HAMMER VFS - Fix serious bug when downgrading (and later upgrading) a PFS
[dragonfly.git] / sys / opencrypto / xform.c
blob8a3de014952f335b7f65d02074d3fc2493d6fffa
1 /* $FreeBSD: src/sys/opencrypto/xform.c,v 1.10 2008/10/23 15:53:51 des Exp $ */
2 /* $OpenBSD: xform.c,v 1.16 2001/08/28 12:20:43 ben Exp $ */
3 /*-
4 * The authors of this code are John Ioannidis (ji@tla.org),
5 * Angelos D. Keromytis (kermit@csd.uch.gr) and
6 * Niels Provos (provos@physnet.uni-hamburg.de).
8 * This code was written by John Ioannidis for BSD/OS in Athens, Greece,
9 * in November 1995.
11 * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
12 * by Angelos D. Keromytis.
14 * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
15 * and Niels Provos.
17 * Additional features in 1999 by Angelos D. Keromytis.
19 * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
20 * Angelos D. Keromytis and Niels Provos.
22 * Copyright (C) 2001, Angelos D. Keromytis.
24 * Permission to use, copy, and modify this software with or without fee
25 * is hereby granted, provided that this entire notice is included in
26 * all copies of any software which is or includes a copy or
27 * modification of this software.
28 * You may use this code under the GNU public license if you so wish. Please
29 * contribute changes back to the authors under this freer than GPL license
30 * so that we may further the use of strong encryption without limitations to
31 * all.
33 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
34 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
35 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
36 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
37 * PURPOSE.
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/sysctl.h>
44 #include <sys/errno.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <machine/cpu.h>
49 #include <crypto/blowfish/blowfish.h>
50 #include <crypto/des/des.h>
51 #include <crypto/rijndael/rijndael.h>
52 #include <crypto/camellia/camellia.h>
53 #include <crypto/sha1.h>
55 #include <opencrypto/cast.h>
56 #include <opencrypto/deflate.h>
57 #include <opencrypto/rmd160.h>
58 #include <opencrypto/skipjack.h>
60 #include <sys/md5.h>
62 #include <opencrypto/cryptodev.h>
63 #include <opencrypto/xform.h>
65 static void null_encrypt(caddr_t, u_int8_t *);
66 static void null_decrypt(caddr_t, u_int8_t *);
67 static int null_setkey(u_int8_t **, u_int8_t *, int);
68 static void null_zerokey(u_int8_t **);
70 static int des1_setkey(u_int8_t **, u_int8_t *, int);
71 static int des3_setkey(u_int8_t **, u_int8_t *, int);
72 static int blf_setkey(u_int8_t **, u_int8_t *, int);
73 static int cast5_setkey(u_int8_t **, u_int8_t *, int);
74 static int skipjack_setkey(u_int8_t **, u_int8_t *, int);
75 static int rijndael128_setkey(u_int8_t **, u_int8_t *, int);
76 static int cml_setkey(u_int8_t **, u_int8_t *, int);
77 static void des1_encrypt(caddr_t, u_int8_t *);
78 static void des3_encrypt(caddr_t, u_int8_t *);
79 static void blf_encrypt(caddr_t, u_int8_t *);
80 static void cast5_encrypt(caddr_t, u_int8_t *);
81 static void skipjack_encrypt(caddr_t, u_int8_t *);
82 static void rijndael128_encrypt(caddr_t, u_int8_t *);
83 static void cml_encrypt(caddr_t, u_int8_t *);
84 static void des1_decrypt(caddr_t, u_int8_t *);
85 static void des3_decrypt(caddr_t, u_int8_t *);
86 static void blf_decrypt(caddr_t, u_int8_t *);
87 static void cast5_decrypt(caddr_t, u_int8_t *);
88 static void skipjack_decrypt(caddr_t, u_int8_t *);
89 static void rijndael128_decrypt(caddr_t, u_int8_t *);
90 static void cml_decrypt(caddr_t, u_int8_t *);
91 static void des1_zerokey(u_int8_t **);
92 static void des3_zerokey(u_int8_t **);
93 static void blf_zerokey(u_int8_t **);
94 static void cast5_zerokey(u_int8_t **);
95 static void skipjack_zerokey(u_int8_t **);
96 static void rijndael128_zerokey(u_int8_t **);
97 static void cml_zerokey(u_int8_t **);
99 static void null_init(void *);
100 static int null_update(void *, u_int8_t *, u_int16_t);
101 static void null_final(u_int8_t *, void *);
102 static int MD5Update_int(void *, u_int8_t *, u_int16_t);
103 static void SHA1Init_int(void *);
104 static int SHA1Update_int(void *, u_int8_t *, u_int16_t);
105 static void SHA1Final_int(u_int8_t *, void *);
106 static int RMD160Update_int(void *, u_int8_t *, u_int16_t);
107 static int SHA256Update_int(void *, u_int8_t *, u_int16_t);
108 static int SHA384Update_int(void *, u_int8_t *, u_int16_t);
109 static int SHA512Update_int(void *, u_int8_t *, u_int16_t);
111 static u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
112 static u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **);
114 MALLOC_DEFINE(M_XDATA, "xform", "xform data buffers");
116 /* Encryption instances */
117 struct enc_xform enc_xform_null = {
118 CRYPTO_NULL_CBC, "NULL",
119 /* NB: blocksize of 4 is to generate a properly aligned ESP header */
120 NULL_BLOCK_LEN, 0, 256, /* 2048 bits, max key */
121 null_encrypt,
122 null_decrypt,
123 null_setkey,
124 null_zerokey,
127 struct enc_xform enc_xform_des = {
128 CRYPTO_DES_CBC, "DES",
129 DES_BLOCK_LEN, 8, 8,
130 des1_encrypt,
131 des1_decrypt,
132 des1_setkey,
133 des1_zerokey,
136 struct enc_xform enc_xform_3des = {
137 CRYPTO_3DES_CBC, "3DES",
138 DES3_BLOCK_LEN, 24, 24,
139 des3_encrypt,
140 des3_decrypt,
141 des3_setkey,
142 des3_zerokey
145 struct enc_xform enc_xform_blf = {
146 CRYPTO_BLF_CBC, "Blowfish",
147 BLOWFISH_BLOCK_LEN, 5, 56 /* 448 bits, max key */,
148 blf_encrypt,
149 blf_decrypt,
150 blf_setkey,
151 blf_zerokey
154 struct enc_xform enc_xform_cast5 = {
155 CRYPTO_CAST_CBC, "CAST-128",
156 CAST128_BLOCK_LEN, 5, 16,
157 cast5_encrypt,
158 cast5_decrypt,
159 cast5_setkey,
160 cast5_zerokey
163 struct enc_xform enc_xform_skipjack = {
164 CRYPTO_SKIPJACK_CBC, "Skipjack",
165 SKIPJACK_BLOCK_LEN, 10, 10,
166 skipjack_encrypt,
167 skipjack_decrypt,
168 skipjack_setkey,
169 skipjack_zerokey
172 struct enc_xform enc_xform_rijndael128 = {
173 CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES",
174 RIJNDAEL128_BLOCK_LEN, 8, 32,
175 rijndael128_encrypt,
176 rijndael128_decrypt,
177 rijndael128_setkey,
178 rijndael128_zerokey,
181 struct enc_xform enc_xform_arc4 = {
182 CRYPTO_ARC4, "ARC4",
183 1, 1, 32,
184 NULL,
185 NULL,
186 NULL,
187 NULL,
190 struct enc_xform enc_xform_camellia = {
191 CRYPTO_CAMELLIA_CBC, "Camellia",
192 CAMELLIA_BLOCK_LEN, 8, 32,
193 cml_encrypt,
194 cml_decrypt,
195 cml_setkey,
196 cml_zerokey,
199 /* Authentication instances */
200 struct auth_hash auth_hash_null = {
201 CRYPTO_NULL_HMAC, "NULL-HMAC",
202 0, NULL_HASH_LEN, NULL_HMAC_BLOCK_LEN, sizeof(int), /* NB: context isn't used */
203 null_init, null_update, null_final
206 struct auth_hash auth_hash_hmac_md5 = {
207 CRYPTO_MD5_HMAC, "HMAC-MD5",
208 16, MD5_HASH_LEN, MD5_HMAC_BLOCK_LEN, sizeof(MD5_CTX),
209 (void (*) (void *)) MD5Init, MD5Update_int,
210 (void (*) (u_int8_t *, void *)) MD5Final
213 struct auth_hash auth_hash_hmac_sha1 = {
214 CRYPTO_SHA1_HMAC, "HMAC-SHA1",
215 20, SHA1_HASH_LEN, SHA1_HMAC_BLOCK_LEN, sizeof(SHA1_CTX),
216 SHA1Init_int, SHA1Update_int, SHA1Final_int
219 struct auth_hash auth_hash_hmac_ripemd_160 = {
220 CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160",
221 20, RIPEMD160_HASH_LEN, RIPEMD160_HMAC_BLOCK_LEN, sizeof(RMD160_CTX),
222 (void (*)(void *)) RMD160Init, RMD160Update_int,
223 (void (*)(u_int8_t *, void *)) RMD160Final
226 struct auth_hash auth_hash_key_md5 = {
227 CRYPTO_MD5_KPDK, "Keyed MD5",
228 0, MD5_KPDK_HASH_LEN, 0, sizeof(MD5_CTX),
229 (void (*)(void *)) MD5Init, MD5Update_int,
230 (void (*)(u_int8_t *, void *)) MD5Final
233 struct auth_hash auth_hash_key_sha1 = {
234 CRYPTO_SHA1_KPDK, "Keyed SHA1",
235 0, SHA1_KPDK_HASH_LEN, 0, sizeof(SHA1_CTX),
236 SHA1Init_int, SHA1Update_int, SHA1Final_int
239 struct auth_hash auth_hash_hmac_sha2_256 = {
240 CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256",
241 32, SHA2_256_HASH_LEN, SHA2_256_HMAC_BLOCK_LEN, sizeof(SHA256_CTX),
242 (void (*)(void *)) SHA256_Init, SHA256Update_int,
243 (void (*)(u_int8_t *, void *)) SHA256_Final
246 struct auth_hash auth_hash_hmac_sha2_384 = {
247 CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384",
248 48, SHA2_384_HASH_LEN, SHA2_384_HMAC_BLOCK_LEN, sizeof(SHA384_CTX),
249 (void (*)(void *)) SHA384_Init, SHA384Update_int,
250 (void (*)(u_int8_t *, void *)) SHA384_Final
253 struct auth_hash auth_hash_hmac_sha2_512 = {
254 CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512",
255 64, SHA2_512_HASH_LEN, SHA2_512_HMAC_BLOCK_LEN, sizeof(SHA512_CTX),
256 (void (*)(void *)) SHA512_Init, SHA512Update_int,
257 (void (*)(u_int8_t *, void *)) SHA512_Final
260 /* Compression instance */
261 struct comp_algo comp_algo_deflate = {
262 CRYPTO_DEFLATE_COMP, "Deflate",
263 90, deflate_compress,
264 deflate_decompress
268 * Encryption wrapper routines.
270 static void
271 null_encrypt(caddr_t key, u_int8_t *blk)
274 static void
275 null_decrypt(caddr_t key, u_int8_t *blk)
278 static int
279 null_setkey(u_int8_t **sched, u_int8_t *key, int len)
281 *sched = NULL;
282 return 0;
284 static void
285 null_zerokey(u_int8_t **sched)
287 *sched = NULL;
290 static void
291 des1_encrypt(caddr_t key, u_int8_t *blk)
293 des_cblock *cb = (des_cblock *) blk;
294 des_key_schedule *p = (des_key_schedule *) key;
296 des_ecb_encrypt(cb, cb, p[0], DES_ENCRYPT);
299 static void
300 des1_decrypt(caddr_t key, u_int8_t *blk)
302 des_cblock *cb = (des_cblock *) blk;
303 des_key_schedule *p = (des_key_schedule *) key;
305 des_ecb_encrypt(cb, cb, p[0], DES_DECRYPT);
308 static int
309 des1_setkey(u_int8_t **sched, u_int8_t *key, int len)
311 des_key_schedule *p;
312 int err;
314 p = kmalloc(sizeof (des_key_schedule),
315 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
316 if (p != NULL) {
317 des_set_key((des_cblock *) key, p[0]);
318 err = 0;
319 } else
320 err = ENOMEM;
321 *sched = (u_int8_t *) p;
322 return err;
325 static void
326 des1_zerokey(u_int8_t **sched)
328 bzero(*sched, sizeof (des_key_schedule));
329 kfree(*sched, M_CRYPTO_DATA);
330 *sched = NULL;
333 static void
334 des3_encrypt(caddr_t key, u_int8_t *blk)
336 des_cblock *cb = (des_cblock *) blk;
337 des_key_schedule *p = (des_key_schedule *) key;
339 des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_ENCRYPT);
342 static void
343 des3_decrypt(caddr_t key, u_int8_t *blk)
345 des_cblock *cb = (des_cblock *) blk;
346 des_key_schedule *p = (des_key_schedule *) key;
348 des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_DECRYPT);
351 static int
352 des3_setkey(u_int8_t **sched, u_int8_t *key, int len)
354 des_key_schedule *p;
355 int err;
357 p = kmalloc(3*sizeof (des_key_schedule),
358 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
359 if (p != NULL) {
360 des_set_key((des_cblock *)(key + 0), p[0]);
361 des_set_key((des_cblock *)(key + 8), p[1]);
362 des_set_key((des_cblock *)(key + 16), p[2]);
363 err = 0;
364 } else
365 err = ENOMEM;
366 *sched = (u_int8_t *) p;
367 return err;
370 static void
371 des3_zerokey(u_int8_t **sched)
373 bzero(*sched, 3*sizeof (des_key_schedule));
374 kfree(*sched, M_CRYPTO_DATA);
375 *sched = NULL;
378 static void
379 blf_encrypt(caddr_t key, u_int8_t *blk)
381 BF_LONG t[2];
383 memcpy(t, blk, sizeof (t));
384 t[0] = ntohl(t[0]);
385 t[1] = ntohl(t[1]);
386 /* NB: BF_encrypt expects the block in host order! */
387 BF_encrypt(t, (BF_KEY *) key);
388 t[0] = htonl(t[0]);
389 t[1] = htonl(t[1]);
390 memcpy(blk, t, sizeof (t));
393 static void
394 blf_decrypt(caddr_t key, u_int8_t *blk)
396 BF_LONG t[2];
398 memcpy(t, blk, sizeof (t));
399 t[0] = ntohl(t[0]);
400 t[1] = ntohl(t[1]);
401 /* NB: BF_decrypt expects the block in host order! */
402 BF_decrypt(t, (BF_KEY *) key);
403 t[0] = htonl(t[0]);
404 t[1] = htonl(t[1]);
405 memcpy(blk, t, sizeof (t));
408 static int
409 blf_setkey(u_int8_t **sched, u_int8_t *key, int len)
411 int err;
413 *sched = kmalloc(sizeof(BF_KEY),
414 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
415 if (*sched != NULL) {
416 BF_set_key((BF_KEY *) *sched, len, key);
417 err = 0;
418 } else
419 err = ENOMEM;
420 return err;
423 static void
424 blf_zerokey(u_int8_t **sched)
426 bzero(*sched, sizeof(BF_KEY));
427 kfree(*sched, M_CRYPTO_DATA);
428 *sched = NULL;
431 static void
432 cast5_encrypt(caddr_t key, u_int8_t *blk)
434 cast_encrypt((cast_key *) key, blk, blk);
437 static void
438 cast5_decrypt(caddr_t key, u_int8_t *blk)
440 cast_decrypt((cast_key *) key, blk, blk);
443 static int
444 cast5_setkey(u_int8_t **sched, u_int8_t *key, int len)
446 int err;
448 *sched = kmalloc(sizeof(cast_key), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
449 if (*sched != NULL) {
450 cast_setkey((cast_key *)*sched, key, len);
451 err = 0;
452 } else
453 err = ENOMEM;
454 return err;
457 static void
458 cast5_zerokey(u_int8_t **sched)
460 bzero(*sched, sizeof(cast_key));
461 kfree(*sched, M_CRYPTO_DATA);
462 *sched = NULL;
465 static void
466 skipjack_encrypt(caddr_t key, u_int8_t *blk)
468 skipjack_forwards(blk, blk, (u_int8_t **) key);
471 static void
472 skipjack_decrypt(caddr_t key, u_int8_t *blk)
474 skipjack_backwards(blk, blk, (u_int8_t **) key);
477 static int
478 skipjack_setkey(u_int8_t **sched, u_int8_t *key, int len)
480 int err;
482 /* NB: allocate all the memory that's needed at once */
483 *sched = kmalloc(10 * (sizeof(u_int8_t *) + 0x100),
484 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
485 if (*sched != NULL) {
486 u_int8_t** key_tables = (u_int8_t**) *sched;
487 u_int8_t* table = (u_int8_t*) &key_tables[10];
488 int k;
490 for (k = 0; k < 10; k++) {
491 key_tables[k] = table;
492 table += 0x100;
494 subkey_table_gen(key, (u_int8_t **) *sched);
495 err = 0;
496 } else
497 err = ENOMEM;
498 return err;
501 static void
502 skipjack_zerokey(u_int8_t **sched)
504 bzero(*sched, 10 * (sizeof(u_int8_t *) + 0x100));
505 kfree(*sched, M_CRYPTO_DATA);
506 *sched = NULL;
509 static void
510 rijndael128_encrypt(caddr_t key, u_int8_t *blk)
512 rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
515 static void
516 rijndael128_decrypt(caddr_t key, u_int8_t *blk)
518 rijndael_decrypt(((rijndael_ctx *) key), (u_char *) blk,
519 (u_char *) blk);
522 static int
523 rijndael128_setkey(u_int8_t **sched, u_int8_t *key, int len)
525 int err;
527 if (len != 16 && len != 24 && len != 32)
528 return (EINVAL);
529 *sched = kmalloc(sizeof(rijndael_ctx), M_CRYPTO_DATA,
530 M_NOWAIT|M_ZERO);
531 if (*sched != NULL) {
532 rijndael_set_key((rijndael_ctx *) *sched, (u_char *) key,
533 len * 8);
534 err = 0;
535 } else
536 err = ENOMEM;
537 return err;
540 static void
541 rijndael128_zerokey(u_int8_t **sched)
543 bzero(*sched, sizeof(rijndael_ctx));
544 kfree(*sched, M_CRYPTO_DATA);
545 *sched = NULL;
548 static void
549 cml_encrypt(caddr_t key, u_int8_t *blk)
551 camellia_encrypt((camellia_ctx *) key, (u_char *) blk, (u_char *) blk);
554 static void
555 cml_decrypt(caddr_t key, u_int8_t *blk)
557 camellia_decrypt(((camellia_ctx *) key), (u_char *) blk,
558 (u_char *) blk);
561 static int
562 cml_setkey(u_int8_t **sched, u_int8_t *key, int len)
564 int err;
566 if (len != 16 && len != 24 && len != 32)
567 return (EINVAL);
568 *sched = kmalloc(sizeof(camellia_ctx), M_CRYPTO_DATA,
569 M_NOWAIT|M_ZERO);
570 if (*sched != NULL) {
571 camellia_set_key((camellia_ctx *) *sched, (u_char *) key,
572 len * 8);
573 err = 0;
574 } else
575 err = ENOMEM;
576 return err;
579 static void
580 cml_zerokey(u_int8_t **sched)
582 bzero(*sched, sizeof(camellia_ctx));
583 kfree(*sched, M_CRYPTO_DATA);
584 *sched = NULL;
588 * And now for auth.
591 static void
592 null_init(void *ctx)
596 static int
597 null_update(void *ctx, u_int8_t *buf, u_int16_t len)
599 return 0;
602 static void
603 null_final(u_int8_t *buf, void *ctx)
605 if (buf != NULL)
606 bzero(buf, 12);
609 static int
610 RMD160Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
612 RMD160Update(ctx, buf, len);
613 return 0;
616 static int
617 MD5Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
619 MD5Update(ctx, buf, len);
620 return 0;
623 static void
624 SHA1Init_int(void *ctx)
626 SHA1Init(ctx);
629 static int
630 SHA1Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
632 SHA1Update(ctx, buf, len);
633 return 0;
636 static void
637 SHA1Final_int(u_int8_t *blk, void *ctx)
639 SHA1Final(blk, ctx);
642 static int
643 SHA256Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
645 SHA256_Update(ctx, buf, len);
646 return 0;
649 static int
650 SHA384Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
652 SHA384_Update(ctx, buf, len);
653 return 0;
656 static int
657 SHA512Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
659 SHA512_Update(ctx, buf, len);
660 return 0;
664 * And compression
667 static u_int32_t
668 deflate_compress(u_int8_t *data, u_int32_t size, u_int8_t **out)
670 return deflate_global(data, size, 0, out);
673 static u_int32_t
674 deflate_decompress(u_int8_t *data, u_int32_t size, u_int8_t **out)
676 return deflate_global(data, size, 1, out);