Replace the global buffer cache hash table with a per-vnode red-black tree.
[dragonfly.git] / sys / kern / vfs_bio.c
blob261df1825552c46dbb2115c6caaceb6cbc6543d7
1 /*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.58 2006/03/05 18:38:34 dillon Exp $
19 * this file contains a new buffer I/O scheme implementing a coherent
20 * VM object and buffer cache scheme. Pains have been taken to make
21 * sure that the performance degradation associated with schemes such
22 * as this is not realized.
24 * Author: John S. Dyson
25 * Significant help during the development and debugging phases
26 * had been provided by David Greenman, also of the FreeBSD core team.
28 * see man buf(9) for more info.
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <vm/vm_page2.h>
62 * Buffer queues.
64 #define BUFFER_QUEUES 6
65 enum bufq_type {
66 BQUEUE_NONE, /* not on any queue */
67 BQUEUE_LOCKED, /* locked buffers */
68 BQUEUE_CLEAN, /* non-B_DELWRI buffers */
69 BQUEUE_DIRTY, /* B_DELWRI buffers */
70 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */
71 BQUEUE_EMPTY /* empty buffer headers */
73 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
75 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
77 struct bio_ops bioops; /* I/O operation notification */
79 struct buf *buf; /* buffer header pool */
81 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
82 vm_offset_t to);
83 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
84 vm_offset_t to);
85 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
86 int pageno, vm_page_t m);
87 static void vfs_clean_pages(struct buf * bp);
88 static void vfs_setdirty(struct buf *bp);
89 static void vfs_vmio_release(struct buf *bp);
90 static int flushbufqueues(void);
92 static int bd_request;
94 static void buf_daemon (void);
96 * bogus page -- for I/O to/from partially complete buffers
97 * this is a temporary solution to the problem, but it is not
98 * really that bad. it would be better to split the buffer
99 * for input in the case of buffers partially already in memory,
100 * but the code is intricate enough already.
102 vm_page_t bogus_page;
103 int vmiodirenable = TRUE;
104 int runningbufspace;
106 static int bufspace, maxbufspace,
107 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
108 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
109 static int needsbuffer;
110 static int lorunningspace, hirunningspace, runningbufreq;
111 static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
112 static int numfreebuffers, lofreebuffers, hifreebuffers;
113 static int getnewbufcalls;
114 static int getnewbufrestarts;
117 * Sysctls for operational control of the buffer cache.
119 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
120 "Number of dirty buffers to flush before bufdaemon becomes inactive");
121 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
122 "High watermark used to trigger explicit flushing of dirty buffers");
123 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
124 "Low watermark for special reserve in low-memory situations");
125 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
126 "High watermark for special reserve in low-memory situations");
127 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
128 "Minimum amount of buffer space required for active I/O");
129 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
130 "Maximum amount of buffer space to usable for active I/O");
131 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
132 "Use the VM system for performing directory writes");
134 * Sysctls determining current state of the buffer cache.
136 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
137 "Pending number of dirty buffers");
138 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
139 "Number of free buffers on the buffer cache free list");
140 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
141 "I/O bytes currently in progress due to asynchronous writes");
142 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
143 "Hard limit on maximum amount of memory usable for buffer space");
144 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
145 "Soft limit on maximum amount of memory usable for buffer space");
146 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
147 "Minimum amount of memory to reserve for system buffer space");
148 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
149 "Amount of memory available for buffers");
150 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
151 0, "Maximum amount of memory reserved for buffers using malloc");
152 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
153 "Amount of memory left for buffers using malloc-scheme");
154 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
155 "New buffer header acquisition requests");
156 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
157 0, "New buffer header acquisition restarts");
158 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
159 "Buffer acquisition restarts due to fragmented buffer map");
160 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
161 "Amount of time KVA space was deallocated in an arbitrary buffer");
162 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
163 "Amount of time buffer re-use operations were successful");
164 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
165 "sizeof(struct buf)");
167 char *buf_wmesg = BUF_WMESG;
169 extern int vm_swap_size;
171 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
172 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */
173 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */
174 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
177 * numdirtywakeup:
179 * If someone is blocked due to there being too many dirty buffers,
180 * and numdirtybuffers is now reasonable, wake them up.
183 static __inline void
184 numdirtywakeup(int level)
186 if (numdirtybuffers <= level) {
187 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
188 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
189 wakeup(&needsbuffer);
195 * bufspacewakeup:
197 * Called when buffer space is potentially available for recovery.
198 * getnewbuf() will block on this flag when it is unable to free
199 * sufficient buffer space. Buffer space becomes recoverable when
200 * bp's get placed back in the queues.
203 static __inline void
204 bufspacewakeup(void)
207 * If someone is waiting for BUF space, wake them up. Even
208 * though we haven't freed the kva space yet, the waiting
209 * process will be able to now.
211 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
212 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
213 wakeup(&needsbuffer);
218 * runningbufwakeup:
220 * Accounting for I/O in progress.
223 static __inline void
224 runningbufwakeup(struct buf *bp)
226 if (bp->b_runningbufspace) {
227 runningbufspace -= bp->b_runningbufspace;
228 bp->b_runningbufspace = 0;
229 if (runningbufreq && runningbufspace <= lorunningspace) {
230 runningbufreq = 0;
231 wakeup(&runningbufreq);
237 * bufcountwakeup:
239 * Called when a buffer has been added to one of the free queues to
240 * account for the buffer and to wakeup anyone waiting for free buffers.
241 * This typically occurs when large amounts of metadata are being handled
242 * by the buffer cache ( else buffer space runs out first, usually ).
245 static __inline void
246 bufcountwakeup(void)
248 ++numfreebuffers;
249 if (needsbuffer) {
250 needsbuffer &= ~VFS_BIO_NEED_ANY;
251 if (numfreebuffers >= hifreebuffers)
252 needsbuffer &= ~VFS_BIO_NEED_FREE;
253 wakeup(&needsbuffer);
258 * waitrunningbufspace()
260 * runningbufspace is a measure of the amount of I/O currently
261 * running. This routine is used in async-write situations to
262 * prevent creating huge backups of pending writes to a device.
263 * Only asynchronous writes are governed by this function.
265 * Reads will adjust runningbufspace, but will not block based on it.
266 * The read load has a side effect of reducing the allowed write load.
268 * This does NOT turn an async write into a sync write. It waits
269 * for earlier writes to complete and generally returns before the
270 * caller's write has reached the device.
272 static __inline void
273 waitrunningbufspace(void)
275 if (runningbufspace > hirunningspace) {
276 crit_enter();
277 while (runningbufspace > hirunningspace) {
278 ++runningbufreq;
279 tsleep(&runningbufreq, 0, "wdrain", 0);
281 crit_exit();
286 * vfs_buf_test_cache:
288 * Called when a buffer is extended. This function clears the B_CACHE
289 * bit if the newly extended portion of the buffer does not contain
290 * valid data.
292 static __inline__
293 void
294 vfs_buf_test_cache(struct buf *bp,
295 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
296 vm_page_t m)
298 if (bp->b_flags & B_CACHE) {
299 int base = (foff + off) & PAGE_MASK;
300 if (vm_page_is_valid(m, base, size) == 0)
301 bp->b_flags &= ~B_CACHE;
306 * bd_wakeup:
308 * Wake up the buffer daemon if the number of outstanding dirty buffers
309 * is above specified threshold 'dirtybuflevel'.
311 * The buffer daemon is explicitly woken up when (a) the pending number
312 * of dirty buffers exceeds the recovery and stall mid-point value,
313 * (b) during bwillwrite() or (c) buf freelist was exhausted.
315 static __inline__
316 void
317 bd_wakeup(int dirtybuflevel)
319 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
320 bd_request = 1;
321 wakeup(&bd_request);
326 * bd_speedup:
328 * Speed up the buffer cache flushing process.
331 static __inline__
332 void
333 bd_speedup(void)
335 bd_wakeup(1);
339 * bufinit:
341 * Load time initialisation of the buffer cache, called from machine
342 * dependant initialization code.
344 void
345 bufinit(void)
347 struct buf *bp;
348 vm_offset_t bogus_offset;
349 int i;
351 /* next, make a null set of free lists */
352 for (i = 0; i < BUFFER_QUEUES; i++)
353 TAILQ_INIT(&bufqueues[i]);
355 /* finally, initialize each buffer header and stick on empty q */
356 for (i = 0; i < nbuf; i++) {
357 bp = &buf[i];
358 bzero(bp, sizeof *bp);
359 bp->b_flags = B_INVAL; /* we're just an empty header */
360 bp->b_qindex = BQUEUE_EMPTY;
361 initbufbio(bp);
362 xio_init(&bp->b_xio);
363 LIST_INIT(&bp->b_dep);
364 BUF_LOCKINIT(bp);
365 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
369 * maxbufspace is the absolute maximum amount of buffer space we are
370 * allowed to reserve in KVM and in real terms. The absolute maximum
371 * is nominally used by buf_daemon. hibufspace is the nominal maximum
372 * used by most other processes. The differential is required to
373 * ensure that buf_daemon is able to run when other processes might
374 * be blocked waiting for buffer space.
376 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
377 * this may result in KVM fragmentation which is not handled optimally
378 * by the system.
380 maxbufspace = nbuf * BKVASIZE;
381 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
382 lobufspace = hibufspace - MAXBSIZE;
384 lorunningspace = 512 * 1024;
385 hirunningspace = 1024 * 1024;
388 * Limit the amount of malloc memory since it is wired permanently into
389 * the kernel space. Even though this is accounted for in the buffer
390 * allocation, we don't want the malloced region to grow uncontrolled.
391 * The malloc scheme improves memory utilization significantly on average
392 * (small) directories.
394 maxbufmallocspace = hibufspace / 20;
397 * Reduce the chance of a deadlock occuring by limiting the number
398 * of delayed-write dirty buffers we allow to stack up.
400 hidirtybuffers = nbuf / 4 + 20;
401 numdirtybuffers = 0;
403 * To support extreme low-memory systems, make sure hidirtybuffers cannot
404 * eat up all available buffer space. This occurs when our minimum cannot
405 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming
406 * BKVASIZE'd (8K) buffers.
408 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
409 hidirtybuffers >>= 1;
411 lodirtybuffers = hidirtybuffers / 2;
414 * Try to keep the number of free buffers in the specified range,
415 * and give special processes (e.g. like buf_daemon) access to an
416 * emergency reserve.
418 lofreebuffers = nbuf / 18 + 5;
419 hifreebuffers = 2 * lofreebuffers;
420 numfreebuffers = nbuf;
423 * Maximum number of async ops initiated per buf_daemon loop. This is
424 * somewhat of a hack at the moment, we really need to limit ourselves
425 * based on the number of bytes of I/O in-transit that were initiated
426 * from buf_daemon.
429 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
430 bogus_page = vm_page_alloc(kernel_object,
431 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
432 VM_ALLOC_NORMAL);
433 vmstats.v_wire_count++;
438 * Initialize the embedded bio structures
440 void
441 initbufbio(struct buf *bp)
443 bp->b_bio1.bio_buf = bp;
444 bp->b_bio1.bio_prev = NULL;
445 bp->b_bio1.bio_blkno = (daddr_t)-1;
446 bp->b_bio1.bio_offset = NOOFFSET;
447 bp->b_bio1.bio_next = &bp->b_bio2;
448 bp->b_bio1.bio_done = NULL;
450 bp->b_bio2.bio_buf = bp;
451 bp->b_bio2.bio_prev = &bp->b_bio1;
452 bp->b_bio2.bio_blkno = (daddr_t)-1;
453 bp->b_bio2.bio_offset = NOOFFSET;
454 bp->b_bio2.bio_next = NULL;
455 bp->b_bio2.bio_done = NULL;
459 * Reinitialize the embedded bio structures as well as any additional
460 * translation cache layers.
462 void
463 reinitbufbio(struct buf *bp)
465 struct bio *bio;
467 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
468 bio->bio_done = NULL;
469 bio->bio_blkno = (daddr_t)-1;
470 bio->bio_offset = NOOFFSET;
475 * Push another BIO layer onto an existing BIO and return it. The new
476 * BIO layer may already exist, holding cached translation data.
478 struct bio *
479 push_bio(struct bio *bio)
481 struct bio *nbio;
483 if ((nbio = bio->bio_next) == NULL) {
484 int index = bio - &bio->bio_buf->b_bio_array[0];
485 if (index >= NBUF_BIO) {
486 panic("push_bio: too many layers bp %p\n",
487 bio->bio_buf);
489 nbio = &bio->bio_buf->b_bio_array[index + 1];
490 bio->bio_next = nbio;
491 nbio->bio_prev = bio;
492 nbio->bio_buf = bio->bio_buf;
493 nbio->bio_blkno = (daddr_t)-1;
494 nbio->bio_offset = NOOFFSET;
495 nbio->bio_done = NULL;
496 nbio->bio_next = NULL;
498 KKASSERT(nbio->bio_done == NULL);
499 return(nbio);
502 void
503 pop_bio(struct bio *bio)
505 /* NOP */
508 void
509 clearbiocache(struct bio *bio)
511 while (bio) {
512 bio->bio_blkno = (daddr_t)-1;
513 bio->bio_offset = NOOFFSET;
514 bio = bio->bio_next;
519 * bfreekva:
521 * Free the KVA allocation for buffer 'bp'.
523 * Must be called from a critical section as this is the only locking for
524 * buffer_map.
526 * Since this call frees up buffer space, we call bufspacewakeup().
528 static void
529 bfreekva(struct buf * bp)
531 int count;
533 if (bp->b_kvasize) {
534 ++buffreekvacnt;
535 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
536 vm_map_lock(buffer_map);
537 bufspace -= bp->b_kvasize;
538 vm_map_delete(buffer_map,
539 (vm_offset_t) bp->b_kvabase,
540 (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
541 &count
543 vm_map_unlock(buffer_map);
544 vm_map_entry_release(count);
545 bp->b_kvasize = 0;
546 bufspacewakeup();
551 * bremfree:
553 * Remove the buffer from the appropriate free list.
555 void
556 bremfree(struct buf * bp)
558 int old_qindex;
560 crit_enter();
561 old_qindex = bp->b_qindex;
563 if (bp->b_qindex != BQUEUE_NONE) {
564 KASSERT(BUF_REFCNTNB(bp) == 1,
565 ("bremfree: bp %p not locked",bp));
566 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
567 bp->b_qindex = BQUEUE_NONE;
568 } else {
569 if (BUF_REFCNTNB(bp) <= 1)
570 panic("bremfree: removing a buffer not on a queue");
574 * Fixup numfreebuffers count. If the buffer is invalid or not
575 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
576 * the buffer was free and we must decrement numfreebuffers.
578 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
579 switch(old_qindex) {
580 case BQUEUE_DIRTY:
581 case BQUEUE_CLEAN:
582 case BQUEUE_EMPTY:
583 case BQUEUE_EMPTYKVA:
584 --numfreebuffers;
585 break;
586 default:
587 break;
590 crit_exit();
595 * bread:
597 * Get a buffer with the specified data. Look in the cache first. We
598 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
599 * is set, the buffer is valid and we do not have to do anything ( see
600 * getblk() ).
603 bread(struct vnode * vp, daddr_t blkno, int size, struct buf ** bpp)
605 struct buf *bp;
607 bp = getblk(vp, blkno, size, 0, 0);
608 *bpp = bp;
610 /* if not found in cache, do some I/O */
611 if ((bp->b_flags & B_CACHE) == 0) {
612 KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
613 bp->b_flags |= B_READ;
614 bp->b_flags &= ~(B_ERROR | B_INVAL);
615 vfs_busy_pages(bp, 0);
616 vn_strategy(vp, &bp->b_bio1);
617 return (biowait(bp));
619 return (0);
623 * breadn:
625 * Operates like bread, but also starts asynchronous I/O on
626 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior
627 * to initiating I/O . If B_CACHE is set, the buffer is valid
628 * and we do not have to do anything.
631 breadn(struct vnode * vp, daddr_t blkno, int size, daddr_t * rablkno,
632 int *rabsize, int cnt, struct buf ** bpp)
634 struct buf *bp, *rabp;
635 int i;
636 int rv = 0, readwait = 0;
638 *bpp = bp = getblk(vp, blkno, size, 0, 0);
640 /* if not found in cache, do some I/O */
641 if ((bp->b_flags & B_CACHE) == 0) {
642 bp->b_flags |= B_READ;
643 bp->b_flags &= ~(B_ERROR | B_INVAL);
644 vfs_busy_pages(bp, 0);
645 vn_strategy(vp, &bp->b_bio1);
646 ++readwait;
649 for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
650 if (inmem(vp, *rablkno))
651 continue;
652 rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
654 if ((rabp->b_flags & B_CACHE) == 0) {
655 rabp->b_flags |= B_READ | B_ASYNC;
656 rabp->b_flags &= ~(B_ERROR | B_INVAL);
657 vfs_busy_pages(rabp, 0);
658 BUF_KERNPROC(rabp);
659 vn_strategy(vp, &rabp->b_bio1);
660 } else {
661 brelse(rabp);
665 if (readwait) {
666 rv = biowait(bp);
668 return (rv);
672 * bwrite:
674 * Write, release buffer on completion. (Done by iodone
675 * if async). Do not bother writing anything if the buffer
676 * is invalid.
678 * Note that we set B_CACHE here, indicating that buffer is
679 * fully valid and thus cacheable. This is true even of NFS
680 * now so we set it generally. This could be set either here
681 * or in biodone() since the I/O is synchronous. We put it
682 * here.
685 bwrite(struct buf * bp)
687 int oldflags;
689 if (bp->b_flags & B_INVAL) {
690 brelse(bp);
691 return (0);
694 oldflags = bp->b_flags;
696 if (BUF_REFCNTNB(bp) == 0)
697 panic("bwrite: buffer is not busy???");
698 crit_enter();
700 * If a background write is already in progress, delay
701 * writing this block if it is asynchronous. Otherwise
702 * wait for the background write to complete.
704 if (bp->b_xflags & BX_BKGRDINPROG) {
705 if (bp->b_flags & B_ASYNC) {
706 crit_exit();
707 bdwrite(bp);
708 return (0);
710 bp->b_xflags |= BX_BKGRDWAIT;
711 tsleep(&bp->b_xflags, 0, "biord", 0);
712 if (bp->b_xflags & BX_BKGRDINPROG)
713 panic("bwrite: still writing");
716 /* Mark the buffer clean */
717 bundirty(bp);
719 bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
720 bp->b_flags |= B_CACHE;
722 vfs_busy_pages(bp, 1);
725 * Normal bwrites pipeline writes
727 bp->b_runningbufspace = bp->b_bufsize;
728 runningbufspace += bp->b_runningbufspace;
730 crit_exit();
731 if (oldflags & B_ASYNC)
732 BUF_KERNPROC(bp);
733 vn_strategy(bp->b_vp, &bp->b_bio1);
735 if ((oldflags & B_ASYNC) == 0) {
736 int rtval = biowait(bp);
737 brelse(bp);
738 return (rtval);
739 } else if ((oldflags & B_NOWDRAIN) == 0) {
741 * don't allow the async write to saturate the I/O
742 * system. Deadlocks can occur only if a device strategy
743 * routine (like in VN) turns around and issues another
744 * high-level write, in which case B_NOWDRAIN is expected
745 * to be set. Otherwise we will not deadlock here because
746 * we are blocking waiting for I/O that is already in-progress
747 * to complete.
749 waitrunningbufspace();
752 return (0);
756 * bdwrite:
758 * Delayed write. (Buffer is marked dirty). Do not bother writing
759 * anything if the buffer is marked invalid.
761 * Note that since the buffer must be completely valid, we can safely
762 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
763 * biodone() in order to prevent getblk from writing the buffer
764 * out synchronously.
766 void
767 bdwrite(struct buf *bp)
769 if (BUF_REFCNTNB(bp) == 0)
770 panic("bdwrite: buffer is not busy");
772 if (bp->b_flags & B_INVAL) {
773 brelse(bp);
774 return;
776 bdirty(bp);
779 * Set B_CACHE, indicating that the buffer is fully valid. This is
780 * true even of NFS now.
782 bp->b_flags |= B_CACHE;
785 * This bmap keeps the system from needing to do the bmap later,
786 * perhaps when the system is attempting to do a sync. Since it
787 * is likely that the indirect block -- or whatever other datastructure
788 * that the filesystem needs is still in memory now, it is a good
789 * thing to do this. Note also, that if the pageout daemon is
790 * requesting a sync -- there might not be enough memory to do
791 * the bmap then... So, this is important to do.
793 if (bp->b_bio2.bio_blkno == (daddr_t)-1) {
794 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_bio2.bio_blkno,
795 NULL, NULL);
799 * Set the *dirty* buffer range based upon the VM system dirty pages.
801 vfs_setdirty(bp);
804 * We need to do this here to satisfy the vnode_pager and the
805 * pageout daemon, so that it thinks that the pages have been
806 * "cleaned". Note that since the pages are in a delayed write
807 * buffer -- the VFS layer "will" see that the pages get written
808 * out on the next sync, or perhaps the cluster will be completed.
810 vfs_clean_pages(bp);
811 bqrelse(bp);
814 * Wakeup the buffer flushing daemon if we have a lot of dirty
815 * buffers (midpoint between our recovery point and our stall
816 * point).
818 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
821 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
822 * due to the softdep code.
827 * bdirty:
829 * Turn buffer into delayed write request. We must clear B_READ and
830 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to
831 * itself to properly update it in the dirty/clean lists. We mark it
832 * B_DONE to ensure that any asynchronization of the buffer properly
833 * clears B_DONE ( else a panic will occur later ).
835 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
836 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty()
837 * should only be called if the buffer is known-good.
839 * Since the buffer is not on a queue, we do not update the numfreebuffers
840 * count.
842 * Must be called from a critical section.
843 * The buffer must be on BQUEUE_NONE.
845 void
846 bdirty(struct buf *bp)
848 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
849 bp->b_flags &= ~(B_READ|B_RELBUF);
851 if ((bp->b_flags & B_DELWRI) == 0) {
852 bp->b_flags |= B_DONE | B_DELWRI;
853 reassignbuf(bp);
854 ++numdirtybuffers;
855 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
860 * bundirty:
862 * Clear B_DELWRI for buffer.
864 * Since the buffer is not on a queue, we do not update the numfreebuffers
865 * count.
867 * Must be called from a critical section.
869 * The buffer is typically on BQUEUE_NONE but there is one case in
870 * brelse() that calls this function after placing the buffer on
871 * a different queue.
874 void
875 bundirty(struct buf *bp)
877 if (bp->b_flags & B_DELWRI) {
878 bp->b_flags &= ~B_DELWRI;
879 reassignbuf(bp);
880 --numdirtybuffers;
881 numdirtywakeup(lodirtybuffers);
884 * Since it is now being written, we can clear its deferred write flag.
886 bp->b_flags &= ~B_DEFERRED;
890 * bawrite:
892 * Asynchronous write. Start output on a buffer, but do not wait for
893 * it to complete. The buffer is released when the output completes.
895 * bwrite() ( or the VOP routine anyway ) is responsible for handling
896 * B_INVAL buffers. Not us.
898 void
899 bawrite(struct buf * bp)
901 bp->b_flags |= B_ASYNC;
902 (void) VOP_BWRITE(bp->b_vp, bp);
906 * bowrite:
908 * Ordered write. Start output on a buffer, and flag it so that the
909 * device will write it in the order it was queued. The buffer is
910 * released when the output completes. bwrite() ( or the VOP routine
911 * anyway ) is responsible for handling B_INVAL buffers.
914 bowrite(struct buf * bp)
916 bp->b_flags |= B_ORDERED | B_ASYNC;
917 return (VOP_BWRITE(bp->b_vp, bp));
921 * bwillwrite:
923 * Called prior to the locking of any vnodes when we are expecting to
924 * write. We do not want to starve the buffer cache with too many
925 * dirty buffers so we block here. By blocking prior to the locking
926 * of any vnodes we attempt to avoid the situation where a locked vnode
927 * prevents the various system daemons from flushing related buffers.
930 void
931 bwillwrite(void)
933 if (numdirtybuffers >= hidirtybuffers) {
934 crit_enter();
935 while (numdirtybuffers >= hidirtybuffers) {
936 bd_wakeup(1);
937 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
938 tsleep(&needsbuffer, 0, "flswai", 0);
940 crit_exit();
945 * buf_dirty_count_severe:
947 * Return true if we have too many dirty buffers.
950 buf_dirty_count_severe(void)
952 return(numdirtybuffers >= hidirtybuffers);
956 * brelse:
958 * Release a busy buffer and, if requested, free its resources. The
959 * buffer will be stashed in the appropriate bufqueue[] allowing it
960 * to be accessed later as a cache entity or reused for other purposes.
962 void
963 brelse(struct buf * bp)
965 #ifdef INVARIANTS
966 int saved_flags = bp->b_flags;
967 #endif
969 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
971 crit_enter();
973 if (bp->b_flags & B_LOCKED)
974 bp->b_flags &= ~B_ERROR;
976 if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) {
978 * Failed write, redirty. Must clear B_ERROR to prevent
979 * pages from being scrapped. If B_INVAL is set then
980 * this case is not run and the next case is run to
981 * destroy the buffer. B_INVAL can occur if the buffer
982 * is outside the range supported by the underlying device.
984 bp->b_flags &= ~B_ERROR;
985 bdirty(bp);
986 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
987 (bp->b_bufsize <= 0)) {
989 * Either a failed I/O or we were asked to free or not
990 * cache the buffer.
992 bp->b_flags |= B_INVAL;
993 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
994 (*bioops.io_deallocate)(bp);
995 if (bp->b_flags & B_DELWRI) {
996 --numdirtybuffers;
997 numdirtywakeup(lodirtybuffers);
999 bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
1003 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release()
1004 * is called with B_DELWRI set, the underlying pages may wind up
1005 * getting freed causing a previous write (bdwrite()) to get 'lost'
1006 * because pages associated with a B_DELWRI bp are marked clean.
1008 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1009 * if B_DELWRI is set.
1011 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1012 * on pages to return pages to the VM page queues.
1014 if (bp->b_flags & B_DELWRI)
1015 bp->b_flags &= ~B_RELBUF;
1016 else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1017 bp->b_flags |= B_RELBUF;
1020 * At this point destroying the buffer is governed by the B_INVAL
1021 * or B_RELBUF flags.
1025 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer
1026 * constituted, not even NFS buffers now. Two flags effect this. If
1027 * B_INVAL, the struct buf is invalidated but the VM object is kept
1028 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1030 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
1031 * invalidated. B_ERROR cannot be set for a failed write unless the
1032 * buffer is also B_INVAL because it hits the re-dirtying code above.
1034 * Normally we can do this whether a buffer is B_DELWRI or not. If
1035 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1036 * the commit state and we cannot afford to lose the buffer. If the
1037 * buffer has a background write in progress, we need to keep it
1038 * around to prevent it from being reconstituted and starting a second
1039 * background write.
1041 if ((bp->b_flags & B_VMIO)
1042 && !(bp->b_vp->v_tag == VT_NFS &&
1043 !vn_isdisk(bp->b_vp, NULL) &&
1044 (bp->b_flags & B_DELWRI))
1047 * Rundown for VMIO buffers which are not dirty NFS buffers.
1049 int i, j, resid;
1050 vm_page_t m;
1051 off_t foff;
1052 vm_pindex_t poff;
1053 vm_object_t obj;
1054 struct vnode *vp;
1056 vp = bp->b_vp;
1059 * Get the base offset and length of the buffer. Note that
1060 * in the VMIO case if the buffer block size is not
1061 * page-aligned then b_data pointer may not be page-aligned.
1062 * But our b_xio.xio_pages array *IS* page aligned.
1064 * block sizes less then DEV_BSIZE (usually 512) are not
1065 * supported due to the page granularity bits (m->valid,
1066 * m->dirty, etc...).
1068 * See man buf(9) for more information
1071 resid = bp->b_bufsize;
1072 foff = bp->b_loffset;
1074 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1075 m = bp->b_xio.xio_pages[i];
1076 vm_page_flag_clear(m, PG_ZERO);
1078 * If we hit a bogus page, fixup *all* of them
1079 * now. Note that we left these pages wired
1080 * when we removed them so they had better exist,
1081 * and they cannot be ripped out from under us so
1082 * no critical section protection is necessary.
1084 if (m == bogus_page) {
1085 VOP_GETVOBJECT(vp, &obj);
1086 poff = OFF_TO_IDX(bp->b_loffset);
1088 for (j = i; j < bp->b_xio.xio_npages; j++) {
1089 vm_page_t mtmp;
1091 mtmp = bp->b_xio.xio_pages[j];
1092 if (mtmp == bogus_page) {
1093 mtmp = vm_page_lookup(obj, poff + j);
1094 if (!mtmp) {
1095 panic("brelse: page missing");
1097 bp->b_xio.xio_pages[j] = mtmp;
1101 if ((bp->b_flags & B_INVAL) == 0) {
1102 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1103 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1105 m = bp->b_xio.xio_pages[i];
1109 * Invalidate the backing store if B_NOCACHE is set
1110 * (e.g. used with vinvalbuf()). If this is NFS
1111 * we impose a requirement that the block size be
1112 * a multiple of PAGE_SIZE and create a temporary
1113 * hack to basically invalidate the whole page. The
1114 * problem is that NFS uses really odd buffer sizes
1115 * especially when tracking piecemeal writes and
1116 * it also vinvalbuf()'s a lot, which would result
1117 * in only partial page validation and invalidation
1118 * here. If the file page is mmap()'d, however,
1119 * all the valid bits get set so after we invalidate
1120 * here we would end up with weird m->valid values
1121 * like 0xfc. nfs_getpages() can't handle this so
1122 * we clear all the valid bits for the NFS case
1123 * instead of just some of them.
1125 * The real bug is the VM system having to set m->valid
1126 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1127 * itself is an artifact of the whole 512-byte
1128 * granular mess that exists to support odd block
1129 * sizes and UFS meta-data block sizes (e.g. 6144).
1130 * A complete rewrite is required.
1132 if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1133 int poffset = foff & PAGE_MASK;
1134 int presid;
1136 presid = PAGE_SIZE - poffset;
1137 if (bp->b_vp->v_tag == VT_NFS &&
1138 bp->b_vp->v_type == VREG) {
1139 ; /* entire page */
1140 } else if (presid > resid) {
1141 presid = resid;
1143 KASSERT(presid >= 0, ("brelse: extra page"));
1144 vm_page_set_invalid(m, poffset, presid);
1146 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1147 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1149 if (bp->b_flags & (B_INVAL | B_RELBUF))
1150 vfs_vmio_release(bp);
1151 } else if (bp->b_flags & B_VMIO) {
1153 * Rundown for VMIO buffers which are dirty NFS buffers. Such
1154 * buffers contain tracking ranges for NFS and cannot normally
1155 * be released. Due to the dirty check above this series of
1156 * conditionals, B_RELBUF probably will never be set in this
1157 * codepath.
1159 if (bp->b_flags & (B_INVAL | B_RELBUF))
1160 vfs_vmio_release(bp);
1161 } else {
1163 * Rundown for non-VMIO buffers.
1165 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1166 #if 0
1167 if (bp->b_vp)
1168 printf("brelse bp %p %08x/%08lx: Warning, caught and fixed brelvp bug\n", bp, saved_flags, bp->b_flags);
1169 #endif
1170 if (bp->b_bufsize)
1171 allocbuf(bp, 0);
1172 if (bp->b_vp)
1173 brelvp(bp);
1177 if (bp->b_qindex != BQUEUE_NONE)
1178 panic("brelse: free buffer onto another queue???");
1179 if (BUF_REFCNTNB(bp) > 1) {
1180 /* Temporary panic to verify exclusive locking */
1181 /* This panic goes away when we allow shared refs */
1182 panic("brelse: multiple refs");
1183 /* do not release to free list */
1184 BUF_UNLOCK(bp);
1185 crit_exit();
1186 return;
1190 * Figure out the correct queue to place the cleaned up buffer on.
1191 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1192 * disassociated from their vnode.
1195 if (bp->b_bufsize == 0) {
1197 * Buffers with no memory. Due to conditionals near the top
1198 * of brelse() such buffers should probably already be
1199 * marked B_INVAL and disassociated from their vnode.
1201 bp->b_flags |= B_INVAL;
1202 bp->b_xflags &= ~BX_BKGRDWRITE;
1203 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08lx vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1204 KKASSERT((bp->b_flags & B_HASHED) == 0);
1205 if (bp->b_xflags & BX_BKGRDINPROG)
1206 panic("losing buffer 1");
1207 if (bp->b_kvasize) {
1208 bp->b_qindex = BQUEUE_EMPTYKVA;
1209 } else {
1210 bp->b_qindex = BQUEUE_EMPTY;
1212 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1213 } else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1215 * Buffers with junk contents. Again these buffers had better
1216 * already be disassociated from their vnode.
1218 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08lx vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1219 KKASSERT((bp->b_flags & B_HASHED) == 0);
1220 bp->b_flags |= B_INVAL;
1221 bp->b_xflags &= ~BX_BKGRDWRITE;
1222 if (bp->b_xflags & BX_BKGRDINPROG)
1223 panic("losing buffer 2");
1224 bp->b_qindex = BQUEUE_CLEAN;
1225 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1226 } else if (bp->b_flags & B_LOCKED) {
1228 * Buffers that are locked.
1230 bp->b_qindex = BQUEUE_LOCKED;
1231 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1232 } else {
1234 * Remaining buffers. These buffers are still associated with
1235 * their vnode.
1237 switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1238 case B_DELWRI | B_AGE:
1239 bp->b_qindex = BQUEUE_DIRTY;
1240 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1241 break;
1242 case B_DELWRI:
1243 bp->b_qindex = BQUEUE_DIRTY;
1244 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1245 break;
1246 case B_AGE:
1247 bp->b_qindex = BQUEUE_CLEAN;
1248 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1249 break;
1250 default:
1251 bp->b_qindex = BQUEUE_CLEAN;
1252 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1253 break;
1258 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1259 * on the correct queue.
1261 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1262 bundirty(bp);
1265 * Fixup numfreebuffers count. The bp is on an appropriate queue
1266 * unless locked. We then bump numfreebuffers if it is not B_DELWRI.
1267 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1268 * if B_INVAL is set ).
1270 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1271 bufcountwakeup();
1274 * Something we can maybe free or reuse
1276 if (bp->b_bufsize || bp->b_kvasize)
1277 bufspacewakeup();
1279 /* unlock */
1280 BUF_UNLOCK(bp);
1281 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1282 B_DIRECT | B_NOWDRAIN);
1283 crit_exit();
1287 * bqrelse:
1289 * Release a buffer back to the appropriate queue but do not try to free
1290 * it. The buffer is expected to be used again soon.
1292 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1293 * biodone() to requeue an async I/O on completion. It is also used when
1294 * known good buffers need to be requeued but we think we may need the data
1295 * again soon.
1297 * XXX we should be able to leave the B_RELBUF hint set on completion.
1299 void
1300 bqrelse(struct buf * bp)
1302 crit_enter();
1304 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1306 if (bp->b_qindex != BQUEUE_NONE)
1307 panic("bqrelse: free buffer onto another queue???");
1308 if (BUF_REFCNTNB(bp) > 1) {
1309 /* do not release to free list */
1310 panic("bqrelse: multiple refs");
1311 BUF_UNLOCK(bp);
1312 crit_exit();
1313 return;
1315 if (bp->b_flags & B_LOCKED) {
1316 bp->b_flags &= ~B_ERROR;
1317 bp->b_qindex = BQUEUE_LOCKED;
1318 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1319 /* buffers with stale but valid contents */
1320 } else if (bp->b_flags & B_DELWRI) {
1321 bp->b_qindex = BQUEUE_DIRTY;
1322 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1323 } else if (vm_page_count_severe()) {
1325 * We are too low on memory, we have to try to free the
1326 * buffer (most importantly: the wired pages making up its
1327 * backing store) *now*.
1329 crit_exit();
1330 brelse(bp);
1331 return;
1332 } else {
1333 bp->b_qindex = BQUEUE_CLEAN;
1334 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1337 if ((bp->b_flags & B_LOCKED) == 0 &&
1338 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1339 bufcountwakeup();
1343 * Something we can maybe free or reuse.
1345 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1346 bufspacewakeup();
1349 * Final cleanup and unlock. Clear bits that are only used while a
1350 * buffer is actively locked.
1352 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1353 BUF_UNLOCK(bp);
1354 crit_exit();
1358 * vfs_vmio_release:
1360 * Return backing pages held by the buffer 'bp' back to the VM system
1361 * if possible. The pages are freed if they are no longer valid or
1362 * attempt to free if it was used for direct I/O otherwise they are
1363 * sent to the page cache.
1365 * Pages that were marked busy are left alone and skipped.
1367 * The KVA mapping (b_data) for the underlying pages is removed by
1368 * this function.
1370 static void
1371 vfs_vmio_release(struct buf *bp)
1373 int i;
1374 vm_page_t m;
1376 crit_enter();
1377 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1378 m = bp->b_xio.xio_pages[i];
1379 bp->b_xio.xio_pages[i] = NULL;
1381 * In order to keep page LRU ordering consistent, put
1382 * everything on the inactive queue.
1384 vm_page_unwire(m, 0);
1386 * We don't mess with busy pages, it is
1387 * the responsibility of the process that
1388 * busied the pages to deal with them.
1390 if ((m->flags & PG_BUSY) || (m->busy != 0))
1391 continue;
1393 if (m->wire_count == 0) {
1394 vm_page_flag_clear(m, PG_ZERO);
1396 * Might as well free the page if we can and it has
1397 * no valid data. We also free the page if the
1398 * buffer was used for direct I/O.
1400 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1401 m->hold_count == 0) {
1402 vm_page_busy(m);
1403 vm_page_protect(m, VM_PROT_NONE);
1404 vm_page_free(m);
1405 } else if (bp->b_flags & B_DIRECT) {
1406 vm_page_try_to_free(m);
1407 } else if (vm_page_count_severe()) {
1408 vm_page_try_to_cache(m);
1412 crit_exit();
1413 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1414 if (bp->b_bufsize) {
1415 bufspacewakeup();
1416 bp->b_bufsize = 0;
1418 bp->b_xio.xio_npages = 0;
1419 bp->b_flags &= ~B_VMIO;
1420 if (bp->b_vp)
1421 brelvp(bp);
1425 * vfs_bio_awrite:
1427 * Implement clustered async writes for clearing out B_DELWRI buffers.
1428 * This is much better then the old way of writing only one buffer at
1429 * a time. Note that we may not be presented with the buffers in the
1430 * correct order, so we search for the cluster in both directions.
1432 * The buffer is locked on call.
1435 vfs_bio_awrite(struct buf *bp)
1437 int i;
1438 int j;
1439 daddr_t lblkno = bp->b_lblkno;
1440 struct vnode *vp = bp->b_vp;
1441 int ncl;
1442 struct buf *bpa;
1443 int nwritten;
1444 int size;
1445 int maxcl;
1447 crit_enter();
1449 * right now we support clustered writing only to regular files. If
1450 * we find a clusterable block we could be in the middle of a cluster
1451 * rather then at the beginning.
1453 * NOTE: b_bio1 contains the logical loffset/lblkno and is aliased
1454 * to b_lblkno and b_loffset. b_bio2 contains the translated block
1455 * number.
1457 if ((vp->v_type == VREG) &&
1458 (vp->v_mount != 0) && /* Only on nodes that have the size info */
1459 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1461 size = vp->v_mount->mnt_stat.f_iosize;
1462 maxcl = MAXPHYS / size;
1464 for (i = 1; i < maxcl; i++) {
1465 if ((bpa = findblk(vp, lblkno + i)) &&
1466 BUF_REFCNT(bpa) == 0 &&
1467 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1468 (B_DELWRI | B_CLUSTEROK)) &&
1469 (bpa->b_bufsize == size)) {
1470 if ((bpa->b_bio2.bio_blkno == (daddr_t)-1) ||
1471 (bpa->b_bio2.bio_blkno !=
1472 bp->b_bio2.bio_blkno + ((i * size) >> DEV_BSHIFT)))
1473 break;
1474 } else {
1475 break;
1478 for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1479 if ((bpa = findblk(vp, lblkno - j)) &&
1480 BUF_REFCNT(bpa) == 0 &&
1481 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1482 (B_DELWRI | B_CLUSTEROK)) &&
1483 (bpa->b_bufsize == size)) {
1484 if ((bpa->b_bio2.bio_blkno == (daddr_t)-1) ||
1485 (bpa->b_bio2.bio_blkno !=
1486 bp->b_bio2.bio_blkno - ((j * size) >> DEV_BSHIFT)))
1487 break;
1488 } else {
1489 break;
1492 --j;
1493 ncl = i + j;
1495 * this is a possible cluster write
1497 if (ncl != 1) {
1498 BUF_UNLOCK(bp);
1499 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1500 crit_exit();
1501 return nwritten;
1505 bremfree(bp);
1506 bp->b_flags |= B_ASYNC;
1508 crit_exit();
1510 * default (old) behavior, writing out only one block
1512 * XXX returns b_bufsize instead of b_bcount for nwritten?
1514 nwritten = bp->b_bufsize;
1515 (void) VOP_BWRITE(bp->b_vp, bp);
1517 return nwritten;
1521 * getnewbuf:
1523 * Find and initialize a new buffer header, freeing up existing buffers
1524 * in the bufqueues as necessary. The new buffer is returned locked.
1526 * Important: B_INVAL is not set. If the caller wishes to throw the
1527 * buffer away, the caller must set B_INVAL prior to calling brelse().
1529 * We block if:
1530 * We have insufficient buffer headers
1531 * We have insufficient buffer space
1532 * buffer_map is too fragmented ( space reservation fails )
1533 * If we have to flush dirty buffers ( but we try to avoid this )
1535 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1536 * Instead we ask the buf daemon to do it for us. We attempt to
1537 * avoid piecemeal wakeups of the pageout daemon.
1540 static struct buf *
1541 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1543 struct buf *bp;
1544 struct buf *nbp;
1545 int defrag = 0;
1546 int nqindex;
1547 static int flushingbufs;
1550 * We can't afford to block since we might be holding a vnode lock,
1551 * which may prevent system daemons from running. We deal with
1552 * low-memory situations by proactively returning memory and running
1553 * async I/O rather then sync I/O.
1556 ++getnewbufcalls;
1557 --getnewbufrestarts;
1558 restart:
1559 ++getnewbufrestarts;
1562 * Setup for scan. If we do not have enough free buffers,
1563 * we setup a degenerate case that immediately fails. Note
1564 * that if we are specially marked process, we are allowed to
1565 * dip into our reserves.
1567 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
1569 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
1570 * However, there are a number of cases (defragging, reusing, ...)
1571 * where we cannot backup.
1573 nqindex = BQUEUE_EMPTYKVA;
1574 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1576 if (nbp == NULL) {
1578 * If no EMPTYKVA buffers and we are either
1579 * defragging or reusing, locate a CLEAN buffer
1580 * to free or reuse. If bufspace useage is low
1581 * skip this step so we can allocate a new buffer.
1583 if (defrag || bufspace >= lobufspace) {
1584 nqindex = BQUEUE_CLEAN;
1585 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1589 * If we could not find or were not allowed to reuse a
1590 * CLEAN buffer, check to see if it is ok to use an EMPTY
1591 * buffer. We can only use an EMPTY buffer if allocating
1592 * its KVA would not otherwise run us out of buffer space.
1594 if (nbp == NULL && defrag == 0 &&
1595 bufspace + maxsize < hibufspace) {
1596 nqindex = BQUEUE_EMPTY;
1597 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1602 * Run scan, possibly freeing data and/or kva mappings on the fly
1603 * depending.
1606 while ((bp = nbp) != NULL) {
1607 int qindex = nqindex;
1610 * Calculate next bp ( we can only use it if we do not block
1611 * or do other fancy things ).
1613 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1614 switch(qindex) {
1615 case BQUEUE_EMPTY:
1616 nqindex = BQUEUE_EMPTYKVA;
1617 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1618 break;
1619 /* fall through */
1620 case BQUEUE_EMPTYKVA:
1621 nqindex = BQUEUE_CLEAN;
1622 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1623 break;
1624 /* fall through */
1625 case BQUEUE_CLEAN:
1627 * nbp is NULL.
1629 break;
1634 * Sanity Checks
1636 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1639 * Note: we no longer distinguish between VMIO and non-VMIO
1640 * buffers.
1643 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1646 * If we are defragging then we need a buffer with
1647 * b_kvasize != 0. XXX this situation should no longer
1648 * occur, if defrag is non-zero the buffer's b_kvasize
1649 * should also be non-zero at this point. XXX
1651 if (defrag && bp->b_kvasize == 0) {
1652 printf("Warning: defrag empty buffer %p\n", bp);
1653 continue;
1657 * Start freeing the bp. This is somewhat involved. nbp
1658 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers
1659 * on the clean list must be disassociated from their
1660 * current vnode. Buffers on the empty[kva] lists have
1661 * already been disassociated.
1664 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1665 printf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1666 tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1667 goto restart;
1669 if (bp->b_qindex != qindex) {
1670 printf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1671 BUF_UNLOCK(bp);
1672 goto restart;
1674 bremfree(bp);
1676 if (qindex == BQUEUE_CLEAN) {
1677 if (bp->b_flags & B_VMIO) {
1678 bp->b_flags &= ~B_ASYNC;
1679 vfs_vmio_release(bp);
1681 if (bp->b_vp)
1682 brelvp(bp);
1686 * NOTE: nbp is now entirely invalid. We can only restart
1687 * the scan from this point on.
1689 * Get the rest of the buffer freed up. b_kva* is still
1690 * valid after this operation.
1693 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08lx vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1694 KKASSERT((bp->b_flags & B_HASHED) == 0);
1695 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1696 (*bioops.io_deallocate)(bp);
1697 if (bp->b_xflags & BX_BKGRDINPROG)
1698 panic("losing buffer 3");
1701 * critical section protection is not required when
1702 * scrapping a buffer's contents because it is already
1703 * wired.
1705 if (bp->b_bufsize)
1706 allocbuf(bp, 0);
1708 bp->b_flags = 0;
1709 bp->b_xflags = 0;
1710 bp->b_vp = NULL;
1711 bp->b_error = 0;
1712 bp->b_resid = 0;
1713 bp->b_bcount = 0;
1714 bp->b_xio.xio_npages = 0;
1715 bp->b_dirtyoff = bp->b_dirtyend = 0;
1716 reinitbufbio(bp);
1718 LIST_INIT(&bp->b_dep);
1721 * If we are defragging then free the buffer.
1723 if (defrag) {
1724 bp->b_flags |= B_INVAL;
1725 bfreekva(bp);
1726 brelse(bp);
1727 defrag = 0;
1728 goto restart;
1732 * If we are overcomitted then recover the buffer and its
1733 * KVM space. This occurs in rare situations when multiple
1734 * processes are blocked in getnewbuf() or allocbuf().
1736 if (bufspace >= hibufspace)
1737 flushingbufs = 1;
1738 if (flushingbufs && bp->b_kvasize != 0) {
1739 bp->b_flags |= B_INVAL;
1740 bfreekva(bp);
1741 brelse(bp);
1742 goto restart;
1744 if (bufspace < lobufspace)
1745 flushingbufs = 0;
1746 break;
1750 * If we exhausted our list, sleep as appropriate. We may have to
1751 * wakeup various daemons and write out some dirty buffers.
1753 * Generally we are sleeping due to insufficient buffer space.
1756 if (bp == NULL) {
1757 int flags;
1758 char *waitmsg;
1760 if (defrag) {
1761 flags = VFS_BIO_NEED_BUFSPACE;
1762 waitmsg = "nbufkv";
1763 } else if (bufspace >= hibufspace) {
1764 waitmsg = "nbufbs";
1765 flags = VFS_BIO_NEED_BUFSPACE;
1766 } else {
1767 waitmsg = "newbuf";
1768 flags = VFS_BIO_NEED_ANY;
1771 bd_speedup(); /* heeeelp */
1773 needsbuffer |= flags;
1774 while (needsbuffer & flags) {
1775 if (tsleep(&needsbuffer, slpflag, waitmsg, slptimeo))
1776 return (NULL);
1778 } else {
1780 * We finally have a valid bp. We aren't quite out of the
1781 * woods, we still have to reserve kva space. In order
1782 * to keep fragmentation sane we only allocate kva in
1783 * BKVASIZE chunks.
1785 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1787 if (maxsize != bp->b_kvasize) {
1788 vm_offset_t addr = 0;
1789 int count;
1791 bfreekva(bp);
1793 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1794 vm_map_lock(buffer_map);
1796 if (vm_map_findspace(buffer_map,
1797 vm_map_min(buffer_map), maxsize,
1798 maxsize, &addr)) {
1800 * Uh oh. Buffer map is too fragmented. We
1801 * must defragment the map.
1803 vm_map_unlock(buffer_map);
1804 vm_map_entry_release(count);
1805 ++bufdefragcnt;
1806 defrag = 1;
1807 bp->b_flags |= B_INVAL;
1808 brelse(bp);
1809 goto restart;
1811 if (addr) {
1812 vm_map_insert(buffer_map, &count,
1813 NULL, 0,
1814 addr, addr + maxsize,
1815 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1817 bp->b_kvabase = (caddr_t) addr;
1818 bp->b_kvasize = maxsize;
1819 bufspace += bp->b_kvasize;
1820 ++bufreusecnt;
1822 vm_map_unlock(buffer_map);
1823 vm_map_entry_release(count);
1825 bp->b_data = bp->b_kvabase;
1827 return(bp);
1831 * buf_daemon:
1833 * Buffer flushing daemon. Buffers are normally flushed by the
1834 * update daemon but if it cannot keep up this process starts to
1835 * take the load in an attempt to prevent getnewbuf() from blocking.
1838 static struct thread *bufdaemonthread;
1840 static struct kproc_desc buf_kp = {
1841 "bufdaemon",
1842 buf_daemon,
1843 &bufdaemonthread
1845 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1847 static void
1848 buf_daemon()
1851 * This process needs to be suspended prior to shutdown sync.
1853 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
1854 bufdaemonthread, SHUTDOWN_PRI_LAST);
1857 * This process is allowed to take the buffer cache to the limit
1859 crit_enter();
1861 for (;;) {
1862 kproc_suspend_loop();
1865 * Do the flush. Limit the amount of in-transit I/O we
1866 * allow to build up, otherwise we would completely saturate
1867 * the I/O system. Wakeup any waiting processes before we
1868 * normally would so they can run in parallel with our drain.
1870 while (numdirtybuffers > lodirtybuffers) {
1871 if (flushbufqueues() == 0)
1872 break;
1873 waitrunningbufspace();
1874 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1878 * Only clear bd_request if we have reached our low water
1879 * mark. The buf_daemon normally waits 5 seconds and
1880 * then incrementally flushes any dirty buffers that have
1881 * built up, within reason.
1883 * If we were unable to hit our low water mark and couldn't
1884 * find any flushable buffers, we sleep half a second.
1885 * Otherwise we loop immediately.
1887 if (numdirtybuffers <= lodirtybuffers) {
1889 * We reached our low water mark, reset the
1890 * request and sleep until we are needed again.
1891 * The sleep is just so the suspend code works.
1893 bd_request = 0;
1894 tsleep(&bd_request, 0, "psleep", hz);
1895 } else {
1897 * We couldn't find any flushable dirty buffers but
1898 * still have too many dirty buffers, we
1899 * have to sleep and try again. (rare)
1901 tsleep(&bd_request, 0, "qsleep", hz / 2);
1907 * flushbufqueues:
1909 * Try to flush a buffer in the dirty queue. We must be careful to
1910 * free up B_INVAL buffers instead of write them, which NFS is
1911 * particularly sensitive to.
1914 static int
1915 flushbufqueues(void)
1917 struct buf *bp;
1918 int r = 0;
1920 bp = TAILQ_FIRST(&bufqueues[BQUEUE_DIRTY]);
1922 while (bp) {
1923 KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1924 if ((bp->b_flags & B_DELWRI) != 0 &&
1925 (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1926 if (bp->b_flags & B_INVAL) {
1927 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1928 panic("flushbufqueues: locked buf");
1929 bremfree(bp);
1930 brelse(bp);
1931 ++r;
1932 break;
1934 if (LIST_FIRST(&bp->b_dep) != NULL &&
1935 bioops.io_countdeps &&
1936 (bp->b_flags & B_DEFERRED) == 0 &&
1937 (*bioops.io_countdeps)(bp, 0)) {
1938 TAILQ_REMOVE(&bufqueues[BQUEUE_DIRTY],
1939 bp, b_freelist);
1940 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY],
1941 bp, b_freelist);
1942 bp->b_flags |= B_DEFERRED;
1943 bp = TAILQ_FIRST(&bufqueues[BQUEUE_DIRTY]);
1944 continue;
1948 * Only write it out if we can successfully lock
1949 * it.
1951 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
1952 vfs_bio_awrite(bp);
1953 ++r;
1954 break;
1957 bp = TAILQ_NEXT(bp, b_freelist);
1959 return (r);
1963 * inmem:
1965 * Returns true if no I/O is needed to access the associated VM object.
1966 * This is like findblk except it also hunts around in the VM system for
1967 * the data.
1969 * Note that we ignore vm_page_free() races from interrupts against our
1970 * lookup, since if the caller is not protected our return value will not
1971 * be any more valid then otherwise once we exit the critical section.
1974 inmem(struct vnode * vp, daddr_t blkno)
1976 vm_object_t obj;
1977 vm_offset_t toff, tinc, size;
1978 vm_page_t m;
1979 vm_ooffset_t off;
1981 if (findblk(vp, blkno))
1982 return 1;
1983 if (vp->v_mount == NULL)
1984 return 0;
1985 if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
1986 return 0;
1988 size = PAGE_SIZE;
1989 if (size > vp->v_mount->mnt_stat.f_iosize)
1990 size = vp->v_mount->mnt_stat.f_iosize;
1991 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1993 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1994 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1995 if (!m)
1996 return 0;
1997 tinc = size;
1998 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1999 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2000 if (vm_page_is_valid(m,
2001 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2002 return 0;
2004 return 1;
2008 * vfs_setdirty:
2010 * Sets the dirty range for a buffer based on the status of the dirty
2011 * bits in the pages comprising the buffer.
2013 * The range is limited to the size of the buffer.
2015 * This routine is primarily used by NFS, but is generalized for the
2016 * B_VMIO case.
2018 static void
2019 vfs_setdirty(struct buf *bp)
2021 int i;
2022 vm_object_t object;
2025 * Degenerate case - empty buffer
2028 if (bp->b_bufsize == 0)
2029 return;
2032 * We qualify the scan for modified pages on whether the
2033 * object has been flushed yet. The OBJ_WRITEABLE flag
2034 * is not cleared simply by protecting pages off.
2037 if ((bp->b_flags & B_VMIO) == 0)
2038 return;
2040 object = bp->b_xio.xio_pages[0]->object;
2042 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2043 printf("Warning: object %p writeable but not mightbedirty\n", object);
2044 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2045 printf("Warning: object %p mightbedirty but not writeable\n", object);
2047 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2048 vm_offset_t boffset;
2049 vm_offset_t eoffset;
2052 * test the pages to see if they have been modified directly
2053 * by users through the VM system.
2055 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2056 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2057 vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2061 * Calculate the encompassing dirty range, boffset and eoffset,
2062 * (eoffset - boffset) bytes.
2065 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2066 if (bp->b_xio.xio_pages[i]->dirty)
2067 break;
2069 boffset = (i << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2071 for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2072 if (bp->b_xio.xio_pages[i]->dirty) {
2073 break;
2076 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2079 * Fit it to the buffer.
2082 if (eoffset > bp->b_bcount)
2083 eoffset = bp->b_bcount;
2086 * If we have a good dirty range, merge with the existing
2087 * dirty range.
2090 if (boffset < eoffset) {
2091 if (bp->b_dirtyoff > boffset)
2092 bp->b_dirtyoff = boffset;
2093 if (bp->b_dirtyend < eoffset)
2094 bp->b_dirtyend = eoffset;
2100 * findblk:
2102 * Locate and return the specified buffer, or NULL if the buffer does
2103 * not exist. Do not attempt to lock the buffer or manipulate it in
2104 * any way. The caller must validate that the correct buffer has been
2105 * obtain after locking it.
2107 struct buf *
2108 findblk(struct vnode *vp, daddr_t blkno)
2110 struct buf *bp;
2112 crit_enter();
2113 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, blkno);
2114 crit_exit();
2115 return(bp);
2119 * getblk:
2121 * Get a block given a specified block and offset into a file/device.
2122 * The buffers B_DONE bit will be cleared on return, making it almost
2123 * ready for an I/O initiation. B_INVAL may or may not be set on
2124 * return. The caller should clear B_INVAL prior to initiating a
2125 * READ.
2127 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2128 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2129 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2130 * without doing any of those things the system will likely believe
2131 * the buffer to be valid (especially if it is not B_VMIO), and the
2132 * next getblk() will return the buffer with B_CACHE set.
2134 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2135 * an existing buffer.
2137 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2138 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2139 * and then cleared based on the backing VM. If the previous buffer is
2140 * non-0-sized but invalid, B_CACHE will be cleared.
2142 * If getblk() must create a new buffer, the new buffer is returned with
2143 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2144 * case it is returned with B_INVAL clear and B_CACHE set based on the
2145 * backing VM.
2147 * getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
2148 * B_CACHE bit is clear.
2150 * What this means, basically, is that the caller should use B_CACHE to
2151 * determine whether the buffer is fully valid or not and should clear
2152 * B_INVAL prior to issuing a read. If the caller intends to validate
2153 * the buffer by loading its data area with something, the caller needs
2154 * to clear B_INVAL. If the caller does this without issuing an I/O,
2155 * the caller should set B_CACHE ( as an optimization ), else the caller
2156 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2157 * a write attempt or if it was a successfull read. If the caller
2158 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2159 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2161 struct buf *
2162 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2164 struct buf *bp;
2166 if (size > MAXBSIZE)
2167 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2169 crit_enter();
2170 loop:
2172 * Block if we are low on buffers. Certain processes are allowed
2173 * to completely exhaust the buffer cache.
2175 * If this check ever becomes a bottleneck it may be better to
2176 * move it into the else, when findblk() fails. At the moment
2177 * it isn't a problem.
2179 * XXX remove, we cannot afford to block anywhere if holding a vnode
2180 * lock in low-memory situation, so take it to the max.
2182 if (numfreebuffers == 0) {
2183 if (!curproc)
2184 return NULL;
2185 needsbuffer |= VFS_BIO_NEED_ANY;
2186 tsleep(&needsbuffer, slpflag, "newbuf", slptimeo);
2189 if ((bp = findblk(vp, blkno))) {
2191 * The buffer was found in the cache, but we need to lock it.
2192 * Even with LK_NOWAIT the lockmgr may break our critical
2193 * section, so double-check the validity of the buffer
2194 * once the lock has been obtained.
2196 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2197 int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2198 if (slpflag & PCATCH)
2199 lkflags |= LK_PCATCH;
2200 if (BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo) ==
2201 ENOLCK) {
2202 goto loop;
2204 crit_exit();
2205 return (NULL);
2209 * Once the buffer has been locked, make sure we didn't race
2210 * a buffer recyclement. Buffers that are no longer hashed
2211 * will have b_vp == NULL, so this takes care of that check
2212 * as well.
2214 if (bp->b_vp != vp || bp->b_lblkno != blkno) {
2215 printf("Warning buffer %p (vp %p lblkno %d) was recycled\n", bp, vp, (int)blkno);
2216 BUF_UNLOCK(bp);
2217 goto loop;
2221 * Make sure that B_INVAL buffers do not have a cached
2222 * block number translation.
2224 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_blkno != (daddr_t)-1)) {
2225 printf("Warning invalid buffer %p (vp %p lblkno %d) did not have cleared bio_blkno cache\n", bp, vp, (int)blkno);
2226 clearbiocache(&bp->b_bio2);
2230 * The buffer is locked. B_CACHE is cleared if the buffer is
2231 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set
2232 * and for a VMIO buffer B_CACHE is adjusted according to the
2233 * backing VM cache.
2235 if (bp->b_flags & B_INVAL)
2236 bp->b_flags &= ~B_CACHE;
2237 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2238 bp->b_flags |= B_CACHE;
2239 bremfree(bp);
2242 * check for size inconsistancies for non-VMIO case.
2245 if (bp->b_bcount != size) {
2246 if ((bp->b_flags & B_VMIO) == 0 ||
2247 (size > bp->b_kvasize)) {
2248 if (bp->b_flags & B_DELWRI) {
2249 bp->b_flags |= B_NOCACHE;
2250 VOP_BWRITE(bp->b_vp, bp);
2251 } else {
2252 if ((bp->b_flags & B_VMIO) &&
2253 (LIST_FIRST(&bp->b_dep) == NULL)) {
2254 bp->b_flags |= B_RELBUF;
2255 brelse(bp);
2256 } else {
2257 bp->b_flags |= B_NOCACHE;
2258 VOP_BWRITE(bp->b_vp, bp);
2261 goto loop;
2266 * If the size is inconsistant in the VMIO case, we can resize
2267 * the buffer. This might lead to B_CACHE getting set or
2268 * cleared. If the size has not changed, B_CACHE remains
2269 * unchanged from its previous state.
2272 if (bp->b_bcount != size)
2273 allocbuf(bp, size);
2275 KASSERT(bp->b_loffset != NOOFFSET,
2276 ("getblk: no buffer offset"));
2279 * A buffer with B_DELWRI set and B_CACHE clear must
2280 * be committed before we can return the buffer in
2281 * order to prevent the caller from issuing a read
2282 * ( due to B_CACHE not being set ) and overwriting
2283 * it.
2285 * Most callers, including NFS and FFS, need this to
2286 * operate properly either because they assume they
2287 * can issue a read if B_CACHE is not set, or because
2288 * ( for example ) an uncached B_DELWRI might loop due
2289 * to softupdates re-dirtying the buffer. In the latter
2290 * case, B_CACHE is set after the first write completes,
2291 * preventing further loops.
2293 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2294 * above while extending the buffer, we cannot allow the
2295 * buffer to remain with B_CACHE set after the write
2296 * completes or it will represent a corrupt state. To
2297 * deal with this we set B_NOCACHE to scrap the buffer
2298 * after the write.
2300 * We might be able to do something fancy, like setting
2301 * B_CACHE in bwrite() except if B_DELWRI is already set,
2302 * so the below call doesn't set B_CACHE, but that gets real
2303 * confusing. This is much easier.
2306 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2307 bp->b_flags |= B_NOCACHE;
2308 VOP_BWRITE(bp->b_vp, bp);
2309 goto loop;
2312 crit_exit();
2313 bp->b_flags &= ~B_DONE;
2314 } else {
2316 * Buffer is not in-core, create new buffer. The buffer
2317 * returned by getnewbuf() is locked. Note that the returned
2318 * buffer is also considered valid (not marked B_INVAL).
2320 * Calculating the offset for the I/O requires figuring out
2321 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2322 * the mount's f_iosize otherwise. If the vnode does not
2323 * have an associated mount we assume that the passed size is
2324 * the block size.
2326 * Note that vn_isdisk() cannot be used here since it may
2327 * return a failure for numerous reasons. Note that the
2328 * buffer size may be larger then the block size (the caller
2329 * will use block numbers with the proper multiple). Beware
2330 * of using any v_* fields which are part of unions. In
2331 * particular, in DragonFly the mount point overloading
2332 * mechanism is such that the underlying directory (with a
2333 * non-NULL v_mountedhere) is not a special case.
2335 int bsize, maxsize, vmio;
2336 off_t offset;
2338 if (vp->v_type == VBLK || vp->v_type == VCHR)
2339 bsize = DEV_BSIZE;
2340 else if (vp->v_mount)
2341 bsize = vp->v_mount->mnt_stat.f_iosize;
2342 else
2343 bsize = size;
2345 offset = (off_t)blkno * bsize;
2346 vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2347 maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2348 maxsize = imax(maxsize, bsize);
2350 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2351 if (slpflag || slptimeo) {
2352 crit_exit();
2353 return NULL;
2355 goto loop;
2359 * This code is used to make sure that a buffer is not
2360 * created while the getnewbuf routine is blocked.
2361 * This can be a problem whether the vnode is locked or not.
2362 * If the buffer is created out from under us, we have to
2363 * throw away the one we just created. There is now window
2364 * race because we are safely running in a critical section
2365 * from the point of the duplicate buffer creation through
2366 * to here, and we've locked the buffer.
2368 if (findblk(vp, blkno)) {
2369 bp->b_flags |= B_INVAL;
2370 brelse(bp);
2371 goto loop;
2375 * Insert the buffer into the hash, so that it can
2376 * be found by findblk().
2378 * Make sure the translation layer has been cleared.
2380 bp->b_lblkno = blkno;
2381 bp->b_loffset = offset;
2382 bp->b_bio2.bio_blkno = (daddr_t)-1;
2383 /* bp->b_bio2.bio_next = NULL; */
2385 bgetvp(vp, bp);
2388 * set B_VMIO bit. allocbuf() the buffer bigger. Since the
2389 * buffer size starts out as 0, B_CACHE will be set by
2390 * allocbuf() for the VMIO case prior to it testing the
2391 * backing store for validity.
2394 if (vmio) {
2395 bp->b_flags |= B_VMIO;
2396 #if defined(VFS_BIO_DEBUG)
2397 if (vn_canvmio(vp) != TRUE)
2398 printf("getblk: vmioing file type %d???\n", vp->v_type);
2399 #endif
2400 } else {
2401 bp->b_flags &= ~B_VMIO;
2404 allocbuf(bp, size);
2406 crit_exit();
2407 bp->b_flags &= ~B_DONE;
2409 return (bp);
2413 * geteblk:
2415 * Get an empty, disassociated buffer of given size. The buffer is
2416 * initially set to B_INVAL.
2418 * critical section protection is not required for the allocbuf()
2419 * call because races are impossible here.
2421 struct buf *
2422 geteblk(int size)
2424 struct buf *bp;
2425 int maxsize;
2427 maxsize = (size + BKVAMASK) & ~BKVAMASK;
2429 crit_enter();
2430 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2432 crit_exit();
2433 allocbuf(bp, size);
2434 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
2435 return (bp);
2440 * allocbuf:
2442 * This code constitutes the buffer memory from either anonymous system
2443 * memory (in the case of non-VMIO operations) or from an associated
2444 * VM object (in the case of VMIO operations). This code is able to
2445 * resize a buffer up or down.
2447 * Note that this code is tricky, and has many complications to resolve
2448 * deadlock or inconsistant data situations. Tread lightly!!!
2449 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2450 * the caller. Calling this code willy nilly can result in the loss of data.
2452 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
2453 * B_CACHE for the non-VMIO case.
2455 * This routine does not need to be called from a critical section but you
2456 * must own the buffer.
2459 allocbuf(struct buf *bp, int size)
2461 int newbsize, mbsize;
2462 int i;
2464 if (BUF_REFCNT(bp) == 0)
2465 panic("allocbuf: buffer not busy");
2467 if (bp->b_kvasize < size)
2468 panic("allocbuf: buffer too small");
2470 if ((bp->b_flags & B_VMIO) == 0) {
2471 caddr_t origbuf;
2472 int origbufsize;
2474 * Just get anonymous memory from the kernel. Don't
2475 * mess with B_CACHE.
2477 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2478 if (bp->b_flags & B_MALLOC)
2479 newbsize = mbsize;
2480 else
2481 newbsize = round_page(size);
2483 if (newbsize < bp->b_bufsize) {
2485 * malloced buffers are not shrunk
2487 if (bp->b_flags & B_MALLOC) {
2488 if (newbsize) {
2489 bp->b_bcount = size;
2490 } else {
2491 free(bp->b_data, M_BIOBUF);
2492 if (bp->b_bufsize) {
2493 bufmallocspace -= bp->b_bufsize;
2494 bufspacewakeup();
2495 bp->b_bufsize = 0;
2497 bp->b_data = bp->b_kvabase;
2498 bp->b_bcount = 0;
2499 bp->b_flags &= ~B_MALLOC;
2501 return 1;
2503 vm_hold_free_pages(
2505 (vm_offset_t) bp->b_data + newbsize,
2506 (vm_offset_t) bp->b_data + bp->b_bufsize);
2507 } else if (newbsize > bp->b_bufsize) {
2509 * We only use malloced memory on the first allocation.
2510 * and revert to page-allocated memory when the buffer
2511 * grows.
2513 if ( (bufmallocspace < maxbufmallocspace) &&
2514 (bp->b_bufsize == 0) &&
2515 (mbsize <= PAGE_SIZE/2)) {
2517 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2518 bp->b_bufsize = mbsize;
2519 bp->b_bcount = size;
2520 bp->b_flags |= B_MALLOC;
2521 bufmallocspace += mbsize;
2522 return 1;
2524 origbuf = NULL;
2525 origbufsize = 0;
2527 * If the buffer is growing on its other-than-first allocation,
2528 * then we revert to the page-allocation scheme.
2530 if (bp->b_flags & B_MALLOC) {
2531 origbuf = bp->b_data;
2532 origbufsize = bp->b_bufsize;
2533 bp->b_data = bp->b_kvabase;
2534 if (bp->b_bufsize) {
2535 bufmallocspace -= bp->b_bufsize;
2536 bufspacewakeup();
2537 bp->b_bufsize = 0;
2539 bp->b_flags &= ~B_MALLOC;
2540 newbsize = round_page(newbsize);
2542 vm_hold_load_pages(
2544 (vm_offset_t) bp->b_data + bp->b_bufsize,
2545 (vm_offset_t) bp->b_data + newbsize);
2546 if (origbuf) {
2547 bcopy(origbuf, bp->b_data, origbufsize);
2548 free(origbuf, M_BIOBUF);
2551 } else {
2552 vm_page_t m;
2553 int desiredpages;
2555 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2556 desiredpages = (size == 0) ? 0 :
2557 num_pages((bp->b_loffset & PAGE_MASK) + newbsize);
2559 if (bp->b_flags & B_MALLOC)
2560 panic("allocbuf: VMIO buffer can't be malloced");
2562 * Set B_CACHE initially if buffer is 0 length or will become
2563 * 0-length.
2565 if (size == 0 || bp->b_bufsize == 0)
2566 bp->b_flags |= B_CACHE;
2568 if (newbsize < bp->b_bufsize) {
2570 * DEV_BSIZE aligned new buffer size is less then the
2571 * DEV_BSIZE aligned existing buffer size. Figure out
2572 * if we have to remove any pages.
2574 if (desiredpages < bp->b_xio.xio_npages) {
2575 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2577 * the page is not freed here -- it
2578 * is the responsibility of
2579 * vnode_pager_setsize
2581 m = bp->b_xio.xio_pages[i];
2582 KASSERT(m != bogus_page,
2583 ("allocbuf: bogus page found"));
2584 while (vm_page_sleep_busy(m, TRUE, "biodep"))
2587 bp->b_xio.xio_pages[i] = NULL;
2588 vm_page_unwire(m, 0);
2590 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2591 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2592 bp->b_xio.xio_npages = desiredpages;
2594 } else if (size > bp->b_bcount) {
2596 * We are growing the buffer, possibly in a
2597 * byte-granular fashion.
2599 struct vnode *vp;
2600 vm_object_t obj;
2601 vm_offset_t toff;
2602 vm_offset_t tinc;
2605 * Step 1, bring in the VM pages from the object,
2606 * allocating them if necessary. We must clear
2607 * B_CACHE if these pages are not valid for the
2608 * range covered by the buffer.
2610 * critical section protection is required to protect
2611 * against interrupts unbusying and freeing pages
2612 * between our vm_page_lookup() and our
2613 * busycheck/wiring call.
2615 vp = bp->b_vp;
2616 VOP_GETVOBJECT(vp, &obj);
2618 crit_enter();
2619 while (bp->b_xio.xio_npages < desiredpages) {
2620 vm_page_t m;
2621 vm_pindex_t pi;
2623 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
2624 if ((m = vm_page_lookup(obj, pi)) == NULL) {
2626 * note: must allocate system pages
2627 * since blocking here could intefere
2628 * with paging I/O, no matter which
2629 * process we are.
2631 m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
2632 if (m == NULL) {
2633 vm_wait();
2634 vm_pageout_deficit += desiredpages -
2635 bp->b_xio.xio_npages;
2636 } else {
2637 vm_page_wire(m);
2638 vm_page_wakeup(m);
2639 bp->b_flags &= ~B_CACHE;
2640 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2641 ++bp->b_xio.xio_npages;
2643 continue;
2647 * We found a page. If we have to sleep on it,
2648 * retry because it might have gotten freed out
2649 * from under us.
2651 * We can only test PG_BUSY here. Blocking on
2652 * m->busy might lead to a deadlock:
2654 * vm_fault->getpages->cluster_read->allocbuf
2658 if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2659 continue;
2662 * We have a good page. Should we wakeup the
2663 * page daemon?
2665 if ((curthread != pagethread) &&
2666 ((m->queue - m->pc) == PQ_CACHE) &&
2667 ((vmstats.v_free_count + vmstats.v_cache_count) <
2668 (vmstats.v_free_min + vmstats.v_cache_min))) {
2669 pagedaemon_wakeup();
2671 vm_page_flag_clear(m, PG_ZERO);
2672 vm_page_wire(m);
2673 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2674 ++bp->b_xio.xio_npages;
2676 crit_exit();
2679 * Step 2. We've loaded the pages into the buffer,
2680 * we have to figure out if we can still have B_CACHE
2681 * set. Note that B_CACHE is set according to the
2682 * byte-granular range ( bcount and size ), not the
2683 * aligned range ( newbsize ).
2685 * The VM test is against m->valid, which is DEV_BSIZE
2686 * aligned. Needless to say, the validity of the data
2687 * needs to also be DEV_BSIZE aligned. Note that this
2688 * fails with NFS if the server or some other client
2689 * extends the file's EOF. If our buffer is resized,
2690 * B_CACHE may remain set! XXX
2693 toff = bp->b_bcount;
2694 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
2696 while ((bp->b_flags & B_CACHE) && toff < size) {
2697 vm_pindex_t pi;
2699 if (tinc > (size - toff))
2700 tinc = size - toff;
2702 pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
2703 PAGE_SHIFT;
2705 vfs_buf_test_cache(
2706 bp,
2707 bp->b_loffset,
2708 toff,
2709 tinc,
2710 bp->b_xio.xio_pages[pi]
2712 toff += tinc;
2713 tinc = PAGE_SIZE;
2717 * Step 3, fixup the KVM pmap. Remember that
2718 * bp->b_data is relative to bp->b_loffset, but
2719 * bp->b_loffset may be offset into the first page.
2722 bp->b_data = (caddr_t)
2723 trunc_page((vm_offset_t)bp->b_data);
2724 pmap_qenter(
2725 (vm_offset_t)bp->b_data,
2726 bp->b_xio.xio_pages,
2727 bp->b_xio.xio_npages
2729 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2730 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
2733 if (newbsize < bp->b_bufsize)
2734 bufspacewakeup();
2735 bp->b_bufsize = newbsize; /* actual buffer allocation */
2736 bp->b_bcount = size; /* requested buffer size */
2737 return 1;
2741 * biowait:
2743 * Wait for buffer I/O completion, returning error status. The buffer
2744 * is left locked and B_DONE on return. B_EINTR is converted into an
2745 * EINTR error and cleared.
2748 biowait(struct buf * bp)
2750 crit_enter();
2751 while ((bp->b_flags & B_DONE) == 0) {
2752 if (bp->b_flags & B_READ)
2753 tsleep(bp, 0, "biord", 0);
2754 else
2755 tsleep(bp, 0, "biowr", 0);
2757 crit_exit();
2758 if (bp->b_flags & B_EINTR) {
2759 bp->b_flags &= ~B_EINTR;
2760 return (EINTR);
2762 if (bp->b_flags & B_ERROR) {
2763 return (bp->b_error ? bp->b_error : EIO);
2764 } else {
2765 return (0);
2770 * This associates a tracking count with an I/O. vn_strategy() and
2771 * dev_dstrategy() do this automatically but there are a few cases
2772 * where a vnode or device layer is bypassed when a block translation
2773 * is cached. In such cases bio_start_transaction() may be called on
2774 * the bypassed layers so the system gets an I/O in progress indication
2775 * for those higher layers.
2777 void
2778 bio_start_transaction(struct bio *bio, struct bio_track *track)
2780 bio->bio_track = track;
2781 atomic_add_int(&track->bk_active, 1);
2785 * Initiate I/O on a vnode.
2787 void
2788 vn_strategy(struct vnode *vp, struct bio *bio)
2790 struct bio_track *track;
2792 if (bio->bio_buf->b_flags & B_READ)
2793 track = &vp->v_track_read;
2794 else
2795 track = &vp->v_track_write;
2796 bio->bio_track = track;
2797 atomic_add_int(&track->bk_active, 1);
2798 vop_strategy(*vp->v_ops, vp, bio);
2803 * biodone:
2805 * Finish I/O on a buffer, optionally calling a completion function.
2806 * This is usually called from an interrupt so process blocking is
2807 * not allowed.
2809 * biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2810 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
2811 * assuming B_INVAL is clear.
2813 * For the VMIO case, we set B_CACHE if the op was a read and no
2814 * read error occured, or if the op was a write. B_CACHE is never
2815 * set if the buffer is invalid or otherwise uncacheable.
2817 * biodone does not mess with B_INVAL, allowing the I/O routine or the
2818 * initiator to leave B_INVAL set to brelse the buffer out of existance
2819 * in the biodone routine.
2821 void
2822 biodone(struct bio *bio)
2824 struct buf *bp = bio->bio_buf;
2825 int error;
2827 crit_enter();
2829 KASSERT(BUF_REFCNTNB(bp) > 0,
2830 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
2831 KASSERT(!(bp->b_flags & B_DONE),
2832 ("biodone: bp %p already done", bp));
2834 bp->b_flags |= B_DONE;
2835 runningbufwakeup(bp);
2838 * Run up the chain of BIO's.
2840 while (bio) {
2841 biodone_t *done_func;
2842 struct bio_track *track;
2845 * BIO tracking. Most but not all BIOs are tracked.
2847 if ((track = bio->bio_track) != NULL) {
2848 atomic_subtract_int(&track->bk_active, 1);
2849 if (track->bk_active < 0) {
2850 panic("biodone: bad active count bio %p\n",
2851 bio);
2853 if (track->bk_waitflag) {
2854 track->bk_waitflag = 0;
2855 wakeup(track);
2857 bio->bio_track = NULL;
2861 * A bio_done function terminates the loop. The function
2862 * will be responsible for any further chaining and/or
2863 * buffer management.
2865 if ((done_func = bio->bio_done) != NULL) {
2866 bio->bio_done = NULL;
2867 done_func(bio);
2868 crit_exit();
2869 return;
2871 bio = bio->bio_prev;
2875 * Special case (XXX) - not a read or write.
2877 if (bp->b_flags & B_FREEBUF) {
2878 brelse(bp);
2879 crit_exit();
2880 return;
2883 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2884 (*bioops.io_complete)(bp);
2886 if (bp->b_flags & B_VMIO) {
2887 int i;
2888 vm_ooffset_t foff;
2889 vm_page_t m;
2890 vm_object_t obj;
2891 int iosize;
2892 struct vnode *vp = bp->b_vp;
2894 error = VOP_GETVOBJECT(vp, &obj);
2896 #if defined(VFS_BIO_DEBUG)
2897 if (vp->v_holdcnt == 0) {
2898 panic("biodone: zero vnode hold count");
2901 if (error) {
2902 panic("biodone: missing VM object");
2905 if ((vp->v_flag & VOBJBUF) == 0) {
2906 panic("biodone: vnode is not setup for merged cache");
2908 #endif
2910 foff = bp->b_loffset;
2911 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
2913 if (error) {
2914 panic("biodone: no object");
2916 #if defined(VFS_BIO_DEBUG)
2917 if (obj->paging_in_progress < bp->b_xio.xio_npages) {
2918 printf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
2919 obj->paging_in_progress, bp->b_xio.xio_npages);
2921 #endif
2924 * Set B_CACHE if the op was a normal read and no error
2925 * occured. B_CACHE is set for writes in the b*write()
2926 * routines.
2928 iosize = bp->b_bcount - bp->b_resid;
2929 if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2930 bp->b_flags |= B_CACHE;
2933 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2934 int bogusflag = 0;
2935 int resid;
2937 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2938 if (resid > iosize)
2939 resid = iosize;
2942 * cleanup bogus pages, restoring the originals. Since
2943 * the originals should still be wired, we don't have
2944 * to worry about interrupt/freeing races destroying
2945 * the VM object association.
2947 m = bp->b_xio.xio_pages[i];
2948 if (m == bogus_page) {
2949 bogusflag = 1;
2950 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2951 if (m == NULL)
2952 panic("biodone: page disappeared");
2953 bp->b_xio.xio_pages[i] = m;
2954 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2955 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
2957 #if defined(VFS_BIO_DEBUG)
2958 if (OFF_TO_IDX(foff) != m->pindex) {
2959 printf(
2960 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2961 (unsigned long)foff, m->pindex);
2963 #endif
2966 * In the write case, the valid and clean bits are
2967 * already changed correctly ( see bdwrite() ), so we
2968 * only need to do this here in the read case.
2970 if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2971 vfs_page_set_valid(bp, foff, i, m);
2973 vm_page_flag_clear(m, PG_ZERO);
2976 * when debugging new filesystems or buffer I/O methods, this
2977 * is the most common error that pops up. if you see this, you
2978 * have not set the page busy flag correctly!!!
2980 if (m->busy == 0) {
2981 printf("biodone: page busy < 0, "
2982 "pindex: %d, foff: 0x(%x,%x), "
2983 "resid: %d, index: %d\n",
2984 (int) m->pindex, (int)(foff >> 32),
2985 (int) foff & 0xffffffff, resid, i);
2986 if (!vn_isdisk(vp, NULL))
2987 printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2988 bp->b_vp->v_mount->mnt_stat.f_iosize,
2989 (int) bp->b_lblkno,
2990 bp->b_flags, bp->b_xio.xio_npages);
2991 else
2992 printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2993 (int) bp->b_lblkno,
2994 bp->b_flags, bp->b_xio.xio_npages);
2995 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2996 m->valid, m->dirty, m->wire_count);
2997 panic("biodone: page busy < 0");
2999 vm_page_io_finish(m);
3000 vm_object_pip_subtract(obj, 1);
3001 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3002 iosize -= resid;
3004 if (obj)
3005 vm_object_pip_wakeupn(obj, 0);
3009 * For asynchronous completions, release the buffer now. The brelse
3010 * will do a wakeup there if necessary - so no need to do a wakeup
3011 * here in the async case. The sync case always needs to do a wakeup.
3014 if (bp->b_flags & B_ASYNC) {
3015 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
3016 brelse(bp);
3017 else
3018 bqrelse(bp);
3019 } else {
3020 wakeup(bp);
3022 crit_exit();
3026 * vfs_unbusy_pages:
3028 * This routine is called in lieu of iodone in the case of
3029 * incomplete I/O. This keeps the busy status for pages
3030 * consistant.
3032 void
3033 vfs_unbusy_pages(struct buf *bp)
3035 int i;
3037 runningbufwakeup(bp);
3038 if (bp->b_flags & B_VMIO) {
3039 struct vnode *vp = bp->b_vp;
3040 vm_object_t obj;
3042 VOP_GETVOBJECT(vp, &obj);
3044 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3045 vm_page_t m = bp->b_xio.xio_pages[i];
3048 * When restoring bogus changes the original pages
3049 * should still be wired, so we are in no danger of
3050 * losing the object association and do not need
3051 * critical section protection particularly.
3053 if (m == bogus_page) {
3054 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3055 if (!m) {
3056 panic("vfs_unbusy_pages: page missing");
3058 bp->b_xio.xio_pages[i] = m;
3059 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3060 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3062 vm_object_pip_subtract(obj, 1);
3063 vm_page_flag_clear(m, PG_ZERO);
3064 vm_page_io_finish(m);
3066 vm_object_pip_wakeupn(obj, 0);
3071 * vfs_page_set_valid:
3073 * Set the valid bits in a page based on the supplied offset. The
3074 * range is restricted to the buffer's size.
3076 * This routine is typically called after a read completes.
3078 static void
3079 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3081 vm_ooffset_t soff, eoff;
3084 * Start and end offsets in buffer. eoff - soff may not cross a
3085 * page boundry or cross the end of the buffer. The end of the
3086 * buffer, in this case, is our file EOF, not the allocation size
3087 * of the buffer.
3089 soff = off;
3090 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3091 if (eoff > bp->b_loffset + bp->b_bcount)
3092 eoff = bp->b_loffset + bp->b_bcount;
3095 * Set valid range. This is typically the entire buffer and thus the
3096 * entire page.
3098 if (eoff > soff) {
3099 vm_page_set_validclean(
3101 (vm_offset_t) (soff & PAGE_MASK),
3102 (vm_offset_t) (eoff - soff)
3108 * vfs_busy_pages:
3110 * This routine is called before a device strategy routine.
3111 * It is used to tell the VM system that paging I/O is in
3112 * progress, and treat the pages associated with the buffer
3113 * almost as being PG_BUSY. Also the object 'paging_in_progress'
3114 * flag is handled to make sure that the object doesn't become
3115 * inconsistant.
3117 * Since I/O has not been initiated yet, certain buffer flags
3118 * such as B_ERROR or B_INVAL may be in an inconsistant state
3119 * and should be ignored.
3121 void
3122 vfs_busy_pages(struct buf *bp, int clear_modify)
3124 int i, bogus;
3125 struct proc *p = curthread->td_proc;
3127 if (bp->b_flags & B_VMIO) {
3128 struct vnode *vp = bp->b_vp;
3129 vm_object_t obj;
3130 vm_ooffset_t foff;
3132 VOP_GETVOBJECT(vp, &obj);
3133 foff = bp->b_loffset;
3134 KASSERT(bp->b_loffset != NOOFFSET,
3135 ("vfs_busy_pages: no buffer offset"));
3136 vfs_setdirty(bp);
3138 retry:
3139 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3140 vm_page_t m = bp->b_xio.xio_pages[i];
3141 if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3142 goto retry;
3145 bogus = 0;
3146 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3147 vm_page_t m = bp->b_xio.xio_pages[i];
3149 vm_page_flag_clear(m, PG_ZERO);
3150 if ((bp->b_flags & B_CLUSTER) == 0) {
3151 vm_object_pip_add(obj, 1);
3152 vm_page_io_start(m);
3156 * When readying a buffer for a read ( i.e
3157 * clear_modify == 0 ), it is important to do
3158 * bogus_page replacement for valid pages in
3159 * partially instantiated buffers. Partially
3160 * instantiated buffers can, in turn, occur when
3161 * reconstituting a buffer from its VM backing store
3162 * base. We only have to do this if B_CACHE is
3163 * clear ( which causes the I/O to occur in the
3164 * first place ). The replacement prevents the read
3165 * I/O from overwriting potentially dirty VM-backed
3166 * pages. XXX bogus page replacement is, uh, bogus.
3167 * It may not work properly with small-block devices.
3168 * We need to find a better way.
3171 vm_page_protect(m, VM_PROT_NONE);
3172 if (clear_modify)
3173 vfs_page_set_valid(bp, foff, i, m);
3174 else if (m->valid == VM_PAGE_BITS_ALL &&
3175 (bp->b_flags & B_CACHE) == 0) {
3176 bp->b_xio.xio_pages[i] = bogus_page;
3177 bogus++;
3179 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3181 if (bogus)
3182 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3183 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3187 * This is the easiest place to put the process accounting for the I/O
3188 * for now.
3190 if (p != NULL) {
3191 if (bp->b_flags & B_READ)
3192 p->p_stats->p_ru.ru_inblock++;
3193 else
3194 p->p_stats->p_ru.ru_oublock++;
3199 * vfs_clean_pages:
3201 * Tell the VM system that the pages associated with this buffer
3202 * are clean. This is used for delayed writes where the data is
3203 * going to go to disk eventually without additional VM intevention.
3205 * Note that while we only really need to clean through to b_bcount, we
3206 * just go ahead and clean through to b_bufsize.
3208 static void
3209 vfs_clean_pages(struct buf *bp)
3211 int i;
3213 if (bp->b_flags & B_VMIO) {
3214 vm_ooffset_t foff;
3216 foff = bp->b_loffset;
3217 KASSERT(foff != NOOFFSET, ("vfs_clean_pages: no buffer offset"));
3218 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3219 vm_page_t m = bp->b_xio.xio_pages[i];
3220 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3221 vm_ooffset_t eoff = noff;
3223 if (eoff > bp->b_loffset + bp->b_bufsize)
3224 eoff = bp->b_loffset + bp->b_bufsize;
3225 vfs_page_set_valid(bp, foff, i, m);
3226 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3227 foff = noff;
3233 * vfs_bio_set_validclean:
3235 * Set the range within the buffer to valid and clean. The range is
3236 * relative to the beginning of the buffer, b_loffset. Note that
3237 * b_loffset itself may be offset from the beginning of the first page.
3240 void
3241 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3243 if (bp->b_flags & B_VMIO) {
3244 int i;
3245 int n;
3248 * Fixup base to be relative to beginning of first page.
3249 * Set initial n to be the maximum number of bytes in the
3250 * first page that can be validated.
3253 base += (bp->b_loffset & PAGE_MASK);
3254 n = PAGE_SIZE - (base & PAGE_MASK);
3256 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3257 vm_page_t m = bp->b_xio.xio_pages[i];
3259 if (n > size)
3260 n = size;
3262 vm_page_set_validclean(m, base & PAGE_MASK, n);
3263 base += n;
3264 size -= n;
3265 n = PAGE_SIZE;
3271 * vfs_bio_clrbuf:
3273 * Clear a buffer. This routine essentially fakes an I/O, so we need
3274 * to clear B_ERROR and B_INVAL.
3276 * Note that while we only theoretically need to clear through b_bcount,
3277 * we go ahead and clear through b_bufsize.
3280 void
3281 vfs_bio_clrbuf(struct buf *bp)
3283 int i, mask = 0;
3284 caddr_t sa, ea;
3285 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3286 bp->b_flags &= ~(B_INVAL|B_ERROR);
3287 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3288 (bp->b_loffset & PAGE_MASK) == 0) {
3289 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3290 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3291 bp->b_resid = 0;
3292 return;
3294 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3295 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3296 bzero(bp->b_data, bp->b_bufsize);
3297 bp->b_xio.xio_pages[0]->valid |= mask;
3298 bp->b_resid = 0;
3299 return;
3302 ea = sa = bp->b_data;
3303 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3304 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3305 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3306 ea = (caddr_t)(vm_offset_t)ulmin(
3307 (u_long)(vm_offset_t)ea,
3308 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3309 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3310 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3311 continue;
3312 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3313 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3314 bzero(sa, ea - sa);
3316 } else {
3317 for (; sa < ea; sa += DEV_BSIZE, j++) {
3318 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3319 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3320 bzero(sa, DEV_BSIZE);
3323 bp->b_xio.xio_pages[i]->valid |= mask;
3324 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3326 bp->b_resid = 0;
3327 } else {
3328 clrbuf(bp);
3333 * vm_hold_load_pages:
3335 * Load pages into the buffer's address space. The pages are
3336 * allocated from the kernel object in order to reduce interference
3337 * with the any VM paging I/O activity. The range of loaded
3338 * pages will be wired.
3340 * If a page cannot be allocated, the 'pagedaemon' is woken up to
3341 * retrieve the full range (to - from) of pages.
3344 void
3345 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3347 vm_offset_t pg;
3348 vm_page_t p;
3349 int index;
3351 to = round_page(to);
3352 from = round_page(from);
3353 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3355 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3357 tryagain:
3360 * Note: must allocate system pages since blocking here
3361 * could intefere with paging I/O, no matter which
3362 * process we are.
3364 p = vm_page_alloc(kernel_object,
3365 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3366 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3367 if (!p) {
3368 vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3369 vm_wait();
3370 goto tryagain;
3372 vm_page_wire(p);
3373 p->valid = VM_PAGE_BITS_ALL;
3374 vm_page_flag_clear(p, PG_ZERO);
3375 pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3376 bp->b_xio.xio_pages[index] = p;
3377 vm_page_wakeup(p);
3379 bp->b_xio.xio_npages = index;
3383 * vm_hold_free_pages:
3385 * Return pages associated with the buffer back to the VM system.
3387 * The range of pages underlying the buffer's address space will
3388 * be unmapped and un-wired.
3390 void
3391 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3393 vm_offset_t pg;
3394 vm_page_t p;
3395 int index, newnpages;
3397 from = round_page(from);
3398 to = round_page(to);
3399 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3401 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3402 p = bp->b_xio.xio_pages[index];
3403 if (p && (index < bp->b_xio.xio_npages)) {
3404 if (p->busy) {
3405 printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3406 bp->b_bio2.bio_blkno, bp->b_lblkno);
3408 bp->b_xio.xio_pages[index] = NULL;
3409 pmap_kremove(pg);
3410 vm_page_busy(p);
3411 vm_page_unwire(p, 0);
3412 vm_page_free(p);
3415 bp->b_xio.xio_npages = newnpages;
3419 * vmapbuf:
3421 * Map an IO request into kernel virtual address space.
3423 * All requests are (re)mapped into kernel VA space.
3424 * Notice that we use b_bufsize for the size of the buffer
3425 * to be mapped. b_bcount might be modified by the driver.
3428 vmapbuf(struct buf *bp)
3430 caddr_t addr, v, kva;
3431 vm_paddr_t pa;
3432 int pidx;
3433 int i;
3434 struct vm_page *m;
3436 if ((bp->b_flags & B_PHYS) == 0)
3437 panic("vmapbuf");
3438 if (bp->b_bufsize < 0)
3439 return (-1);
3440 for (v = bp->b_saveaddr,
3441 addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data),
3442 pidx = 0;
3443 addr < bp->b_data + bp->b_bufsize;
3444 addr += PAGE_SIZE, v += PAGE_SIZE, pidx++) {
3446 * Do the vm_fault if needed; do the copy-on-write thing
3447 * when reading stuff off device into memory.
3449 retry:
3450 i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data,
3451 (bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
3452 if (i < 0) {
3453 for (i = 0; i < pidx; ++i) {
3454 vm_page_unhold(bp->b_xio.xio_pages[i]);
3455 bp->b_xio.xio_pages[i] = NULL;
3457 return(-1);
3461 * WARNING! If sparc support is MFCd in the future this will
3462 * have to be changed from pmap_kextract() to pmap_extract()
3463 * ala -current.
3465 #ifdef __sparc64__
3466 #error "If MFCing sparc support use pmap_extract"
3467 #endif
3468 pa = pmap_kextract((vm_offset_t)addr);
3469 if (pa == 0) {
3470 printf("vmapbuf: warning, race against user address during I/O");
3471 goto retry;
3473 m = PHYS_TO_VM_PAGE(pa);
3474 vm_page_hold(m);
3475 bp->b_xio.xio_pages[pidx] = m;
3477 if (pidx > btoc(MAXPHYS))
3478 panic("vmapbuf: mapped more than MAXPHYS");
3479 pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_xio.xio_pages, pidx);
3481 kva = bp->b_saveaddr;
3482 bp->b_xio.xio_npages = pidx;
3483 bp->b_saveaddr = bp->b_data;
3484 bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3485 return(0);
3489 * vunmapbuf:
3491 * Free the io map PTEs associated with this IO operation.
3492 * We also invalidate the TLB entries and restore the original b_addr.
3494 void
3495 vunmapbuf(struct buf *bp)
3497 int pidx;
3498 int npages;
3499 vm_page_t *m;
3501 if ((bp->b_flags & B_PHYS) == 0)
3502 panic("vunmapbuf");
3504 npages = bp->b_xio.xio_npages;
3505 pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3506 npages);
3507 m = bp->b_xio.xio_pages;
3508 for (pidx = 0; pidx < npages; pidx++)
3509 vm_page_unhold(*m++);
3511 bp->b_data = bp->b_saveaddr;
3515 * print out statistics from the current status of the buffer pool
3516 * this can be toggeled by the system control option debug.syncprt
3518 #ifdef DEBUG
3519 void
3520 vfs_bufstats(void)
3522 int i, j, count;
3523 struct buf *bp;
3524 struct bqueues *dp;
3525 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
3526 static char *bname[3] = { "LOCKED", "LRU", "AGE" };
3528 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
3529 count = 0;
3530 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3531 counts[j] = 0;
3532 crit_enter();
3533 TAILQ_FOREACH(bp, dp, b_freelist) {
3534 counts[bp->b_bufsize/PAGE_SIZE]++;
3535 count++;
3537 crit_exit();
3538 printf("%s: total-%d", bname[i], count);
3539 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3540 if (counts[j] != 0)
3541 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
3542 printf("\n");
3545 #endif
3547 #include "opt_ddb.h"
3548 #ifdef DDB
3549 #include <ddb/ddb.h>
3551 DB_SHOW_COMMAND(buffer, db_show_buffer)
3553 /* get args */
3554 struct buf *bp = (struct buf *)addr;
3556 if (!have_addr) {
3557 db_printf("usage: show buffer <addr>\n");
3558 return;
3561 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3562 db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3563 "b_resid = %ld\n, b_data = %p, "
3564 "bio_blkno(disk) = %d, bio_blkno(phys) = %d\n",
3565 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3566 bp->b_data, bp->b_bio2.bio_blkno, (bp->b_bio2.bio_next ? bp->b_bio2.bio_next->bio_blkno : (daddr_t)-1));
3567 if (bp->b_xio.xio_npages) {
3568 int i;
3569 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3570 bp->b_xio.xio_npages);
3571 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3572 vm_page_t m;
3573 m = bp->b_xio.xio_pages[i];
3574 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3575 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3576 if ((i + 1) < bp->b_xio.xio_npages)
3577 db_printf(",");
3579 db_printf("\n");
3582 #endif /* DDB */