HAMMER VFS - Fix serious bug when downgrading (and later upgrading) a PFS
[dragonfly.git] / sys / net / radix.c
blob5fa3ae8a4aa760e5d1d4a1bdb2a2d1cf5bee5ce4
1 /*
2 * Copyright (c) 1988, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * @(#)radix.c 8.4 (Berkeley) 11/2/94
34 * $FreeBSD: src/sys/net/radix.c,v 1.20.2.3 2002/04/28 05:40:25 suz Exp $
35 * $DragonFly: src/sys/net/radix.c,v 1.14 2006/12/22 23:44:54 swildner Exp $
39 * Routines to build and maintain radix trees for routing lookups.
41 #include <sys/param.h>
42 #ifdef _KERNEL
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/domain.h>
46 #include <sys/globaldata.h>
47 #include <sys/thread.h>
48 #else
49 #include <stdlib.h>
50 #endif
51 #include <sys/syslog.h>
52 #include <net/radix.h>
55 * The arguments to the radix functions are really counted byte arrays with
56 * the length in the first byte. struct sockaddr's fit this type structurally.
58 #define clen(c) (*(u_char *)(c))
60 static int rn_walktree_from(struct radix_node_head *h, char *a, char *m,
61 walktree_f_t *f, void *w);
62 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
64 static struct radix_node
65 *rn_insert(char *, struct radix_node_head *, boolean_t *,
66 struct radix_node [2]),
67 *rn_newpair(char *, int, struct radix_node[2]),
68 *rn_search(const char *, struct radix_node *),
69 *rn_search_m(const char *, struct radix_node *, const char *);
71 static struct radix_mask *rn_mkfreelist;
72 static struct radix_node_head *mask_rnheads[MAXCPU];
74 static int max_keylen;
75 static char *rn_zeros, *rn_ones;
77 static int rn_lexobetter(char *m, char *n);
78 static struct radix_mask *
79 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask);
80 static boolean_t
81 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip);
83 static __inline struct radix_mask *
84 MKGet(struct radix_mask **l)
86 struct radix_mask *m;
88 if (*l != NULL) {
89 m = *l;
90 *l = m->rm_next;
91 } else {
92 R_Malloc(m, struct radix_mask *, sizeof *m);
94 return m;
97 static __inline void
98 MKFree(struct radix_mask **l, struct radix_mask *m)
100 m->rm_next = *l;
101 *l = m;
105 * The data structure for the keys is a radix tree with one way
106 * branching removed. The index rn_bit at an internal node n represents a bit
107 * position to be tested. The tree is arranged so that all descendants
108 * of a node n have keys whose bits all agree up to position rn_bit - 1.
109 * (We say the index of n is rn_bit.)
111 * There is at least one descendant which has a one bit at position rn_bit,
112 * and at least one with a zero there.
114 * A route is determined by a pair of key and mask. We require that the
115 * bit-wise logical and of the key and mask to be the key.
116 * We define the index of a route to associated with the mask to be
117 * the first bit number in the mask where 0 occurs (with bit number 0
118 * representing the highest order bit).
120 * We say a mask is normal if every bit is 0, past the index of the mask.
121 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
122 * and m is a normal mask, then the route applies to every descendant of n.
123 * If the index(m) < rn_bit, this implies the trailing last few bits of k
124 * before bit b are all 0, (and hence consequently true of every descendant
125 * of n), so the route applies to all descendants of the node as well.
127 * Similar logic shows that a non-normal mask m such that
128 * index(m) <= index(n) could potentially apply to many children of n.
129 * Thus, for each non-host route, we attach its mask to a list at an internal
130 * node as high in the tree as we can go.
132 * The present version of the code makes use of normal routes in short-
133 * circuiting an explict mask and compare operation when testing whether
134 * a key satisfies a normal route, and also in remembering the unique leaf
135 * that governs a subtree.
138 static struct radix_node *
139 rn_search(const char *v, struct radix_node *head)
141 struct radix_node *x;
143 x = head;
144 while (x->rn_bit >= 0) {
145 if (x->rn_bmask & v[x->rn_offset])
146 x = x->rn_right;
147 else
148 x = x->rn_left;
150 return (x);
153 static struct radix_node *
154 rn_search_m(const char *v, struct radix_node *head, const char *m)
156 struct radix_node *x;
158 for (x = head; x->rn_bit >= 0;) {
159 if ((x->rn_bmask & m[x->rn_offset]) &&
160 (x->rn_bmask & v[x->rn_offset]))
161 x = x->rn_right;
162 else
163 x = x->rn_left;
165 return x;
168 boolean_t
169 rn_refines(char *m, char *n)
171 char *lim, *lim2;
172 int longer = clen(n++) - clen(m++);
173 boolean_t masks_are_equal = TRUE;
175 lim2 = lim = n + clen(n);
176 if (longer > 0)
177 lim -= longer;
178 while (n < lim) {
179 if (*n & ~(*m))
180 return FALSE;
181 if (*n++ != *m++)
182 masks_are_equal = FALSE;
184 while (n < lim2)
185 if (*n++)
186 return FALSE;
187 if (masks_are_equal && (longer < 0))
188 for (lim2 = m - longer; m < lim2; )
189 if (*m++)
190 return TRUE;
191 return (!masks_are_equal);
194 struct radix_node *
195 rn_lookup(char *key, char *mask, struct radix_node_head *head)
197 struct radix_node *x;
198 char *netmask = NULL;
200 if (mask != NULL) {
201 x = rn_addmask(mask, TRUE, head->rnh_treetop->rn_offset);
202 if (x == NULL)
203 return (NULL);
204 netmask = x->rn_key;
206 x = rn_match(key, head);
207 if (x != NULL && netmask != NULL) {
208 while (x != NULL && x->rn_mask != netmask)
209 x = x->rn_dupedkey;
211 return x;
214 static boolean_t
215 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
217 char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
218 char *cplim;
219 int length = min(clen(cp), clen(cp2));
221 if (cp3 == NULL)
222 cp3 = rn_ones;
223 else
224 length = min(length, clen(cp3));
225 cplim = cp + length;
226 cp3 += skip;
227 cp2 += skip;
228 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
229 if ((*cp ^ *cp2) & *cp3)
230 return FALSE;
231 return TRUE;
234 struct radix_node *
235 rn_match(char *key, struct radix_node_head *head)
237 struct radix_node *t, *x;
238 char *cp = key, *cp2;
239 char *cplim;
240 struct radix_node *saved_t, *top = head->rnh_treetop;
241 int off = top->rn_offset, klen, matched_off;
242 int test, b, rn_bit;
244 t = rn_search(key, top);
246 * See if we match exactly as a host destination
247 * or at least learn how many bits match, for normal mask finesse.
249 * It doesn't hurt us to limit how many bytes to check
250 * to the length of the mask, since if it matches we had a genuine
251 * match and the leaf we have is the most specific one anyway;
252 * if it didn't match with a shorter length it would fail
253 * with a long one. This wins big for class B&C netmasks which
254 * are probably the most common case...
256 if (t->rn_mask != NULL)
257 klen = clen(t->rn_mask);
258 else
259 klen = clen(key);
260 cp += off; cp2 = t->rn_key + off; cplim = key + klen;
261 for (; cp < cplim; cp++, cp2++)
262 if (*cp != *cp2)
263 goto on1;
265 * This extra grot is in case we are explicitly asked
266 * to look up the default. Ugh!
268 * Never return the root node itself, it seems to cause a
269 * lot of confusion.
271 if (t->rn_flags & RNF_ROOT)
272 t = t->rn_dupedkey;
273 return t;
274 on1:
275 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
276 for (b = 7; (test >>= 1) > 0;)
277 b--;
278 matched_off = cp - key;
279 b += matched_off << 3;
280 rn_bit = -1 - b;
282 * If there is a host route in a duped-key chain, it will be first.
284 if ((saved_t = t)->rn_mask == NULL)
285 t = t->rn_dupedkey;
286 for (; t; t = t->rn_dupedkey) {
288 * Even if we don't match exactly as a host,
289 * we may match if the leaf we wound up at is
290 * a route to a net.
292 if (t->rn_flags & RNF_NORMAL) {
293 if (rn_bit <= t->rn_bit)
294 return t;
295 } else if (rn_satisfies_leaf(key, t, matched_off))
296 return t;
298 t = saved_t;
299 /* start searching up the tree */
300 do {
301 struct radix_mask *m;
303 t = t->rn_parent;
305 * If non-contiguous masks ever become important
306 * we can restore the masking and open coding of
307 * the search and satisfaction test and put the
308 * calculation of "off" back before the "do".
310 m = t->rn_mklist;
311 while (m != NULL) {
312 if (m->rm_flags & RNF_NORMAL) {
313 if (rn_bit <= m->rm_bit)
314 return (m->rm_leaf);
315 } else {
316 off = min(t->rn_offset, matched_off);
317 x = rn_search_m(key, t, m->rm_mask);
318 while (x != NULL && x->rn_mask != m->rm_mask)
319 x = x->rn_dupedkey;
320 if (x && rn_satisfies_leaf(key, x, off))
321 return x;
323 m = m->rm_next;
325 } while (t != top);
326 return NULL;
329 #ifdef RN_DEBUG
330 int rn_nodenum;
331 struct radix_node *rn_clist;
332 int rn_saveinfo;
333 boolean_t rn_debug = TRUE;
334 #endif
336 static struct radix_node *
337 rn_newpair(char *key, int indexbit, struct radix_node nodes[2])
339 struct radix_node *leaf = &nodes[0], *interior = &nodes[1];
341 interior->rn_bit = indexbit;
342 interior->rn_bmask = 0x80 >> (indexbit & 0x7);
343 interior->rn_offset = indexbit >> 3;
344 interior->rn_left = leaf;
345 interior->rn_mklist = NULL;
347 leaf->rn_bit = -1;
348 leaf->rn_key = key;
349 leaf->rn_parent = interior;
350 leaf->rn_flags = interior->rn_flags = RNF_ACTIVE;
351 leaf->rn_mklist = NULL;
353 #ifdef RN_DEBUG
354 leaf->rn_info = rn_nodenum++;
355 interior->rn_info = rn_nodenum++;
356 leaf->rn_twin = interior;
357 leaf->rn_ybro = rn_clist;
358 rn_clist = leaf;
359 #endif
360 return interior;
363 static struct radix_node *
364 rn_insert(char *key, struct radix_node_head *head, boolean_t *dupentry,
365 struct radix_node nodes[2])
367 struct radix_node *top = head->rnh_treetop;
368 int head_off = top->rn_offset, klen = clen(key);
369 struct radix_node *t = rn_search(key, top);
370 char *cp = key + head_off;
371 int b;
372 struct radix_node *tt;
375 * Find first bit at which the key and t->rn_key differ
378 char *cp2 = t->rn_key + head_off;
379 int cmp_res;
380 char *cplim = key + klen;
382 while (cp < cplim)
383 if (*cp2++ != *cp++)
384 goto on1;
385 *dupentry = TRUE;
386 return t;
387 on1:
388 *dupentry = FALSE;
389 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
390 for (b = (cp - key) << 3; cmp_res; b--)
391 cmp_res >>= 1;
394 struct radix_node *p, *x = top;
396 cp = key;
397 do {
398 p = x;
399 if (cp[x->rn_offset] & x->rn_bmask)
400 x = x->rn_right;
401 else
402 x = x->rn_left;
403 } while (b > (unsigned) x->rn_bit);
404 /* x->rn_bit < b && x->rn_bit >= 0 */
405 #ifdef RN_DEBUG
406 if (rn_debug)
407 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
408 #endif
409 t = rn_newpair(key, b, nodes);
410 tt = t->rn_left;
411 if ((cp[p->rn_offset] & p->rn_bmask) == 0)
412 p->rn_left = t;
413 else
414 p->rn_right = t;
415 x->rn_parent = t;
416 t->rn_parent = p; /* frees x, p as temp vars below */
417 if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
418 t->rn_right = x;
419 } else {
420 t->rn_right = tt;
421 t->rn_left = x;
423 #ifdef RN_DEBUG
424 if (rn_debug)
425 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
426 #endif
428 return (tt);
431 struct radix_node *
432 rn_addmask(char *netmask, boolean_t search, int skip)
434 struct radix_node *x, *saved_x;
435 char *cp, *cplim;
436 int b = 0, mlen, m0, j;
437 boolean_t maskduplicated, isnormal;
438 static int last_zeroed = 0;
439 char *addmask_key;
440 struct radix_node_head *mask_rnh = mask_rnheads[mycpuid];
442 if ((mlen = clen(netmask)) > max_keylen)
443 mlen = max_keylen;
444 if (skip == 0)
445 skip = 1;
446 if (mlen <= skip)
447 return (mask_rnh->rnh_nodes);
448 R_Malloc(addmask_key, char *, max_keylen);
449 if (addmask_key == NULL)
450 return NULL;
451 if (skip > 1)
452 bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
453 if ((m0 = mlen) > skip)
454 bcopy(netmask + skip, addmask_key + skip, mlen - skip);
456 * Trim trailing zeroes.
458 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
459 cp--;
460 mlen = cp - addmask_key;
461 if (mlen <= skip) {
462 if (m0 >= last_zeroed)
463 last_zeroed = mlen;
464 Free(addmask_key);
465 return (mask_rnh->rnh_nodes);
467 if (m0 < last_zeroed)
468 bzero(addmask_key + m0, last_zeroed - m0);
469 *addmask_key = last_zeroed = mlen;
470 x = rn_search(addmask_key, mask_rnh->rnh_treetop);
471 if (bcmp(addmask_key, x->rn_key, mlen) != 0)
472 x = NULL;
473 if (x != NULL || search)
474 goto out;
475 R_Malloc(x, struct radix_node *, max_keylen + 2 * (sizeof *x));
476 if ((saved_x = x) == NULL)
477 goto out;
478 bzero(x, max_keylen + 2 * (sizeof *x));
479 netmask = cp = (char *)(x + 2);
480 bcopy(addmask_key, cp, mlen);
481 x = rn_insert(cp, mask_rnh, &maskduplicated, x);
482 if (maskduplicated) {
483 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
484 Free(saved_x);
485 goto out;
488 * Calculate index of mask, and check for normalcy.
490 isnormal = TRUE;
491 cplim = netmask + mlen;
492 for (cp = netmask + skip; cp < cplim && clen(cp) == 0xff;)
493 cp++;
494 if (cp != cplim) {
495 static const char normal_chars[] = {
496 0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1
499 for (j = 0x80; (j & *cp) != 0; j >>= 1)
500 b++;
501 if (*cp != normal_chars[b] || cp != (cplim - 1))
502 isnormal = FALSE;
504 b += (cp - netmask) << 3;
505 x->rn_bit = -1 - b;
506 if (isnormal)
507 x->rn_flags |= RNF_NORMAL;
508 out:
509 Free(addmask_key);
510 return (x);
513 /* XXX: arbitrary ordering for non-contiguous masks */
514 static boolean_t
515 rn_lexobetter(char *mp, char *np)
517 char *lim;
519 if ((unsigned) *mp > (unsigned) *np)
520 return TRUE;/* not really, but need to check longer one first */
521 if (*mp == *np)
522 for (lim = mp + clen(mp); mp < lim;)
523 if (*mp++ > *np++)
524 return TRUE;
525 return FALSE;
528 static struct radix_mask *
529 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask)
531 struct radix_mask *m;
533 m = MKGet(&rn_mkfreelist);
534 if (m == NULL) {
535 log(LOG_ERR, "Mask for route not entered\n");
536 return (NULL);
538 bzero(m, sizeof *m);
539 m->rm_bit = tt->rn_bit;
540 m->rm_flags = tt->rn_flags;
541 if (tt->rn_flags & RNF_NORMAL)
542 m->rm_leaf = tt;
543 else
544 m->rm_mask = tt->rn_mask;
545 m->rm_next = nextmask;
546 tt->rn_mklist = m;
547 return m;
550 struct radix_node *
551 rn_addroute(char *key, char *netmask, struct radix_node_head *head,
552 struct radix_node treenodes[2])
554 struct radix_node *t, *x = NULL, *tt;
555 struct radix_node *saved_tt, *top = head->rnh_treetop;
556 short b = 0, b_leaf = 0;
557 boolean_t keyduplicated;
558 char *mmask;
559 struct radix_mask *m, **mp;
562 * In dealing with non-contiguous masks, there may be
563 * many different routes which have the same mask.
564 * We will find it useful to have a unique pointer to
565 * the mask to speed avoiding duplicate references at
566 * nodes and possibly save time in calculating indices.
568 if (netmask != NULL) {
569 if ((x = rn_addmask(netmask, FALSE, top->rn_offset)) == NULL)
570 return (NULL);
571 b_leaf = x->rn_bit;
572 b = -1 - x->rn_bit;
573 netmask = x->rn_key;
576 * Deal with duplicated keys: attach node to previous instance
578 saved_tt = tt = rn_insert(key, head, &keyduplicated, treenodes);
579 if (keyduplicated) {
580 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
581 if (tt->rn_mask == netmask)
582 return (NULL);
583 if (netmask == NULL ||
584 (tt->rn_mask &&
585 ((b_leaf < tt->rn_bit) /* index(netmask) > node */
586 || rn_refines(netmask, tt->rn_mask)
587 || rn_lexobetter(netmask, tt->rn_mask))))
588 break;
591 * If the mask is not duplicated, we wouldn't
592 * find it among possible duplicate key entries
593 * anyway, so the above test doesn't hurt.
595 * We sort the masks for a duplicated key the same way as
596 * in a masklist -- most specific to least specific.
597 * This may require the unfortunate nuisance of relocating
598 * the head of the list.
600 if (tt == saved_tt) {
601 struct radix_node *xx = x;
602 /* link in at head of list */
603 (tt = treenodes)->rn_dupedkey = t;
604 tt->rn_flags = t->rn_flags;
605 tt->rn_parent = x = t->rn_parent;
606 t->rn_parent = tt; /* parent */
607 if (x->rn_left == t)
608 x->rn_left = tt;
609 else
610 x->rn_right = tt;
611 saved_tt = tt; x = xx;
612 } else {
613 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
614 t->rn_dupedkey = tt;
615 tt->rn_parent = t; /* parent */
616 if (tt->rn_dupedkey != NULL) /* parent */
617 tt->rn_dupedkey->rn_parent = tt; /* parent */
619 #ifdef RN_DEBUG
620 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
621 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
622 #endif
623 tt->rn_key = key;
624 tt->rn_bit = -1;
625 tt->rn_flags = RNF_ACTIVE;
628 * Put mask in tree.
630 if (netmask != NULL) {
631 tt->rn_mask = netmask;
632 tt->rn_bit = x->rn_bit;
633 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
635 t = saved_tt->rn_parent;
636 if (keyduplicated)
637 goto on2;
638 b_leaf = -1 - t->rn_bit;
639 if (t->rn_right == saved_tt)
640 x = t->rn_left;
641 else
642 x = t->rn_right;
643 /* Promote general routes from below */
644 if (x->rn_bit < 0) {
645 mp = &t->rn_mklist;
646 while (x != NULL) {
647 if (x->rn_mask != NULL &&
648 x->rn_bit >= b_leaf &&
649 x->rn_mklist == NULL) {
650 *mp = m = rn_new_radix_mask(x, NULL);
651 if (m != NULL)
652 mp = &m->rm_next;
654 x = x->rn_dupedkey;
656 } else if (x->rn_mklist != NULL) {
658 * Skip over masks whose index is > that of new node
660 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
661 if (m->rm_bit >= b_leaf)
662 break;
663 t->rn_mklist = m;
664 *mp = NULL;
666 on2:
667 /* Add new route to highest possible ancestor's list */
668 if ((netmask == NULL) || (b > t->rn_bit ))
669 return tt; /* can't lift at all */
670 b_leaf = tt->rn_bit;
671 do {
672 x = t;
673 t = t->rn_parent;
674 } while (b <= t->rn_bit && x != top);
676 * Search through routes associated with node to
677 * insert new route according to index.
678 * Need same criteria as when sorting dupedkeys to avoid
679 * double loop on deletion.
681 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next) {
682 if (m->rm_bit < b_leaf)
683 continue;
684 if (m->rm_bit > b_leaf)
685 break;
686 if (m->rm_flags & RNF_NORMAL) {
687 mmask = m->rm_leaf->rn_mask;
688 if (tt->rn_flags & RNF_NORMAL) {
689 log(LOG_ERR,
690 "Non-unique normal route, mask not entered\n");
691 return tt;
693 } else
694 mmask = m->rm_mask;
695 if (mmask == netmask) {
696 m->rm_refs++;
697 tt->rn_mklist = m;
698 return tt;
700 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
701 break;
703 *mp = rn_new_radix_mask(tt, *mp);
704 return tt;
707 struct radix_node *
708 rn_delete(char *key, char *netmask, struct radix_node_head *head)
710 struct radix_node *t, *p, *x, *tt;
711 struct radix_mask *m, *saved_m, **mp;
712 struct radix_node *dupedkey, *saved_tt, *top;
713 int b, head_off, klen;
715 x = head->rnh_treetop;
716 tt = rn_search(key, x);
717 head_off = x->rn_offset;
718 klen = clen(key);
719 saved_tt = tt;
720 top = x;
721 if (tt == NULL ||
722 bcmp(key + head_off, tt->rn_key + head_off, klen - head_off))
723 return (NULL);
725 * Delete our route from mask lists.
727 if (netmask != NULL) {
728 if ((x = rn_addmask(netmask, TRUE, head_off)) == NULL)
729 return (NULL);
730 netmask = x->rn_key;
731 while (tt->rn_mask != netmask)
732 if ((tt = tt->rn_dupedkey) == NULL)
733 return (NULL);
735 if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
736 goto on1;
737 if (tt->rn_flags & RNF_NORMAL) {
738 if (m->rm_leaf != tt || m->rm_refs > 0) {
739 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
740 return (NULL); /* dangling ref could cause disaster */
742 } else {
743 if (m->rm_mask != tt->rn_mask) {
744 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
745 goto on1;
747 if (--m->rm_refs >= 0)
748 goto on1;
750 b = -1 - tt->rn_bit;
751 t = saved_tt->rn_parent;
752 if (b > t->rn_bit)
753 goto on1; /* Wasn't lifted at all */
754 do {
755 x = t;
756 t = t->rn_parent;
757 } while (b <= t->rn_bit && x != top);
758 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
759 if (m == saved_m) {
760 *mp = m->rm_next;
761 MKFree(&rn_mkfreelist, m);
762 break;
764 if (m == NULL) {
765 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
766 if (tt->rn_flags & RNF_NORMAL)
767 return (NULL); /* Dangling ref to us */
769 on1:
771 * Eliminate us from tree
773 if (tt->rn_flags & RNF_ROOT)
774 return (NULL);
775 #ifdef RN_DEBUG
776 /* Get us out of the creation list */
777 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
778 if (t) t->rn_ybro = tt->rn_ybro;
779 #endif
780 t = tt->rn_parent;
781 dupedkey = saved_tt->rn_dupedkey;
782 if (dupedkey != NULL) {
784 * at this point, tt is the deletion target and saved_tt
785 * is the head of the dupekey chain
787 if (tt == saved_tt) {
788 /* remove from head of chain */
789 x = dupedkey; x->rn_parent = t;
790 if (t->rn_left == tt)
791 t->rn_left = x;
792 else
793 t->rn_right = x;
794 } else {
795 /* find node in front of tt on the chain */
796 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
797 p = p->rn_dupedkey;
798 if (p) {
799 p->rn_dupedkey = tt->rn_dupedkey;
800 if (tt->rn_dupedkey) /* parent */
801 tt->rn_dupedkey->rn_parent = p;
802 /* parent */
803 } else log(LOG_ERR, "rn_delete: couldn't find us\n");
805 t = tt + 1;
806 if (t->rn_flags & RNF_ACTIVE) {
807 #ifndef RN_DEBUG
808 *++x = *t;
809 p = t->rn_parent;
810 #else
811 b = t->rn_info;
812 *++x = *t;
813 t->rn_info = b;
814 p = t->rn_parent;
815 #endif
816 if (p->rn_left == t)
817 p->rn_left = x;
818 else
819 p->rn_right = x;
820 x->rn_left->rn_parent = x;
821 x->rn_right->rn_parent = x;
823 goto out;
825 if (t->rn_left == tt)
826 x = t->rn_right;
827 else
828 x = t->rn_left;
829 p = t->rn_parent;
830 if (p->rn_right == t)
831 p->rn_right = x;
832 else
833 p->rn_left = x;
834 x->rn_parent = p;
836 * Demote routes attached to us.
838 if (t->rn_mklist != NULL) {
839 if (x->rn_bit >= 0) {
840 for (mp = &x->rn_mklist; (m = *mp);)
841 mp = &m->rm_next;
842 *mp = t->rn_mklist;
843 } else {
845 * If there are any (key, mask) pairs in a sibling
846 * duped-key chain, some subset will appear sorted
847 * in the same order attached to our mklist.
849 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
850 if (m == x->rn_mklist) {
851 struct radix_mask *mm = m->rm_next;
853 x->rn_mklist = NULL;
854 if (--(m->rm_refs) < 0)
855 MKFree(&rn_mkfreelist, m);
856 m = mm;
858 if (m)
859 log(LOG_ERR,
860 "rn_delete: Orphaned Mask %p at %p\n",
861 (void *)m, (void *)x);
865 * We may be holding an active internal node in the tree.
867 x = tt + 1;
868 if (t != x) {
869 #ifndef RN_DEBUG
870 *t = *x;
871 #else
872 b = t->rn_info;
873 *t = *x;
874 t->rn_info = b;
875 #endif
876 t->rn_left->rn_parent = t;
877 t->rn_right->rn_parent = t;
878 p = x->rn_parent;
879 if (p->rn_left == x)
880 p->rn_left = t;
881 else
882 p->rn_right = t;
884 out:
885 tt->rn_flags &= ~RNF_ACTIVE;
886 tt[1].rn_flags &= ~RNF_ACTIVE;
887 return (tt);
891 * This is the same as rn_walktree() except for the parameters and the
892 * exit.
894 static int
895 rn_walktree_from(struct radix_node_head *h, char *xa, char *xm,
896 walktree_f_t *f, void *w)
898 struct radix_node *base, *next;
899 struct radix_node *rn, *last = NULL /* shut up gcc */;
900 boolean_t stopping = FALSE;
901 int lastb, error;
904 * rn_search_m is sort-of-open-coded here.
906 /* kprintf("about to search\n"); */
907 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
908 last = rn;
909 /* kprintf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
910 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
911 if (!(rn->rn_bmask & xm[rn->rn_offset])) {
912 break;
914 if (rn->rn_bmask & xa[rn->rn_offset]) {
915 rn = rn->rn_right;
916 } else {
917 rn = rn->rn_left;
920 /* kprintf("done searching\n"); */
923 * Two cases: either we stepped off the end of our mask,
924 * in which case last == rn, or we reached a leaf, in which
925 * case we want to start from the last node we looked at.
926 * Either way, last is the node we want to start from.
928 rn = last;
929 lastb = rn->rn_bit;
931 /* kprintf("rn %p, lastb %d\n", rn, lastb);*/
934 * This gets complicated because we may delete the node
935 * while applying the function f to it, so we need to calculate
936 * the successor node in advance.
938 while (rn->rn_bit >= 0)
939 rn = rn->rn_left;
941 while (!stopping) {
942 /* kprintf("node %p (%d)\n", rn, rn->rn_bit); */
943 base = rn;
944 /* If at right child go back up, otherwise, go right */
945 while (rn->rn_parent->rn_right == rn &&
946 !(rn->rn_flags & RNF_ROOT)) {
947 rn = rn->rn_parent;
949 /* if went up beyond last, stop */
950 if (rn->rn_bit < lastb) {
951 stopping = TRUE;
952 /* kprintf("up too far\n"); */
956 /* Find the next *leaf* since next node might vanish, too */
957 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
958 rn = rn->rn_left;
959 next = rn;
960 /* Process leaves */
961 while ((rn = base) != NULL) {
962 base = rn->rn_dupedkey;
963 /* kprintf("leaf %p\n", rn); */
964 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
965 return (error);
967 rn = next;
969 if (rn->rn_flags & RNF_ROOT) {
970 /* kprintf("root, stopping"); */
971 stopping = TRUE;
975 return 0;
978 static int
979 rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
981 struct radix_node *base, *next;
982 struct radix_node *rn = h->rnh_treetop;
983 int error;
986 * This gets complicated because we may delete the node
987 * while applying the function f to it, so we need to calculate
988 * the successor node in advance.
990 /* First time through node, go left */
991 while (rn->rn_bit >= 0)
992 rn = rn->rn_left;
993 for (;;) {
994 base = rn;
995 /* If at right child go back up, otherwise, go right */
996 while (rn->rn_parent->rn_right == rn &&
997 !(rn->rn_flags & RNF_ROOT))
998 rn = rn->rn_parent;
999 /* Find the next *leaf* since next node might vanish, too */
1000 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1001 rn = rn->rn_left;
1002 next = rn;
1003 /* Process leaves */
1004 while ((rn = base)) {
1005 base = rn->rn_dupedkey;
1006 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
1007 return (error);
1009 rn = next;
1010 if (rn->rn_flags & RNF_ROOT)
1011 return (0);
1013 /* NOTREACHED */
1017 rn_inithead(void **head, int off)
1019 struct radix_node_head *rnh;
1020 struct radix_node *root, *left, *right;
1022 if (*head != NULL) /* already initialized */
1023 return (1);
1025 R_Malloc(rnh, struct radix_node_head *, sizeof *rnh);
1026 if (rnh == NULL)
1027 return (0);
1028 bzero(rnh, sizeof *rnh);
1029 *head = rnh;
1031 root = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1032 right = &rnh->rnh_nodes[2];
1033 root->rn_parent = root;
1034 root->rn_flags = RNF_ROOT | RNF_ACTIVE;
1035 root->rn_right = right;
1037 left = root->rn_left;
1038 left->rn_bit = -1 - off;
1039 left->rn_flags = RNF_ROOT | RNF_ACTIVE;
1041 *right = *left;
1042 right->rn_key = rn_ones;
1044 rnh->rnh_treetop = root;
1046 rnh->rnh_addaddr = rn_addroute;
1047 rnh->rnh_deladdr = rn_delete;
1048 rnh->rnh_matchaddr = rn_match;
1049 rnh->rnh_lookup = rn_lookup;
1050 rnh->rnh_walktree = rn_walktree;
1051 rnh->rnh_walktree_from = rn_walktree_from;
1053 return (1);
1056 void
1057 rn_init(void)
1059 char *cp, *cplim;
1060 int cpu;
1061 #ifdef _KERNEL
1062 struct domain *dom;
1064 SLIST_FOREACH(dom, &domains, dom_next)
1065 if (dom->dom_maxrtkey > max_keylen)
1066 max_keylen = dom->dom_maxrtkey;
1067 #endif
1068 if (max_keylen == 0) {
1069 log(LOG_ERR,
1070 "rn_init: radix functions require max_keylen be set\n");
1071 return;
1073 R_Malloc(rn_zeros, char *, 2 * max_keylen);
1074 if (rn_zeros == NULL)
1075 panic("rn_init");
1076 bzero(rn_zeros, 2 * max_keylen);
1077 rn_ones = cp = rn_zeros + max_keylen;
1078 cplim = rn_ones + max_keylen;
1079 while (cp < cplim)
1080 *cp++ = -1;
1082 for (cpu = 0; cpu < ncpus; ++cpu) {
1083 if (rn_inithead((void **)&mask_rnheads[cpu], 0) == 0)
1084 panic("rn_init 2");