2 * Copyright (c) 1988, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * @(#)radix.c 8.4 (Berkeley) 11/2/94
34 * $FreeBSD: src/sys/net/radix.c,v 1.20.2.3 2002/04/28 05:40:25 suz Exp $
35 * $DragonFly: src/sys/net/radix.c,v 1.14 2006/12/22 23:44:54 swildner Exp $
39 * Routines to build and maintain radix trees for routing lookups.
41 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/domain.h>
46 #include <sys/globaldata.h>
47 #include <sys/thread.h>
51 #include <sys/syslog.h>
52 #include <net/radix.h>
55 * The arguments to the radix functions are really counted byte arrays with
56 * the length in the first byte. struct sockaddr's fit this type structurally.
58 #define clen(c) (*(u_char *)(c))
60 static int rn_walktree_from(struct radix_node_head
*h
, char *a
, char *m
,
61 walktree_f_t
*f
, void *w
);
62 static int rn_walktree(struct radix_node_head
*, walktree_f_t
*, void *);
64 static struct radix_node
65 *rn_insert(char *, struct radix_node_head
*, boolean_t
*,
66 struct radix_node
[2]),
67 *rn_newpair(char *, int, struct radix_node
[2]),
68 *rn_search(const char *, struct radix_node
*),
69 *rn_search_m(const char *, struct radix_node
*, const char *);
71 static struct radix_mask
*rn_mkfreelist
;
72 static struct radix_node_head
*mask_rnheads
[MAXCPU
];
74 static int max_keylen
;
75 static char *rn_zeros
, *rn_ones
;
77 static int rn_lexobetter(char *m
, char *n
);
78 static struct radix_mask
*
79 rn_new_radix_mask(struct radix_node
*tt
, struct radix_mask
*nextmask
);
81 rn_satisfies_leaf(char *trial
, struct radix_node
*leaf
, int skip
);
83 static __inline
struct radix_mask
*
84 MKGet(struct radix_mask
**l
)
92 R_Malloc(m
, struct radix_mask
*, sizeof *m
);
98 MKFree(struct radix_mask
**l
, struct radix_mask
*m
)
105 * The data structure for the keys is a radix tree with one way
106 * branching removed. The index rn_bit at an internal node n represents a bit
107 * position to be tested. The tree is arranged so that all descendants
108 * of a node n have keys whose bits all agree up to position rn_bit - 1.
109 * (We say the index of n is rn_bit.)
111 * There is at least one descendant which has a one bit at position rn_bit,
112 * and at least one with a zero there.
114 * A route is determined by a pair of key and mask. We require that the
115 * bit-wise logical and of the key and mask to be the key.
116 * We define the index of a route to associated with the mask to be
117 * the first bit number in the mask where 0 occurs (with bit number 0
118 * representing the highest order bit).
120 * We say a mask is normal if every bit is 0, past the index of the mask.
121 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
122 * and m is a normal mask, then the route applies to every descendant of n.
123 * If the index(m) < rn_bit, this implies the trailing last few bits of k
124 * before bit b are all 0, (and hence consequently true of every descendant
125 * of n), so the route applies to all descendants of the node as well.
127 * Similar logic shows that a non-normal mask m such that
128 * index(m) <= index(n) could potentially apply to many children of n.
129 * Thus, for each non-host route, we attach its mask to a list at an internal
130 * node as high in the tree as we can go.
132 * The present version of the code makes use of normal routes in short-
133 * circuiting an explict mask and compare operation when testing whether
134 * a key satisfies a normal route, and also in remembering the unique leaf
135 * that governs a subtree.
138 static struct radix_node
*
139 rn_search(const char *v
, struct radix_node
*head
)
141 struct radix_node
*x
;
144 while (x
->rn_bit
>= 0) {
145 if (x
->rn_bmask
& v
[x
->rn_offset
])
153 static struct radix_node
*
154 rn_search_m(const char *v
, struct radix_node
*head
, const char *m
)
156 struct radix_node
*x
;
158 for (x
= head
; x
->rn_bit
>= 0;) {
159 if ((x
->rn_bmask
& m
[x
->rn_offset
]) &&
160 (x
->rn_bmask
& v
[x
->rn_offset
]))
169 rn_refines(char *m
, char *n
)
172 int longer
= clen(n
++) - clen(m
++);
173 boolean_t masks_are_equal
= TRUE
;
175 lim2
= lim
= n
+ clen(n
);
182 masks_are_equal
= FALSE
;
187 if (masks_are_equal
&& (longer
< 0))
188 for (lim2
= m
- longer
; m
< lim2
; )
191 return (!masks_are_equal
);
195 rn_lookup(char *key
, char *mask
, struct radix_node_head
*head
)
197 struct radix_node
*x
;
198 char *netmask
= NULL
;
201 x
= rn_addmask(mask
, TRUE
, head
->rnh_treetop
->rn_offset
);
206 x
= rn_match(key
, head
);
207 if (x
!= NULL
&& netmask
!= NULL
) {
208 while (x
!= NULL
&& x
->rn_mask
!= netmask
)
215 rn_satisfies_leaf(char *trial
, struct radix_node
*leaf
, int skip
)
217 char *cp
= trial
, *cp2
= leaf
->rn_key
, *cp3
= leaf
->rn_mask
;
219 int length
= min(clen(cp
), clen(cp2
));
224 length
= min(length
, clen(cp3
));
228 for (cp
+= skip
; cp
< cplim
; cp
++, cp2
++, cp3
++)
229 if ((*cp
^ *cp2
) & *cp3
)
235 rn_match(char *key
, struct radix_node_head
*head
)
237 struct radix_node
*t
, *x
;
238 char *cp
= key
, *cp2
;
240 struct radix_node
*saved_t
, *top
= head
->rnh_treetop
;
241 int off
= top
->rn_offset
, klen
, matched_off
;
244 t
= rn_search(key
, top
);
246 * See if we match exactly as a host destination
247 * or at least learn how many bits match, for normal mask finesse.
249 * It doesn't hurt us to limit how many bytes to check
250 * to the length of the mask, since if it matches we had a genuine
251 * match and the leaf we have is the most specific one anyway;
252 * if it didn't match with a shorter length it would fail
253 * with a long one. This wins big for class B&C netmasks which
254 * are probably the most common case...
256 if (t
->rn_mask
!= NULL
)
257 klen
= clen(t
->rn_mask
);
260 cp
+= off
; cp2
= t
->rn_key
+ off
; cplim
= key
+ klen
;
261 for (; cp
< cplim
; cp
++, cp2
++)
265 * This extra grot is in case we are explicitly asked
266 * to look up the default. Ugh!
268 * Never return the root node itself, it seems to cause a
271 if (t
->rn_flags
& RNF_ROOT
)
275 test
= (*cp
^ *cp2
) & 0xff; /* find first bit that differs */
276 for (b
= 7; (test
>>= 1) > 0;)
278 matched_off
= cp
- key
;
279 b
+= matched_off
<< 3;
282 * If there is a host route in a duped-key chain, it will be first.
284 if ((saved_t
= t
)->rn_mask
== NULL
)
286 for (; t
; t
= t
->rn_dupedkey
) {
288 * Even if we don't match exactly as a host,
289 * we may match if the leaf we wound up at is
292 if (t
->rn_flags
& RNF_NORMAL
) {
293 if (rn_bit
<= t
->rn_bit
)
295 } else if (rn_satisfies_leaf(key
, t
, matched_off
))
299 /* start searching up the tree */
301 struct radix_mask
*m
;
305 * If non-contiguous masks ever become important
306 * we can restore the masking and open coding of
307 * the search and satisfaction test and put the
308 * calculation of "off" back before the "do".
312 if (m
->rm_flags
& RNF_NORMAL
) {
313 if (rn_bit
<= m
->rm_bit
)
316 off
= min(t
->rn_offset
, matched_off
);
317 x
= rn_search_m(key
, t
, m
->rm_mask
);
318 while (x
!= NULL
&& x
->rn_mask
!= m
->rm_mask
)
320 if (x
&& rn_satisfies_leaf(key
, x
, off
))
331 struct radix_node
*rn_clist
;
333 boolean_t rn_debug
= TRUE
;
336 static struct radix_node
*
337 rn_newpair(char *key
, int indexbit
, struct radix_node nodes
[2])
339 struct radix_node
*leaf
= &nodes
[0], *interior
= &nodes
[1];
341 interior
->rn_bit
= indexbit
;
342 interior
->rn_bmask
= 0x80 >> (indexbit
& 0x7);
343 interior
->rn_offset
= indexbit
>> 3;
344 interior
->rn_left
= leaf
;
345 interior
->rn_mklist
= NULL
;
349 leaf
->rn_parent
= interior
;
350 leaf
->rn_flags
= interior
->rn_flags
= RNF_ACTIVE
;
351 leaf
->rn_mklist
= NULL
;
354 leaf
->rn_info
= rn_nodenum
++;
355 interior
->rn_info
= rn_nodenum
++;
356 leaf
->rn_twin
= interior
;
357 leaf
->rn_ybro
= rn_clist
;
363 static struct radix_node
*
364 rn_insert(char *key
, struct radix_node_head
*head
, boolean_t
*dupentry
,
365 struct radix_node nodes
[2])
367 struct radix_node
*top
= head
->rnh_treetop
;
368 int head_off
= top
->rn_offset
, klen
= clen(key
);
369 struct radix_node
*t
= rn_search(key
, top
);
370 char *cp
= key
+ head_off
;
372 struct radix_node
*tt
;
375 * Find first bit at which the key and t->rn_key differ
378 char *cp2
= t
->rn_key
+ head_off
;
380 char *cplim
= key
+ klen
;
389 cmp_res
= (cp
[-1] ^ cp2
[-1]) & 0xff;
390 for (b
= (cp
- key
) << 3; cmp_res
; b
--)
394 struct radix_node
*p
, *x
= top
;
399 if (cp
[x
->rn_offset
] & x
->rn_bmask
)
403 } while (b
> (unsigned) x
->rn_bit
);
404 /* x->rn_bit < b && x->rn_bit >= 0 */
407 log(LOG_DEBUG
, "rn_insert: Going In:\n"), traverse(p
);
409 t
= rn_newpair(key
, b
, nodes
);
411 if ((cp
[p
->rn_offset
] & p
->rn_bmask
) == 0)
416 t
->rn_parent
= p
; /* frees x, p as temp vars below */
417 if ((cp
[t
->rn_offset
] & t
->rn_bmask
) == 0) {
425 log(LOG_DEBUG
, "rn_insert: Coming Out:\n"), traverse(p
);
432 rn_addmask(char *netmask
, boolean_t search
, int skip
)
434 struct radix_node
*x
, *saved_x
;
436 int b
= 0, mlen
, m0
, j
;
437 boolean_t maskduplicated
, isnormal
;
438 static int last_zeroed
= 0;
440 struct radix_node_head
*mask_rnh
= mask_rnheads
[mycpuid
];
442 if ((mlen
= clen(netmask
)) > max_keylen
)
447 return (mask_rnh
->rnh_nodes
);
448 R_Malloc(addmask_key
, char *, max_keylen
);
449 if (addmask_key
== NULL
)
452 bcopy(rn_ones
+ 1, addmask_key
+ 1, skip
- 1);
453 if ((m0
= mlen
) > skip
)
454 bcopy(netmask
+ skip
, addmask_key
+ skip
, mlen
- skip
);
456 * Trim trailing zeroes.
458 for (cp
= addmask_key
+ mlen
; (cp
> addmask_key
) && cp
[-1] == 0;)
460 mlen
= cp
- addmask_key
;
462 if (m0
>= last_zeroed
)
465 return (mask_rnh
->rnh_nodes
);
467 if (m0
< last_zeroed
)
468 bzero(addmask_key
+ m0
, last_zeroed
- m0
);
469 *addmask_key
= last_zeroed
= mlen
;
470 x
= rn_search(addmask_key
, mask_rnh
->rnh_treetop
);
471 if (bcmp(addmask_key
, x
->rn_key
, mlen
) != 0)
473 if (x
!= NULL
|| search
)
475 R_Malloc(x
, struct radix_node
*, max_keylen
+ 2 * (sizeof *x
));
476 if ((saved_x
= x
) == NULL
)
478 bzero(x
, max_keylen
+ 2 * (sizeof *x
));
479 netmask
= cp
= (char *)(x
+ 2);
480 bcopy(addmask_key
, cp
, mlen
);
481 x
= rn_insert(cp
, mask_rnh
, &maskduplicated
, x
);
482 if (maskduplicated
) {
483 log(LOG_ERR
, "rn_addmask: mask impossibly already in tree");
488 * Calculate index of mask, and check for normalcy.
491 cplim
= netmask
+ mlen
;
492 for (cp
= netmask
+ skip
; cp
< cplim
&& clen(cp
) == 0xff;)
495 static const char normal_chars
[] = {
496 0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1
499 for (j
= 0x80; (j
& *cp
) != 0; j
>>= 1)
501 if (*cp
!= normal_chars
[b
] || cp
!= (cplim
- 1))
504 b
+= (cp
- netmask
) << 3;
507 x
->rn_flags
|= RNF_NORMAL
;
513 /* XXX: arbitrary ordering for non-contiguous masks */
515 rn_lexobetter(char *mp
, char *np
)
519 if ((unsigned) *mp
> (unsigned) *np
)
520 return TRUE
;/* not really, but need to check longer one first */
522 for (lim
= mp
+ clen(mp
); mp
< lim
;)
528 static struct radix_mask
*
529 rn_new_radix_mask(struct radix_node
*tt
, struct radix_mask
*nextmask
)
531 struct radix_mask
*m
;
533 m
= MKGet(&rn_mkfreelist
);
535 log(LOG_ERR
, "Mask for route not entered\n");
539 m
->rm_bit
= tt
->rn_bit
;
540 m
->rm_flags
= tt
->rn_flags
;
541 if (tt
->rn_flags
& RNF_NORMAL
)
544 m
->rm_mask
= tt
->rn_mask
;
545 m
->rm_next
= nextmask
;
551 rn_addroute(char *key
, char *netmask
, struct radix_node_head
*head
,
552 struct radix_node treenodes
[2])
554 struct radix_node
*t
, *x
= NULL
, *tt
;
555 struct radix_node
*saved_tt
, *top
= head
->rnh_treetop
;
556 short b
= 0, b_leaf
= 0;
557 boolean_t keyduplicated
;
559 struct radix_mask
*m
, **mp
;
562 * In dealing with non-contiguous masks, there may be
563 * many different routes which have the same mask.
564 * We will find it useful to have a unique pointer to
565 * the mask to speed avoiding duplicate references at
566 * nodes and possibly save time in calculating indices.
568 if (netmask
!= NULL
) {
569 if ((x
= rn_addmask(netmask
, FALSE
, top
->rn_offset
)) == NULL
)
576 * Deal with duplicated keys: attach node to previous instance
578 saved_tt
= tt
= rn_insert(key
, head
, &keyduplicated
, treenodes
);
580 for (t
= tt
; tt
; t
= tt
, tt
= tt
->rn_dupedkey
) {
581 if (tt
->rn_mask
== netmask
)
583 if (netmask
== NULL
||
585 ((b_leaf
< tt
->rn_bit
) /* index(netmask) > node */
586 || rn_refines(netmask
, tt
->rn_mask
)
587 || rn_lexobetter(netmask
, tt
->rn_mask
))))
591 * If the mask is not duplicated, we wouldn't
592 * find it among possible duplicate key entries
593 * anyway, so the above test doesn't hurt.
595 * We sort the masks for a duplicated key the same way as
596 * in a masklist -- most specific to least specific.
597 * This may require the unfortunate nuisance of relocating
598 * the head of the list.
600 if (tt
== saved_tt
) {
601 struct radix_node
*xx
= x
;
602 /* link in at head of list */
603 (tt
= treenodes
)->rn_dupedkey
= t
;
604 tt
->rn_flags
= t
->rn_flags
;
605 tt
->rn_parent
= x
= t
->rn_parent
;
606 t
->rn_parent
= tt
; /* parent */
611 saved_tt
= tt
; x
= xx
;
613 (tt
= treenodes
)->rn_dupedkey
= t
->rn_dupedkey
;
615 tt
->rn_parent
= t
; /* parent */
616 if (tt
->rn_dupedkey
!= NULL
) /* parent */
617 tt
->rn_dupedkey
->rn_parent
= tt
; /* parent */
620 t
=tt
+1; tt
->rn_info
= rn_nodenum
++; t
->rn_info
= rn_nodenum
++;
621 tt
->rn_twin
= t
; tt
->rn_ybro
= rn_clist
; rn_clist
= tt
;
625 tt
->rn_flags
= RNF_ACTIVE
;
630 if (netmask
!= NULL
) {
631 tt
->rn_mask
= netmask
;
632 tt
->rn_bit
= x
->rn_bit
;
633 tt
->rn_flags
|= x
->rn_flags
& RNF_NORMAL
;
635 t
= saved_tt
->rn_parent
;
638 b_leaf
= -1 - t
->rn_bit
;
639 if (t
->rn_right
== saved_tt
)
643 /* Promote general routes from below */
647 if (x
->rn_mask
!= NULL
&&
648 x
->rn_bit
>= b_leaf
&&
649 x
->rn_mklist
== NULL
) {
650 *mp
= m
= rn_new_radix_mask(x
, NULL
);
656 } else if (x
->rn_mklist
!= NULL
) {
658 * Skip over masks whose index is > that of new node
660 for (mp
= &x
->rn_mklist
; (m
= *mp
); mp
= &m
->rm_next
)
661 if (m
->rm_bit
>= b_leaf
)
667 /* Add new route to highest possible ancestor's list */
668 if ((netmask
== NULL
) || (b
> t
->rn_bit
))
669 return tt
; /* can't lift at all */
674 } while (b
<= t
->rn_bit
&& x
!= top
);
676 * Search through routes associated with node to
677 * insert new route according to index.
678 * Need same criteria as when sorting dupedkeys to avoid
679 * double loop on deletion.
681 for (mp
= &x
->rn_mklist
; (m
= *mp
); mp
= &m
->rm_next
) {
682 if (m
->rm_bit
< b_leaf
)
684 if (m
->rm_bit
> b_leaf
)
686 if (m
->rm_flags
& RNF_NORMAL
) {
687 mmask
= m
->rm_leaf
->rn_mask
;
688 if (tt
->rn_flags
& RNF_NORMAL
) {
690 "Non-unique normal route, mask not entered\n");
695 if (mmask
== netmask
) {
700 if (rn_refines(netmask
, mmask
) || rn_lexobetter(netmask
, mmask
))
703 *mp
= rn_new_radix_mask(tt
, *mp
);
708 rn_delete(char *key
, char *netmask
, struct radix_node_head
*head
)
710 struct radix_node
*t
, *p
, *x
, *tt
;
711 struct radix_mask
*m
, *saved_m
, **mp
;
712 struct radix_node
*dupedkey
, *saved_tt
, *top
;
713 int b
, head_off
, klen
;
715 x
= head
->rnh_treetop
;
716 tt
= rn_search(key
, x
);
717 head_off
= x
->rn_offset
;
722 bcmp(key
+ head_off
, tt
->rn_key
+ head_off
, klen
- head_off
))
725 * Delete our route from mask lists.
727 if (netmask
!= NULL
) {
728 if ((x
= rn_addmask(netmask
, TRUE
, head_off
)) == NULL
)
731 while (tt
->rn_mask
!= netmask
)
732 if ((tt
= tt
->rn_dupedkey
) == NULL
)
735 if (tt
->rn_mask
== NULL
|| (saved_m
= m
= tt
->rn_mklist
) == NULL
)
737 if (tt
->rn_flags
& RNF_NORMAL
) {
738 if (m
->rm_leaf
!= tt
|| m
->rm_refs
> 0) {
739 log(LOG_ERR
, "rn_delete: inconsistent annotation\n");
740 return (NULL
); /* dangling ref could cause disaster */
743 if (m
->rm_mask
!= tt
->rn_mask
) {
744 log(LOG_ERR
, "rn_delete: inconsistent annotation\n");
747 if (--m
->rm_refs
>= 0)
751 t
= saved_tt
->rn_parent
;
753 goto on1
; /* Wasn't lifted at all */
757 } while (b
<= t
->rn_bit
&& x
!= top
);
758 for (mp
= &x
->rn_mklist
; (m
= *mp
); mp
= &m
->rm_next
)
761 MKFree(&rn_mkfreelist
, m
);
765 log(LOG_ERR
, "rn_delete: couldn't find our annotation\n");
766 if (tt
->rn_flags
& RNF_NORMAL
)
767 return (NULL
); /* Dangling ref to us */
771 * Eliminate us from tree
773 if (tt
->rn_flags
& RNF_ROOT
)
776 /* Get us out of the creation list */
777 for (t
= rn_clist
; t
&& t
->rn_ybro
!= tt
; t
= t
->rn_ybro
) {}
778 if (t
) t
->rn_ybro
= tt
->rn_ybro
;
781 dupedkey
= saved_tt
->rn_dupedkey
;
782 if (dupedkey
!= NULL
) {
784 * at this point, tt is the deletion target and saved_tt
785 * is the head of the dupekey chain
787 if (tt
== saved_tt
) {
788 /* remove from head of chain */
789 x
= dupedkey
; x
->rn_parent
= t
;
790 if (t
->rn_left
== tt
)
795 /* find node in front of tt on the chain */
796 for (x
= p
= saved_tt
; p
&& p
->rn_dupedkey
!= tt
;)
799 p
->rn_dupedkey
= tt
->rn_dupedkey
;
800 if (tt
->rn_dupedkey
) /* parent */
801 tt
->rn_dupedkey
->rn_parent
= p
;
803 } else log(LOG_ERR
, "rn_delete: couldn't find us\n");
806 if (t
->rn_flags
& RNF_ACTIVE
) {
820 x
->rn_left
->rn_parent
= x
;
821 x
->rn_right
->rn_parent
= x
;
825 if (t
->rn_left
== tt
)
830 if (p
->rn_right
== t
)
836 * Demote routes attached to us.
838 if (t
->rn_mklist
!= NULL
) {
839 if (x
->rn_bit
>= 0) {
840 for (mp
= &x
->rn_mklist
; (m
= *mp
);)
845 * If there are any (key, mask) pairs in a sibling
846 * duped-key chain, some subset will appear sorted
847 * in the same order attached to our mklist.
849 for (m
= t
->rn_mklist
; m
&& x
; x
= x
->rn_dupedkey
)
850 if (m
== x
->rn_mklist
) {
851 struct radix_mask
*mm
= m
->rm_next
;
854 if (--(m
->rm_refs
) < 0)
855 MKFree(&rn_mkfreelist
, m
);
860 "rn_delete: Orphaned Mask %p at %p\n",
861 (void *)m
, (void *)x
);
865 * We may be holding an active internal node in the tree.
876 t
->rn_left
->rn_parent
= t
;
877 t
->rn_right
->rn_parent
= t
;
885 tt
->rn_flags
&= ~RNF_ACTIVE
;
886 tt
[1].rn_flags
&= ~RNF_ACTIVE
;
891 * This is the same as rn_walktree() except for the parameters and the
895 rn_walktree_from(struct radix_node_head
*h
, char *xa
, char *xm
,
896 walktree_f_t
*f
, void *w
)
898 struct radix_node
*base
, *next
;
899 struct radix_node
*rn
, *last
= NULL
/* shut up gcc */;
900 boolean_t stopping
= FALSE
;
904 * rn_search_m is sort-of-open-coded here.
906 /* kprintf("about to search\n"); */
907 for (rn
= h
->rnh_treetop
; rn
->rn_bit
>= 0; ) {
909 /* kprintf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
910 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
911 if (!(rn
->rn_bmask
& xm
[rn
->rn_offset
])) {
914 if (rn
->rn_bmask
& xa
[rn
->rn_offset
]) {
920 /* kprintf("done searching\n"); */
923 * Two cases: either we stepped off the end of our mask,
924 * in which case last == rn, or we reached a leaf, in which
925 * case we want to start from the last node we looked at.
926 * Either way, last is the node we want to start from.
931 /* kprintf("rn %p, lastb %d\n", rn, lastb);*/
934 * This gets complicated because we may delete the node
935 * while applying the function f to it, so we need to calculate
936 * the successor node in advance.
938 while (rn
->rn_bit
>= 0)
942 /* kprintf("node %p (%d)\n", rn, rn->rn_bit); */
944 /* If at right child go back up, otherwise, go right */
945 while (rn
->rn_parent
->rn_right
== rn
&&
946 !(rn
->rn_flags
& RNF_ROOT
)) {
949 /* if went up beyond last, stop */
950 if (rn
->rn_bit
< lastb
) {
952 /* kprintf("up too far\n"); */
956 /* Find the next *leaf* since next node might vanish, too */
957 for (rn
= rn
->rn_parent
->rn_right
; rn
->rn_bit
>= 0;)
961 while ((rn
= base
) != NULL
) {
962 base
= rn
->rn_dupedkey
;
963 /* kprintf("leaf %p\n", rn); */
964 if (!(rn
->rn_flags
& RNF_ROOT
) && (error
= (*f
)(rn
, w
)))
969 if (rn
->rn_flags
& RNF_ROOT
) {
970 /* kprintf("root, stopping"); */
979 rn_walktree(struct radix_node_head
*h
, walktree_f_t
*f
, void *w
)
981 struct radix_node
*base
, *next
;
982 struct radix_node
*rn
= h
->rnh_treetop
;
986 * This gets complicated because we may delete the node
987 * while applying the function f to it, so we need to calculate
988 * the successor node in advance.
990 /* First time through node, go left */
991 while (rn
->rn_bit
>= 0)
995 /* If at right child go back up, otherwise, go right */
996 while (rn
->rn_parent
->rn_right
== rn
&&
997 !(rn
->rn_flags
& RNF_ROOT
))
999 /* Find the next *leaf* since next node might vanish, too */
1000 for (rn
= rn
->rn_parent
->rn_right
; rn
->rn_bit
>= 0;)
1003 /* Process leaves */
1004 while ((rn
= base
)) {
1005 base
= rn
->rn_dupedkey
;
1006 if (!(rn
->rn_flags
& RNF_ROOT
) && (error
= (*f
)(rn
, w
)))
1010 if (rn
->rn_flags
& RNF_ROOT
)
1017 rn_inithead(void **head
, int off
)
1019 struct radix_node_head
*rnh
;
1020 struct radix_node
*root
, *left
, *right
;
1022 if (*head
!= NULL
) /* already initialized */
1025 R_Malloc(rnh
, struct radix_node_head
*, sizeof *rnh
);
1028 bzero(rnh
, sizeof *rnh
);
1031 root
= rn_newpair(rn_zeros
, off
, rnh
->rnh_nodes
);
1032 right
= &rnh
->rnh_nodes
[2];
1033 root
->rn_parent
= root
;
1034 root
->rn_flags
= RNF_ROOT
| RNF_ACTIVE
;
1035 root
->rn_right
= right
;
1037 left
= root
->rn_left
;
1038 left
->rn_bit
= -1 - off
;
1039 left
->rn_flags
= RNF_ROOT
| RNF_ACTIVE
;
1042 right
->rn_key
= rn_ones
;
1044 rnh
->rnh_treetop
= root
;
1046 rnh
->rnh_addaddr
= rn_addroute
;
1047 rnh
->rnh_deladdr
= rn_delete
;
1048 rnh
->rnh_matchaddr
= rn_match
;
1049 rnh
->rnh_lookup
= rn_lookup
;
1050 rnh
->rnh_walktree
= rn_walktree
;
1051 rnh
->rnh_walktree_from
= rn_walktree_from
;
1064 SLIST_FOREACH(dom
, &domains
, dom_next
)
1065 if (dom
->dom_maxrtkey
> max_keylen
)
1066 max_keylen
= dom
->dom_maxrtkey
;
1068 if (max_keylen
== 0) {
1070 "rn_init: radix functions require max_keylen be set\n");
1073 R_Malloc(rn_zeros
, char *, 2 * max_keylen
);
1074 if (rn_zeros
== NULL
)
1076 bzero(rn_zeros
, 2 * max_keylen
);
1077 rn_ones
= cp
= rn_zeros
+ max_keylen
;
1078 cplim
= rn_ones
+ max_keylen
;
1082 for (cpu
= 0; cpu
< ncpus
; ++cpu
) {
1083 if (rn_inithead((void **)&mask_rnheads
[cpu
], 0) == 0)