Replace the global buffer cache hash table with a per-vnode red-black tree.
[dragonfly.git] / sys / vfs / nfs / nfs_bio.c
blob75b11b6e17ec35e1ba39f79cdf652672f9767ce7
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
37 * $FreeBSD: /repoman/r/ncvs/src/sys/nfsclient/nfs_bio.c,v 1.130 2004/04/14 23:23:55 peadar Exp $
38 * $DragonFly: src/sys/vfs/nfs/nfs_bio.c,v 1.27 2006/03/05 18:38:37 dillon Exp $
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/resourcevar.h>
45 #include <sys/signalvar.h>
46 #include <sys/proc.h>
47 #include <sys/buf.h>
48 #include <sys/vnode.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 #include <sys/buf2.h>
52 #include <sys/msfbuf.h>
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_object.h>
58 #include <vm/vm_pager.h>
59 #include <vm/vnode_pager.h>
61 #include <sys/thread2.h>
63 #include "rpcv2.h"
64 #include "nfsproto.h"
65 #include "nfs.h"
66 #include "nfsmount.h"
67 #include "nqnfs.h"
68 #include "nfsnode.h"
70 static struct buf *nfs_getcacheblk (struct vnode *vp, daddr_t bn, int size,
71 struct thread *td);
73 extern int nfs_numasync;
74 extern int nfs_pbuf_freecnt;
75 extern struct nfsstats nfsstats;
78 * Vnode op for VM getpages.
80 * nfs_getpages(struct vnode *a_vp, vm_page_t *a_m, int a_count,
81 * int a_reqpage, vm_ooffset_t a_offset)
83 int
84 nfs_getpages(struct vop_getpages_args *ap)
86 struct thread *td = curthread; /* XXX */
87 int i, error, nextoff, size, toff, count, npages;
88 struct uio uio;
89 struct iovec iov;
90 char *kva;
91 struct vnode *vp;
92 struct nfsmount *nmp;
93 vm_page_t *pages;
94 vm_page_t m;
95 struct msf_buf *msf;
97 vp = ap->a_vp;
98 nmp = VFSTONFS(vp->v_mount);
99 pages = ap->a_m;
100 count = ap->a_count;
102 if (vp->v_object == NULL) {
103 printf("nfs_getpages: called with non-merged cache vnode??\n");
104 return VM_PAGER_ERROR;
107 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
108 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
109 (void)nfs_fsinfo(nmp, vp, td);
111 npages = btoc(count);
114 * NOTE that partially valid pages may occur in cases other
115 * then file EOF, such as when a file is partially written and
116 * ftruncate()-extended to a larger size. It is also possible
117 * for the valid bits to be set on garbage beyond the file EOF and
118 * clear in the area before EOF (e.g. m->valid == 0xfc), which can
119 * occur due to vtruncbuf() and the buffer cache's handling of
120 * pages which 'straddle' buffers or when b_bufsize is not a
121 * multiple of PAGE_SIZE.... the buffer cache cannot normally
122 * clear the extra bits. This kind of situation occurs when you
123 * make a small write() (m->valid == 0x03) and then mmap() and
124 * fault in the buffer(m->valid = 0xFF). When NFS flushes the
125 * buffer (vinvalbuf() m->valid = 0xFC) we are left with a mess.
127 * This is combined with the possibility that the pages are partially
128 * dirty or that there is a buffer backing the pages that is dirty
129 * (even if m->dirty is 0).
131 * To solve this problem several hacks have been made: (1) NFS
132 * guarentees that the IO block size is a multiple of PAGE_SIZE and
133 * (2) The buffer cache, when invalidating an NFS buffer, will
134 * disregard the buffer's fragmentory b_bufsize and invalidate
135 * the whole page rather then just the piece the buffer owns.
137 * This allows us to assume that a partially valid page found here
138 * is fully valid (vm_fault will zero'd out areas of the page not
139 * marked as valid).
141 m = pages[ap->a_reqpage];
142 if (m->valid != 0) {
143 for (i = 0; i < npages; ++i) {
144 if (i != ap->a_reqpage)
145 vnode_pager_freepage(pages[i]);
147 return(0);
151 * Use an MSF_BUF as a medium to retrieve data from the pages.
153 msf_map_pagelist(&msf, pages, npages, 0);
154 KKASSERT(msf);
155 kva = msf_buf_kva(msf);
157 iov.iov_base = kva;
158 iov.iov_len = count;
159 uio.uio_iov = &iov;
160 uio.uio_iovcnt = 1;
161 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
162 uio.uio_resid = count;
163 uio.uio_segflg = UIO_SYSSPACE;
164 uio.uio_rw = UIO_READ;
165 uio.uio_td = td;
167 error = nfs_readrpc(vp, &uio);
168 msf_buf_free(msf);
170 if (error && (uio.uio_resid == count)) {
171 printf("nfs_getpages: error %d\n", error);
172 for (i = 0; i < npages; ++i) {
173 if (i != ap->a_reqpage)
174 vnode_pager_freepage(pages[i]);
176 return VM_PAGER_ERROR;
180 * Calculate the number of bytes read and validate only that number
181 * of bytes. Note that due to pending writes, size may be 0. This
182 * does not mean that the remaining data is invalid!
185 size = count - uio.uio_resid;
187 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
188 nextoff = toff + PAGE_SIZE;
189 m = pages[i];
191 m->flags &= ~PG_ZERO;
193 if (nextoff <= size) {
195 * Read operation filled an entire page
197 m->valid = VM_PAGE_BITS_ALL;
198 vm_page_undirty(m);
199 } else if (size > toff) {
201 * Read operation filled a partial page.
203 m->valid = 0;
204 vm_page_set_validclean(m, 0, size - toff);
205 /* handled by vm_fault now */
206 /* vm_page_zero_invalid(m, TRUE); */
207 } else {
209 * Read operation was short. If no error occured
210 * we may have hit a zero-fill section. We simply
211 * leave valid set to 0.
215 if (i != ap->a_reqpage) {
217 * Whether or not to leave the page activated is up in
218 * the air, but we should put the page on a page queue
219 * somewhere (it already is in the object). Result:
220 * It appears that emperical results show that
221 * deactivating pages is best.
225 * Just in case someone was asking for this page we
226 * now tell them that it is ok to use.
228 if (!error) {
229 if (m->flags & PG_WANTED)
230 vm_page_activate(m);
231 else
232 vm_page_deactivate(m);
233 vm_page_wakeup(m);
234 } else {
235 vnode_pager_freepage(m);
239 return 0;
243 * Vnode op for VM putpages.
245 * nfs_putpages(struct vnode *a_vp, vm_page_t *a_m, int a_count, int a_sync,
246 * int *a_rtvals, vm_ooffset_t a_offset)
249 nfs_putpages(struct vop_putpages_args *ap)
251 struct thread *td = curthread;
252 struct uio uio;
253 struct iovec iov;
254 char *kva;
255 int iomode, must_commit, i, error, npages, count;
256 off_t offset;
257 int *rtvals;
258 struct vnode *vp;
259 struct nfsmount *nmp;
260 struct nfsnode *np;
261 vm_page_t *pages;
262 struct msf_buf *msf;
264 vp = ap->a_vp;
265 np = VTONFS(vp);
266 nmp = VFSTONFS(vp->v_mount);
267 pages = ap->a_m;
268 count = ap->a_count;
269 rtvals = ap->a_rtvals;
270 npages = btoc(count);
271 offset = IDX_TO_OFF(pages[0]->pindex);
273 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
274 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
275 (void)nfs_fsinfo(nmp, vp, td);
277 for (i = 0; i < npages; i++) {
278 rtvals[i] = VM_PAGER_AGAIN;
282 * When putting pages, do not extend file past EOF.
285 if (offset + count > np->n_size) {
286 count = np->n_size - offset;
287 if (count < 0)
288 count = 0;
292 * Use an MSF_BUF as a medium to retrieve data from the pages.
294 msf_map_pagelist(&msf, pages, npages, 0);
295 KKASSERT(msf);
296 kva = msf_buf_kva(msf);
298 iov.iov_base = kva;
299 iov.iov_len = count;
300 uio.uio_iov = &iov;
301 uio.uio_iovcnt = 1;
302 uio.uio_offset = offset;
303 uio.uio_resid = count;
304 uio.uio_segflg = UIO_SYSSPACE;
305 uio.uio_rw = UIO_WRITE;
306 uio.uio_td = td;
308 if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
309 iomode = NFSV3WRITE_UNSTABLE;
310 else
311 iomode = NFSV3WRITE_FILESYNC;
313 error = nfs_writerpc(vp, &uio, &iomode, &must_commit);
315 msf_buf_free(msf);
317 if (!error) {
318 int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
319 for (i = 0; i < nwritten; i++) {
320 rtvals[i] = VM_PAGER_OK;
321 vm_page_undirty(pages[i]);
323 if (must_commit)
324 nfs_clearcommit(vp->v_mount);
326 return rtvals[0];
330 * Vnode op for read using bio
333 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag)
335 struct nfsnode *np = VTONFS(vp);
336 int biosize, i;
337 struct buf *bp = 0, *rabp;
338 struct vattr vattr;
339 struct thread *td;
340 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
341 daddr_t lbn, rabn;
342 int bcount;
343 int seqcount;
344 int nra, error = 0, n = 0, on = 0;
346 #ifdef DIAGNOSTIC
347 if (uio->uio_rw != UIO_READ)
348 panic("nfs_read mode");
349 #endif
350 if (uio->uio_resid == 0)
351 return (0);
352 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */
353 return (EINVAL);
354 td = uio->uio_td;
356 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
357 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
358 (void)nfs_fsinfo(nmp, vp, td);
359 if (vp->v_type != VDIR &&
360 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
361 return (EFBIG);
362 biosize = vp->v_mount->mnt_stat.f_iosize;
363 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
366 * For nfs, cache consistency can only be maintained approximately.
367 * Although RFC1094 does not specify the criteria, the following is
368 * believed to be compatible with the reference port.
370 * NQNFS: Full cache coherency is maintained within the loop.
372 * NFS: If local changes have been made and this is a
373 * directory, the directory must be invalidated and
374 * the attribute cache must be cleared.
376 * GETATTR is called to synchronize the file size.
378 * If remote changes are detected local data is flushed
379 * and the cache is invalidated.
382 * NOTE: In the normal case the attribute cache is not
383 * cleared which means GETATTR may use cached data and
384 * not immediately detect changes made on the server.
386 if ((nmp->nm_flag & NFSMNT_NQNFS) == 0) {
387 if ((np->n_flag & NLMODIFIED) && vp->v_type == VDIR) {
388 nfs_invaldir(vp);
389 error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
390 if (error)
391 return (error);
392 np->n_attrstamp = 0;
394 error = VOP_GETATTR(vp, &vattr, td);
395 if (error)
396 return (error);
397 if (np->n_flag & NRMODIFIED) {
398 if (vp->v_type == VDIR)
399 nfs_invaldir(vp);
400 error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
401 if (error)
402 return (error);
403 np->n_flag &= ~NRMODIFIED;
406 do {
409 * Get a valid lease. If cached data is stale, flush it.
411 if (nmp->nm_flag & NFSMNT_NQNFS) {
412 if (NQNFS_CKINVALID(vp, np, ND_READ)) {
413 do {
414 error = nqnfs_getlease(vp, ND_READ, td);
415 } while (error == NQNFS_EXPIRED);
416 if (error)
417 return (error);
418 if (np->n_lrev != np->n_brev ||
419 (np->n_flag & NQNFSNONCACHE) ||
420 ((np->n_flag & NLMODIFIED) && vp->v_type == VDIR)) {
421 if (vp->v_type == VDIR)
422 nfs_invaldir(vp);
423 error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
424 if (error)
425 return (error);
426 np->n_brev = np->n_lrev;
428 } else if (vp->v_type == VDIR && (np->n_flag & NLMODIFIED)) {
429 nfs_invaldir(vp);
430 error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
431 if (error)
432 return (error);
435 if (np->n_flag & NQNFSNONCACHE) {
436 switch (vp->v_type) {
437 case VREG:
438 return (nfs_readrpc(vp, uio));
439 case VLNK:
440 return (nfs_readlinkrpc(vp, uio));
441 case VDIR:
442 break;
443 default:
444 printf(" NQNFSNONCACHE: type %x unexpected\n",
445 vp->v_type);
448 switch (vp->v_type) {
449 case VREG:
450 nfsstats.biocache_reads++;
451 lbn = uio->uio_offset / biosize;
452 on = uio->uio_offset & (biosize - 1);
455 * Start the read ahead(s), as required.
457 if (nfs_numasync > 0 && nmp->nm_readahead > 0) {
458 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
459 (off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
460 rabn = lbn + 1 + nra;
461 if (!findblk(vp, rabn)) {
462 rabp = nfs_getcacheblk(vp, rabn, biosize, td);
463 if (!rabp)
464 return (EINTR);
465 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
466 rabp->b_flags |= (B_READ | B_ASYNC);
467 vfs_busy_pages(rabp, 0);
468 if (nfs_asyncio(vp, &rabp->b_bio2, td)) {
469 rabp->b_flags |= B_INVAL|B_ERROR;
470 vfs_unbusy_pages(rabp);
471 brelse(rabp);
472 break;
474 } else {
475 brelse(rabp);
482 * Obtain the buffer cache block. Figure out the buffer size
483 * when we are at EOF. If we are modifying the size of the
484 * buffer based on an EOF condition we need to hold
485 * nfs_rslock() through obtaining the buffer to prevent
486 * a potential writer-appender from messing with n_size.
487 * Otherwise we may accidently truncate the buffer and
488 * lose dirty data.
490 * Note that bcount is *not* DEV_BSIZE aligned.
493 again:
494 bcount = biosize;
495 if ((off_t)lbn * biosize >= np->n_size) {
496 bcount = 0;
497 } else if ((off_t)(lbn + 1) * biosize > np->n_size) {
498 bcount = np->n_size - (off_t)lbn * biosize;
500 if (bcount != biosize) {
501 switch(nfs_rslock(np, td)) {
502 case ENOLCK:
503 goto again;
504 /* not reached */
505 case EINTR:
506 case ERESTART:
507 return(EINTR);
508 /* not reached */
509 default:
510 break;
514 bp = nfs_getcacheblk(vp, lbn, bcount, td);
516 if (bcount != biosize)
517 nfs_rsunlock(np, td);
518 if (!bp)
519 return (EINTR);
522 * If B_CACHE is not set, we must issue the read. If this
523 * fails, we return an error.
526 if ((bp->b_flags & B_CACHE) == 0) {
527 bp->b_flags |= B_READ;
528 vfs_busy_pages(bp, 0);
529 error = nfs_doio(vp, &bp->b_bio2, td);
530 if (error) {
531 brelse(bp);
532 return (error);
537 * on is the offset into the current bp. Figure out how many
538 * bytes we can copy out of the bp. Note that bcount is
539 * NOT DEV_BSIZE aligned.
541 * Then figure out how many bytes we can copy into the uio.
544 n = 0;
545 if (on < bcount)
546 n = min((unsigned)(bcount - on), uio->uio_resid);
547 break;
548 case VLNK:
549 nfsstats.biocache_readlinks++;
550 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
551 if (bp == NULL)
552 return (EINTR);
553 if ((bp->b_flags & B_CACHE) == 0) {
554 bp->b_flags |= B_READ;
555 vfs_busy_pages(bp, 0);
556 error = nfs_doio(vp, &bp->b_bio2, td);
557 if (error) {
558 bp->b_flags |= B_ERROR;
559 brelse(bp);
560 return (error);
563 n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
564 on = 0;
565 break;
566 case VDIR:
567 nfsstats.biocache_readdirs++;
568 if (np->n_direofoffset
569 && uio->uio_offset >= np->n_direofoffset) {
570 return (0);
572 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
573 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
574 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
575 if (bp == NULL)
576 return (EINTR);
577 if ((bp->b_flags & B_CACHE) == 0) {
578 bp->b_flags |= B_READ;
579 vfs_busy_pages(bp, 0);
580 error = nfs_doio(vp, &bp->b_bio2, td);
581 if (error) {
582 brelse(bp);
584 while (error == NFSERR_BAD_COOKIE) {
585 printf("got bad cookie vp %p bp %p\n", vp, bp);
586 nfs_invaldir(vp);
587 error = nfs_vinvalbuf(vp, 0, td, 1);
589 * Yuck! The directory has been modified on the
590 * server. The only way to get the block is by
591 * reading from the beginning to get all the
592 * offset cookies.
594 * Leave the last bp intact unless there is an error.
595 * Loop back up to the while if the error is another
596 * NFSERR_BAD_COOKIE (double yuch!).
598 for (i = 0; i <= lbn && !error; i++) {
599 if (np->n_direofoffset
600 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
601 return (0);
602 bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
603 if (!bp)
604 return (EINTR);
605 if ((bp->b_flags & B_CACHE) == 0) {
606 bp->b_flags |= B_READ;
607 vfs_busy_pages(bp, 0);
608 error = nfs_doio(vp, &bp->b_bio2, td);
610 * no error + B_INVAL == directory EOF,
611 * use the block.
613 if (error == 0 && (bp->b_flags & B_INVAL))
614 break;
617 * An error will throw away the block and the
618 * for loop will break out. If no error and this
619 * is not the block we want, we throw away the
620 * block and go for the next one via the for loop.
622 if (error || i < lbn)
623 brelse(bp);
627 * The above while is repeated if we hit another cookie
628 * error. If we hit an error and it wasn't a cookie error,
629 * we give up.
631 if (error)
632 return (error);
636 * If not eof and read aheads are enabled, start one.
637 * (You need the current block first, so that you have the
638 * directory offset cookie of the next block.)
640 if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
641 (bp->b_flags & B_INVAL) == 0 &&
642 (np->n_direofoffset == 0 ||
643 (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
644 !(np->n_flag & NQNFSNONCACHE) &&
645 !findblk(vp, lbn + 1)) {
646 rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
647 if (rabp) {
648 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
649 rabp->b_flags |= (B_READ | B_ASYNC);
650 vfs_busy_pages(rabp, 0);
651 if (nfs_asyncio(vp, &rabp->b_bio2, td)) {
652 rabp->b_flags |= B_INVAL|B_ERROR;
653 vfs_unbusy_pages(rabp);
654 brelse(rabp);
656 } else {
657 brelse(rabp);
662 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
663 * chopped for the EOF condition, we cannot tell how large
664 * NFS directories are going to be until we hit EOF. So
665 * an NFS directory buffer is *not* chopped to its EOF. Now,
666 * it just so happens that b_resid will effectively chop it
667 * to EOF. *BUT* this information is lost if the buffer goes
668 * away and is reconstituted into a B_CACHE state ( due to
669 * being VMIO ) later. So we keep track of the directory eof
670 * in np->n_direofoffset and chop it off as an extra step
671 * right here.
673 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
674 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
675 n = np->n_direofoffset - uio->uio_offset;
676 break;
677 default:
678 printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
679 break;
682 switch (vp->v_type) {
683 case VREG:
684 if (n > 0)
685 error = uiomove(bp->b_data + on, (int)n, uio);
686 break;
687 case VLNK:
688 if (n > 0)
689 error = uiomove(bp->b_data + on, (int)n, uio);
690 n = 0;
691 break;
692 case VDIR:
693 if (n > 0) {
694 off_t old_off = uio->uio_offset;
695 caddr_t cpos, epos;
696 struct nfs_dirent *dp;
698 cpos = bp->b_data + on;
699 epos = bp->b_data + on + n;
700 while (cpos < epos && error == 0 && uio->uio_resid > 0) {
701 dp = (struct nfs_dirent *)cpos;
702 if (vop_write_dirent(&error, uio, dp->nfs_ino,
703 dp->nfs_type, dp->nfs_namlen, dp->nfs_name))
704 break;
705 cpos += dp->nfs_reclen;
707 n = 0;
708 if (error == 0)
709 uio->uio_offset = old_off + cpos - bp->b_data - on;
712 * Invalidate buffer if caching is disabled, forcing a
713 * re-read from the remote later.
715 if (np->n_flag & NQNFSNONCACHE)
716 bp->b_flags |= B_INVAL;
717 break;
718 default:
719 printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
721 brelse(bp);
722 } while (error == 0 && uio->uio_resid > 0 && n > 0);
723 return (error);
727 * Vnode op for write using bio
729 * nfs_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
730 * struct ucred *a_cred)
733 nfs_write(struct vop_write_args *ap)
735 struct uio *uio = ap->a_uio;
736 struct thread *td = uio->uio_td;
737 struct vnode *vp = ap->a_vp;
738 struct nfsnode *np = VTONFS(vp);
739 int ioflag = ap->a_ioflag;
740 struct buf *bp;
741 struct vattr vattr;
742 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
743 daddr_t lbn;
744 int n, on, error = 0, iomode, must_commit;
745 int haverslock = 0;
746 int bcount;
747 int biosize;
749 #ifdef DIAGNOSTIC
750 if (uio->uio_rw != UIO_WRITE)
751 panic("nfs_write mode");
752 if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
753 panic("nfs_write proc");
754 #endif
755 if (vp->v_type != VREG)
756 return (EIO);
757 if (np->n_flag & NWRITEERR) {
758 np->n_flag &= ~NWRITEERR;
759 return (np->n_error);
761 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
762 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
763 (void)nfs_fsinfo(nmp, vp, td);
766 * Synchronously flush pending buffers if we are in synchronous
767 * mode or if we are appending.
769 if (ioflag & (IO_APPEND | IO_SYNC)) {
770 if (np->n_flag & NLMODIFIED) {
771 np->n_attrstamp = 0;
772 error = nfs_flush(vp, MNT_WAIT, td, 0);
773 /* error = nfs_vinvalbuf(vp, V_SAVE, td, 1); */
774 if (error)
775 return (error);
780 * If IO_APPEND then load uio_offset. We restart here if we cannot
781 * get the append lock.
783 restart:
784 if (ioflag & IO_APPEND) {
785 np->n_attrstamp = 0;
786 error = VOP_GETATTR(vp, &vattr, td);
787 if (error)
788 return (error);
789 uio->uio_offset = np->n_size;
792 if (uio->uio_offset < 0)
793 return (EINVAL);
794 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
795 return (EFBIG);
796 if (uio->uio_resid == 0)
797 return (0);
800 * We need to obtain the rslock if we intend to modify np->n_size
801 * in order to guarentee the append point with multiple contending
802 * writers, to guarentee that no other appenders modify n_size
803 * while we are trying to obtain a truncated buffer (i.e. to avoid
804 * accidently truncating data written by another appender due to
805 * the race), and to ensure that the buffer is populated prior to
806 * our extending of the file. We hold rslock through the entire
807 * operation.
809 * Note that we do not synchronize the case where someone truncates
810 * the file while we are appending to it because attempting to lock
811 * this case may deadlock other parts of the system unexpectedly.
813 if ((ioflag & IO_APPEND) ||
814 uio->uio_offset + uio->uio_resid > np->n_size) {
815 switch(nfs_rslock(np, td)) {
816 case ENOLCK:
817 goto restart;
818 /* not reached */
819 case EINTR:
820 case ERESTART:
821 return(EINTR);
822 /* not reached */
823 default:
824 break;
826 haverslock = 1;
830 * Maybe this should be above the vnode op call, but so long as
831 * file servers have no limits, i don't think it matters
833 if (td->td_proc && uio->uio_offset + uio->uio_resid >
834 td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
835 psignal(td->td_proc, SIGXFSZ);
836 if (haverslock)
837 nfs_rsunlock(np, td);
838 return (EFBIG);
841 biosize = vp->v_mount->mnt_stat.f_iosize;
843 do {
845 * Check for a valid write lease.
847 if ((nmp->nm_flag & NFSMNT_NQNFS) &&
848 NQNFS_CKINVALID(vp, np, ND_WRITE)) {
849 do {
850 error = nqnfs_getlease(vp, ND_WRITE, td);
851 } while (error == NQNFS_EXPIRED);
852 if (error)
853 break;
854 if (np->n_lrev != np->n_brev ||
855 (np->n_flag & NQNFSNONCACHE)) {
856 error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
857 if (error)
858 break;
859 np->n_brev = np->n_lrev;
862 if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) {
863 iomode = NFSV3WRITE_FILESYNC;
864 error = nfs_writerpc(vp, uio, &iomode, &must_commit);
865 if (must_commit)
866 nfs_clearcommit(vp->v_mount);
867 break;
869 nfsstats.biocache_writes++;
870 lbn = uio->uio_offset / biosize;
871 on = uio->uio_offset & (biosize-1);
872 n = min((unsigned)(biosize - on), uio->uio_resid);
873 again:
875 * Handle direct append and file extension cases, calculate
876 * unaligned buffer size.
879 if (uio->uio_offset == np->n_size && n) {
881 * Get the buffer (in its pre-append state to maintain
882 * B_CACHE if it was previously set). Resize the
883 * nfsnode after we have locked the buffer to prevent
884 * readers from reading garbage.
886 bcount = on;
887 bp = nfs_getcacheblk(vp, lbn, bcount, td);
889 if (bp != NULL) {
890 long save;
892 np->n_size = uio->uio_offset + n;
893 np->n_flag |= NLMODIFIED;
894 vnode_pager_setsize(vp, np->n_size);
896 save = bp->b_flags & B_CACHE;
897 bcount += n;
898 allocbuf(bp, bcount);
899 bp->b_flags |= save;
901 } else {
903 * Obtain the locked cache block first, and then
904 * adjust the file's size as appropriate.
906 bcount = on + n;
907 if ((off_t)lbn * biosize + bcount < np->n_size) {
908 if ((off_t)(lbn + 1) * biosize < np->n_size)
909 bcount = biosize;
910 else
911 bcount = np->n_size - (off_t)lbn * biosize;
913 bp = nfs_getcacheblk(vp, lbn, bcount, td);
914 if (uio->uio_offset + n > np->n_size) {
915 np->n_size = uio->uio_offset + n;
916 np->n_flag |= NLMODIFIED;
917 vnode_pager_setsize(vp, np->n_size);
921 if (bp == NULL) {
922 error = EINTR;
923 break;
927 * Issue a READ if B_CACHE is not set. In special-append
928 * mode, B_CACHE is based on the buffer prior to the write
929 * op and is typically set, avoiding the read. If a read
930 * is required in special append mode, the server will
931 * probably send us a short-read since we extended the file
932 * on our end, resulting in b_resid == 0 and, thusly,
933 * B_CACHE getting set.
935 * We can also avoid issuing the read if the write covers
936 * the entire buffer. We have to make sure the buffer state
937 * is reasonable in this case since we will not be initiating
938 * I/O. See the comments in kern/vfs_bio.c's getblk() for
939 * more information.
941 * B_CACHE may also be set due to the buffer being cached
942 * normally.
945 if (on == 0 && n == bcount) {
946 bp->b_flags |= B_CACHE;
947 bp->b_flags &= ~(B_ERROR | B_INVAL);
950 if ((bp->b_flags & B_CACHE) == 0) {
951 bp->b_flags |= B_READ;
952 vfs_busy_pages(bp, 0);
953 error = nfs_doio(vp, &bp->b_bio2, td);
954 if (error) {
955 brelse(bp);
956 break;
959 if (!bp) {
960 error = EINTR;
961 break;
963 np->n_flag |= NLMODIFIED;
966 * If dirtyend exceeds file size, chop it down. This should
967 * not normally occur but there is an append race where it
968 * might occur XXX, so we log it.
970 * If the chopping creates a reverse-indexed or degenerate
971 * situation with dirtyoff/end, we 0 both of them.
974 if (bp->b_dirtyend > bcount) {
975 printf("NFS append race @%llx:%d\n",
976 (off_t)bp->b_bio2.bio_blkno << DEV_BSHIFT,
977 bp->b_dirtyend - bcount);
978 bp->b_dirtyend = bcount;
981 if (bp->b_dirtyoff >= bp->b_dirtyend)
982 bp->b_dirtyoff = bp->b_dirtyend = 0;
985 * If the new write will leave a contiguous dirty
986 * area, just update the b_dirtyoff and b_dirtyend,
987 * otherwise force a write rpc of the old dirty area.
989 * While it is possible to merge discontiguous writes due to
990 * our having a B_CACHE buffer ( and thus valid read data
991 * for the hole), we don't because it could lead to
992 * significant cache coherency problems with multiple clients,
993 * especially if locking is implemented later on.
995 * as an optimization we could theoretically maintain
996 * a linked list of discontinuous areas, but we would still
997 * have to commit them separately so there isn't much
998 * advantage to it except perhaps a bit of asynchronization.
1001 if (bp->b_dirtyend > 0 &&
1002 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1003 if (VOP_BWRITE(vp, bp) == EINTR) {
1004 error = EINTR;
1005 break;
1007 goto again;
1011 * Check for valid write lease and get one as required.
1012 * In case getblk() and/or bwrite() delayed us.
1014 if ((nmp->nm_flag & NFSMNT_NQNFS) &&
1015 NQNFS_CKINVALID(vp, np, ND_WRITE)) {
1016 do {
1017 error = nqnfs_getlease(vp, ND_WRITE, td);
1018 } while (error == NQNFS_EXPIRED);
1019 if (error) {
1020 brelse(bp);
1021 break;
1023 if (np->n_lrev != np->n_brev ||
1024 (np->n_flag & NQNFSNONCACHE)) {
1025 brelse(bp);
1026 error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
1027 if (error)
1028 break;
1029 np->n_brev = np->n_lrev;
1030 goto again;
1034 error = uiomove((char *)bp->b_data + on, n, uio);
1037 * Since this block is being modified, it must be written
1038 * again and not just committed. Since write clustering does
1039 * not work for the stage 1 data write, only the stage 2
1040 * commit rpc, we have to clear B_CLUSTEROK as well.
1042 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1044 if (error) {
1045 bp->b_flags |= B_ERROR;
1046 brelse(bp);
1047 break;
1051 * Only update dirtyoff/dirtyend if not a degenerate
1052 * condition.
1054 if (n) {
1055 if (bp->b_dirtyend > 0) {
1056 bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1057 bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1058 } else {
1059 bp->b_dirtyoff = on;
1060 bp->b_dirtyend = on + n;
1062 vfs_bio_set_validclean(bp, on, n);
1065 * If IO_NOWDRAIN then set B_NOWDRAIN (e.g. nfs-backed VN
1066 * filesystem). XXX also use for loopback NFS mounts.
1068 if (ioflag & IO_NOWDRAIN)
1069 bp->b_flags |= B_NOWDRAIN;
1072 * If the lease is non-cachable or IO_SYNC do bwrite().
1074 * IO_INVAL appears to be unused. The idea appears to be
1075 * to turn off caching in this case. Very odd. XXX
1077 if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) {
1078 if (ioflag & IO_INVAL)
1079 bp->b_flags |= B_NOCACHE;
1080 error = VOP_BWRITE(vp, bp);
1081 if (error)
1082 break;
1083 if (np->n_flag & NQNFSNONCACHE) {
1084 error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
1085 if (error)
1086 break;
1088 } else if ((n + on) == biosize &&
1089 (nmp->nm_flag & NFSMNT_NQNFS) == 0) {
1090 bp->b_flags |= B_ASYNC;
1091 nfs_writebp(bp, 0, 0);
1092 } else {
1093 bdwrite(bp);
1095 } while (uio->uio_resid > 0 && n > 0);
1097 if (haverslock)
1098 nfs_rsunlock(np, td);
1100 return (error);
1104 * Get an nfs cache block.
1106 * Allocate a new one if the block isn't currently in the cache
1107 * and return the block marked busy. If the calling process is
1108 * interrupted by a signal for an interruptible mount point, return
1109 * NULL.
1111 * The caller must carefully deal with the possible B_INVAL state of
1112 * the buffer. nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1113 * indirectly), so synchronous reads can be issued without worrying about
1114 * the B_INVAL state. We have to be a little more careful when dealing
1115 * with writes (see comments in nfs_write()) when extending a file past
1116 * its EOF.
1118 static struct buf *
1119 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1121 struct buf *bp;
1122 struct mount *mp;
1123 struct nfsmount *nmp;
1125 mp = vp->v_mount;
1126 nmp = VFSTONFS(mp);
1128 if (nmp->nm_flag & NFSMNT_INT) {
1129 bp = getblk(vp, bn, size, PCATCH, 0);
1130 while (bp == NULL) {
1131 if (nfs_sigintr(nmp, (struct nfsreq *)0, td))
1132 return (NULL);
1133 bp = getblk(vp, bn, size, 0, 2 * hz);
1135 } else {
1136 bp = getblk(vp, bn, size, 0, 0);
1140 * bio2, the 'device' layer, is normalized to DEV_BSIZE'd blocks.
1142 if (vp->v_type == VREG) {
1143 int biosize;
1145 biosize = mp->mnt_stat.f_iosize;
1146 bp->b_bio2.bio_blkno = ((off_t)bn * biosize) >> DEV_BSHIFT;
1147 } else {
1148 bp->b_bio2.bio_blkno = ((off_t)bn * NFS_DIRBLKSIZ) >> DEV_BSHIFT;
1150 return (bp);
1154 * Flush and invalidate all dirty buffers. If another process is already
1155 * doing the flush, just wait for completion.
1158 nfs_vinvalbuf(struct vnode *vp, int flags,
1159 struct thread *td, int intrflg)
1161 struct nfsnode *np = VTONFS(vp);
1162 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1163 int error = 0, slpflag, slptimeo;
1165 if (vp->v_flag & VRECLAIMED)
1166 return (0);
1168 if ((nmp->nm_flag & NFSMNT_INT) == 0)
1169 intrflg = 0;
1170 if (intrflg) {
1171 slpflag = PCATCH;
1172 slptimeo = 2 * hz;
1173 } else {
1174 slpflag = 0;
1175 slptimeo = 0;
1178 * First wait for any other process doing a flush to complete.
1180 while (np->n_flag & NFLUSHINPROG) {
1181 np->n_flag |= NFLUSHWANT;
1182 error = tsleep((caddr_t)&np->n_flag, 0, "nfsvinval", slptimeo);
1183 if (error && intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, td))
1184 return (EINTR);
1188 * Now, flush as required.
1190 np->n_flag |= NFLUSHINPROG;
1191 error = vinvalbuf(vp, flags, td, slpflag, 0);
1192 while (error) {
1193 if (intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
1194 np->n_flag &= ~NFLUSHINPROG;
1195 if (np->n_flag & NFLUSHWANT) {
1196 np->n_flag &= ~NFLUSHWANT;
1197 wakeup((caddr_t)&np->n_flag);
1199 return (EINTR);
1201 error = vinvalbuf(vp, flags, td, 0, slptimeo);
1203 np->n_flag &= ~(NLMODIFIED | NFLUSHINPROG);
1204 if (np->n_flag & NFLUSHWANT) {
1205 np->n_flag &= ~NFLUSHWANT;
1206 wakeup((caddr_t)&np->n_flag);
1208 return (0);
1212 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1213 * This is mainly to avoid queueing async I/O requests when the nfsiods
1214 * are all hung on a dead server.
1216 * Note: nfs_asyncio() does not clear (B_ERROR|B_INVAL) but when the bp
1217 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1220 nfs_asyncio(struct vnode *vp, struct bio *bio, struct thread *td)
1222 struct buf *bp = bio->bio_buf;
1223 struct nfsmount *nmp;
1224 int i;
1225 int gotiod;
1226 int slpflag = 0;
1227 int slptimeo = 0;
1228 int error;
1231 * If no async daemons then return EIO to force caller to run the rpc
1232 * synchronously.
1234 if (nfs_numasync == 0)
1235 return (EIO);
1237 KKASSERT(vp->v_tag == VT_NFS);
1238 nmp = VFSTONFS(vp->v_mount);
1241 * Commits are usually short and sweet so lets save some cpu and
1242 * leave the async daemons for more important rpc's (such as reads
1243 * and writes).
1245 if ((bp->b_flags & (B_READ|B_NEEDCOMMIT)) == B_NEEDCOMMIT &&
1246 (nmp->nm_bioqiods > nfs_numasync / 2)) {
1247 return(EIO);
1250 again:
1251 if (nmp->nm_flag & NFSMNT_INT)
1252 slpflag = PCATCH;
1253 gotiod = FALSE;
1256 * Find a free iod to process this request.
1258 for (i = 0; i < NFS_MAXASYNCDAEMON; i++)
1259 if (nfs_iodwant[i]) {
1261 * Found one, so wake it up and tell it which
1262 * mount to process.
1264 NFS_DPF(ASYNCIO,
1265 ("nfs_asyncio: waking iod %d for mount %p\n",
1266 i, nmp));
1267 nfs_iodwant[i] = NULL;
1268 nfs_iodmount[i] = nmp;
1269 nmp->nm_bioqiods++;
1270 wakeup((caddr_t)&nfs_iodwant[i]);
1271 gotiod = TRUE;
1272 break;
1276 * If none are free, we may already have an iod working on this mount
1277 * point. If so, it will process our request.
1279 if (!gotiod) {
1280 if (nmp->nm_bioqiods > 0) {
1281 NFS_DPF(ASYNCIO,
1282 ("nfs_asyncio: %d iods are already processing mount %p\n",
1283 nmp->nm_bioqiods, nmp));
1284 gotiod = TRUE;
1289 * If we have an iod which can process the request, then queue
1290 * the buffer.
1292 if (gotiod) {
1294 * Ensure that the queue never grows too large. We still want
1295 * to asynchronize so we block rather then return EIO.
1297 while (nmp->nm_bioqlen >= 2*nfs_numasync) {
1298 NFS_DPF(ASYNCIO,
1299 ("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1300 nmp->nm_bioqwant = TRUE;
1301 error = tsleep(&nmp->nm_bioq, slpflag,
1302 "nfsaio", slptimeo);
1303 if (error) {
1304 if (nfs_sigintr(nmp, NULL, td))
1305 return (EINTR);
1306 if (slpflag == PCATCH) {
1307 slpflag = 0;
1308 slptimeo = 2 * hz;
1312 * We might have lost our iod while sleeping,
1313 * so check and loop if nescessary.
1315 if (nmp->nm_bioqiods == 0) {
1316 NFS_DPF(ASYNCIO,
1317 ("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1318 goto again;
1321 BUF_KERNPROC(bp);
1324 * The passed bio's buffer is not necessary associated with
1325 * the NFS vnode it is being written to. Store the NFS vnode
1326 * in the BIO driver info.
1328 bio->bio_driver_info = vp;
1329 TAILQ_INSERT_TAIL(&nmp->nm_bioq, bio, bio_act);
1330 nmp->nm_bioqlen++;
1331 return (0);
1335 * All the iods are busy on other mounts, so return EIO to
1336 * force the caller to process the i/o synchronously.
1338 NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1339 return (EIO);
1343 * Do an I/O operation to/from a cache block. This may be called
1344 * synchronously or from an nfsiod. The BIO is normalized for DEV_BSIZE.
1346 * NOTE! TD MIGHT BE NULL
1349 nfs_doio(struct vnode *vp, struct bio *bio, struct thread *td)
1351 struct buf *bp = bio->bio_buf;
1352 struct uio *uiop;
1353 struct nfsnode *np;
1354 struct nfsmount *nmp;
1355 int error = 0, iomode, must_commit = 0;
1356 struct uio uio;
1357 struct iovec io;
1359 KKASSERT(vp->v_tag == VT_NFS);
1360 np = VTONFS(vp);
1361 nmp = VFSTONFS(vp->v_mount);
1362 uiop = &uio;
1363 uiop->uio_iov = &io;
1364 uiop->uio_iovcnt = 1;
1365 uiop->uio_segflg = UIO_SYSSPACE;
1366 uiop->uio_td = td;
1369 * clear B_ERROR and B_INVAL state prior to initiating the I/O. We
1370 * do this here so we do not have to do it in all the code that
1371 * calls us.
1373 bp->b_flags &= ~(B_ERROR | B_INVAL);
1375 KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1378 * Historically, paging was done with physio, but no more.
1380 if (bp->b_flags & B_PHYS) {
1382 * ...though reading /dev/drum still gets us here.
1384 io.iov_len = uiop->uio_resid = bp->b_bcount;
1385 /* mapping was done by vmapbuf() */
1386 io.iov_base = bp->b_data;
1387 uiop->uio_offset = (off_t)bio->bio_blkno << DEV_BSHIFT;
1388 if (bp->b_flags & B_READ) {
1389 uiop->uio_rw = UIO_READ;
1390 nfsstats.read_physios++;
1391 error = nfs_readrpc(vp, uiop);
1392 } else {
1393 int com;
1395 iomode = NFSV3WRITE_DATASYNC;
1396 uiop->uio_rw = UIO_WRITE;
1397 nfsstats.write_physios++;
1398 error = nfs_writerpc(vp, uiop, &iomode, &com);
1400 if (error) {
1401 bp->b_flags |= B_ERROR;
1402 bp->b_error = error;
1404 } else if (bp->b_flags & B_READ) {
1405 io.iov_len = uiop->uio_resid = bp->b_bcount;
1406 io.iov_base = bp->b_data;
1407 uiop->uio_rw = UIO_READ;
1409 switch (vp->v_type) {
1410 case VREG:
1411 uiop->uio_offset = (off_t)bio->bio_blkno << DEV_BSHIFT;
1412 nfsstats.read_bios++;
1413 error = nfs_readrpc(vp, uiop);
1415 if (!error) {
1416 if (uiop->uio_resid) {
1418 * If we had a short read with no error, we must have
1419 * hit a file hole. We should zero-fill the remainder.
1420 * This can also occur if the server hits the file EOF.
1422 * Holes used to be able to occur due to pending
1423 * writes, but that is not possible any longer.
1425 int nread = bp->b_bcount - uiop->uio_resid;
1426 int left = uiop->uio_resid;
1428 if (left > 0)
1429 bzero((char *)bp->b_data + nread, left);
1430 uiop->uio_resid = 0;
1433 if (td && td->td_proc && (vp->v_flag & VTEXT) &&
1434 (((nmp->nm_flag & NFSMNT_NQNFS) &&
1435 NQNFS_CKINVALID(vp, np, ND_READ) &&
1436 np->n_lrev != np->n_brev) ||
1437 (!(nmp->nm_flag & NFSMNT_NQNFS) &&
1438 np->n_mtime != np->n_vattr.va_mtime.tv_sec))) {
1439 uprintf("Process killed due to text file modification\n");
1440 psignal(td->td_proc, SIGKILL);
1442 break;
1443 case VLNK:
1444 uiop->uio_offset = 0;
1445 nfsstats.readlink_bios++;
1446 error = nfs_readlinkrpc(vp, uiop);
1447 break;
1448 case VDIR:
1449 nfsstats.readdir_bios++;
1450 uiop->uio_offset = (off_t)bio->bio_blkno << DEV_BSHIFT;
1451 if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1452 error = nfs_readdirplusrpc(vp, uiop);
1453 if (error == NFSERR_NOTSUPP)
1454 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1456 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1457 error = nfs_readdirrpc(vp, uiop);
1459 * end-of-directory sets B_INVAL but does not generate an
1460 * error.
1462 if (error == 0 && uiop->uio_resid == bp->b_bcount)
1463 bp->b_flags |= B_INVAL;
1464 break;
1465 default:
1466 printf("nfs_doio: type %x unexpected\n",vp->v_type);
1467 break;
1469 if (error) {
1470 bp->b_flags |= B_ERROR;
1471 bp->b_error = error;
1473 } else {
1475 * If we only need to commit, try to commit
1477 if (bp->b_flags & B_NEEDCOMMIT) {
1478 int retv;
1479 off_t off;
1481 off = ((off_t)bio->bio_blkno << DEV_BSHIFT) +
1482 bp->b_dirtyoff;
1483 retv = nfs_commit(vp, off,
1484 bp->b_dirtyend - bp->b_dirtyoff, td);
1485 if (retv == 0) {
1486 bp->b_dirtyoff = bp->b_dirtyend = 0;
1487 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1488 bp->b_resid = 0;
1489 biodone(bio);
1490 return (0);
1492 if (retv == NFSERR_STALEWRITEVERF) {
1493 nfs_clearcommit(vp->v_mount);
1498 * Setup for actual write
1501 if (((off_t)bio->bio_blkno << DEV_BSHIFT) + bp->b_dirtyend > np->n_size)
1502 bp->b_dirtyend = np->n_size - ((off_t)bio->bio_blkno << DEV_BSHIFT);
1504 if (bp->b_dirtyend > bp->b_dirtyoff) {
1505 io.iov_len = uiop->uio_resid = bp->b_dirtyend
1506 - bp->b_dirtyoff;
1507 uiop->uio_offset = ((off_t)bio->bio_blkno << DEV_BSHIFT)
1508 + bp->b_dirtyoff;
1509 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1510 uiop->uio_rw = UIO_WRITE;
1511 nfsstats.write_bios++;
1513 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1514 iomode = NFSV3WRITE_UNSTABLE;
1515 else
1516 iomode = NFSV3WRITE_FILESYNC;
1518 error = nfs_writerpc(vp, uiop, &iomode, &must_commit);
1521 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1522 * to cluster the buffers needing commit. This will allow
1523 * the system to submit a single commit rpc for the whole
1524 * cluster. We can do this even if the buffer is not 100%
1525 * dirty (relative to the NFS blocksize), so we optimize the
1526 * append-to-file-case.
1528 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1529 * cleared because write clustering only works for commit
1530 * rpc's, not for the data portion of the write).
1533 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1534 bp->b_flags |= B_NEEDCOMMIT;
1535 if (bp->b_dirtyoff == 0
1536 && bp->b_dirtyend == bp->b_bcount)
1537 bp->b_flags |= B_CLUSTEROK;
1538 } else {
1539 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1543 * For an interrupted write, the buffer is still valid
1544 * and the write hasn't been pushed to the server yet,
1545 * so we can't set B_ERROR and report the interruption
1546 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1547 * is not relevant, so the rpc attempt is essentially
1548 * a noop. For the case of a V3 write rpc not being
1549 * committed to stable storage, the block is still
1550 * dirty and requires either a commit rpc or another
1551 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1552 * the block is reused. This is indicated by setting
1553 * the B_DELWRI and B_NEEDCOMMIT flags.
1555 * If the buffer is marked B_PAGING, it does not reside on
1556 * the vp's paging queues so we cannot call bdirty(). The
1557 * bp in this case is not an NFS cache block so we should
1558 * be safe. XXX
1560 if (error == EINTR
1561 || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1562 crit_enter();
1563 bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1564 if ((bp->b_flags & B_PAGING) == 0) {
1565 bdirty(bp);
1566 bp->b_flags &= ~B_DONE;
1568 if (error && (bp->b_flags & B_ASYNC) == 0)
1569 bp->b_flags |= B_EINTR;
1570 crit_exit();
1571 } else {
1572 if (error) {
1573 bp->b_flags |= B_ERROR;
1574 bp->b_error = np->n_error = error;
1575 np->n_flag |= NWRITEERR;
1577 bp->b_dirtyoff = bp->b_dirtyend = 0;
1579 } else {
1580 bp->b_resid = 0;
1581 biodone(bio);
1582 return (0);
1585 bp->b_resid = uiop->uio_resid;
1586 if (must_commit)
1587 nfs_clearcommit(vp->v_mount);
1588 biodone(bio);
1589 return (error);
1593 * Used to aid in handling ftruncate() operations on the NFS client side.
1594 * Truncation creates a number of special problems for NFS. We have to
1595 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1596 * we have to properly handle VM pages or (potentially dirty) buffers
1597 * that straddle the truncation point.
1601 nfs_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize)
1603 struct nfsnode *np = VTONFS(vp);
1604 u_quad_t tsize = np->n_size;
1605 int biosize = vp->v_mount->mnt_stat.f_iosize;
1606 int error = 0;
1608 np->n_size = nsize;
1610 if (np->n_size < tsize) {
1611 struct buf *bp;
1612 daddr_t lbn;
1613 int bufsize;
1616 * vtruncbuf() doesn't get the buffer overlapping the
1617 * truncation point. We may have a B_DELWRI and/or B_CACHE
1618 * buffer that now needs to be truncated.
1620 error = vtruncbuf(vp, td, nsize, biosize);
1621 lbn = nsize / biosize;
1622 bufsize = nsize & (biosize - 1);
1623 bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1624 if (bp->b_dirtyoff > bp->b_bcount)
1625 bp->b_dirtyoff = bp->b_bcount;
1626 if (bp->b_dirtyend > bp->b_bcount)
1627 bp->b_dirtyend = bp->b_bcount;
1628 bp->b_flags |= B_RELBUF; /* don't leave garbage around */
1629 brelse(bp);
1630 } else {
1631 vnode_pager_setsize(vp, nsize);
1633 return(error);