2 * Copyright (c) 1994,1997 John S. Dyson
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.58 2006/03/05 18:38:34 dillon Exp $
19 * this file contains a new buffer I/O scheme implementing a coherent
20 * VM object and buffer cache scheme. Pains have been taken to make
21 * sure that the performance degradation associated with schemes such
22 * as this is not realized.
24 * Author: John S. Dyson
25 * Significant help during the development and debugging phases
26 * had been provided by David Greenman, also of the FreeBSD core team.
28 * see man buf(9) for more info.
31 #include <sys/param.h>
32 #include <sys/systm.h>
35 #include <sys/eventhandler.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
58 #include <sys/thread2.h>
59 #include <vm/vm_page2.h>
64 #define BUFFER_QUEUES 6
66 BQUEUE_NONE
, /* not on any queue */
67 BQUEUE_LOCKED
, /* locked buffers */
68 BQUEUE_CLEAN
, /* non-B_DELWRI buffers */
69 BQUEUE_DIRTY
, /* B_DELWRI buffers */
70 BQUEUE_EMPTYKVA
, /* empty buffer headers with KVA assignment */
71 BQUEUE_EMPTY
/* empty buffer headers */
73 TAILQ_HEAD(bqueues
, buf
) bufqueues
[BUFFER_QUEUES
];
75 static MALLOC_DEFINE(M_BIOBUF
, "BIO buffer", "BIO buffer");
77 struct bio_ops bioops
; /* I/O operation notification */
79 struct buf
*buf
; /* buffer header pool */
81 static void vm_hold_free_pages(struct buf
* bp
, vm_offset_t from
,
83 static void vm_hold_load_pages(struct buf
* bp
, vm_offset_t from
,
85 static void vfs_page_set_valid(struct buf
*bp
, vm_ooffset_t off
,
86 int pageno
, vm_page_t m
);
87 static void vfs_clean_pages(struct buf
* bp
);
88 static void vfs_setdirty(struct buf
*bp
);
89 static void vfs_vmio_release(struct buf
*bp
);
90 static int flushbufqueues(void);
92 static int bd_request
;
94 static void buf_daemon (void);
96 * bogus page -- for I/O to/from partially complete buffers
97 * this is a temporary solution to the problem, but it is not
98 * really that bad. it would be better to split the buffer
99 * for input in the case of buffers partially already in memory,
100 * but the code is intricate enough already.
102 vm_page_t bogus_page
;
103 int vmiodirenable
= TRUE
;
106 static int bufspace
, maxbufspace
,
107 bufmallocspace
, maxbufmallocspace
, lobufspace
, hibufspace
;
108 static int bufreusecnt
, bufdefragcnt
, buffreekvacnt
;
109 static int needsbuffer
;
110 static int lorunningspace
, hirunningspace
, runningbufreq
;
111 static int numdirtybuffers
, lodirtybuffers
, hidirtybuffers
;
112 static int numfreebuffers
, lofreebuffers
, hifreebuffers
;
113 static int getnewbufcalls
;
114 static int getnewbufrestarts
;
117 * Sysctls for operational control of the buffer cache.
119 SYSCTL_INT(_vfs
, OID_AUTO
, lodirtybuffers
, CTLFLAG_RW
, &lodirtybuffers
, 0,
120 "Number of dirty buffers to flush before bufdaemon becomes inactive");
121 SYSCTL_INT(_vfs
, OID_AUTO
, hidirtybuffers
, CTLFLAG_RW
, &hidirtybuffers
, 0,
122 "High watermark used to trigger explicit flushing of dirty buffers");
123 SYSCTL_INT(_vfs
, OID_AUTO
, lofreebuffers
, CTLFLAG_RW
, &lofreebuffers
, 0,
124 "Low watermark for special reserve in low-memory situations");
125 SYSCTL_INT(_vfs
, OID_AUTO
, hifreebuffers
, CTLFLAG_RW
, &hifreebuffers
, 0,
126 "High watermark for special reserve in low-memory situations");
127 SYSCTL_INT(_vfs
, OID_AUTO
, lorunningspace
, CTLFLAG_RW
, &lorunningspace
, 0,
128 "Minimum amount of buffer space required for active I/O");
129 SYSCTL_INT(_vfs
, OID_AUTO
, hirunningspace
, CTLFLAG_RW
, &hirunningspace
, 0,
130 "Maximum amount of buffer space to usable for active I/O");
131 SYSCTL_INT(_vfs
, OID_AUTO
, vmiodirenable
, CTLFLAG_RW
, &vmiodirenable
, 0,
132 "Use the VM system for performing directory writes");
134 * Sysctls determining current state of the buffer cache.
136 SYSCTL_INT(_vfs
, OID_AUTO
, numdirtybuffers
, CTLFLAG_RD
, &numdirtybuffers
, 0,
137 "Pending number of dirty buffers");
138 SYSCTL_INT(_vfs
, OID_AUTO
, numfreebuffers
, CTLFLAG_RD
, &numfreebuffers
, 0,
139 "Number of free buffers on the buffer cache free list");
140 SYSCTL_INT(_vfs
, OID_AUTO
, runningbufspace
, CTLFLAG_RD
, &runningbufspace
, 0,
141 "I/O bytes currently in progress due to asynchronous writes");
142 SYSCTL_INT(_vfs
, OID_AUTO
, maxbufspace
, CTLFLAG_RD
, &maxbufspace
, 0,
143 "Hard limit on maximum amount of memory usable for buffer space");
144 SYSCTL_INT(_vfs
, OID_AUTO
, hibufspace
, CTLFLAG_RD
, &hibufspace
, 0,
145 "Soft limit on maximum amount of memory usable for buffer space");
146 SYSCTL_INT(_vfs
, OID_AUTO
, lobufspace
, CTLFLAG_RD
, &lobufspace
, 0,
147 "Minimum amount of memory to reserve for system buffer space");
148 SYSCTL_INT(_vfs
, OID_AUTO
, bufspace
, CTLFLAG_RD
, &bufspace
, 0,
149 "Amount of memory available for buffers");
150 SYSCTL_INT(_vfs
, OID_AUTO
, maxmallocbufspace
, CTLFLAG_RD
, &maxbufmallocspace
,
151 0, "Maximum amount of memory reserved for buffers using malloc");
152 SYSCTL_INT(_vfs
, OID_AUTO
, bufmallocspace
, CTLFLAG_RD
, &bufmallocspace
, 0,
153 "Amount of memory left for buffers using malloc-scheme");
154 SYSCTL_INT(_vfs
, OID_AUTO
, getnewbufcalls
, CTLFLAG_RD
, &getnewbufcalls
, 0,
155 "New buffer header acquisition requests");
156 SYSCTL_INT(_vfs
, OID_AUTO
, getnewbufrestarts
, CTLFLAG_RD
, &getnewbufrestarts
,
157 0, "New buffer header acquisition restarts");
158 SYSCTL_INT(_vfs
, OID_AUTO
, bufdefragcnt
, CTLFLAG_RD
, &bufdefragcnt
, 0,
159 "Buffer acquisition restarts due to fragmented buffer map");
160 SYSCTL_INT(_vfs
, OID_AUTO
, buffreekvacnt
, CTLFLAG_RD
, &buffreekvacnt
, 0,
161 "Amount of time KVA space was deallocated in an arbitrary buffer");
162 SYSCTL_INT(_vfs
, OID_AUTO
, bufreusecnt
, CTLFLAG_RD
, &bufreusecnt
, 0,
163 "Amount of time buffer re-use operations were successful");
164 SYSCTL_INT(_debug_sizeof
, OID_AUTO
, buf
, CTLFLAG_RD
, 0, sizeof(struct buf
),
165 "sizeof(struct buf)");
167 char *buf_wmesg
= BUF_WMESG
;
169 extern int vm_swap_size
;
171 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
172 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */
173 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */
174 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
179 * If someone is blocked due to there being too many dirty buffers,
180 * and numdirtybuffers is now reasonable, wake them up.
184 numdirtywakeup(int level
)
186 if (numdirtybuffers
<= level
) {
187 if (needsbuffer
& VFS_BIO_NEED_DIRTYFLUSH
) {
188 needsbuffer
&= ~VFS_BIO_NEED_DIRTYFLUSH
;
189 wakeup(&needsbuffer
);
197 * Called when buffer space is potentially available for recovery.
198 * getnewbuf() will block on this flag when it is unable to free
199 * sufficient buffer space. Buffer space becomes recoverable when
200 * bp's get placed back in the queues.
207 * If someone is waiting for BUF space, wake them up. Even
208 * though we haven't freed the kva space yet, the waiting
209 * process will be able to now.
211 if (needsbuffer
& VFS_BIO_NEED_BUFSPACE
) {
212 needsbuffer
&= ~VFS_BIO_NEED_BUFSPACE
;
213 wakeup(&needsbuffer
);
220 * Accounting for I/O in progress.
224 runningbufwakeup(struct buf
*bp
)
226 if (bp
->b_runningbufspace
) {
227 runningbufspace
-= bp
->b_runningbufspace
;
228 bp
->b_runningbufspace
= 0;
229 if (runningbufreq
&& runningbufspace
<= lorunningspace
) {
231 wakeup(&runningbufreq
);
239 * Called when a buffer has been added to one of the free queues to
240 * account for the buffer and to wakeup anyone waiting for free buffers.
241 * This typically occurs when large amounts of metadata are being handled
242 * by the buffer cache ( else buffer space runs out first, usually ).
250 needsbuffer
&= ~VFS_BIO_NEED_ANY
;
251 if (numfreebuffers
>= hifreebuffers
)
252 needsbuffer
&= ~VFS_BIO_NEED_FREE
;
253 wakeup(&needsbuffer
);
258 * waitrunningbufspace()
260 * runningbufspace is a measure of the amount of I/O currently
261 * running. This routine is used in async-write situations to
262 * prevent creating huge backups of pending writes to a device.
263 * Only asynchronous writes are governed by this function.
265 * Reads will adjust runningbufspace, but will not block based on it.
266 * The read load has a side effect of reducing the allowed write load.
268 * This does NOT turn an async write into a sync write. It waits
269 * for earlier writes to complete and generally returns before the
270 * caller's write has reached the device.
273 waitrunningbufspace(void)
275 if (runningbufspace
> hirunningspace
) {
277 while (runningbufspace
> hirunningspace
) {
279 tsleep(&runningbufreq
, 0, "wdrain", 0);
286 * vfs_buf_test_cache:
288 * Called when a buffer is extended. This function clears the B_CACHE
289 * bit if the newly extended portion of the buffer does not contain
294 vfs_buf_test_cache(struct buf
*bp
,
295 vm_ooffset_t foff
, vm_offset_t off
, vm_offset_t size
,
298 if (bp
->b_flags
& B_CACHE
) {
299 int base
= (foff
+ off
) & PAGE_MASK
;
300 if (vm_page_is_valid(m
, base
, size
) == 0)
301 bp
->b_flags
&= ~B_CACHE
;
308 * Wake up the buffer daemon if the number of outstanding dirty buffers
309 * is above specified threshold 'dirtybuflevel'.
311 * The buffer daemon is explicitly woken up when (a) the pending number
312 * of dirty buffers exceeds the recovery and stall mid-point value,
313 * (b) during bwillwrite() or (c) buf freelist was exhausted.
317 bd_wakeup(int dirtybuflevel
)
319 if (bd_request
== 0 && numdirtybuffers
>= dirtybuflevel
) {
328 * Speed up the buffer cache flushing process.
341 * Load time initialisation of the buffer cache, called from machine
342 * dependant initialization code.
348 vm_offset_t bogus_offset
;
351 /* next, make a null set of free lists */
352 for (i
= 0; i
< BUFFER_QUEUES
; i
++)
353 TAILQ_INIT(&bufqueues
[i
]);
355 /* finally, initialize each buffer header and stick on empty q */
356 for (i
= 0; i
< nbuf
; i
++) {
358 bzero(bp
, sizeof *bp
);
359 bp
->b_flags
= B_INVAL
; /* we're just an empty header */
360 bp
->b_qindex
= BQUEUE_EMPTY
;
362 xio_init(&bp
->b_xio
);
363 LIST_INIT(&bp
->b_dep
);
365 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_EMPTY
], bp
, b_freelist
);
369 * maxbufspace is the absolute maximum amount of buffer space we are
370 * allowed to reserve in KVM and in real terms. The absolute maximum
371 * is nominally used by buf_daemon. hibufspace is the nominal maximum
372 * used by most other processes. The differential is required to
373 * ensure that buf_daemon is able to run when other processes might
374 * be blocked waiting for buffer space.
376 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
377 * this may result in KVM fragmentation which is not handled optimally
380 maxbufspace
= nbuf
* BKVASIZE
;
381 hibufspace
= imax(3 * maxbufspace
/ 4, maxbufspace
- MAXBSIZE
* 10);
382 lobufspace
= hibufspace
- MAXBSIZE
;
384 lorunningspace
= 512 * 1024;
385 hirunningspace
= 1024 * 1024;
388 * Limit the amount of malloc memory since it is wired permanently into
389 * the kernel space. Even though this is accounted for in the buffer
390 * allocation, we don't want the malloced region to grow uncontrolled.
391 * The malloc scheme improves memory utilization significantly on average
392 * (small) directories.
394 maxbufmallocspace
= hibufspace
/ 20;
397 * Reduce the chance of a deadlock occuring by limiting the number
398 * of delayed-write dirty buffers we allow to stack up.
400 hidirtybuffers
= nbuf
/ 4 + 20;
403 * To support extreme low-memory systems, make sure hidirtybuffers cannot
404 * eat up all available buffer space. This occurs when our minimum cannot
405 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming
406 * BKVASIZE'd (8K) buffers.
408 while (hidirtybuffers
* BKVASIZE
> 3 * hibufspace
/ 4) {
409 hidirtybuffers
>>= 1;
411 lodirtybuffers
= hidirtybuffers
/ 2;
414 * Try to keep the number of free buffers in the specified range,
415 * and give special processes (e.g. like buf_daemon) access to an
418 lofreebuffers
= nbuf
/ 18 + 5;
419 hifreebuffers
= 2 * lofreebuffers
;
420 numfreebuffers
= nbuf
;
423 * Maximum number of async ops initiated per buf_daemon loop. This is
424 * somewhat of a hack at the moment, we really need to limit ourselves
425 * based on the number of bytes of I/O in-transit that were initiated
429 bogus_offset
= kmem_alloc_pageable(kernel_map
, PAGE_SIZE
);
430 bogus_page
= vm_page_alloc(kernel_object
,
431 ((bogus_offset
- VM_MIN_KERNEL_ADDRESS
) >> PAGE_SHIFT
),
433 vmstats
.v_wire_count
++;
438 * Initialize the embedded bio structures
441 initbufbio(struct buf
*bp
)
443 bp
->b_bio1
.bio_buf
= bp
;
444 bp
->b_bio1
.bio_prev
= NULL
;
445 bp
->b_bio1
.bio_blkno
= (daddr_t
)-1;
446 bp
->b_bio1
.bio_offset
= NOOFFSET
;
447 bp
->b_bio1
.bio_next
= &bp
->b_bio2
;
448 bp
->b_bio1
.bio_done
= NULL
;
450 bp
->b_bio2
.bio_buf
= bp
;
451 bp
->b_bio2
.bio_prev
= &bp
->b_bio1
;
452 bp
->b_bio2
.bio_blkno
= (daddr_t
)-1;
453 bp
->b_bio2
.bio_offset
= NOOFFSET
;
454 bp
->b_bio2
.bio_next
= NULL
;
455 bp
->b_bio2
.bio_done
= NULL
;
459 * Reinitialize the embedded bio structures as well as any additional
460 * translation cache layers.
463 reinitbufbio(struct buf
*bp
)
467 for (bio
= &bp
->b_bio1
; bio
; bio
= bio
->bio_next
) {
468 bio
->bio_done
= NULL
;
469 bio
->bio_blkno
= (daddr_t
)-1;
470 bio
->bio_offset
= NOOFFSET
;
475 * Push another BIO layer onto an existing BIO and return it. The new
476 * BIO layer may already exist, holding cached translation data.
479 push_bio(struct bio
*bio
)
483 if ((nbio
= bio
->bio_next
) == NULL
) {
484 int index
= bio
- &bio
->bio_buf
->b_bio_array
[0];
485 if (index
>= NBUF_BIO
) {
486 panic("push_bio: too many layers bp %p\n",
489 nbio
= &bio
->bio_buf
->b_bio_array
[index
+ 1];
490 bio
->bio_next
= nbio
;
491 nbio
->bio_prev
= bio
;
492 nbio
->bio_buf
= bio
->bio_buf
;
493 nbio
->bio_blkno
= (daddr_t
)-1;
494 nbio
->bio_offset
= NOOFFSET
;
495 nbio
->bio_done
= NULL
;
496 nbio
->bio_next
= NULL
;
498 KKASSERT(nbio
->bio_done
== NULL
);
503 pop_bio(struct bio
*bio
)
509 clearbiocache(struct bio
*bio
)
512 bio
->bio_blkno
= (daddr_t
)-1;
513 bio
->bio_offset
= NOOFFSET
;
521 * Free the KVA allocation for buffer 'bp'.
523 * Must be called from a critical section as this is the only locking for
526 * Since this call frees up buffer space, we call bufspacewakeup().
529 bfreekva(struct buf
* bp
)
535 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
536 vm_map_lock(buffer_map
);
537 bufspace
-= bp
->b_kvasize
;
538 vm_map_delete(buffer_map
,
539 (vm_offset_t
) bp
->b_kvabase
,
540 (vm_offset_t
) bp
->b_kvabase
+ bp
->b_kvasize
,
543 vm_map_unlock(buffer_map
);
544 vm_map_entry_release(count
);
553 * Remove the buffer from the appropriate free list.
556 bremfree(struct buf
* bp
)
561 old_qindex
= bp
->b_qindex
;
563 if (bp
->b_qindex
!= BQUEUE_NONE
) {
564 KASSERT(BUF_REFCNTNB(bp
) == 1,
565 ("bremfree: bp %p not locked",bp
));
566 TAILQ_REMOVE(&bufqueues
[bp
->b_qindex
], bp
, b_freelist
);
567 bp
->b_qindex
= BQUEUE_NONE
;
569 if (BUF_REFCNTNB(bp
) <= 1)
570 panic("bremfree: removing a buffer not on a queue");
574 * Fixup numfreebuffers count. If the buffer is invalid or not
575 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
576 * the buffer was free and we must decrement numfreebuffers.
578 if ((bp
->b_flags
& B_INVAL
) || (bp
->b_flags
& B_DELWRI
) == 0) {
583 case BQUEUE_EMPTYKVA
:
597 * Get a buffer with the specified data. Look in the cache first. We
598 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
599 * is set, the buffer is valid and we do not have to do anything ( see
603 bread(struct vnode
* vp
, daddr_t blkno
, int size
, struct buf
** bpp
)
607 bp
= getblk(vp
, blkno
, size
, 0, 0);
610 /* if not found in cache, do some I/O */
611 if ((bp
->b_flags
& B_CACHE
) == 0) {
612 KASSERT(!(bp
->b_flags
& B_ASYNC
), ("bread: illegal async bp %p", bp
));
613 bp
->b_flags
|= B_READ
;
614 bp
->b_flags
&= ~(B_ERROR
| B_INVAL
);
615 vfs_busy_pages(bp
, 0);
616 vn_strategy(vp
, &bp
->b_bio1
);
617 return (biowait(bp
));
625 * Operates like bread, but also starts asynchronous I/O on
626 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior
627 * to initiating I/O . If B_CACHE is set, the buffer is valid
628 * and we do not have to do anything.
631 breadn(struct vnode
* vp
, daddr_t blkno
, int size
, daddr_t
* rablkno
,
632 int *rabsize
, int cnt
, struct buf
** bpp
)
634 struct buf
*bp
, *rabp
;
636 int rv
= 0, readwait
= 0;
638 *bpp
= bp
= getblk(vp
, blkno
, size
, 0, 0);
640 /* if not found in cache, do some I/O */
641 if ((bp
->b_flags
& B_CACHE
) == 0) {
642 bp
->b_flags
|= B_READ
;
643 bp
->b_flags
&= ~(B_ERROR
| B_INVAL
);
644 vfs_busy_pages(bp
, 0);
645 vn_strategy(vp
, &bp
->b_bio1
);
649 for (i
= 0; i
< cnt
; i
++, rablkno
++, rabsize
++) {
650 if (inmem(vp
, *rablkno
))
652 rabp
= getblk(vp
, *rablkno
, *rabsize
, 0, 0);
654 if ((rabp
->b_flags
& B_CACHE
) == 0) {
655 rabp
->b_flags
|= B_READ
| B_ASYNC
;
656 rabp
->b_flags
&= ~(B_ERROR
| B_INVAL
);
657 vfs_busy_pages(rabp
, 0);
659 vn_strategy(vp
, &rabp
->b_bio1
);
674 * Write, release buffer on completion. (Done by iodone
675 * if async). Do not bother writing anything if the buffer
678 * Note that we set B_CACHE here, indicating that buffer is
679 * fully valid and thus cacheable. This is true even of NFS
680 * now so we set it generally. This could be set either here
681 * or in biodone() since the I/O is synchronous. We put it
685 bwrite(struct buf
* bp
)
689 if (bp
->b_flags
& B_INVAL
) {
694 oldflags
= bp
->b_flags
;
696 if (BUF_REFCNTNB(bp
) == 0)
697 panic("bwrite: buffer is not busy???");
700 * If a background write is already in progress, delay
701 * writing this block if it is asynchronous. Otherwise
702 * wait for the background write to complete.
704 if (bp
->b_xflags
& BX_BKGRDINPROG
) {
705 if (bp
->b_flags
& B_ASYNC
) {
710 bp
->b_xflags
|= BX_BKGRDWAIT
;
711 tsleep(&bp
->b_xflags
, 0, "biord", 0);
712 if (bp
->b_xflags
& BX_BKGRDINPROG
)
713 panic("bwrite: still writing");
716 /* Mark the buffer clean */
719 bp
->b_flags
&= ~(B_READ
| B_DONE
| B_ERROR
);
720 bp
->b_flags
|= B_CACHE
;
722 vfs_busy_pages(bp
, 1);
725 * Normal bwrites pipeline writes
727 bp
->b_runningbufspace
= bp
->b_bufsize
;
728 runningbufspace
+= bp
->b_runningbufspace
;
731 if (oldflags
& B_ASYNC
)
733 vn_strategy(bp
->b_vp
, &bp
->b_bio1
);
735 if ((oldflags
& B_ASYNC
) == 0) {
736 int rtval
= biowait(bp
);
739 } else if ((oldflags
& B_NOWDRAIN
) == 0) {
741 * don't allow the async write to saturate the I/O
742 * system. Deadlocks can occur only if a device strategy
743 * routine (like in VN) turns around and issues another
744 * high-level write, in which case B_NOWDRAIN is expected
745 * to be set. Otherwise we will not deadlock here because
746 * we are blocking waiting for I/O that is already in-progress
749 waitrunningbufspace();
758 * Delayed write. (Buffer is marked dirty). Do not bother writing
759 * anything if the buffer is marked invalid.
761 * Note that since the buffer must be completely valid, we can safely
762 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
763 * biodone() in order to prevent getblk from writing the buffer
767 bdwrite(struct buf
*bp
)
769 if (BUF_REFCNTNB(bp
) == 0)
770 panic("bdwrite: buffer is not busy");
772 if (bp
->b_flags
& B_INVAL
) {
779 * Set B_CACHE, indicating that the buffer is fully valid. This is
780 * true even of NFS now.
782 bp
->b_flags
|= B_CACHE
;
785 * This bmap keeps the system from needing to do the bmap later,
786 * perhaps when the system is attempting to do a sync. Since it
787 * is likely that the indirect block -- or whatever other datastructure
788 * that the filesystem needs is still in memory now, it is a good
789 * thing to do this. Note also, that if the pageout daemon is
790 * requesting a sync -- there might not be enough memory to do
791 * the bmap then... So, this is important to do.
793 if (bp
->b_bio2
.bio_blkno
== (daddr_t
)-1) {
794 VOP_BMAP(bp
->b_vp
, bp
->b_lblkno
, NULL
, &bp
->b_bio2
.bio_blkno
,
799 * Set the *dirty* buffer range based upon the VM system dirty pages.
804 * We need to do this here to satisfy the vnode_pager and the
805 * pageout daemon, so that it thinks that the pages have been
806 * "cleaned". Note that since the pages are in a delayed write
807 * buffer -- the VFS layer "will" see that the pages get written
808 * out on the next sync, or perhaps the cluster will be completed.
814 * Wakeup the buffer flushing daemon if we have a lot of dirty
815 * buffers (midpoint between our recovery point and our stall
818 bd_wakeup((lodirtybuffers
+ hidirtybuffers
) / 2);
821 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
822 * due to the softdep code.
829 * Turn buffer into delayed write request. We must clear B_READ and
830 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to
831 * itself to properly update it in the dirty/clean lists. We mark it
832 * B_DONE to ensure that any asynchronization of the buffer properly
833 * clears B_DONE ( else a panic will occur later ).
835 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
836 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty()
837 * should only be called if the buffer is known-good.
839 * Since the buffer is not on a queue, we do not update the numfreebuffers
842 * Must be called from a critical section.
843 * The buffer must be on BQUEUE_NONE.
846 bdirty(struct buf
*bp
)
848 KASSERT(bp
->b_qindex
== BQUEUE_NONE
, ("bdirty: buffer %p still on queue %d", bp
, bp
->b_qindex
));
849 bp
->b_flags
&= ~(B_READ
|B_RELBUF
);
851 if ((bp
->b_flags
& B_DELWRI
) == 0) {
852 bp
->b_flags
|= B_DONE
| B_DELWRI
;
855 bd_wakeup((lodirtybuffers
+ hidirtybuffers
) / 2);
862 * Clear B_DELWRI for buffer.
864 * Since the buffer is not on a queue, we do not update the numfreebuffers
867 * Must be called from a critical section.
869 * The buffer is typically on BQUEUE_NONE but there is one case in
870 * brelse() that calls this function after placing the buffer on
875 bundirty(struct buf
*bp
)
877 if (bp
->b_flags
& B_DELWRI
) {
878 bp
->b_flags
&= ~B_DELWRI
;
881 numdirtywakeup(lodirtybuffers
);
884 * Since it is now being written, we can clear its deferred write flag.
886 bp
->b_flags
&= ~B_DEFERRED
;
892 * Asynchronous write. Start output on a buffer, but do not wait for
893 * it to complete. The buffer is released when the output completes.
895 * bwrite() ( or the VOP routine anyway ) is responsible for handling
896 * B_INVAL buffers. Not us.
899 bawrite(struct buf
* bp
)
901 bp
->b_flags
|= B_ASYNC
;
902 (void) VOP_BWRITE(bp
->b_vp
, bp
);
908 * Ordered write. Start output on a buffer, and flag it so that the
909 * device will write it in the order it was queued. The buffer is
910 * released when the output completes. bwrite() ( or the VOP routine
911 * anyway ) is responsible for handling B_INVAL buffers.
914 bowrite(struct buf
* bp
)
916 bp
->b_flags
|= B_ORDERED
| B_ASYNC
;
917 return (VOP_BWRITE(bp
->b_vp
, bp
));
923 * Called prior to the locking of any vnodes when we are expecting to
924 * write. We do not want to starve the buffer cache with too many
925 * dirty buffers so we block here. By blocking prior to the locking
926 * of any vnodes we attempt to avoid the situation where a locked vnode
927 * prevents the various system daemons from flushing related buffers.
933 if (numdirtybuffers
>= hidirtybuffers
) {
935 while (numdirtybuffers
>= hidirtybuffers
) {
937 needsbuffer
|= VFS_BIO_NEED_DIRTYFLUSH
;
938 tsleep(&needsbuffer
, 0, "flswai", 0);
945 * buf_dirty_count_severe:
947 * Return true if we have too many dirty buffers.
950 buf_dirty_count_severe(void)
952 return(numdirtybuffers
>= hidirtybuffers
);
958 * Release a busy buffer and, if requested, free its resources. The
959 * buffer will be stashed in the appropriate bufqueue[] allowing it
960 * to be accessed later as a cache entity or reused for other purposes.
963 brelse(struct buf
* bp
)
966 int saved_flags
= bp
->b_flags
;
969 KASSERT(!(bp
->b_flags
& (B_CLUSTER
|B_PAGING
)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp
));
973 if (bp
->b_flags
& B_LOCKED
)
974 bp
->b_flags
&= ~B_ERROR
;
976 if ((bp
->b_flags
& (B_READ
| B_ERROR
| B_INVAL
)) == B_ERROR
) {
978 * Failed write, redirty. Must clear B_ERROR to prevent
979 * pages from being scrapped. If B_INVAL is set then
980 * this case is not run and the next case is run to
981 * destroy the buffer. B_INVAL can occur if the buffer
982 * is outside the range supported by the underlying device.
984 bp
->b_flags
&= ~B_ERROR
;
986 } else if ((bp
->b_flags
& (B_NOCACHE
| B_INVAL
| B_ERROR
| B_FREEBUF
)) ||
987 (bp
->b_bufsize
<= 0)) {
989 * Either a failed I/O or we were asked to free or not
992 bp
->b_flags
|= B_INVAL
;
993 if (LIST_FIRST(&bp
->b_dep
) != NULL
&& bioops
.io_deallocate
)
994 (*bioops
.io_deallocate
)(bp
);
995 if (bp
->b_flags
& B_DELWRI
) {
997 numdirtywakeup(lodirtybuffers
);
999 bp
->b_flags
&= ~(B_DELWRI
| B_CACHE
| B_FREEBUF
);
1003 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release()
1004 * is called with B_DELWRI set, the underlying pages may wind up
1005 * getting freed causing a previous write (bdwrite()) to get 'lost'
1006 * because pages associated with a B_DELWRI bp are marked clean.
1008 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1009 * if B_DELWRI is set.
1011 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1012 * on pages to return pages to the VM page queues.
1014 if (bp
->b_flags
& B_DELWRI
)
1015 bp
->b_flags
&= ~B_RELBUF
;
1016 else if (vm_page_count_severe() && !(bp
->b_xflags
& BX_BKGRDINPROG
))
1017 bp
->b_flags
|= B_RELBUF
;
1020 * At this point destroying the buffer is governed by the B_INVAL
1021 * or B_RELBUF flags.
1025 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer
1026 * constituted, not even NFS buffers now. Two flags effect this. If
1027 * B_INVAL, the struct buf is invalidated but the VM object is kept
1028 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1030 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
1031 * invalidated. B_ERROR cannot be set for a failed write unless the
1032 * buffer is also B_INVAL because it hits the re-dirtying code above.
1034 * Normally we can do this whether a buffer is B_DELWRI or not. If
1035 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1036 * the commit state and we cannot afford to lose the buffer. If the
1037 * buffer has a background write in progress, we need to keep it
1038 * around to prevent it from being reconstituted and starting a second
1041 if ((bp
->b_flags
& B_VMIO
)
1042 && !(bp
->b_vp
->v_tag
== VT_NFS
&&
1043 !vn_isdisk(bp
->b_vp
, NULL
) &&
1044 (bp
->b_flags
& B_DELWRI
))
1047 * Rundown for VMIO buffers which are not dirty NFS buffers.
1059 * Get the base offset and length of the buffer. Note that
1060 * in the VMIO case if the buffer block size is not
1061 * page-aligned then b_data pointer may not be page-aligned.
1062 * But our b_xio.xio_pages array *IS* page aligned.
1064 * block sizes less then DEV_BSIZE (usually 512) are not
1065 * supported due to the page granularity bits (m->valid,
1066 * m->dirty, etc...).
1068 * See man buf(9) for more information
1071 resid
= bp
->b_bufsize
;
1072 foff
= bp
->b_loffset
;
1074 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
1075 m
= bp
->b_xio
.xio_pages
[i
];
1076 vm_page_flag_clear(m
, PG_ZERO
);
1078 * If we hit a bogus page, fixup *all* of them
1079 * now. Note that we left these pages wired
1080 * when we removed them so they had better exist,
1081 * and they cannot be ripped out from under us so
1082 * no critical section protection is necessary.
1084 if (m
== bogus_page
) {
1085 VOP_GETVOBJECT(vp
, &obj
);
1086 poff
= OFF_TO_IDX(bp
->b_loffset
);
1088 for (j
= i
; j
< bp
->b_xio
.xio_npages
; j
++) {
1091 mtmp
= bp
->b_xio
.xio_pages
[j
];
1092 if (mtmp
== bogus_page
) {
1093 mtmp
= vm_page_lookup(obj
, poff
+ j
);
1095 panic("brelse: page missing");
1097 bp
->b_xio
.xio_pages
[j
] = mtmp
;
1101 if ((bp
->b_flags
& B_INVAL
) == 0) {
1102 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
1103 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
1105 m
= bp
->b_xio
.xio_pages
[i
];
1109 * Invalidate the backing store if B_NOCACHE is set
1110 * (e.g. used with vinvalbuf()). If this is NFS
1111 * we impose a requirement that the block size be
1112 * a multiple of PAGE_SIZE and create a temporary
1113 * hack to basically invalidate the whole page. The
1114 * problem is that NFS uses really odd buffer sizes
1115 * especially when tracking piecemeal writes and
1116 * it also vinvalbuf()'s a lot, which would result
1117 * in only partial page validation and invalidation
1118 * here. If the file page is mmap()'d, however,
1119 * all the valid bits get set so after we invalidate
1120 * here we would end up with weird m->valid values
1121 * like 0xfc. nfs_getpages() can't handle this so
1122 * we clear all the valid bits for the NFS case
1123 * instead of just some of them.
1125 * The real bug is the VM system having to set m->valid
1126 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1127 * itself is an artifact of the whole 512-byte
1128 * granular mess that exists to support odd block
1129 * sizes and UFS meta-data block sizes (e.g. 6144).
1130 * A complete rewrite is required.
1132 if (bp
->b_flags
& (B_NOCACHE
|B_ERROR
)) {
1133 int poffset
= foff
& PAGE_MASK
;
1136 presid
= PAGE_SIZE
- poffset
;
1137 if (bp
->b_vp
->v_tag
== VT_NFS
&&
1138 bp
->b_vp
->v_type
== VREG
) {
1140 } else if (presid
> resid
) {
1143 KASSERT(presid
>= 0, ("brelse: extra page"));
1144 vm_page_set_invalid(m
, poffset
, presid
);
1146 resid
-= PAGE_SIZE
- (foff
& PAGE_MASK
);
1147 foff
= (foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
1149 if (bp
->b_flags
& (B_INVAL
| B_RELBUF
))
1150 vfs_vmio_release(bp
);
1151 } else if (bp
->b_flags
& B_VMIO
) {
1153 * Rundown for VMIO buffers which are dirty NFS buffers. Such
1154 * buffers contain tracking ranges for NFS and cannot normally
1155 * be released. Due to the dirty check above this series of
1156 * conditionals, B_RELBUF probably will never be set in this
1159 if (bp
->b_flags
& (B_INVAL
| B_RELBUF
))
1160 vfs_vmio_release(bp
);
1163 * Rundown for non-VMIO buffers.
1165 if (bp
->b_flags
& (B_INVAL
| B_RELBUF
)) {
1168 printf("brelse bp %p %08x/%08lx: Warning, caught and fixed brelvp bug\n", bp
, saved_flags
, bp
->b_flags
);
1177 if (bp
->b_qindex
!= BQUEUE_NONE
)
1178 panic("brelse: free buffer onto another queue???");
1179 if (BUF_REFCNTNB(bp
) > 1) {
1180 /* Temporary panic to verify exclusive locking */
1181 /* This panic goes away when we allow shared refs */
1182 panic("brelse: multiple refs");
1183 /* do not release to free list */
1190 * Figure out the correct queue to place the cleaned up buffer on.
1191 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1192 * disassociated from their vnode.
1195 if (bp
->b_bufsize
== 0) {
1197 * Buffers with no memory. Due to conditionals near the top
1198 * of brelse() such buffers should probably already be
1199 * marked B_INVAL and disassociated from their vnode.
1201 bp
->b_flags
|= B_INVAL
;
1202 bp
->b_xflags
&= ~BX_BKGRDWRITE
;
1203 KASSERT(bp
->b_vp
== NULL
, ("bp1 %p flags %08x/%08lx vnode %p unexpectededly still associated!", bp
, saved_flags
, bp
->b_flags
, bp
->b_vp
));
1204 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
1205 if (bp
->b_xflags
& BX_BKGRDINPROG
)
1206 panic("losing buffer 1");
1207 if (bp
->b_kvasize
) {
1208 bp
->b_qindex
= BQUEUE_EMPTYKVA
;
1210 bp
->b_qindex
= BQUEUE_EMPTY
;
1212 TAILQ_INSERT_HEAD(&bufqueues
[bp
->b_qindex
], bp
, b_freelist
);
1213 } else if (bp
->b_flags
& (B_ERROR
| B_INVAL
| B_NOCACHE
| B_RELBUF
)) {
1215 * Buffers with junk contents. Again these buffers had better
1216 * already be disassociated from their vnode.
1218 KASSERT(bp
->b_vp
== NULL
, ("bp2 %p flags %08x/%08lx vnode %p unexpectededly still associated!", bp
, saved_flags
, bp
->b_flags
, bp
->b_vp
));
1219 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
1220 bp
->b_flags
|= B_INVAL
;
1221 bp
->b_xflags
&= ~BX_BKGRDWRITE
;
1222 if (bp
->b_xflags
& BX_BKGRDINPROG
)
1223 panic("losing buffer 2");
1224 bp
->b_qindex
= BQUEUE_CLEAN
;
1225 TAILQ_INSERT_HEAD(&bufqueues
[BQUEUE_CLEAN
], bp
, b_freelist
);
1226 } else if (bp
->b_flags
& B_LOCKED
) {
1228 * Buffers that are locked.
1230 bp
->b_qindex
= BQUEUE_LOCKED
;
1231 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_LOCKED
], bp
, b_freelist
);
1234 * Remaining buffers. These buffers are still associated with
1237 switch(bp
->b_flags
& (B_DELWRI
|B_AGE
)) {
1238 case B_DELWRI
| B_AGE
:
1239 bp
->b_qindex
= BQUEUE_DIRTY
;
1240 TAILQ_INSERT_HEAD(&bufqueues
[BQUEUE_DIRTY
], bp
, b_freelist
);
1243 bp
->b_qindex
= BQUEUE_DIRTY
;
1244 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_DIRTY
], bp
, b_freelist
);
1247 bp
->b_qindex
= BQUEUE_CLEAN
;
1248 TAILQ_INSERT_HEAD(&bufqueues
[BQUEUE_CLEAN
], bp
, b_freelist
);
1251 bp
->b_qindex
= BQUEUE_CLEAN
;
1252 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_CLEAN
], bp
, b_freelist
);
1258 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1259 * on the correct queue.
1261 if ((bp
->b_flags
& (B_INVAL
|B_DELWRI
)) == (B_INVAL
|B_DELWRI
))
1265 * Fixup numfreebuffers count. The bp is on an appropriate queue
1266 * unless locked. We then bump numfreebuffers if it is not B_DELWRI.
1267 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1268 * if B_INVAL is set ).
1270 if ((bp
->b_flags
& B_LOCKED
) == 0 && !(bp
->b_flags
& B_DELWRI
))
1274 * Something we can maybe free or reuse
1276 if (bp
->b_bufsize
|| bp
->b_kvasize
)
1281 bp
->b_flags
&= ~(B_ORDERED
| B_ASYNC
| B_NOCACHE
| B_AGE
| B_RELBUF
|
1282 B_DIRECT
| B_NOWDRAIN
);
1289 * Release a buffer back to the appropriate queue but do not try to free
1290 * it. The buffer is expected to be used again soon.
1292 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1293 * biodone() to requeue an async I/O on completion. It is also used when
1294 * known good buffers need to be requeued but we think we may need the data
1297 * XXX we should be able to leave the B_RELBUF hint set on completion.
1300 bqrelse(struct buf
* bp
)
1304 KASSERT(!(bp
->b_flags
& (B_CLUSTER
|B_PAGING
)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp
));
1306 if (bp
->b_qindex
!= BQUEUE_NONE
)
1307 panic("bqrelse: free buffer onto another queue???");
1308 if (BUF_REFCNTNB(bp
) > 1) {
1309 /* do not release to free list */
1310 panic("bqrelse: multiple refs");
1315 if (bp
->b_flags
& B_LOCKED
) {
1316 bp
->b_flags
&= ~B_ERROR
;
1317 bp
->b_qindex
= BQUEUE_LOCKED
;
1318 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_LOCKED
], bp
, b_freelist
);
1319 /* buffers with stale but valid contents */
1320 } else if (bp
->b_flags
& B_DELWRI
) {
1321 bp
->b_qindex
= BQUEUE_DIRTY
;
1322 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_DIRTY
], bp
, b_freelist
);
1323 } else if (vm_page_count_severe()) {
1325 * We are too low on memory, we have to try to free the
1326 * buffer (most importantly: the wired pages making up its
1327 * backing store) *now*.
1333 bp
->b_qindex
= BQUEUE_CLEAN
;
1334 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_CLEAN
], bp
, b_freelist
);
1337 if ((bp
->b_flags
& B_LOCKED
) == 0 &&
1338 ((bp
->b_flags
& B_INVAL
) || !(bp
->b_flags
& B_DELWRI
))) {
1343 * Something we can maybe free or reuse.
1345 if (bp
->b_bufsize
&& !(bp
->b_flags
& B_DELWRI
))
1349 * Final cleanup and unlock. Clear bits that are only used while a
1350 * buffer is actively locked.
1352 bp
->b_flags
&= ~(B_ORDERED
| B_ASYNC
| B_NOCACHE
| B_AGE
| B_RELBUF
);
1360 * Return backing pages held by the buffer 'bp' back to the VM system
1361 * if possible. The pages are freed if they are no longer valid or
1362 * attempt to free if it was used for direct I/O otherwise they are
1363 * sent to the page cache.
1365 * Pages that were marked busy are left alone and skipped.
1367 * The KVA mapping (b_data) for the underlying pages is removed by
1371 vfs_vmio_release(struct buf
*bp
)
1377 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
1378 m
= bp
->b_xio
.xio_pages
[i
];
1379 bp
->b_xio
.xio_pages
[i
] = NULL
;
1381 * In order to keep page LRU ordering consistent, put
1382 * everything on the inactive queue.
1384 vm_page_unwire(m
, 0);
1386 * We don't mess with busy pages, it is
1387 * the responsibility of the process that
1388 * busied the pages to deal with them.
1390 if ((m
->flags
& PG_BUSY
) || (m
->busy
!= 0))
1393 if (m
->wire_count
== 0) {
1394 vm_page_flag_clear(m
, PG_ZERO
);
1396 * Might as well free the page if we can and it has
1397 * no valid data. We also free the page if the
1398 * buffer was used for direct I/O.
1400 if ((bp
->b_flags
& B_ASYNC
) == 0 && !m
->valid
&&
1401 m
->hold_count
== 0) {
1403 vm_page_protect(m
, VM_PROT_NONE
);
1405 } else if (bp
->b_flags
& B_DIRECT
) {
1406 vm_page_try_to_free(m
);
1407 } else if (vm_page_count_severe()) {
1408 vm_page_try_to_cache(m
);
1413 pmap_qremove(trunc_page((vm_offset_t
) bp
->b_data
), bp
->b_xio
.xio_npages
);
1414 if (bp
->b_bufsize
) {
1418 bp
->b_xio
.xio_npages
= 0;
1419 bp
->b_flags
&= ~B_VMIO
;
1427 * Implement clustered async writes for clearing out B_DELWRI buffers.
1428 * This is much better then the old way of writing only one buffer at
1429 * a time. Note that we may not be presented with the buffers in the
1430 * correct order, so we search for the cluster in both directions.
1432 * The buffer is locked on call.
1435 vfs_bio_awrite(struct buf
*bp
)
1439 daddr_t lblkno
= bp
->b_lblkno
;
1440 struct vnode
*vp
= bp
->b_vp
;
1449 * right now we support clustered writing only to regular files. If
1450 * we find a clusterable block we could be in the middle of a cluster
1451 * rather then at the beginning.
1453 * NOTE: b_bio1 contains the logical loffset/lblkno and is aliased
1454 * to b_lblkno and b_loffset. b_bio2 contains the translated block
1457 if ((vp
->v_type
== VREG
) &&
1458 (vp
->v_mount
!= 0) && /* Only on nodes that have the size info */
1459 (bp
->b_flags
& (B_CLUSTEROK
| B_INVAL
)) == B_CLUSTEROK
) {
1461 size
= vp
->v_mount
->mnt_stat
.f_iosize
;
1462 maxcl
= MAXPHYS
/ size
;
1464 for (i
= 1; i
< maxcl
; i
++) {
1465 if ((bpa
= findblk(vp
, lblkno
+ i
)) &&
1466 BUF_REFCNT(bpa
) == 0 &&
1467 ((bpa
->b_flags
& (B_DELWRI
| B_CLUSTEROK
| B_INVAL
)) ==
1468 (B_DELWRI
| B_CLUSTEROK
)) &&
1469 (bpa
->b_bufsize
== size
)) {
1470 if ((bpa
->b_bio2
.bio_blkno
== (daddr_t
)-1) ||
1471 (bpa
->b_bio2
.bio_blkno
!=
1472 bp
->b_bio2
.bio_blkno
+ ((i
* size
) >> DEV_BSHIFT
)))
1478 for (j
= 1; i
+ j
<= maxcl
&& j
<= lblkno
; j
++) {
1479 if ((bpa
= findblk(vp
, lblkno
- j
)) &&
1480 BUF_REFCNT(bpa
) == 0 &&
1481 ((bpa
->b_flags
& (B_DELWRI
| B_CLUSTEROK
| B_INVAL
)) ==
1482 (B_DELWRI
| B_CLUSTEROK
)) &&
1483 (bpa
->b_bufsize
== size
)) {
1484 if ((bpa
->b_bio2
.bio_blkno
== (daddr_t
)-1) ||
1485 (bpa
->b_bio2
.bio_blkno
!=
1486 bp
->b_bio2
.bio_blkno
- ((j
* size
) >> DEV_BSHIFT
)))
1495 * this is a possible cluster write
1499 nwritten
= cluster_wbuild(vp
, size
, lblkno
- j
, ncl
);
1506 bp
->b_flags
|= B_ASYNC
;
1510 * default (old) behavior, writing out only one block
1512 * XXX returns b_bufsize instead of b_bcount for nwritten?
1514 nwritten
= bp
->b_bufsize
;
1515 (void) VOP_BWRITE(bp
->b_vp
, bp
);
1523 * Find and initialize a new buffer header, freeing up existing buffers
1524 * in the bufqueues as necessary. The new buffer is returned locked.
1526 * Important: B_INVAL is not set. If the caller wishes to throw the
1527 * buffer away, the caller must set B_INVAL prior to calling brelse().
1530 * We have insufficient buffer headers
1531 * We have insufficient buffer space
1532 * buffer_map is too fragmented ( space reservation fails )
1533 * If we have to flush dirty buffers ( but we try to avoid this )
1535 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1536 * Instead we ask the buf daemon to do it for us. We attempt to
1537 * avoid piecemeal wakeups of the pageout daemon.
1541 getnewbuf(int slpflag
, int slptimeo
, int size
, int maxsize
)
1547 static int flushingbufs
;
1550 * We can't afford to block since we might be holding a vnode lock,
1551 * which may prevent system daemons from running. We deal with
1552 * low-memory situations by proactively returning memory and running
1553 * async I/O rather then sync I/O.
1557 --getnewbufrestarts
;
1559 ++getnewbufrestarts
;
1562 * Setup for scan. If we do not have enough free buffers,
1563 * we setup a degenerate case that immediately fails. Note
1564 * that if we are specially marked process, we are allowed to
1565 * dip into our reserves.
1567 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
1569 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
1570 * However, there are a number of cases (defragging, reusing, ...)
1571 * where we cannot backup.
1573 nqindex
= BQUEUE_EMPTYKVA
;
1574 nbp
= TAILQ_FIRST(&bufqueues
[BQUEUE_EMPTYKVA
]);
1578 * If no EMPTYKVA buffers and we are either
1579 * defragging or reusing, locate a CLEAN buffer
1580 * to free or reuse. If bufspace useage is low
1581 * skip this step so we can allocate a new buffer.
1583 if (defrag
|| bufspace
>= lobufspace
) {
1584 nqindex
= BQUEUE_CLEAN
;
1585 nbp
= TAILQ_FIRST(&bufqueues
[BQUEUE_CLEAN
]);
1589 * If we could not find or were not allowed to reuse a
1590 * CLEAN buffer, check to see if it is ok to use an EMPTY
1591 * buffer. We can only use an EMPTY buffer if allocating
1592 * its KVA would not otherwise run us out of buffer space.
1594 if (nbp
== NULL
&& defrag
== 0 &&
1595 bufspace
+ maxsize
< hibufspace
) {
1596 nqindex
= BQUEUE_EMPTY
;
1597 nbp
= TAILQ_FIRST(&bufqueues
[BQUEUE_EMPTY
]);
1602 * Run scan, possibly freeing data and/or kva mappings on the fly
1606 while ((bp
= nbp
) != NULL
) {
1607 int qindex
= nqindex
;
1610 * Calculate next bp ( we can only use it if we do not block
1611 * or do other fancy things ).
1613 if ((nbp
= TAILQ_NEXT(bp
, b_freelist
)) == NULL
) {
1616 nqindex
= BQUEUE_EMPTYKVA
;
1617 if ((nbp
= TAILQ_FIRST(&bufqueues
[BQUEUE_EMPTYKVA
])))
1620 case BQUEUE_EMPTYKVA
:
1621 nqindex
= BQUEUE_CLEAN
;
1622 if ((nbp
= TAILQ_FIRST(&bufqueues
[BQUEUE_CLEAN
])))
1636 KASSERT(bp
->b_qindex
== qindex
, ("getnewbuf: inconsistant queue %d bp %p", qindex
, bp
));
1639 * Note: we no longer distinguish between VMIO and non-VMIO
1643 KASSERT((bp
->b_flags
& B_DELWRI
) == 0, ("delwri buffer %p found in queue %d", bp
, qindex
));
1646 * If we are defragging then we need a buffer with
1647 * b_kvasize != 0. XXX this situation should no longer
1648 * occur, if defrag is non-zero the buffer's b_kvasize
1649 * should also be non-zero at this point. XXX
1651 if (defrag
&& bp
->b_kvasize
== 0) {
1652 printf("Warning: defrag empty buffer %p\n", bp
);
1657 * Start freeing the bp. This is somewhat involved. nbp
1658 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers
1659 * on the clean list must be disassociated from their
1660 * current vnode. Buffers on the empty[kva] lists have
1661 * already been disassociated.
1664 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
) != 0) {
1665 printf("getnewbuf: warning, locked buf %p, race corrected\n", bp
);
1666 tsleep(&bd_request
, 0, "gnbxxx", hz
/ 100);
1669 if (bp
->b_qindex
!= qindex
) {
1670 printf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp
, qindex
, bp
->b_qindex
);
1676 if (qindex
== BQUEUE_CLEAN
) {
1677 if (bp
->b_flags
& B_VMIO
) {
1678 bp
->b_flags
&= ~B_ASYNC
;
1679 vfs_vmio_release(bp
);
1686 * NOTE: nbp is now entirely invalid. We can only restart
1687 * the scan from this point on.
1689 * Get the rest of the buffer freed up. b_kva* is still
1690 * valid after this operation.
1693 KASSERT(bp
->b_vp
== NULL
, ("bp3 %p flags %08lx vnode %p qindex %d unexpectededly still associated!", bp
, bp
->b_flags
, bp
->b_vp
, qindex
));
1694 KKASSERT((bp
->b_flags
& B_HASHED
) == 0);
1695 if (LIST_FIRST(&bp
->b_dep
) != NULL
&& bioops
.io_deallocate
)
1696 (*bioops
.io_deallocate
)(bp
);
1697 if (bp
->b_xflags
& BX_BKGRDINPROG
)
1698 panic("losing buffer 3");
1701 * critical section protection is not required when
1702 * scrapping a buffer's contents because it is already
1714 bp
->b_xio
.xio_npages
= 0;
1715 bp
->b_dirtyoff
= bp
->b_dirtyend
= 0;
1718 LIST_INIT(&bp
->b_dep
);
1721 * If we are defragging then free the buffer.
1724 bp
->b_flags
|= B_INVAL
;
1732 * If we are overcomitted then recover the buffer and its
1733 * KVM space. This occurs in rare situations when multiple
1734 * processes are blocked in getnewbuf() or allocbuf().
1736 if (bufspace
>= hibufspace
)
1738 if (flushingbufs
&& bp
->b_kvasize
!= 0) {
1739 bp
->b_flags
|= B_INVAL
;
1744 if (bufspace
< lobufspace
)
1750 * If we exhausted our list, sleep as appropriate. We may have to
1751 * wakeup various daemons and write out some dirty buffers.
1753 * Generally we are sleeping due to insufficient buffer space.
1761 flags
= VFS_BIO_NEED_BUFSPACE
;
1763 } else if (bufspace
>= hibufspace
) {
1765 flags
= VFS_BIO_NEED_BUFSPACE
;
1768 flags
= VFS_BIO_NEED_ANY
;
1771 bd_speedup(); /* heeeelp */
1773 needsbuffer
|= flags
;
1774 while (needsbuffer
& flags
) {
1775 if (tsleep(&needsbuffer
, slpflag
, waitmsg
, slptimeo
))
1780 * We finally have a valid bp. We aren't quite out of the
1781 * woods, we still have to reserve kva space. In order
1782 * to keep fragmentation sane we only allocate kva in
1785 maxsize
= (maxsize
+ BKVAMASK
) & ~BKVAMASK
;
1787 if (maxsize
!= bp
->b_kvasize
) {
1788 vm_offset_t addr
= 0;
1793 count
= vm_map_entry_reserve(MAP_RESERVE_COUNT
);
1794 vm_map_lock(buffer_map
);
1796 if (vm_map_findspace(buffer_map
,
1797 vm_map_min(buffer_map
), maxsize
,
1800 * Uh oh. Buffer map is too fragmented. We
1801 * must defragment the map.
1803 vm_map_unlock(buffer_map
);
1804 vm_map_entry_release(count
);
1807 bp
->b_flags
|= B_INVAL
;
1812 vm_map_insert(buffer_map
, &count
,
1814 addr
, addr
+ maxsize
,
1815 VM_PROT_ALL
, VM_PROT_ALL
, MAP_NOFAULT
);
1817 bp
->b_kvabase
= (caddr_t
) addr
;
1818 bp
->b_kvasize
= maxsize
;
1819 bufspace
+= bp
->b_kvasize
;
1822 vm_map_unlock(buffer_map
);
1823 vm_map_entry_release(count
);
1825 bp
->b_data
= bp
->b_kvabase
;
1833 * Buffer flushing daemon. Buffers are normally flushed by the
1834 * update daemon but if it cannot keep up this process starts to
1835 * take the load in an attempt to prevent getnewbuf() from blocking.
1838 static struct thread
*bufdaemonthread
;
1840 static struct kproc_desc buf_kp
= {
1845 SYSINIT(bufdaemon
, SI_SUB_KTHREAD_BUF
, SI_ORDER_FIRST
, kproc_start
, &buf_kp
)
1851 * This process needs to be suspended prior to shutdown sync.
1853 EVENTHANDLER_REGISTER(shutdown_pre_sync
, shutdown_kproc
,
1854 bufdaemonthread
, SHUTDOWN_PRI_LAST
);
1857 * This process is allowed to take the buffer cache to the limit
1862 kproc_suspend_loop();
1865 * Do the flush. Limit the amount of in-transit I/O we
1866 * allow to build up, otherwise we would completely saturate
1867 * the I/O system. Wakeup any waiting processes before we
1868 * normally would so they can run in parallel with our drain.
1870 while (numdirtybuffers
> lodirtybuffers
) {
1871 if (flushbufqueues() == 0)
1873 waitrunningbufspace();
1874 numdirtywakeup((lodirtybuffers
+ hidirtybuffers
) / 2);
1878 * Only clear bd_request if we have reached our low water
1879 * mark. The buf_daemon normally waits 5 seconds and
1880 * then incrementally flushes any dirty buffers that have
1881 * built up, within reason.
1883 * If we were unable to hit our low water mark and couldn't
1884 * find any flushable buffers, we sleep half a second.
1885 * Otherwise we loop immediately.
1887 if (numdirtybuffers
<= lodirtybuffers
) {
1889 * We reached our low water mark, reset the
1890 * request and sleep until we are needed again.
1891 * The sleep is just so the suspend code works.
1894 tsleep(&bd_request
, 0, "psleep", hz
);
1897 * We couldn't find any flushable dirty buffers but
1898 * still have too many dirty buffers, we
1899 * have to sleep and try again. (rare)
1901 tsleep(&bd_request
, 0, "qsleep", hz
/ 2);
1909 * Try to flush a buffer in the dirty queue. We must be careful to
1910 * free up B_INVAL buffers instead of write them, which NFS is
1911 * particularly sensitive to.
1915 flushbufqueues(void)
1920 bp
= TAILQ_FIRST(&bufqueues
[BQUEUE_DIRTY
]);
1923 KASSERT((bp
->b_flags
& B_DELWRI
), ("unexpected clean buffer %p", bp
));
1924 if ((bp
->b_flags
& B_DELWRI
) != 0 &&
1925 (bp
->b_xflags
& BX_BKGRDINPROG
) == 0) {
1926 if (bp
->b_flags
& B_INVAL
) {
1927 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
) != 0)
1928 panic("flushbufqueues: locked buf");
1934 if (LIST_FIRST(&bp
->b_dep
) != NULL
&&
1935 bioops
.io_countdeps
&&
1936 (bp
->b_flags
& B_DEFERRED
) == 0 &&
1937 (*bioops
.io_countdeps
)(bp
, 0)) {
1938 TAILQ_REMOVE(&bufqueues
[BQUEUE_DIRTY
],
1940 TAILQ_INSERT_TAIL(&bufqueues
[BQUEUE_DIRTY
],
1942 bp
->b_flags
|= B_DEFERRED
;
1943 bp
= TAILQ_FIRST(&bufqueues
[BQUEUE_DIRTY
]);
1948 * Only write it out if we can successfully lock
1951 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
) == 0) {
1957 bp
= TAILQ_NEXT(bp
, b_freelist
);
1965 * Returns true if no I/O is needed to access the associated VM object.
1966 * This is like findblk except it also hunts around in the VM system for
1969 * Note that we ignore vm_page_free() races from interrupts against our
1970 * lookup, since if the caller is not protected our return value will not
1971 * be any more valid then otherwise once we exit the critical section.
1974 inmem(struct vnode
* vp
, daddr_t blkno
)
1977 vm_offset_t toff
, tinc
, size
;
1981 if (findblk(vp
, blkno
))
1983 if (vp
->v_mount
== NULL
)
1985 if (VOP_GETVOBJECT(vp
, &obj
) != 0 || (vp
->v_flag
& VOBJBUF
) == 0)
1989 if (size
> vp
->v_mount
->mnt_stat
.f_iosize
)
1990 size
= vp
->v_mount
->mnt_stat
.f_iosize
;
1991 off
= (vm_ooffset_t
)blkno
* (vm_ooffset_t
)vp
->v_mount
->mnt_stat
.f_iosize
;
1993 for (toff
= 0; toff
< vp
->v_mount
->mnt_stat
.f_iosize
; toff
+= tinc
) {
1994 m
= vm_page_lookup(obj
, OFF_TO_IDX(off
+ toff
));
1998 if (tinc
> PAGE_SIZE
- ((toff
+ off
) & PAGE_MASK
))
1999 tinc
= PAGE_SIZE
- ((toff
+ off
) & PAGE_MASK
);
2000 if (vm_page_is_valid(m
,
2001 (vm_offset_t
) ((toff
+ off
) & PAGE_MASK
), tinc
) == 0)
2010 * Sets the dirty range for a buffer based on the status of the dirty
2011 * bits in the pages comprising the buffer.
2013 * The range is limited to the size of the buffer.
2015 * This routine is primarily used by NFS, but is generalized for the
2019 vfs_setdirty(struct buf
*bp
)
2025 * Degenerate case - empty buffer
2028 if (bp
->b_bufsize
== 0)
2032 * We qualify the scan for modified pages on whether the
2033 * object has been flushed yet. The OBJ_WRITEABLE flag
2034 * is not cleared simply by protecting pages off.
2037 if ((bp
->b_flags
& B_VMIO
) == 0)
2040 object
= bp
->b_xio
.xio_pages
[0]->object
;
2042 if ((object
->flags
& OBJ_WRITEABLE
) && !(object
->flags
& OBJ_MIGHTBEDIRTY
))
2043 printf("Warning: object %p writeable but not mightbedirty\n", object
);
2044 if (!(object
->flags
& OBJ_WRITEABLE
) && (object
->flags
& OBJ_MIGHTBEDIRTY
))
2045 printf("Warning: object %p mightbedirty but not writeable\n", object
);
2047 if (object
->flags
& (OBJ_MIGHTBEDIRTY
|OBJ_CLEANING
)) {
2048 vm_offset_t boffset
;
2049 vm_offset_t eoffset
;
2052 * test the pages to see if they have been modified directly
2053 * by users through the VM system.
2055 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
2056 vm_page_flag_clear(bp
->b_xio
.xio_pages
[i
], PG_ZERO
);
2057 vm_page_test_dirty(bp
->b_xio
.xio_pages
[i
]);
2061 * Calculate the encompassing dirty range, boffset and eoffset,
2062 * (eoffset - boffset) bytes.
2065 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
2066 if (bp
->b_xio
.xio_pages
[i
]->dirty
)
2069 boffset
= (i
<< PAGE_SHIFT
) - (bp
->b_loffset
& PAGE_MASK
);
2071 for (i
= bp
->b_xio
.xio_npages
- 1; i
>= 0; --i
) {
2072 if (bp
->b_xio
.xio_pages
[i
]->dirty
) {
2076 eoffset
= ((i
+ 1) << PAGE_SHIFT
) - (bp
->b_loffset
& PAGE_MASK
);
2079 * Fit it to the buffer.
2082 if (eoffset
> bp
->b_bcount
)
2083 eoffset
= bp
->b_bcount
;
2086 * If we have a good dirty range, merge with the existing
2090 if (boffset
< eoffset
) {
2091 if (bp
->b_dirtyoff
> boffset
)
2092 bp
->b_dirtyoff
= boffset
;
2093 if (bp
->b_dirtyend
< eoffset
)
2094 bp
->b_dirtyend
= eoffset
;
2102 * Locate and return the specified buffer, or NULL if the buffer does
2103 * not exist. Do not attempt to lock the buffer or manipulate it in
2104 * any way. The caller must validate that the correct buffer has been
2105 * obtain after locking it.
2108 findblk(struct vnode
*vp
, daddr_t blkno
)
2113 bp
= buf_rb_hash_RB_LOOKUP(&vp
->v_rbhash_tree
, blkno
);
2121 * Get a block given a specified block and offset into a file/device.
2122 * The buffers B_DONE bit will be cleared on return, making it almost
2123 * ready for an I/O initiation. B_INVAL may or may not be set on
2124 * return. The caller should clear B_INVAL prior to initiating a
2127 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2128 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2129 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2130 * without doing any of those things the system will likely believe
2131 * the buffer to be valid (especially if it is not B_VMIO), and the
2132 * next getblk() will return the buffer with B_CACHE set.
2134 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2135 * an existing buffer.
2137 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2138 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2139 * and then cleared based on the backing VM. If the previous buffer is
2140 * non-0-sized but invalid, B_CACHE will be cleared.
2142 * If getblk() must create a new buffer, the new buffer is returned with
2143 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2144 * case it is returned with B_INVAL clear and B_CACHE set based on the
2147 * getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
2148 * B_CACHE bit is clear.
2150 * What this means, basically, is that the caller should use B_CACHE to
2151 * determine whether the buffer is fully valid or not and should clear
2152 * B_INVAL prior to issuing a read. If the caller intends to validate
2153 * the buffer by loading its data area with something, the caller needs
2154 * to clear B_INVAL. If the caller does this without issuing an I/O,
2155 * the caller should set B_CACHE ( as an optimization ), else the caller
2156 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2157 * a write attempt or if it was a successfull read. If the caller
2158 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2159 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2162 getblk(struct vnode
*vp
, daddr_t blkno
, int size
, int slpflag
, int slptimeo
)
2166 if (size
> MAXBSIZE
)
2167 panic("getblk: size(%d) > MAXBSIZE(%d)", size
, MAXBSIZE
);
2172 * Block if we are low on buffers. Certain processes are allowed
2173 * to completely exhaust the buffer cache.
2175 * If this check ever becomes a bottleneck it may be better to
2176 * move it into the else, when findblk() fails. At the moment
2177 * it isn't a problem.
2179 * XXX remove, we cannot afford to block anywhere if holding a vnode
2180 * lock in low-memory situation, so take it to the max.
2182 if (numfreebuffers
== 0) {
2185 needsbuffer
|= VFS_BIO_NEED_ANY
;
2186 tsleep(&needsbuffer
, slpflag
, "newbuf", slptimeo
);
2189 if ((bp
= findblk(vp
, blkno
))) {
2191 * The buffer was found in the cache, but we need to lock it.
2192 * Even with LK_NOWAIT the lockmgr may break our critical
2193 * section, so double-check the validity of the buffer
2194 * once the lock has been obtained.
2196 if (BUF_LOCK(bp
, LK_EXCLUSIVE
| LK_NOWAIT
)) {
2197 int lkflags
= LK_EXCLUSIVE
| LK_SLEEPFAIL
;
2198 if (slpflag
& PCATCH
)
2199 lkflags
|= LK_PCATCH
;
2200 if (BUF_TIMELOCK(bp
, lkflags
, "getblk", slptimeo
) ==
2209 * Once the buffer has been locked, make sure we didn't race
2210 * a buffer recyclement. Buffers that are no longer hashed
2211 * will have b_vp == NULL, so this takes care of that check
2214 if (bp
->b_vp
!= vp
|| bp
->b_lblkno
!= blkno
) {
2215 printf("Warning buffer %p (vp %p lblkno %d) was recycled\n", bp
, vp
, (int)blkno
);
2221 * Make sure that B_INVAL buffers do not have a cached
2222 * block number translation.
2224 if ((bp
->b_flags
& B_INVAL
) && (bp
->b_bio2
.bio_blkno
!= (daddr_t
)-1)) {
2225 printf("Warning invalid buffer %p (vp %p lblkno %d) did not have cleared bio_blkno cache\n", bp
, vp
, (int)blkno
);
2226 clearbiocache(&bp
->b_bio2
);
2230 * The buffer is locked. B_CACHE is cleared if the buffer is
2231 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set
2232 * and for a VMIO buffer B_CACHE is adjusted according to the
2235 if (bp
->b_flags
& B_INVAL
)
2236 bp
->b_flags
&= ~B_CACHE
;
2237 else if ((bp
->b_flags
& (B_VMIO
| B_INVAL
)) == 0)
2238 bp
->b_flags
|= B_CACHE
;
2242 * check for size inconsistancies for non-VMIO case.
2245 if (bp
->b_bcount
!= size
) {
2246 if ((bp
->b_flags
& B_VMIO
) == 0 ||
2247 (size
> bp
->b_kvasize
)) {
2248 if (bp
->b_flags
& B_DELWRI
) {
2249 bp
->b_flags
|= B_NOCACHE
;
2250 VOP_BWRITE(bp
->b_vp
, bp
);
2252 if ((bp
->b_flags
& B_VMIO
) &&
2253 (LIST_FIRST(&bp
->b_dep
) == NULL
)) {
2254 bp
->b_flags
|= B_RELBUF
;
2257 bp
->b_flags
|= B_NOCACHE
;
2258 VOP_BWRITE(bp
->b_vp
, bp
);
2266 * If the size is inconsistant in the VMIO case, we can resize
2267 * the buffer. This might lead to B_CACHE getting set or
2268 * cleared. If the size has not changed, B_CACHE remains
2269 * unchanged from its previous state.
2272 if (bp
->b_bcount
!= size
)
2275 KASSERT(bp
->b_loffset
!= NOOFFSET
,
2276 ("getblk: no buffer offset"));
2279 * A buffer with B_DELWRI set and B_CACHE clear must
2280 * be committed before we can return the buffer in
2281 * order to prevent the caller from issuing a read
2282 * ( due to B_CACHE not being set ) and overwriting
2285 * Most callers, including NFS and FFS, need this to
2286 * operate properly either because they assume they
2287 * can issue a read if B_CACHE is not set, or because
2288 * ( for example ) an uncached B_DELWRI might loop due
2289 * to softupdates re-dirtying the buffer. In the latter
2290 * case, B_CACHE is set after the first write completes,
2291 * preventing further loops.
2293 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2294 * above while extending the buffer, we cannot allow the
2295 * buffer to remain with B_CACHE set after the write
2296 * completes or it will represent a corrupt state. To
2297 * deal with this we set B_NOCACHE to scrap the buffer
2300 * We might be able to do something fancy, like setting
2301 * B_CACHE in bwrite() except if B_DELWRI is already set,
2302 * so the below call doesn't set B_CACHE, but that gets real
2303 * confusing. This is much easier.
2306 if ((bp
->b_flags
& (B_CACHE
|B_DELWRI
)) == B_DELWRI
) {
2307 bp
->b_flags
|= B_NOCACHE
;
2308 VOP_BWRITE(bp
->b_vp
, bp
);
2313 bp
->b_flags
&= ~B_DONE
;
2316 * Buffer is not in-core, create new buffer. The buffer
2317 * returned by getnewbuf() is locked. Note that the returned
2318 * buffer is also considered valid (not marked B_INVAL).
2320 * Calculating the offset for the I/O requires figuring out
2321 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2322 * the mount's f_iosize otherwise. If the vnode does not
2323 * have an associated mount we assume that the passed size is
2326 * Note that vn_isdisk() cannot be used here since it may
2327 * return a failure for numerous reasons. Note that the
2328 * buffer size may be larger then the block size (the caller
2329 * will use block numbers with the proper multiple). Beware
2330 * of using any v_* fields which are part of unions. In
2331 * particular, in DragonFly the mount point overloading
2332 * mechanism is such that the underlying directory (with a
2333 * non-NULL v_mountedhere) is not a special case.
2335 int bsize
, maxsize
, vmio
;
2338 if (vp
->v_type
== VBLK
|| vp
->v_type
== VCHR
)
2340 else if (vp
->v_mount
)
2341 bsize
= vp
->v_mount
->mnt_stat
.f_iosize
;
2345 offset
= (off_t
)blkno
* bsize
;
2346 vmio
= (VOP_GETVOBJECT(vp
, NULL
) == 0) && (vp
->v_flag
& VOBJBUF
);
2347 maxsize
= vmio
? size
+ (offset
& PAGE_MASK
) : size
;
2348 maxsize
= imax(maxsize
, bsize
);
2350 if ((bp
= getnewbuf(slpflag
, slptimeo
, size
, maxsize
)) == NULL
) {
2351 if (slpflag
|| slptimeo
) {
2359 * This code is used to make sure that a buffer is not
2360 * created while the getnewbuf routine is blocked.
2361 * This can be a problem whether the vnode is locked or not.
2362 * If the buffer is created out from under us, we have to
2363 * throw away the one we just created. There is now window
2364 * race because we are safely running in a critical section
2365 * from the point of the duplicate buffer creation through
2366 * to here, and we've locked the buffer.
2368 if (findblk(vp
, blkno
)) {
2369 bp
->b_flags
|= B_INVAL
;
2375 * Insert the buffer into the hash, so that it can
2376 * be found by findblk().
2378 * Make sure the translation layer has been cleared.
2380 bp
->b_lblkno
= blkno
;
2381 bp
->b_loffset
= offset
;
2382 bp
->b_bio2
.bio_blkno
= (daddr_t
)-1;
2383 /* bp->b_bio2.bio_next = NULL; */
2388 * set B_VMIO bit. allocbuf() the buffer bigger. Since the
2389 * buffer size starts out as 0, B_CACHE will be set by
2390 * allocbuf() for the VMIO case prior to it testing the
2391 * backing store for validity.
2395 bp
->b_flags
|= B_VMIO
;
2396 #if defined(VFS_BIO_DEBUG)
2397 if (vn_canvmio(vp
) != TRUE
)
2398 printf("getblk: vmioing file type %d???\n", vp
->v_type
);
2401 bp
->b_flags
&= ~B_VMIO
;
2407 bp
->b_flags
&= ~B_DONE
;
2415 * Get an empty, disassociated buffer of given size. The buffer is
2416 * initially set to B_INVAL.
2418 * critical section protection is not required for the allocbuf()
2419 * call because races are impossible here.
2427 maxsize
= (size
+ BKVAMASK
) & ~BKVAMASK
;
2430 while ((bp
= getnewbuf(0, 0, size
, maxsize
)) == 0)
2434 bp
->b_flags
|= B_INVAL
; /* b_dep cleared by getnewbuf() */
2442 * This code constitutes the buffer memory from either anonymous system
2443 * memory (in the case of non-VMIO operations) or from an associated
2444 * VM object (in the case of VMIO operations). This code is able to
2445 * resize a buffer up or down.
2447 * Note that this code is tricky, and has many complications to resolve
2448 * deadlock or inconsistant data situations. Tread lightly!!!
2449 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2450 * the caller. Calling this code willy nilly can result in the loss of data.
2452 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
2453 * B_CACHE for the non-VMIO case.
2455 * This routine does not need to be called from a critical section but you
2456 * must own the buffer.
2459 allocbuf(struct buf
*bp
, int size
)
2461 int newbsize
, mbsize
;
2464 if (BUF_REFCNT(bp
) == 0)
2465 panic("allocbuf: buffer not busy");
2467 if (bp
->b_kvasize
< size
)
2468 panic("allocbuf: buffer too small");
2470 if ((bp
->b_flags
& B_VMIO
) == 0) {
2474 * Just get anonymous memory from the kernel. Don't
2475 * mess with B_CACHE.
2477 mbsize
= (size
+ DEV_BSIZE
- 1) & ~(DEV_BSIZE
- 1);
2478 if (bp
->b_flags
& B_MALLOC
)
2481 newbsize
= round_page(size
);
2483 if (newbsize
< bp
->b_bufsize
) {
2485 * malloced buffers are not shrunk
2487 if (bp
->b_flags
& B_MALLOC
) {
2489 bp
->b_bcount
= size
;
2491 free(bp
->b_data
, M_BIOBUF
);
2492 if (bp
->b_bufsize
) {
2493 bufmallocspace
-= bp
->b_bufsize
;
2497 bp
->b_data
= bp
->b_kvabase
;
2499 bp
->b_flags
&= ~B_MALLOC
;
2505 (vm_offset_t
) bp
->b_data
+ newbsize
,
2506 (vm_offset_t
) bp
->b_data
+ bp
->b_bufsize
);
2507 } else if (newbsize
> bp
->b_bufsize
) {
2509 * We only use malloced memory on the first allocation.
2510 * and revert to page-allocated memory when the buffer
2513 if ( (bufmallocspace
< maxbufmallocspace
) &&
2514 (bp
->b_bufsize
== 0) &&
2515 (mbsize
<= PAGE_SIZE
/2)) {
2517 bp
->b_data
= malloc(mbsize
, M_BIOBUF
, M_WAITOK
);
2518 bp
->b_bufsize
= mbsize
;
2519 bp
->b_bcount
= size
;
2520 bp
->b_flags
|= B_MALLOC
;
2521 bufmallocspace
+= mbsize
;
2527 * If the buffer is growing on its other-than-first allocation,
2528 * then we revert to the page-allocation scheme.
2530 if (bp
->b_flags
& B_MALLOC
) {
2531 origbuf
= bp
->b_data
;
2532 origbufsize
= bp
->b_bufsize
;
2533 bp
->b_data
= bp
->b_kvabase
;
2534 if (bp
->b_bufsize
) {
2535 bufmallocspace
-= bp
->b_bufsize
;
2539 bp
->b_flags
&= ~B_MALLOC
;
2540 newbsize
= round_page(newbsize
);
2544 (vm_offset_t
) bp
->b_data
+ bp
->b_bufsize
,
2545 (vm_offset_t
) bp
->b_data
+ newbsize
);
2547 bcopy(origbuf
, bp
->b_data
, origbufsize
);
2548 free(origbuf
, M_BIOBUF
);
2555 newbsize
= (size
+ DEV_BSIZE
- 1) & ~(DEV_BSIZE
- 1);
2556 desiredpages
= (size
== 0) ? 0 :
2557 num_pages((bp
->b_loffset
& PAGE_MASK
) + newbsize
);
2559 if (bp
->b_flags
& B_MALLOC
)
2560 panic("allocbuf: VMIO buffer can't be malloced");
2562 * Set B_CACHE initially if buffer is 0 length or will become
2565 if (size
== 0 || bp
->b_bufsize
== 0)
2566 bp
->b_flags
|= B_CACHE
;
2568 if (newbsize
< bp
->b_bufsize
) {
2570 * DEV_BSIZE aligned new buffer size is less then the
2571 * DEV_BSIZE aligned existing buffer size. Figure out
2572 * if we have to remove any pages.
2574 if (desiredpages
< bp
->b_xio
.xio_npages
) {
2575 for (i
= desiredpages
; i
< bp
->b_xio
.xio_npages
; i
++) {
2577 * the page is not freed here -- it
2578 * is the responsibility of
2579 * vnode_pager_setsize
2581 m
= bp
->b_xio
.xio_pages
[i
];
2582 KASSERT(m
!= bogus_page
,
2583 ("allocbuf: bogus page found"));
2584 while (vm_page_sleep_busy(m
, TRUE
, "biodep"))
2587 bp
->b_xio
.xio_pages
[i
] = NULL
;
2588 vm_page_unwire(m
, 0);
2590 pmap_qremove((vm_offset_t
) trunc_page((vm_offset_t
)bp
->b_data
) +
2591 (desiredpages
<< PAGE_SHIFT
), (bp
->b_xio
.xio_npages
- desiredpages
));
2592 bp
->b_xio
.xio_npages
= desiredpages
;
2594 } else if (size
> bp
->b_bcount
) {
2596 * We are growing the buffer, possibly in a
2597 * byte-granular fashion.
2605 * Step 1, bring in the VM pages from the object,
2606 * allocating them if necessary. We must clear
2607 * B_CACHE if these pages are not valid for the
2608 * range covered by the buffer.
2610 * critical section protection is required to protect
2611 * against interrupts unbusying and freeing pages
2612 * between our vm_page_lookup() and our
2613 * busycheck/wiring call.
2616 VOP_GETVOBJECT(vp
, &obj
);
2619 while (bp
->b_xio
.xio_npages
< desiredpages
) {
2623 pi
= OFF_TO_IDX(bp
->b_loffset
) + bp
->b_xio
.xio_npages
;
2624 if ((m
= vm_page_lookup(obj
, pi
)) == NULL
) {
2626 * note: must allocate system pages
2627 * since blocking here could intefere
2628 * with paging I/O, no matter which
2631 m
= vm_page_alloc(obj
, pi
, VM_ALLOC_NORMAL
| VM_ALLOC_SYSTEM
);
2634 vm_pageout_deficit
+= desiredpages
-
2635 bp
->b_xio
.xio_npages
;
2639 bp
->b_flags
&= ~B_CACHE
;
2640 bp
->b_xio
.xio_pages
[bp
->b_xio
.xio_npages
] = m
;
2641 ++bp
->b_xio
.xio_npages
;
2647 * We found a page. If we have to sleep on it,
2648 * retry because it might have gotten freed out
2651 * We can only test PG_BUSY here. Blocking on
2652 * m->busy might lead to a deadlock:
2654 * vm_fault->getpages->cluster_read->allocbuf
2658 if (vm_page_sleep_busy(m
, FALSE
, "pgtblk"))
2662 * We have a good page. Should we wakeup the
2665 if ((curthread
!= pagethread
) &&
2666 ((m
->queue
- m
->pc
) == PQ_CACHE
) &&
2667 ((vmstats
.v_free_count
+ vmstats
.v_cache_count
) <
2668 (vmstats
.v_free_min
+ vmstats
.v_cache_min
))) {
2669 pagedaemon_wakeup();
2671 vm_page_flag_clear(m
, PG_ZERO
);
2673 bp
->b_xio
.xio_pages
[bp
->b_xio
.xio_npages
] = m
;
2674 ++bp
->b_xio
.xio_npages
;
2679 * Step 2. We've loaded the pages into the buffer,
2680 * we have to figure out if we can still have B_CACHE
2681 * set. Note that B_CACHE is set according to the
2682 * byte-granular range ( bcount and size ), not the
2683 * aligned range ( newbsize ).
2685 * The VM test is against m->valid, which is DEV_BSIZE
2686 * aligned. Needless to say, the validity of the data
2687 * needs to also be DEV_BSIZE aligned. Note that this
2688 * fails with NFS if the server or some other client
2689 * extends the file's EOF. If our buffer is resized,
2690 * B_CACHE may remain set! XXX
2693 toff
= bp
->b_bcount
;
2694 tinc
= PAGE_SIZE
- ((bp
->b_loffset
+ toff
) & PAGE_MASK
);
2696 while ((bp
->b_flags
& B_CACHE
) && toff
< size
) {
2699 if (tinc
> (size
- toff
))
2702 pi
= ((bp
->b_loffset
& PAGE_MASK
) + toff
) >>
2710 bp
->b_xio
.xio_pages
[pi
]
2717 * Step 3, fixup the KVM pmap. Remember that
2718 * bp->b_data is relative to bp->b_loffset, but
2719 * bp->b_loffset may be offset into the first page.
2722 bp
->b_data
= (caddr_t
)
2723 trunc_page((vm_offset_t
)bp
->b_data
);
2725 (vm_offset_t
)bp
->b_data
,
2726 bp
->b_xio
.xio_pages
,
2727 bp
->b_xio
.xio_npages
2729 bp
->b_data
= (caddr_t
)((vm_offset_t
)bp
->b_data
|
2730 (vm_offset_t
)(bp
->b_loffset
& PAGE_MASK
));
2733 if (newbsize
< bp
->b_bufsize
)
2735 bp
->b_bufsize
= newbsize
; /* actual buffer allocation */
2736 bp
->b_bcount
= size
; /* requested buffer size */
2743 * Wait for buffer I/O completion, returning error status. The buffer
2744 * is left locked and B_DONE on return. B_EINTR is converted into an
2745 * EINTR error and cleared.
2748 biowait(struct buf
* bp
)
2751 while ((bp
->b_flags
& B_DONE
) == 0) {
2752 if (bp
->b_flags
& B_READ
)
2753 tsleep(bp
, 0, "biord", 0);
2755 tsleep(bp
, 0, "biowr", 0);
2758 if (bp
->b_flags
& B_EINTR
) {
2759 bp
->b_flags
&= ~B_EINTR
;
2762 if (bp
->b_flags
& B_ERROR
) {
2763 return (bp
->b_error
? bp
->b_error
: EIO
);
2770 * This associates a tracking count with an I/O. vn_strategy() and
2771 * dev_dstrategy() do this automatically but there are a few cases
2772 * where a vnode or device layer is bypassed when a block translation
2773 * is cached. In such cases bio_start_transaction() may be called on
2774 * the bypassed layers so the system gets an I/O in progress indication
2775 * for those higher layers.
2778 bio_start_transaction(struct bio
*bio
, struct bio_track
*track
)
2780 bio
->bio_track
= track
;
2781 atomic_add_int(&track
->bk_active
, 1);
2785 * Initiate I/O on a vnode.
2788 vn_strategy(struct vnode
*vp
, struct bio
*bio
)
2790 struct bio_track
*track
;
2792 if (bio
->bio_buf
->b_flags
& B_READ
)
2793 track
= &vp
->v_track_read
;
2795 track
= &vp
->v_track_write
;
2796 bio
->bio_track
= track
;
2797 atomic_add_int(&track
->bk_active
, 1);
2798 vop_strategy(*vp
->v_ops
, vp
, bio
);
2805 * Finish I/O on a buffer, optionally calling a completion function.
2806 * This is usually called from an interrupt so process blocking is
2809 * biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2810 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
2811 * assuming B_INVAL is clear.
2813 * For the VMIO case, we set B_CACHE if the op was a read and no
2814 * read error occured, or if the op was a write. B_CACHE is never
2815 * set if the buffer is invalid or otherwise uncacheable.
2817 * biodone does not mess with B_INVAL, allowing the I/O routine or the
2818 * initiator to leave B_INVAL set to brelse the buffer out of existance
2819 * in the biodone routine.
2822 biodone(struct bio
*bio
)
2824 struct buf
*bp
= bio
->bio_buf
;
2829 KASSERT(BUF_REFCNTNB(bp
) > 0,
2830 ("biodone: bp %p not busy %d", bp
, BUF_REFCNTNB(bp
)));
2831 KASSERT(!(bp
->b_flags
& B_DONE
),
2832 ("biodone: bp %p already done", bp
));
2834 bp
->b_flags
|= B_DONE
;
2835 runningbufwakeup(bp
);
2838 * Run up the chain of BIO's.
2841 biodone_t
*done_func
;
2842 struct bio_track
*track
;
2845 * BIO tracking. Most but not all BIOs are tracked.
2847 if ((track
= bio
->bio_track
) != NULL
) {
2848 atomic_subtract_int(&track
->bk_active
, 1);
2849 if (track
->bk_active
< 0) {
2850 panic("biodone: bad active count bio %p\n",
2853 if (track
->bk_waitflag
) {
2854 track
->bk_waitflag
= 0;
2857 bio
->bio_track
= NULL
;
2861 * A bio_done function terminates the loop. The function
2862 * will be responsible for any further chaining and/or
2863 * buffer management.
2865 if ((done_func
= bio
->bio_done
) != NULL
) {
2866 bio
->bio_done
= NULL
;
2871 bio
= bio
->bio_prev
;
2875 * Special case (XXX) - not a read or write.
2877 if (bp
->b_flags
& B_FREEBUF
) {
2883 if (LIST_FIRST(&bp
->b_dep
) != NULL
&& bioops
.io_complete
)
2884 (*bioops
.io_complete
)(bp
);
2886 if (bp
->b_flags
& B_VMIO
) {
2892 struct vnode
*vp
= bp
->b_vp
;
2894 error
= VOP_GETVOBJECT(vp
, &obj
);
2896 #if defined(VFS_BIO_DEBUG)
2897 if (vp
->v_holdcnt
== 0) {
2898 panic("biodone: zero vnode hold count");
2902 panic("biodone: missing VM object");
2905 if ((vp
->v_flag
& VOBJBUF
) == 0) {
2906 panic("biodone: vnode is not setup for merged cache");
2910 foff
= bp
->b_loffset
;
2911 KASSERT(foff
!= NOOFFSET
, ("biodone: no buffer offset"));
2914 panic("biodone: no object");
2916 #if defined(VFS_BIO_DEBUG)
2917 if (obj
->paging_in_progress
< bp
->b_xio
.xio_npages
) {
2918 printf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
2919 obj
->paging_in_progress
, bp
->b_xio
.xio_npages
);
2924 * Set B_CACHE if the op was a normal read and no error
2925 * occured. B_CACHE is set for writes in the b*write()
2928 iosize
= bp
->b_bcount
- bp
->b_resid
;
2929 if ((bp
->b_flags
& (B_READ
|B_FREEBUF
|B_INVAL
|B_NOCACHE
|B_ERROR
)) == B_READ
) {
2930 bp
->b_flags
|= B_CACHE
;
2933 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
2937 resid
= ((foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
) - foff
;
2942 * cleanup bogus pages, restoring the originals. Since
2943 * the originals should still be wired, we don't have
2944 * to worry about interrupt/freeing races destroying
2945 * the VM object association.
2947 m
= bp
->b_xio
.xio_pages
[i
];
2948 if (m
== bogus_page
) {
2950 m
= vm_page_lookup(obj
, OFF_TO_IDX(foff
));
2952 panic("biodone: page disappeared");
2953 bp
->b_xio
.xio_pages
[i
] = m
;
2954 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
2955 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
2957 #if defined(VFS_BIO_DEBUG)
2958 if (OFF_TO_IDX(foff
) != m
->pindex
) {
2960 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2961 (unsigned long)foff
, m
->pindex
);
2966 * In the write case, the valid and clean bits are
2967 * already changed correctly ( see bdwrite() ), so we
2968 * only need to do this here in the read case.
2970 if ((bp
->b_flags
& B_READ
) && !bogusflag
&& resid
> 0) {
2971 vfs_page_set_valid(bp
, foff
, i
, m
);
2973 vm_page_flag_clear(m
, PG_ZERO
);
2976 * when debugging new filesystems or buffer I/O methods, this
2977 * is the most common error that pops up. if you see this, you
2978 * have not set the page busy flag correctly!!!
2981 printf("biodone: page busy < 0, "
2982 "pindex: %d, foff: 0x(%x,%x), "
2983 "resid: %d, index: %d\n",
2984 (int) m
->pindex
, (int)(foff
>> 32),
2985 (int) foff
& 0xffffffff, resid
, i
);
2986 if (!vn_isdisk(vp
, NULL
))
2987 printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2988 bp
->b_vp
->v_mount
->mnt_stat
.f_iosize
,
2990 bp
->b_flags
, bp
->b_xio
.xio_npages
);
2992 printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2994 bp
->b_flags
, bp
->b_xio
.xio_npages
);
2995 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2996 m
->valid
, m
->dirty
, m
->wire_count
);
2997 panic("biodone: page busy < 0");
2999 vm_page_io_finish(m
);
3000 vm_object_pip_subtract(obj
, 1);
3001 foff
= (foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
3005 vm_object_pip_wakeupn(obj
, 0);
3009 * For asynchronous completions, release the buffer now. The brelse
3010 * will do a wakeup there if necessary - so no need to do a wakeup
3011 * here in the async case. The sync case always needs to do a wakeup.
3014 if (bp
->b_flags
& B_ASYNC
) {
3015 if ((bp
->b_flags
& (B_NOCACHE
| B_INVAL
| B_ERROR
| B_RELBUF
)) != 0)
3028 * This routine is called in lieu of iodone in the case of
3029 * incomplete I/O. This keeps the busy status for pages
3033 vfs_unbusy_pages(struct buf
*bp
)
3037 runningbufwakeup(bp
);
3038 if (bp
->b_flags
& B_VMIO
) {
3039 struct vnode
*vp
= bp
->b_vp
;
3042 VOP_GETVOBJECT(vp
, &obj
);
3044 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3045 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
3048 * When restoring bogus changes the original pages
3049 * should still be wired, so we are in no danger of
3050 * losing the object association and do not need
3051 * critical section protection particularly.
3053 if (m
== bogus_page
) {
3054 m
= vm_page_lookup(obj
, OFF_TO_IDX(bp
->b_loffset
) + i
);
3056 panic("vfs_unbusy_pages: page missing");
3058 bp
->b_xio
.xio_pages
[i
] = m
;
3059 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
3060 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
3062 vm_object_pip_subtract(obj
, 1);
3063 vm_page_flag_clear(m
, PG_ZERO
);
3064 vm_page_io_finish(m
);
3066 vm_object_pip_wakeupn(obj
, 0);
3071 * vfs_page_set_valid:
3073 * Set the valid bits in a page based on the supplied offset. The
3074 * range is restricted to the buffer's size.
3076 * This routine is typically called after a read completes.
3079 vfs_page_set_valid(struct buf
*bp
, vm_ooffset_t off
, int pageno
, vm_page_t m
)
3081 vm_ooffset_t soff
, eoff
;
3084 * Start and end offsets in buffer. eoff - soff may not cross a
3085 * page boundry or cross the end of the buffer. The end of the
3086 * buffer, in this case, is our file EOF, not the allocation size
3090 eoff
= (off
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
3091 if (eoff
> bp
->b_loffset
+ bp
->b_bcount
)
3092 eoff
= bp
->b_loffset
+ bp
->b_bcount
;
3095 * Set valid range. This is typically the entire buffer and thus the
3099 vm_page_set_validclean(
3101 (vm_offset_t
) (soff
& PAGE_MASK
),
3102 (vm_offset_t
) (eoff
- soff
)
3110 * This routine is called before a device strategy routine.
3111 * It is used to tell the VM system that paging I/O is in
3112 * progress, and treat the pages associated with the buffer
3113 * almost as being PG_BUSY. Also the object 'paging_in_progress'
3114 * flag is handled to make sure that the object doesn't become
3117 * Since I/O has not been initiated yet, certain buffer flags
3118 * such as B_ERROR or B_INVAL may be in an inconsistant state
3119 * and should be ignored.
3122 vfs_busy_pages(struct buf
*bp
, int clear_modify
)
3125 struct proc
*p
= curthread
->td_proc
;
3127 if (bp
->b_flags
& B_VMIO
) {
3128 struct vnode
*vp
= bp
->b_vp
;
3132 VOP_GETVOBJECT(vp
, &obj
);
3133 foff
= bp
->b_loffset
;
3134 KASSERT(bp
->b_loffset
!= NOOFFSET
,
3135 ("vfs_busy_pages: no buffer offset"));
3139 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3140 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
3141 if (vm_page_sleep_busy(m
, FALSE
, "vbpage"))
3146 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3147 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
3149 vm_page_flag_clear(m
, PG_ZERO
);
3150 if ((bp
->b_flags
& B_CLUSTER
) == 0) {
3151 vm_object_pip_add(obj
, 1);
3152 vm_page_io_start(m
);
3156 * When readying a buffer for a read ( i.e
3157 * clear_modify == 0 ), it is important to do
3158 * bogus_page replacement for valid pages in
3159 * partially instantiated buffers. Partially
3160 * instantiated buffers can, in turn, occur when
3161 * reconstituting a buffer from its VM backing store
3162 * base. We only have to do this if B_CACHE is
3163 * clear ( which causes the I/O to occur in the
3164 * first place ). The replacement prevents the read
3165 * I/O from overwriting potentially dirty VM-backed
3166 * pages. XXX bogus page replacement is, uh, bogus.
3167 * It may not work properly with small-block devices.
3168 * We need to find a better way.
3171 vm_page_protect(m
, VM_PROT_NONE
);
3173 vfs_page_set_valid(bp
, foff
, i
, m
);
3174 else if (m
->valid
== VM_PAGE_BITS_ALL
&&
3175 (bp
->b_flags
& B_CACHE
) == 0) {
3176 bp
->b_xio
.xio_pages
[i
] = bogus_page
;
3179 foff
= (foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
3182 pmap_qenter(trunc_page((vm_offset_t
)bp
->b_data
),
3183 bp
->b_xio
.xio_pages
, bp
->b_xio
.xio_npages
);
3187 * This is the easiest place to put the process accounting for the I/O
3191 if (bp
->b_flags
& B_READ
)
3192 p
->p_stats
->p_ru
.ru_inblock
++;
3194 p
->p_stats
->p_ru
.ru_oublock
++;
3201 * Tell the VM system that the pages associated with this buffer
3202 * are clean. This is used for delayed writes where the data is
3203 * going to go to disk eventually without additional VM intevention.
3205 * Note that while we only really need to clean through to b_bcount, we
3206 * just go ahead and clean through to b_bufsize.
3209 vfs_clean_pages(struct buf
*bp
)
3213 if (bp
->b_flags
& B_VMIO
) {
3216 foff
= bp
->b_loffset
;
3217 KASSERT(foff
!= NOOFFSET
, ("vfs_clean_pages: no buffer offset"));
3218 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3219 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
3220 vm_ooffset_t noff
= (foff
+ PAGE_SIZE
) & ~(off_t
)PAGE_MASK
;
3221 vm_ooffset_t eoff
= noff
;
3223 if (eoff
> bp
->b_loffset
+ bp
->b_bufsize
)
3224 eoff
= bp
->b_loffset
+ bp
->b_bufsize
;
3225 vfs_page_set_valid(bp
, foff
, i
, m
);
3226 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3233 * vfs_bio_set_validclean:
3235 * Set the range within the buffer to valid and clean. The range is
3236 * relative to the beginning of the buffer, b_loffset. Note that
3237 * b_loffset itself may be offset from the beginning of the first page.
3241 vfs_bio_set_validclean(struct buf
*bp
, int base
, int size
)
3243 if (bp
->b_flags
& B_VMIO
) {
3248 * Fixup base to be relative to beginning of first page.
3249 * Set initial n to be the maximum number of bytes in the
3250 * first page that can be validated.
3253 base
+= (bp
->b_loffset
& PAGE_MASK
);
3254 n
= PAGE_SIZE
- (base
& PAGE_MASK
);
3256 for (i
= base
/ PAGE_SIZE
; size
> 0 && i
< bp
->b_xio
.xio_npages
; ++i
) {
3257 vm_page_t m
= bp
->b_xio
.xio_pages
[i
];
3262 vm_page_set_validclean(m
, base
& PAGE_MASK
, n
);
3273 * Clear a buffer. This routine essentially fakes an I/O, so we need
3274 * to clear B_ERROR and B_INVAL.
3276 * Note that while we only theoretically need to clear through b_bcount,
3277 * we go ahead and clear through b_bufsize.
3281 vfs_bio_clrbuf(struct buf
*bp
)
3285 if ((bp
->b_flags
& (B_VMIO
| B_MALLOC
)) == B_VMIO
) {
3286 bp
->b_flags
&= ~(B_INVAL
|B_ERROR
);
3287 if ((bp
->b_xio
.xio_npages
== 1) && (bp
->b_bufsize
< PAGE_SIZE
) &&
3288 (bp
->b_loffset
& PAGE_MASK
) == 0) {
3289 mask
= (1 << (bp
->b_bufsize
/ DEV_BSIZE
)) - 1;
3290 if ((bp
->b_xio
.xio_pages
[0]->valid
& mask
) == mask
) {
3294 if (((bp
->b_xio
.xio_pages
[0]->flags
& PG_ZERO
) == 0) &&
3295 ((bp
->b_xio
.xio_pages
[0]->valid
& mask
) == 0)) {
3296 bzero(bp
->b_data
, bp
->b_bufsize
);
3297 bp
->b_xio
.xio_pages
[0]->valid
|= mask
;
3302 ea
= sa
= bp
->b_data
;
3303 for(i
=0;i
<bp
->b_xio
.xio_npages
;i
++,sa
=ea
) {
3304 int j
= ((vm_offset_t
)sa
& PAGE_MASK
) / DEV_BSIZE
;
3305 ea
= (caddr_t
)trunc_page((vm_offset_t
)sa
+ PAGE_SIZE
);
3306 ea
= (caddr_t
)(vm_offset_t
)ulmin(
3307 (u_long
)(vm_offset_t
)ea
,
3308 (u_long
)(vm_offset_t
)bp
->b_data
+ bp
->b_bufsize
);
3309 mask
= ((1 << ((ea
- sa
) / DEV_BSIZE
)) - 1) << j
;
3310 if ((bp
->b_xio
.xio_pages
[i
]->valid
& mask
) == mask
)
3312 if ((bp
->b_xio
.xio_pages
[i
]->valid
& mask
) == 0) {
3313 if ((bp
->b_xio
.xio_pages
[i
]->flags
& PG_ZERO
) == 0) {
3317 for (; sa
< ea
; sa
+= DEV_BSIZE
, j
++) {
3318 if (((bp
->b_xio
.xio_pages
[i
]->flags
& PG_ZERO
) == 0) &&
3319 (bp
->b_xio
.xio_pages
[i
]->valid
& (1<<j
)) == 0)
3320 bzero(sa
, DEV_BSIZE
);
3323 bp
->b_xio
.xio_pages
[i
]->valid
|= mask
;
3324 vm_page_flag_clear(bp
->b_xio
.xio_pages
[i
], PG_ZERO
);
3333 * vm_hold_load_pages:
3335 * Load pages into the buffer's address space. The pages are
3336 * allocated from the kernel object in order to reduce interference
3337 * with the any VM paging I/O activity. The range of loaded
3338 * pages will be wired.
3340 * If a page cannot be allocated, the 'pagedaemon' is woken up to
3341 * retrieve the full range (to - from) of pages.
3345 vm_hold_load_pages(struct buf
*bp
, vm_offset_t from
, vm_offset_t to
)
3351 to
= round_page(to
);
3352 from
= round_page(from
);
3353 index
= (from
- trunc_page((vm_offset_t
)bp
->b_data
)) >> PAGE_SHIFT
;
3355 for (pg
= from
; pg
< to
; pg
+= PAGE_SIZE
, index
++) {
3360 * Note: must allocate system pages since blocking here
3361 * could intefere with paging I/O, no matter which
3364 p
= vm_page_alloc(kernel_object
,
3365 ((pg
- VM_MIN_KERNEL_ADDRESS
) >> PAGE_SHIFT
),
3366 VM_ALLOC_NORMAL
| VM_ALLOC_SYSTEM
);
3368 vm_pageout_deficit
+= (to
- from
) >> PAGE_SHIFT
;
3373 p
->valid
= VM_PAGE_BITS_ALL
;
3374 vm_page_flag_clear(p
, PG_ZERO
);
3375 pmap_kenter(pg
, VM_PAGE_TO_PHYS(p
));
3376 bp
->b_xio
.xio_pages
[index
] = p
;
3379 bp
->b_xio
.xio_npages
= index
;
3383 * vm_hold_free_pages:
3385 * Return pages associated with the buffer back to the VM system.
3387 * The range of pages underlying the buffer's address space will
3388 * be unmapped and un-wired.
3391 vm_hold_free_pages(struct buf
*bp
, vm_offset_t from
, vm_offset_t to
)
3395 int index
, newnpages
;
3397 from
= round_page(from
);
3398 to
= round_page(to
);
3399 newnpages
= index
= (from
- trunc_page((vm_offset_t
)bp
->b_data
)) >> PAGE_SHIFT
;
3401 for (pg
= from
; pg
< to
; pg
+= PAGE_SIZE
, index
++) {
3402 p
= bp
->b_xio
.xio_pages
[index
];
3403 if (p
&& (index
< bp
->b_xio
.xio_npages
)) {
3405 printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3406 bp
->b_bio2
.bio_blkno
, bp
->b_lblkno
);
3408 bp
->b_xio
.xio_pages
[index
] = NULL
;
3411 vm_page_unwire(p
, 0);
3415 bp
->b_xio
.xio_npages
= newnpages
;
3421 * Map an IO request into kernel virtual address space.
3423 * All requests are (re)mapped into kernel VA space.
3424 * Notice that we use b_bufsize for the size of the buffer
3425 * to be mapped. b_bcount might be modified by the driver.
3428 vmapbuf(struct buf
*bp
)
3430 caddr_t addr
, v
, kva
;
3436 if ((bp
->b_flags
& B_PHYS
) == 0)
3438 if (bp
->b_bufsize
< 0)
3440 for (v
= bp
->b_saveaddr
,
3441 addr
= (caddr_t
)trunc_page((vm_offset_t
)bp
->b_data
),
3443 addr
< bp
->b_data
+ bp
->b_bufsize
;
3444 addr
+= PAGE_SIZE
, v
+= PAGE_SIZE
, pidx
++) {
3446 * Do the vm_fault if needed; do the copy-on-write thing
3447 * when reading stuff off device into memory.
3450 i
= vm_fault_quick((addr
>= bp
->b_data
) ? addr
: bp
->b_data
,
3451 (bp
->b_flags
&B_READ
)?(VM_PROT_READ
|VM_PROT_WRITE
):VM_PROT_READ
);
3453 for (i
= 0; i
< pidx
; ++i
) {
3454 vm_page_unhold(bp
->b_xio
.xio_pages
[i
]);
3455 bp
->b_xio
.xio_pages
[i
] = NULL
;
3461 * WARNING! If sparc support is MFCd in the future this will
3462 * have to be changed from pmap_kextract() to pmap_extract()
3466 #error "If MFCing sparc support use pmap_extract"
3468 pa
= pmap_kextract((vm_offset_t
)addr
);
3470 printf("vmapbuf: warning, race against user address during I/O");
3473 m
= PHYS_TO_VM_PAGE(pa
);
3475 bp
->b_xio
.xio_pages
[pidx
] = m
;
3477 if (pidx
> btoc(MAXPHYS
))
3478 panic("vmapbuf: mapped more than MAXPHYS");
3479 pmap_qenter((vm_offset_t
)bp
->b_saveaddr
, bp
->b_xio
.xio_pages
, pidx
);
3481 kva
= bp
->b_saveaddr
;
3482 bp
->b_xio
.xio_npages
= pidx
;
3483 bp
->b_saveaddr
= bp
->b_data
;
3484 bp
->b_data
= kva
+ (((vm_offset_t
) bp
->b_data
) & PAGE_MASK
);
3491 * Free the io map PTEs associated with this IO operation.
3492 * We also invalidate the TLB entries and restore the original b_addr.
3495 vunmapbuf(struct buf
*bp
)
3501 if ((bp
->b_flags
& B_PHYS
) == 0)
3504 npages
= bp
->b_xio
.xio_npages
;
3505 pmap_qremove(trunc_page((vm_offset_t
)bp
->b_data
),
3507 m
= bp
->b_xio
.xio_pages
;
3508 for (pidx
= 0; pidx
< npages
; pidx
++)
3509 vm_page_unhold(*m
++);
3511 bp
->b_data
= bp
->b_saveaddr
;
3515 * print out statistics from the current status of the buffer pool
3516 * this can be toggeled by the system control option debug.syncprt
3525 int counts
[(MAXBSIZE
/ PAGE_SIZE
) + 1];
3526 static char *bname
[3] = { "LOCKED", "LRU", "AGE" };
3528 for (dp
= bufqueues
, i
= 0; dp
< &bufqueues
[3]; dp
++, i
++) {
3530 for (j
= 0; j
<= MAXBSIZE
/PAGE_SIZE
; j
++)
3533 TAILQ_FOREACH(bp
, dp
, b_freelist
) {
3534 counts
[bp
->b_bufsize
/PAGE_SIZE
]++;
3538 printf("%s: total-%d", bname
[i
], count
);
3539 for (j
= 0; j
<= MAXBSIZE
/PAGE_SIZE
; j
++)
3541 printf(", %d-%d", j
* PAGE_SIZE
, counts
[j
]);
3547 #include "opt_ddb.h"
3549 #include <ddb/ddb.h>
3551 DB_SHOW_COMMAND(buffer
, db_show_buffer
)
3554 struct buf
*bp
= (struct buf
*)addr
;
3557 db_printf("usage: show buffer <addr>\n");
3561 db_printf("b_flags = 0x%b\n", (u_int
)bp
->b_flags
, PRINT_BUF_FLAGS
);
3562 db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3563 "b_resid = %ld\n, b_data = %p, "
3564 "bio_blkno(disk) = %d, bio_blkno(phys) = %d\n",
3565 bp
->b_error
, bp
->b_bufsize
, bp
->b_bcount
, bp
->b_resid
,
3566 bp
->b_data
, bp
->b_bio2
.bio_blkno
, (bp
->b_bio2
.bio_next
? bp
->b_bio2
.bio_next
->bio_blkno
: (daddr_t
)-1));
3567 if (bp
->b_xio
.xio_npages
) {
3569 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3570 bp
->b_xio
.xio_npages
);
3571 for (i
= 0; i
< bp
->b_xio
.xio_npages
; i
++) {
3573 m
= bp
->b_xio
.xio_pages
[i
];
3574 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m
->object
,
3575 (u_long
)m
->pindex
, (u_long
)VM_PAGE_TO_PHYS(m
));
3576 if ((i
+ 1) < bp
->b_xio
.xio_npages
)