
1418 /* GNULL_SEL 0 Null Descriptor */
1419 { 0x0, /* segment base address */
1420 0x0, /* length */
1421 0, /* segment type */
1422 0, /* segment descriptor priority level */
1423 0, /* segment descriptor present */
1424 0, /* long */
1425 0, /* default 32 vs 16 bit size */
1426 0 /* limit granularity (byte/page units)*/ },
1427 /* GCODE_SEL 1 Code Descriptor for kernel */
1428 { 0x0, /* segment base address */
1429 0xfffff, /* length - all address space */
1430 SDT_MEMERA, /* segment type */
1431 SEL_KPL, /* segment descriptor priority level */
1432 1, /* segment descriptor present */
1433 1, /* long */
1434 0, /* default 32 vs 16 bit size */
1435 1 /* limit granularity (byte/page units)*/ },
1436 /* GDATA_SEL 2 Data Descriptor for kernel */
1437 { 0x0, /* segment base address */
1438 0xfffff, /* length - all address space */
1439 SDT_MEMRWA, /* segment type */
1440 SEL_KPL, /* segment descriptor priority level */
1441 1, /* segment descriptor present */
1442 1, /* long */
1443 0, /* default 32 vs 16 bit size */
1444 1 /* limit granularity (byte/page units)*/ },
1445 /* GUCODE32_SEL 3 32 bit Code Descriptor for user */
1446 { 0x0, /* segment base address */
1447 0xfffff, /* length - all address space */
1448 SDT_MEMERA, /* segment type */
1449 SEL_UPL, /* segment descriptor priority level */
1450 1, /* segment descriptor present */
1451 0, /* long */
1452 1, /* default 32 vs 16 bit size */
1453 1 /* limit granularity (byte/page units)*/ },
1454 /* GUDATA_SEL 4 32/64 bit Data Descriptor for user */
1455 { 0x0, /* segment base address */
1456 0xfffff, /* length - all address space */
1457 SDT_MEMRWA, /* segment type */
1458 SEL_UPL, /* segment descriptor priority level */
1459 1, /* segment descriptor present */
1460 0, /* long */
1461 1, /* default 32 vs 16 bit size */
1462 1 /* limit granularity (byte/page units)*/ },
1463 /* GUCODE_SEL 5 64 bit Code Descriptor for user */
1464 { 0x0, /* segment base address */
1465 0xfffff, /* length - all address space */
1466 SDT_MEMERA, /* segment type */
1467 SEL_UPL, /* segment descriptor priority level */
1468 1, /* segment descriptor present */
1469 1, /* long */
1470 0, /* default 32 vs 16 bit size */
1471 1 /* limit granularity (byte/page units)*/ },
1472 /* GPROC0_SEL 6 Proc 0 Tss Descriptor */
1474 0x0, /* segment base address */
1475 sizeof(struct x86_64tss)-1,/* length - all address space */
1476 SDT_SYSTSS, /* segment type */
1477 SEL_KPL, /* segment descriptor priority level */
1478 1, /* segment descriptor present */
1479 0, /* long */
1480 0, /* unused - default 32 vs 16 bit size */
1481 0 /* limit granularity (byte/page units)*/ },
1482 /* Actually, the TSS is a system descriptor which is double size */
1483 { 0x0, /* segment base address */
1484 0x0, /* length */
1485 0, /* segment type */
1486 0, /* segment descriptor priority level */
1487 0, /* segment descriptor present */
1488 0, /* long */
1489 0, /* default 32 vs 16 bit size */
1490 0 /* limit granularity (byte/page units)*/ },
1491 /* GUGS32_SEL 8 32 bit GS Descriptor for user */
1492 { 0x0, /* segment base address */
1493 0xfffff, /* length - all address space */
1494 SDT_MEMRWA, /* segment type */
1495 SEL_UPL, /* segment descriptor priority level */
1496 1, /* segment descriptor present */
1497 0, /* long */
1498 1, /* default 32 vs 16 bit size */
1499 1 /* limit granularity (byte/page units)*/ },
1502 void
1503 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1505 int cpu;
1507 for (cpu = 0; cpu < MAXCPU; ++cpu) {
1508 struct gate_descriptor *ip = &idt_arr[cpu][idx];
1510 ip->gd_looffset = (uintptr_t)func;
1511 ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1512 ip->gd_ist = ist;
1513 ip->gd_xx = 0;
1514 ip->gd_type = typ;
1515 ip->gd_dpl = dpl;
1516 ip->gd_p = 1;
1517 ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1521 void
1522 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1524 struct gate_descriptor *ip;
1526 KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1528 ip = &idt_arr[cpu][idx];
1529 ip->gd_looffset = (uintptr_t)func;
1530 ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1531 ip->gd_ist = ist;
1532 ip->gd_xx = 0;
1533 ip->gd_type = typ;
1534 ip->gd_dpl = dpl;
1535 ip->gd_p = 1;
1536 ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1539 #define IDTVEC(name) __CONCAT(X,name)
1541 extern inthand_t
1542 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1543 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1544 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1545 IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1546 IDTVEC(xmm), IDTVEC(dblfault),
1547 IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1549 void
1550 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1552 ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
1553 ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1554 ssd->ssd_type = sd->sd_type;
1555 ssd->ssd_dpl = sd->sd_dpl;
1556 ssd->ssd_p = sd->sd_p;
1557 ssd->ssd_def32 = sd->sd_def32;
1558 ssd->ssd_gran = sd->sd_gran;
1561 void
1562 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1565 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1566 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1567 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1568 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1569 sd->sd_type = ssd->ssd_type;
1570 sd->sd_dpl = ssd->ssd_dpl;
1571 sd->sd_p = ssd->ssd_p;
1572 sd->sd_long = ssd->ssd_long;
1573 sd->sd_def32 = ssd->ssd_def32;
1574 sd->sd_gran = ssd->ssd_gran;
1577 void
1578 ssdtosyssd(struct soft_segment_descriptor *ssd,
1579 struct system_segment_descriptor *sd)
1582 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1583 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1584 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1585 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1586 sd->sd_type = ssd->ssd_type;
1587 sd->sd_dpl = ssd->ssd_dpl;
1588 sd->sd_p = ssd->ssd_p;
1589 sd->sd_gran = ssd->ssd_gran;
1593 * Populate the (physmap) array with base/bound pairs describing the
1594 * available physical memory in the system, then test this memory and
1595 * build the phys_avail array describing the actually-available memory.
1597 * If we cannot accurately determine the physical memory map, then use
1598 * value from the 0xE801 call, and failing that, the RTC.
1600 * Total memory size may be set by the kernel environment variable
1601 * hw.physmem or the compile-time define MAXMEM.
1603 * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1604 * of PAGE_SIZE. This also greatly reduces the memory test time
1605 * which would otherwise be excessive on machines with > 8G of ram.
1607 * XXX first should be vm_paddr_t.
1610 #define PHYSMAP_ALIGN (vm_paddr_t)(128 * 1024)
1611 #define PHYSMAP_ALIGN_MASK (vm_paddr_t)(PHYSMAP_ALIGN - 1)
1612 vm_paddr_t physmap[PHYSMAP_SIZE];
1613 struct bios_smap *smapbase, *smap, *smapend;
1614 struct efi_map_header *efihdrbase;
1615 u_int32_t smapsize;
1616 #define PHYSMAP_HANDWAVE (vm_paddr_t)(2 * 1024 * 1024)
1617 #define PHYSMAP_HANDWAVE_MASK (PHYSMAP_HANDWAVE - 1)
1619 static void
1620 add_smap_entries(int *physmap_idx)
1622 int i;
1624 smapsize = *((u_int32_t *)smapbase - 1);
1625 smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1627 for (smap = smapbase; smap < smapend; smap++) {
1628 if (boothowto & RB_VERBOSE)
1629 kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1630 smap->type, smap->base, smap->length);
1632 if (smap->type != SMAP_TYPE_MEMORY)
1633 continue;
1635 if (smap->length == 0)
1636 continue;
1638 for (i = 0; i <= *physmap_idx; i += 2) {
1639 if (smap->base < physmap[i + 1]) {
1640 if (boothowto & RB_VERBOSE) {
1641 kprintf("Overlapping or non-monotonic "
1642 "memory region, ignoring "
1643 "second region\n");
1645 break;
1648 if (i <= *physmap_idx)
1649 continue;
1651 Realmem += smap->length;
1653 if (smap->base == physmap[*physmap_idx + 1]) {
1654 physmap[*physmap_idx + 1] += smap->length;
1655 continue;
1658 *physmap_idx += 2;
1659 if (*physmap_idx == PHYSMAP_SIZE) {
1660 kprintf("Too many segments in the physical "
1661 "address map, giving up\n");
1662 break;
1664 physmap[*physmap_idx] = smap->base;
1665 physmap[*physmap_idx + 1] = smap->base + smap->length;
1669 #define efi_next_descriptor(ptr, size) \
1670 ((struct efi_md *)(((uint8_t *) ptr) + size))
1672 static void
1673 add_efi_map_entries(int *physmap_idx)
1675 struct efi_md *map, *p;
1676 const char *type;
1677 size_t efisz;
1678 int i, ndesc;
1680 static const char *types[] = {
1681 "Reserved",
1682 "LoaderCode",
1683 "LoaderData",
1684 "BootServicesCode",
1685 "BootServicesData",
1686 "RuntimeServicesCode",
1687 "RuntimeServicesData",
1688 "ConventionalMemory",
1689 "UnusableMemory",
1690 "ACPIReclaimMemory",
1691 "ACPIMemoryNVS",
1692 "MemoryMappedIO",
1693 "MemoryMappedIOPortSpace",
1694 "PalCode"
1698 * Memory map data provided by UEFI via the GetMemoryMap
1699 * Boot Services API.
1701 efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1702 map = (struct efi_md *)((uint8_t *)efihdrbase + efisz);
1704 if (efihdrbase->descriptor_size == 0)
1705 return;
1706 ndesc = efihdrbase->memory_size / efihdrbase->descriptor_size;
1708 if (boothowto & RB_VERBOSE)
1709 kprintf("%23s %12s %12s %8s %4s\n",
1710 "Type", "Physical", "Virtual", "#Pages", "Attr");
1712 for (i = 0, p = map; i < ndesc; i++,
1713 p = efi_next_descriptor(p, efihdrbase->descriptor_size)) {
1714 if (boothowto & RB_VERBOSE) {
1715 if (p->md_type <= EFI_MD_TYPE_PALCODE)
1716 type = types[p->md_type];
1717 else
1718 type = "<INVALID>";
1719 kprintf("%23s %012lx %12p %08lx ", type, p->md_phys,
1720 p->md_virt, p->md_pages);
1721 if (p->md_attr & EFI_MD_ATTR_UC)
1722 kprintf("UC ");
1723 if (p->md_attr & EFI_MD_ATTR_WC)
1724 kprintf("WC ");
1725 if (p->md_attr & EFI_MD_ATTR_WT)
1726 kprintf("WT ");
1727 if (p->md_attr & EFI_MD_ATTR_WB)
1728 kprintf("WB ");
1729 if (p->md_attr & EFI_MD_ATTR_UCE)
1730 kprintf("UCE ");
1731 if (p->md_attr & EFI_MD_ATTR_WP)
1732 kprintf("WP ");
1733 if (p->md_attr & EFI_MD_ATTR_RP)
1734 kprintf("RP ");
1735 if (p->md_attr & EFI_MD_ATTR_XP)
1736 kprintf("XP ");
1737 if (p->md_attr & EFI_MD_ATTR_RT)
1738 kprintf("RUNTIME");
1739 kprintf("\n");
1742 switch (p->md_type) {
1743 case EFI_MD_TYPE_CODE:
1744 case EFI_MD_TYPE_DATA:
1745 case EFI_MD_TYPE_BS_CODE:
1746 case EFI_MD_TYPE_BS_DATA:
1747 case EFI_MD_TYPE_FREE:
1749 * We're allowed to use any entry with these types.
1751 break;
1752 default:
1753 continue;
1756 Realmem += p->md_pages * PAGE_SIZE;
1758 if (p->md_phys == physmap[*physmap_idx + 1]) {
1759 physmap[*physmap_idx + 1] += p->md_pages * PAGE_SIZE;
1760 continue;
1763 *physmap_idx += 2;
1764 if (*physmap_idx == PHYSMAP_SIZE) {
1765 kprintf("Too many segments in the physical "
1766 "address map, giving up\n");
1767 break;
1769 physmap[*physmap_idx] = p->md_phys;
1770 physmap[*physmap_idx + 1] = p->md_phys + p->md_pages * PAGE_SIZE;
1774 struct fb_info efi_fb_info;
1775 static int have_efi_framebuffer = 0;
1777 static void
1778 efi_fb_init_vaddr(int direct_map)
1780 uint64_t sz;
1781 vm_offset_t addr, v;
1783 v = efi_fb_info.vaddr;
1784 sz = efi_fb_info.stride * efi_fb_info.height;
1786 if (direct_map) {
1787 addr = PHYS_TO_DMAP(efi_fb_info.paddr);
1788 if (addr >= DMAP_MIN_ADDRESS && addr + sz < DMAP_MAX_ADDRESS)
1789 efi_fb_info.vaddr = addr;
1790 } else {
1791 efi_fb_info.vaddr = (vm_offset_t)pmap_mapdev_attr(
1792 efi_fb_info.paddr, sz, PAT_WRITE_COMBINING);
1795 if (v == 0 && efi_fb_info.vaddr != 0)
1796 memset((void *)efi_fb_info.vaddr, 0x77, sz);
1800 probe_efi_fb(int early)
1802 struct efi_fb *efifb;
1803 caddr_t kmdp;
1805 if (have_efi_framebuffer) {
1806 if (!early &&
1807 (efi_fb_info.vaddr == 0 ||
1808 efi_fb_info.vaddr == PHYS_TO_DMAP(efi_fb_info.paddr)))
1809 efi_fb_init_vaddr(0);
1810 return 0;
1813 kmdp = preload_search_by_type("elf kernel");
1814 if (kmdp == NULL)
1815 kmdp = preload_search_by_type("elf64 kernel");
1816 efifb = (struct efi_fb *)preload_search_info(kmdp,
1817 MODINFO_METADATA | MODINFOMD_EFI_FB);
1818 if (efifb == NULL)
1819 return 1;
1821 have_efi_framebuffer = 1;
1823 efi_fb_info.is_vga_boot_display = 1;
1824 efi_fb_info.width = efifb->fb_width;
1825 efi_fb_info.height = efifb->fb_height;
1826 efi_fb_info.stride = efifb->fb_stride * 4;
1827 efi_fb_info.depth = 32;
1828 efi_fb_info.paddr = efifb->fb_addr;
1829 if (early) {
1830 efi_fb_info.vaddr = 0;
1831 } else {
1832 efi_fb_init_vaddr(0);
1834 efi_fb_info.restore = NULL;
1835 efi_fb_info.device = NULL;
1837 return 0;
1840 static void
1841 efifb_startup(void *arg)
1843 probe_efi_fb(0);
1846 SYSINIT(efi_fb_info, SI_BOOT1_POST, SI_ORDER_FIRST, efifb_startup, NULL);
1848 static void
1849 getmemsize(caddr_t kmdp, u_int64_t first)
1851 int off, physmap_idx, pa_indx, da_indx;
1852 int i, j;
1853 vm_paddr_t pa;
1854 vm_paddr_t msgbuf_size;
1855 u_long physmem_tunable;
1856 pt_entry_t *pte;
1857 quad_t dcons_addr, dcons_size;
1859 bzero(physmap, sizeof(physmap));
1860 physmap_idx = 0;
1863 * get memory map from INT 15:E820, kindly supplied by the loader.
1865 * subr_module.c says:
1866 * "Consumer may safely assume that size value precedes data."
1867 * ie: an int32_t immediately precedes smap.
1869 efihdrbase = (struct efi_map_header *)preload_search_info(kmdp,
1870 MODINFO_METADATA | MODINFOMD_EFI_MAP);
1871 smapbase = (struct bios_smap *)preload_search_info(kmdp,
1872 MODINFO_METADATA | MODINFOMD_SMAP);
1873 if (smapbase == NULL && efihdrbase == NULL)
1874 panic("No BIOS smap or EFI map info from loader!");
1876 if (efihdrbase == NULL)
1877 add_smap_entries(&physmap_idx);
1878 else
1879 add_efi_map_entries(&physmap_idx);
1881 base_memory = physmap[1] / 1024;
1882 /* make hole for AP bootstrap code */
1883 physmap[1] = mp_bootaddress(base_memory);
1885 /* Save EBDA address, if any */
1886 ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1887 ebda_addr <<= 4;
1890 * Maxmem isn't the "maximum memory", it's one larger than the
1891 * highest page of the physical address space. It should be
1892 * called something like "Maxphyspage". We may adjust this
1893 * based on ``hw.physmem'' and the results of the memory test.
1895 Maxmem = atop(physmap[physmap_idx + 1]);
1897 #ifdef MAXMEM
1898 Maxmem = MAXMEM / 4;
1899 #endif
1901 if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1902 Maxmem = atop(physmem_tunable);
1905 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1906 * in the system.
1908 if (Maxmem > atop(physmap[physmap_idx + 1]))
1909 Maxmem = atop(physmap[physmap_idx + 1]);
1912 * Blowing out the DMAP will blow up the system.
1914 if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1915 kprintf("Limiting Maxmem due to DMAP size\n");
1916 Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1919 if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1920 (boothowto & RB_VERBOSE)) {
1921 kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1925 * Call pmap initialization to make new kernel address space
1927 * Mask off page 0.
1929 pmap_bootstrap(&first);
1930 physmap[0] = PAGE_SIZE;
1933 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1934 * exceeding Maxmem.
1936 for (i = j = 0; i <= physmap_idx; i += 2) {
1937 if (physmap[i+1] > ptoa(Maxmem))
1938 physmap[i+1] = ptoa(Maxmem);
1939 physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1940 ~PHYSMAP_ALIGN_MASK;
1941 physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1943 physmap[j] = physmap[i];
1944 physmap[j+1] = physmap[i+1];
1946 if (physmap[i] < physmap[i+1])
1947 j += 2;
1949 physmap_idx = j - 2;
1952 * Align anything else used in the validation loop.
1954 first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1957 * Size up each available chunk of physical memory.
1959 pa_indx = 0;
1960 da_indx = 1;
1961 phys_avail[pa_indx++] = physmap[0];
1962 phys_avail[pa_indx] = physmap[0];
1963 dump_avail[da_indx] = physmap[0];
1964 pte = CMAP1;
1967 * Get dcons buffer address
1969 if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1970 kgetenv_quad("dcons.size", &dcons_size) == 0)
1971 dcons_addr = 0;
1974 * Validate the physical memory. The physical memory segments
1975 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1976 * of PAGE_SIZE.
1978 for (i = 0; i <= physmap_idx; i += 2) {
1979 vm_paddr_t end;
1980 vm_paddr_t incr = PHYSMAP_ALIGN;
1982 end = physmap[i + 1];
1984 for (pa = physmap[i]; pa < end; pa += incr) {
1985 int page_bad, full;
1986 volatile uint64_t *ptr = (uint64_t *)CADDR1;
1987 uint64_t tmp;
1989 incr = PHYSMAP_ALIGN;
1990 full = FALSE;
1993 * block out kernel memory as not available.
1995 if (pa >= 0x200000 && pa < first)
1996 goto do_dump_avail;
1999 * block out dcons buffer
2001 if (dcons_addr > 0
2002 && pa >= trunc_page(dcons_addr)
2003 && pa < dcons_addr + dcons_size) {
2004 goto do_dump_avail;
2007 page_bad = FALSE;
2010 * Always test the first and last block supplied in
2011 * the map entry, but it just takes too long to run
2012 * the test these days and we already have to skip
2013 * pages. Handwave it on PHYSMAP_HANDWAVE boundaries.
2015 if (pa != physmap[i]) {
2016 vm_paddr_t bytes = end - pa;
2017 if ((pa & PHYSMAP_HANDWAVE_MASK) == 0 &&
2018 bytes >= PHYSMAP_HANDWAVE + PHYSMAP_ALIGN) {
2019 incr = PHYSMAP_HANDWAVE;
2020 goto handwaved;
2025 * map page into kernel: valid, read/write,non-cacheable
2027 *pte = pa |
2028 kernel_pmap.pmap_bits[PG_V_IDX] |
2029 kernel_pmap.pmap_bits[PG_RW_IDX] |
2030 kernel_pmap.pmap_bits[PG_N_IDX];
2031 cpu_invlpg(__DEVOLATILE(void *, ptr));
2032 cpu_mfence();
2034 tmp = *ptr;
2036 * Test for alternating 1's and 0's
2038 *ptr = 0xaaaaaaaaaaaaaaaaLLU;
2039 cpu_mfence();
2040 if (*ptr != 0xaaaaaaaaaaaaaaaaLLU)
2041 page_bad = TRUE;
2043 * Test for alternating 0's and 1's
2045 *ptr = 0x5555555555555555LLU;
2046 cpu_mfence();
2047 if (*ptr != 0x5555555555555555LLU)
2048 page_bad = TRUE;
2050 * Test for all 1's
2052 *ptr = 0xffffffffffffffffLLU;
2053 cpu_mfence();
2054 if (*ptr != 0xffffffffffffffffLLU)
2055 page_bad = TRUE;
2057 * Test for all 0's
2059 *ptr = 0x0;
2060 cpu_mfence();
2061 if (*ptr != 0x0)
2062 page_bad = TRUE;
2064 * Restore original value.
2066 *ptr = tmp;
2067 handwaved:
2070 * Adjust array of valid/good pages.
2072 if (page_bad == TRUE)
2073 continue;
2076 * If this good page is a continuation of the
2077 * previous set of good pages, then just increase
2078 * the end pointer. Otherwise start a new chunk.
2079 * Note that "end" points one higher than end,
2080 * making the range >= start and < end.
2081 * If we're also doing a speculative memory
2082 * test and we at or past the end, bump up Maxmem
2083 * so that we keep going. The first bad page
2084 * will terminate the loop.
2086 if (phys_avail[pa_indx] == pa) {
2087 phys_avail[pa_indx] += incr;
2088 } else {
2089 pa_indx++;
2090 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2091 kprintf(
2092 "Too many holes in the physical address space, giving up\n");
2093 pa_indx--;
2094 full = TRUE;
2095 goto do_dump_avail;
2097 phys_avail[pa_indx++] = pa;
2098 phys_avail[pa_indx] = pa + incr;
2100 physmem += incr / PAGE_SIZE;
2101 do_dump_avail:
2102 if (dump_avail[da_indx] == pa) {
2103 dump_avail[da_indx] += incr;
2104 } else {
2105 da_indx++;
2106 if (da_indx == DUMP_AVAIL_ARRAY_END) {
2107 da_indx--;
2108 goto do_next;
2110 dump_avail[da_indx++] = pa;
2111 dump_avail[da_indx] = pa + incr;
2113 do_next:
2114 if (full)
2115 break;
2118 *pte = 0;
2119 cpu_invltlb();
2120 cpu_mfence();
2123 * The last chunk must contain at least one page plus the message
2124 * buffer to avoid complicating other code (message buffer address
2125 * calculation, etc.).
2127 msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2129 while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
2130 msgbuf_size >= phys_avail[pa_indx]) {
2131 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2132 phys_avail[pa_indx--] = 0;
2133 phys_avail[pa_indx--] = 0;
2136 Maxmem = atop(phys_avail[pa_indx]);
2138 /* Trim off space for the message buffer. */
2139 phys_avail[pa_indx] -= msgbuf_size;
2141 avail_end = phys_avail[pa_indx];
2143 /* Map the message buffer. */
2144 for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
2145 pmap_kenter((vm_offset_t)msgbufp + off,
2146 phys_avail[pa_indx] + off);
2148 /* Try to get EFI framebuffer working as early as possible */
2149 if (have_efi_framebuffer)
2150 efi_fb_init_vaddr(1);
2153 struct machintr_abi MachIntrABI;
2156 * IDT VECTORS:
2157 * 0 Divide by zero
2158 * 1 Debug
2159 * 2 NMI
2160 * 3 BreakPoint
2161 * 4 OverFlow
2162 * 5 Bound-Range
2163 * 6 Invalid OpCode
2164 * 7 Device Not Available (x87)
2165 * 8 Double-Fault
2166 * 9 Coprocessor Segment overrun (unsupported, reserved)
2167 * 10 Invalid-TSS
2168 * 11 Segment not present
2169 * 12 Stack
2170 * 13 General Protection
2171 * 14 Page Fault
2172 * 15 Reserved
2173 * 16 x87 FP Exception pending
2174 * 17 Alignment Check
2175 * 18 Machine Check
2176 * 19 SIMD floating point
2177 * 20-31 reserved
2178 * 32-255 INTn/external sources
2180 u_int64_t
2181 hammer_time(u_int64_t modulep, u_int64_t physfree)
2183 caddr_t kmdp;
2184 int gsel_tss, x, cpu;
2185 #if 0 /* JG */
2186 int metadata_missing, off;
2187 #endif
2188 struct mdglobaldata *gd;
2189 u_int64_t msr;
2192 * Prevent lowering of the ipl if we call tsleep() early.
2194 gd = &CPU_prvspace[0]->mdglobaldata;
2195 bzero(gd, sizeof(*gd));
2198 * Note: on both UP and SMP curthread must be set non-NULL
2199 * early in the boot sequence because the system assumes
2200 * that 'curthread' is never NULL.
2203 gd->mi.gd_curthread = &thread0;
2204 thread0.td_gd = &gd->mi;
2206 atdevbase = ISA_HOLE_START + PTOV_OFFSET;
2208 #if 0 /* JG */
2209 metadata_missing = 0;
2210 if (bootinfo.bi_modulep) {
2211 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2212 preload_bootstrap_relocate(KERNBASE);
2213 } else {
2214 metadata_missing = 1;
2216 if (bootinfo.bi_envp)
2217 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2218 #endif
2220 preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
2221 preload_bootstrap_relocate(PTOV_OFFSET);
2222 kmdp = preload_search_by_type("elf kernel");
2223 if (kmdp == NULL)
2224 kmdp = preload_search_by_type("elf64 kernel");
2225 boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
2226 kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
2227 #ifdef DDB
2228 ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
2229 ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
2230 #endif
2232 if (boothowto & RB_VERBOSE)
2233 bootverbose++;
2236 * Default MachIntrABI to ICU
2238 MachIntrABI = MachIntrABI_ICU;
2241 * start with one cpu. Note: with one cpu, ncpus2_shift, ncpus2_mask,
2242 * and ncpus_fit_mask remain 0.
2244 ncpus = 1;
2245 ncpus2 = 1;
2246 ncpus_fit = 1;
2247 /* Init basic tunables, hz etc */
2248 init_param1();
2251 * make gdt memory segments
2253 gdt_segs[GPROC0_SEL].ssd_base =
2254 (uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
2256 gd->mi.gd_prvspace = CPU_prvspace[0];
2258 for (x = 0; x < NGDT; x++) {
2259 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2260 ssdtosd(&gdt_segs[x], &gdt[x]);
2262 ssdtosyssd(&gdt_segs[GPROC0_SEL],
2263 (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2265 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2266 r_gdt.rd_base = (long) gdt;
2267 lgdt(&r_gdt);
2269 wrmsr(MSR_FSBASE, 0); /* User value */
2270 wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2271 wrmsr(MSR_KGSBASE, 0); /* User value while in the kernel */
2273 mi_gdinit(&gd->mi, 0);
2274 cpu_gdinit(gd, 0);
2275 proc0paddr = proc0paddr_buff;
2276 mi_proc0init(&gd->mi, proc0paddr);
2277 safepri = TDPRI_MAX;
2279 /* spinlocks and the BGL */
2280 init_locks();
2282 /* exceptions */
2283 for (x = 0; x < NIDT; x++)
2284 setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2285 setidt_global(IDT_DE, &IDTVEC(div), SDT_SYSIGT, SEL_KPL, 0);
2286 setidt_global(IDT_DB, &IDTVEC(dbg), SDT_SYSIGT, SEL_KPL, 0);
2287 setidt_global(IDT_NMI, &IDTVEC(nmi), SDT_SYSIGT, SEL_KPL, 1);
2288 setidt_global(IDT_BP, &IDTVEC(bpt), SDT_SYSIGT, SEL_UPL, 0);
2289 setidt_global(IDT_OF, &IDTVEC(ofl), SDT_SYSIGT, SEL_KPL, 0);
2290 setidt_global(IDT_BR, &IDTVEC(bnd), SDT_SYSIGT, SEL_KPL, 0);
2291 setidt_global(IDT_UD, &IDTVEC(ill), SDT_SYSIGT, SEL_KPL, 0);
2292 setidt_global(IDT_NM, &IDTVEC(dna), SDT_SYSIGT, SEL_KPL, 0);
2293 setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2294 setidt_global(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYSIGT, SEL_KPL, 0);
2295 setidt_global(IDT_TS, &IDTVEC(tss), SDT_SYSIGT, SEL_KPL, 0);
2296 setidt_global(IDT_NP, &IDTVEC(missing), SDT_SYSIGT, SEL_KPL, 0);
2297 setidt_global(IDT_SS, &IDTVEC(stk), SDT_SYSIGT, SEL_KPL, 0);
2298 setidt_global(IDT_GP, &IDTVEC(prot), SDT_SYSIGT, SEL_KPL, 0);
2299 setidt_global(IDT_PF, &IDTVEC(page), SDT_SYSIGT, SEL_KPL, 0);
2300 setidt_global(IDT_MF, &IDTVEC(fpu), SDT_SYSIGT, SEL_KPL, 0);
2301 setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2302 setidt_global(IDT_MC, &IDTVEC(mchk), SDT_SYSIGT, SEL_KPL, 0);
2303 setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2305 for (cpu = 0; cpu < MAXCPU; ++cpu) {
2306 r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2307 r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2310 lidt(&r_idt_arr[0]);
2313 * Initialize the console before we print anything out.
2315 cninit();
2317 #if 0 /* JG */
2318 if (metadata_missing)
2319 kprintf("WARNING: loader(8) metadata is missing!\n");
2320 #endif
2322 #if NISA >0
2323 elcr_probe();
2324 isa_defaultirq();
2325 #endif
2326 rand_initialize();
2329 * Initialize IRQ mapping
2331 * NOTE:
2332 * SHOULD be after elcr_probe()
2334 MachIntrABI_ICU.initmap();
2335 MachIntrABI_IOAPIC.initmap();
2337 #ifdef DDB
2338 kdb_init();
2339 if (boothowto & RB_KDB)
2340 Debugger("Boot flags requested debugger");
2341 #endif
2343 #if 0 /* JG */
2344 finishidentcpu(); /* Final stage of CPU initialization */
2345 setidt(6, &IDTVEC(ill), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2346 setidt(13, &IDTVEC(prot), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2347 #endif
2348 identify_cpu(); /* Final stage of CPU initialization */
2349 initializecpu(0); /* Initialize CPU registers */
2352 * On modern intel cpus, haswell or later, cpu_idle_hlt=1 is better
2353 * because the cpu does significant power management in MWAIT
2354 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2356 * On modern amd cpus cpu_idle_hlt=3 is better, because the cpu does
2357 * significant power management in HLT or ACPI (but cpu_idle_hlt=1
2358 * would try to use MWAIT).
2360 * On older amd or intel cpus, cpu_idle_hlt=2 is better because ACPI
2361 * is needed to reduce power consumption, but wakeup times are often
2362 * longer.
2364 if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2365 CPUID_TO_MODEL(cpu_id) >= 0x3C) { /* Haswell or later */
2366 cpu_idle_hlt = 1;
2368 if (cpu_vendor_id == CPU_VENDOR_AMD &&
2369 CPUID_TO_FAMILY(cpu_id) >= 0x14) { /* Bobcat or later */
2370 cpu_idle_hlt = 3;
2373 TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2374 TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2375 TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2376 TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2379 * Some of the virtual machines do not work w/ I/O APIC
2380 * enabled. If the user does not explicitly enable or
2381 * disable the I/O APIC (ioapic_enable < 0), then we
2382 * disable I/O APIC on all virtual machines.
2384 * NOTE:
2385 * This must be done after identify_cpu(), which sets
2386 * 'cpu_feature2'
2388 if (ioapic_enable < 0) {
2389 if (cpu_feature2 & CPUID2_VMM)
2390 ioapic_enable = 0;
2391 else
2392 ioapic_enable = 1;
2395 /* make an initial tss so cpu can get interrupt stack on syscall! */
2396 gd->gd_common_tss.tss_rsp0 =
2397 (register_t)(thread0.td_kstack +
2398 KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2399 /* Ensure the stack is aligned to 16 bytes */
2400 gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2402 /* double fault stack */
2403 gd->gd_common_tss.tss_ist1 =
2404 (long)&gd->mi.gd_prvspace->idlestack[
2405 sizeof(gd->mi.gd_prvspace->idlestack)];
2407 /* Set the IO permission bitmap (empty due to tss seg limit) */
2408 gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2410 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2411 gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2412 gd->gd_common_tssd = *gd->gd_tss_gdt;
2413 ltr(gsel_tss);
2415 /* Set up the fast syscall stuff */
2416 msr = rdmsr(MSR_EFER) | EFER_SCE;
2417 wrmsr(MSR_EFER, msr);
2418 wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2419 wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2420 msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2421 ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2422 wrmsr(MSR_STAR, msr);
2423 wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2425 getmemsize(kmdp, physfree);
2426 init_param2(physmem);
2428 /* now running on new page tables, configured,and u/iom is accessible */
2430 /* Map the message buffer. */
2431 #if 0 /* JG */
2432 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2433 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2434 #endif
2436 msgbufinit(msgbufp, MSGBUF_SIZE);
2439 /* transfer to user mode */
2441 _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2442 _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2443 _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2445 load_ds(_udatasel);
2446 load_es(_udatasel);
2447 load_fs(_udatasel);
2449 /* setup proc 0's pcb */
2450 thread0.td_pcb->pcb_flags = 0;
2451 thread0.td_pcb->pcb_cr3 = KPML4phys;
2452 thread0.td_pcb->pcb_ext = NULL;
2453 lwp0.lwp_md.md_regs = &proc0_tf; /* XXX needed? */
2455 /* Location of kernel stack for locore */
2456 return ((u_int64_t)thread0.td_pcb);
2460 * Initialize machine-dependant portions of the global data structure.
2461 * Note that the global data area and cpu0's idlestack in the private
2462 * data space were allocated in locore.
2464 * Note: the idlethread's cpl is 0
2466 * WARNING! Called from early boot, 'mycpu' may not work yet.
2468 void
2469 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2471 if (cpu)
2472 gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2474 lwkt_init_thread(&gd->mi.gd_idlethread,
2475 gd->mi.gd_prvspace->idlestack,
2476 sizeof(gd->mi.gd_prvspace->idlestack),
2477 0, &gd->mi);
2478 lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2479 gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2480 gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2481 *(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2485 * We only have to check for DMAP bounds, the globaldata space is
2486 * actually part of the kernel_map so we don't have to waste time
2487 * checking CPU_prvspace[*].
2490 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2492 #if 0
2493 if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2494 eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2495 return (TRUE);
2497 #endif
2498 if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2499 return (TRUE);
2500 return (FALSE);
2503 struct globaldata *
2504 globaldata_find(int cpu)
2506 KKASSERT(cpu >= 0 && cpu < ncpus);
2507 return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2511 * This path should be safe from the SYSRET issue because only stopped threads
2512 * can have their %rip adjusted this way (and all heavy weight thread switches
2513 * clear QUICKREF and thus do not use SYSRET). However, the code path is
2514 * convoluted so add a safety by forcing %rip to be cannonical.
2517 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2519 if (addr & 0x0000800000000000LLU)
2520 lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2521 else
2522 lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2523 return (0);
2527 ptrace_single_step(struct lwp *lp)
2529 lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2530 return (0);
2534 fill_regs(struct lwp *lp, struct reg *regs)
2536 struct trapframe *tp;
2538 if ((tp = lp->lwp_md.md_regs) == NULL)
2539 return EINVAL;
2540 bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2541 return (0);
2545 set_regs(struct lwp *lp, struct reg *regs)
2547 struct trapframe *tp;
2549 tp = lp->lwp_md.md_regs;
2550 if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2551 !CS_SECURE(regs->r_cs))
2552 return (EINVAL);
2553 bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2554 clear_quickret();
2555 return (0);
2558 static void
2559 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2561 struct env87 *penv_87 = &sv_87->sv_env;
2562 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2563 int i;
2565 /* FPU control/status */
2566 penv_87->en_cw = penv_xmm->en_cw;
2567 penv_87->en_sw = penv_xmm->en_sw;
2568 penv_87->en_tw = penv_xmm->en_tw;
2569 penv_87->en_fip = penv_xmm->en_fip;
2570 penv_87->en_fcs = penv_xmm->en_fcs;
2571 penv_87->en_opcode = penv_xmm->en_opcode;
2572 penv_87->en_foo = penv_xmm->en_foo;
2573 penv_87->en_fos = penv_xmm->en_fos;
2575 /* FPU registers */
2576 for (i = 0; i < 8; ++i)
2577 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2580 static void
2581 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2583 struct env87 *penv_87 = &sv_87->sv_env;
2584 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2585 int i;
2587 /* FPU control/status */
2588 penv_xmm->en_cw = penv_87->en_cw;
2589 penv_xmm->en_sw = penv_87->en_sw;
2590 penv_xmm->en_tw = penv_87->en_tw;
2591 penv_xmm->en_fip = penv_87->en_fip;
2592 penv_xmm->en_fcs = penv_87->en_fcs;
2593 penv_xmm->en_opcode = penv_87->en_opcode;
2594 penv_xmm->en_foo = penv_87->en_foo;
2595 penv_xmm->en_fos = penv_87->en_fos;
2597 /* FPU registers */
2598 for (i = 0; i < 8; ++i)
2599 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2603 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2605 if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2606 return EINVAL;
2607 if (cpu_fxsr) {
2608 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2609 (struct save87 *)fpregs);
2610 return (0);
2612 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2613 return (0);
2617 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2619 if (cpu_fxsr) {
2620 set_fpregs_xmm((struct save87 *)fpregs,
2621 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2622 return (0);
2624 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2625 return (0);
2629 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2631 struct pcb *pcb;
2633 if (lp == NULL) {
2634 dbregs->dr[0] = rdr0();
2635 dbregs->dr[1] = rdr1();
2636 dbregs->dr[2] = rdr2();
2637 dbregs->dr[3] = rdr3();
2638 dbregs->dr[4] = rdr4();
2639 dbregs->dr[5] = rdr5();
2640 dbregs->dr[6] = rdr6();
2641 dbregs->dr[7] = rdr7();
2642 return (0);
2644 if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2645 return EINVAL;
2646 dbregs->dr[0] = pcb->pcb_dr0;
2647 dbregs->dr[1] = pcb->pcb_dr1;
2648 dbregs->dr[2] = pcb->pcb_dr2;
2649 dbregs->dr[3] = pcb->pcb_dr3;
2650 dbregs->dr[4] = 0;
2651 dbregs->dr[5] = 0;
2652 dbregs->dr[6] = pcb->pcb_dr6;
2653 dbregs->dr[7] = pcb->pcb_dr7;
2654 return (0);
2658 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2660 if (lp == NULL) {
2661 load_dr0(dbregs->dr[0]);
2662 load_dr1(dbregs->dr[1]);
2663 load_dr2(dbregs->dr[2]);
2664 load_dr3(dbregs->dr[3]);
2665 load_dr4(dbregs->dr[4]);
2666 load_dr5(dbregs->dr[5]);
2667 load_dr6(dbregs->dr[6]);
2668 load_dr7(dbregs->dr[7]);
2669 } else {
2670 struct pcb *pcb;
2671 struct ucred *ucred;
2672 int i;
2673 uint64_t mask1, mask2;
2676 * Don't let an illegal value for dr7 get set. Specifically,
2677 * check for undefined settings. Setting these bit patterns
2678 * result in undefined behaviour and can lead to an unexpected
2679 * TRCTRAP.
2681 /* JG this loop looks unreadable */
2682 /* Check 4 2-bit fields for invalid patterns.
2683 * These fields are R/Wi, for i = 0..3
2685 /* Is 10 in LENi allowed when running in compatibility mode? */
2686 /* Pattern 10 in R/Wi might be used to indicate
2687 * breakpoint on I/O. Further analysis should be
2688 * carried to decide if it is safe and useful to
2689 * provide access to that capability
2691 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2692 i++, mask1 <<= 4, mask2 <<= 4)
2693 if ((dbregs->dr[7] & mask1) == mask2)
2694 return (EINVAL);
2696 pcb = lp->lwp_thread->td_pcb;
2697 ucred = lp->lwp_proc->p_ucred;
2700 * Don't let a process set a breakpoint that is not within the
2701 * process's address space. If a process could do this, it
2702 * could halt the system by setting a breakpoint in the kernel
2703 * (if ddb was enabled). Thus, we need to check to make sure
2704 * that no breakpoints are being enabled for addresses outside
2705 * process's address space, unless, perhaps, we were called by
2706 * uid 0.
2708 * XXX - what about when the watched area of the user's
2709 * address space is written into from within the kernel
2710 * ... wouldn't that still cause a breakpoint to be generated
2711 * from within kernel mode?
2714 if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2715 if (dbregs->dr[7] & 0x3) {
2716 /* dr0 is enabled */
2717 if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2718 return (EINVAL);
2721 if (dbregs->dr[7] & (0x3<<2)) {
2722 /* dr1 is enabled */
2723 if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2724 return (EINVAL);
2727 if (dbregs->dr[7] & (0x3<<4)) {
2728 /* dr2 is enabled */
2729 if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2730 return (EINVAL);
2733 if (dbregs->dr[7] & (0x3<<6)) {
2734 /* dr3 is enabled */
2735 if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2736 return (EINVAL);
2740 pcb->pcb_dr0 = dbregs->dr[0];
2741 pcb->pcb_dr1 = dbregs->dr[1];
2742 pcb->pcb_dr2 = dbregs->dr[2];
2743 pcb->pcb_dr3 = dbregs->dr[3];
2744 pcb->pcb_dr6 = dbregs->dr[6];
2745 pcb->pcb_dr7 = dbregs->dr[7];
2747 pcb->pcb_flags |= PCB_DBREGS;
2750 return (0);
2754 * Return > 0 if a hardware breakpoint has been hit, and the
2755 * breakpoint was in user space. Return 0, otherwise.
2758 user_dbreg_trap(void)
2760 u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2761 u_int64_t bp; /* breakpoint bits extracted from dr6 */
2762 int nbp; /* number of breakpoints that triggered */
2763 caddr_t addr[4]; /* breakpoint addresses */
2764 int i;
2766 dr7 = rdr7();
2767 if ((dr7 & 0xff) == 0) {
2769 * all GE and LE bits in the dr7 register are zero,
2770 * thus the trap couldn't have been caused by the
2771 * hardware debug registers
2773 return 0;
2776 nbp = 0;
2777 dr6 = rdr6();
2778 bp = dr6 & 0xf;
2780 if (bp == 0) {
2782 * None of the breakpoint bits are set meaning this
2783 * trap was not caused by any of the debug registers
2785 return 0;
2789 * at least one of the breakpoints were hit, check to see
2790 * which ones and if any of them are user space addresses
2793 if (bp & 0x01) {
2794 addr[nbp++] = (caddr_t)rdr0();
2796 if (bp & 0x02) {
2797 addr[nbp++] = (caddr_t)rdr1();
2799 if (bp & 0x04) {
2800 addr[nbp++] = (caddr_t)rdr2();
2802 if (bp & 0x08) {
2803 addr[nbp++] = (caddr_t)rdr3();
2806 for (i=0; i<nbp; i++) {
2807 if (addr[i] <
2808 (caddr_t)VM_MAX_USER_ADDRESS) {
2810 * addr[i] is in user space
2812 return nbp;
2817 * None of the breakpoints are in user space.
2819 return 0;
2823 #ifndef DDB
2824 void
2825 Debugger(const char *msg)
2827 kprintf("Debugger(\"%s\") called.\n", msg);
2829 #endif /* no DDB */
2831 #ifdef DDB
2834 * Provide inb() and outb() as functions. They are normally only
2835 * available as macros calling inlined functions, thus cannot be
2836 * called inside DDB.
2838 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2841 #undef inb
2842 #undef outb
2844 /* silence compiler warnings */
2845 u_char inb(u_int);
2846 void outb(u_int, u_char);
2848 u_char
2849 inb(u_int port)
2851 u_char data;
2853 * We use %%dx and not %1 here because i/o is done at %dx and not at
2854 * %edx, while gcc generates inferior code (movw instead of movl)
2855 * if we tell it to load (u_short) port.
2857 __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2858 return (data);
2861 void
2862 outb(u_int port, u_char data)
2864 u_char al;
2866 * Use an unnecessary assignment to help gcc's register allocator.
2867 * This make a large difference for gcc-1.40 and a tiny difference
2868 * for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
2869 * best results. gcc-2.6.0 can't handle this.
2871 al = data;
2872 __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2875 #endif /* DDB */
2880 * initialize all the SMP locks
2883 /* critical region when masking or unmasking interupts */
2884 struct spinlock_deprecated imen_spinlock;
2886 /* lock region used by kernel profiling */
2887 struct spinlock_deprecated mcount_spinlock;
2889 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2890 struct spinlock_deprecated com_spinlock;
2892 /* lock regions around the clock hardware */
2893 struct spinlock_deprecated clock_spinlock;
2895 static void
2896 init_locks(void)
2899 * Get the initial mplock with a count of 1 for the BSP.
2900 * This uses a LOGICAL cpu ID, ie BSP == 0.
2902 cpu_get_initial_mplock();
2903 /* DEPRECATED */
2904 spin_init_deprecated(&mcount_spinlock);
2905 spin_init_deprecated(&imen_spinlock);
2906 spin_init_deprecated(&com_spinlock);
2907 spin_init_deprecated(&clock_spinlock);
2909 /* our token pool needs to work early */
2910 lwkt_token_pool_init();
2913 boolean_t
2914 cpu_mwait_hint_valid(uint32_t hint)
2916 int cx_idx, sub;
2918 cx_idx = MWAIT_EAX_TO_CX(hint);
2919 if (cx_idx >= CPU_MWAIT_CX_MAX)
2920 return FALSE;
2922 sub = MWAIT_EAX_TO_CX_SUB(hint);
2923 if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2924 return FALSE;
2926 return TRUE;
2929 void
2930 cpu_mwait_cx_no_bmsts(void)
2932 atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
2935 void
2936 cpu_mwait_cx_no_bmarb(void)
2938 atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
2941 static int
2942 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
2944 int old_cx_idx, sub = 0;
2946 if (hint >= 0) {
2947 old_cx_idx = MWAIT_EAX_TO_CX(hint);
2948 sub = MWAIT_EAX_TO_CX_SUB(hint);
2949 } else if (hint == CPU_MWAIT_HINT_AUTO) {
2950 old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
2951 } else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
2952 old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
2953 } else {
2954 old_cx_idx = CPU_MWAIT_CX_MAX;
2957 if (!CPU_MWAIT_HAS_CX)
2958 strlcpy(name, "NONE", namelen);
2959 else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
2960 strlcpy(name, "AUTO", namelen);
2961 else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
2962 strlcpy(name, "AUTODEEP", namelen);
2963 else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
2964 sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
2965 strlcpy(name, "INVALID", namelen);
2966 else
2967 ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
2969 return old_cx_idx;
2972 static int
2973 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
2975 int cx_idx, sub, hint;
2976 char *ptr, *start;
2978 if (allow_auto && strcmp(name, "AUTO") == 0) {
2979 hint = CPU_MWAIT_HINT_AUTO;
2980 cx_idx = CPU_MWAIT_C2;
2981 goto done;
2983 if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
2984 hint = CPU_MWAIT_HINT_AUTODEEP;
2985 cx_idx = CPU_MWAIT_C3;
2986 goto done;
2989 if (strlen(name) < 4 || toupper(name[0]) != 'C')
2990 return -1;
2991 start = &name[1];
2992 ptr = NULL;
2994 cx_idx = strtol(start, &ptr, 10);
2995 if (ptr == start || *ptr != '/')
2996 return -1;
2997 if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
2998 return -1;
3000 start = ptr + 1;
3001 ptr = NULL;
3003 sub = strtol(start, &ptr, 10);
3004 if (*ptr != '\0')
3005 return -1;
3006 if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3007 return -1;
3009 hint = MWAIT_EAX_HINT(cx_idx, sub);
3010 done:
3011 *hint0 = hint;
3012 return cx_idx;
3015 static int
3016 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
3018 if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
3019 return EOPNOTSUPP;
3020 if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
3021 int error;
3023 error = cputimer_intr_powersave_addreq();
3024 if (error)
3025 return error;
3026 } else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
3027 cputimer_intr_powersave_remreq();
3029 return 0;
3032 static int
3033 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
3034 boolean_t allow_auto)
3036 int error, cx_idx, old_cx_idx, hint;
3037 char name[CPU_MWAIT_CX_NAMELEN];
3039 hint = *hint0;
3040 old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
3041 allow_auto);
3043 error = sysctl_handle_string(oidp, name, sizeof(name), req);
3044 if (error != 0 || req->newptr == NULL)
3045 return error;
3047 if (!CPU_MWAIT_HAS_CX)
3048 return EOPNOTSUPP;
3050 cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
3051 if (cx_idx < 0)
3052 return EINVAL;
3054 error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3055 if (error)
3056 return error;
3058 *hint0 = hint;
3059 return 0;
3062 static int
3063 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
3065 int error, cx_idx, old_cx_idx, hint;
3066 char name[CPU_MWAIT_CX_NAMELEN];
3068 KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
3070 hint = stat->hint;
3071 old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3073 strlcpy(name, cx_name, sizeof(name));
3074 cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3075 if (cx_idx < 0)
3076 return EINVAL;
3078 error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3079 if (error)
3080 return error;
3082 stat->hint = hint;
3083 return 0;
3086 static int
3087 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
3089 int hint = cpu_mwait_halt_global;
3090 int error, cx_idx, cpu;
3091 char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
3093 cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3095 error = sysctl_handle_string(oidp, name, sizeof(name), req);
3096 if (error != 0 || req->newptr == NULL)
3097 return error;
3099 if (!CPU_MWAIT_HAS_CX)
3100 return EOPNOTSUPP;
3102 /* Save name for later per-cpu CX configuration */
3103 strlcpy(cx_name, name, sizeof(cx_name));
3105 cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3106 if (cx_idx < 0)
3107 return EINVAL;
3109 /* Change per-cpu CX configuration */
3110 for (cpu = 0; cpu < ncpus; ++cpu) {
3111 error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
3112 if (error)
3113 return error;
3116 cpu_mwait_halt_global = hint;
3117 return 0;
3120 static int
3121 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
3123 struct cpu_idle_stat *stat = arg1;
3124 int error;
3126 error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3127 &stat->hint, TRUE);
3128 return error;
3131 static int
3132 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
3134 int error;
3136 error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3137 &cpu_mwait_spin, FALSE);
3138 return error;
3142 * This manual debugging code is called unconditionally from Xtimer
3143 * (the per-cpu timer interrupt) whether the current thread is in a
3144 * critical section or not) and can be useful in tracking down lockups.
3146 * NOTE: MANUAL DEBUG CODE
3148 #if 0
3149 static int saveticks[SMP_MAXCPU];
3150 static int savecounts[SMP_MAXCPU];
3151 #endif
3153 void
3154 pcpu_timer_always(struct intrframe *frame)
3156 #if 0
3157 globaldata_t gd = mycpu;
3158 int cpu = gd->gd_cpuid;
3159 char buf[64];
3160 short *gptr;
3161 int i;
3163 if (cpu <= 20) {
3164 gptr = (short *)0xFFFFFFFF800b8000 + 80 * cpu;
3165 *gptr = ((*gptr + 1) & 0x00FF) | 0x0700;
3166 ++gptr;
3168 ksnprintf(buf, sizeof(buf), " %p %16s %d %16s ",
3169 (void *)frame->if_rip, gd->gd_curthread->td_comm, ticks,
3170 gd->gd_infomsg);
3171 for (i = 0; buf[i]; ++i) {
3172 gptr[i] = 0x0700 | (unsigned char)buf[i];
3175 #if 0
3176 if (saveticks[gd->gd_cpuid] != ticks) {
3177 saveticks[gd->gd_cpuid] = ticks;
3178 savecounts[gd->gd_cpuid] = 0;
3180 ++savecounts[gd->gd_cpuid];
3181 if (savecounts[gd->gd_cpuid] > 2000 && panicstr == NULL) {
3182 panic("cpud %d panicing on ticks failure",
3183 gd->gd_cpuid);
3185 for (i = 0; i < ncpus; ++i) {
3186 int delta;
3187 if (saveticks[i] && panicstr == NULL) {
3188 delta = saveticks[i] - ticks;
3189 if (delta < -10 || delta > 10) {
3190 panic("cpu %d panicing on cpu %d watchdog",
3191 gd->gd_cpuid, i);
3195 #endif
3196 #endif