kill db_print_backtrace()
[dragonfly.git] / sys / platform / pc32 / i386 / pmap.c
blob11d8f3b4dd49ca58af05cc517006135bf803c543
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
41 * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
42 * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
43 * $DragonFly: src/sys/platform/pc32/i386/pmap.c,v 1.87 2008/08/25 17:01:38 dillon Exp $
47 * Manages physical address maps.
49 * In addition to hardware address maps, this
50 * module is called upon to provide software-use-only
51 * maps which may or may not be stored in the same
52 * form as hardware maps. These pseudo-maps are
53 * used to store intermediate results from copy
54 * operations to and from address spaces.
56 * Since the information managed by this module is
57 * also stored by the logical address mapping module,
58 * this module may throw away valid virtual-to-physical
59 * mappings at almost any time. However, invalidations
60 * of virtual-to-physical mappings must be done as
61 * requested.
63 * In order to cope with hardware architectures which
64 * make virtual-to-physical map invalidates expensive,
65 * this module may delay invalidate or reduced protection
66 * operations until such time as they are actually
67 * necessary. This module is given full information as
68 * to which processors are currently using which maps,
69 * and to when physical maps must be made correct.
72 #include "opt_disable_pse.h"
73 #include "opt_pmap.h"
74 #include "opt_msgbuf.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/msgbuf.h>
81 #include <sys/vmmeter.h>
82 #include <sys/mman.h>
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <sys/sysctl.h>
87 #include <sys/lock.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_zone.h>
97 #include <sys/user.h>
98 #include <sys/thread2.h>
99 #include <sys/sysref2.h>
101 #include <machine/cputypes.h>
102 #include <machine/md_var.h>
103 #include <machine/specialreg.h>
104 #include <machine/smp.h>
105 #include <machine_base/apic/apicreg.h>
106 #include <machine/globaldata.h>
107 #include <machine/pmap.h>
108 #include <machine/pmap_inval.h>
110 #define PMAP_KEEP_PDIRS
111 #ifndef PMAP_SHPGPERPROC
112 #define PMAP_SHPGPERPROC 200
113 #endif
115 #if defined(DIAGNOSTIC)
116 #define PMAP_DIAGNOSTIC
117 #endif
119 #define MINPV 2048
121 #if !defined(PMAP_DIAGNOSTIC)
122 #define PMAP_INLINE __inline
123 #else
124 #define PMAP_INLINE
125 #endif
128 * Get PDEs and PTEs for user/kernel address space
130 #define pmap_pde(m, v) (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
131 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
133 #define pmap_pde_v(pte) ((*(int *)pte & PG_V) != 0)
134 #define pmap_pte_w(pte) ((*(int *)pte & PG_W) != 0)
135 #define pmap_pte_m(pte) ((*(int *)pte & PG_M) != 0)
136 #define pmap_pte_u(pte) ((*(int *)pte & PG_A) != 0)
137 #define pmap_pte_v(pte) ((*(int *)pte & PG_V) != 0)
141 * Given a map and a machine independent protection code,
142 * convert to a vax protection code.
144 #define pte_prot(m, p) \
145 (protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
146 static int protection_codes[8];
148 struct pmap kernel_pmap;
149 static TAILQ_HEAD(,pmap) pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
151 vm_paddr_t avail_start; /* PA of first available physical page */
152 vm_paddr_t avail_end; /* PA of last available physical page */
153 vm_offset_t virtual_start; /* VA of first avail page (after kernel bss) */
154 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
155 vm_offset_t KvaStart; /* VA start of KVA space */
156 vm_offset_t KvaEnd; /* VA end of KVA space (non-inclusive) */
157 vm_offset_t KvaSize; /* max size of kernel virtual address space */
158 static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
159 static int pgeflag; /* PG_G or-in */
160 static int pseflag; /* PG_PS or-in */
162 static vm_object_t kptobj;
164 static int nkpt;
165 vm_offset_t kernel_vm_end;
168 * Data for the pv entry allocation mechanism
170 static vm_zone_t pvzone;
171 static struct vm_zone pvzone_store;
172 static struct vm_object pvzone_obj;
173 static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
174 static int pmap_pagedaemon_waken = 0;
175 static struct pv_entry *pvinit;
178 * All those kernel PT submaps that BSD is so fond of
180 pt_entry_t *CMAP1 = 0, *ptmmap;
181 caddr_t CADDR1 = 0, ptvmmap = 0;
182 static pt_entry_t *msgbufmap;
183 struct msgbuf *msgbufp=0;
186 * Crashdump maps.
188 static pt_entry_t *pt_crashdumpmap;
189 static caddr_t crashdumpmap;
191 extern pt_entry_t *SMPpt;
193 static PMAP_INLINE void free_pv_entry (pv_entry_t pv);
194 static unsigned * get_ptbase (pmap_t pmap);
195 static pv_entry_t get_pv_entry (void);
196 static void i386_protection_init (void);
197 static __inline void pmap_clearbit (vm_page_t m, int bit);
199 static void pmap_remove_all (vm_page_t m);
200 static void pmap_enter_quick (pmap_t pmap, vm_offset_t va, vm_page_t m);
201 static int pmap_remove_pte (struct pmap *pmap, unsigned *ptq,
202 vm_offset_t sva, pmap_inval_info_t info);
203 static void pmap_remove_page (struct pmap *pmap,
204 vm_offset_t va, pmap_inval_info_t info);
205 static int pmap_remove_entry (struct pmap *pmap, vm_page_t m,
206 vm_offset_t va, pmap_inval_info_t info);
207 static boolean_t pmap_testbit (vm_page_t m, int bit);
208 static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
209 vm_page_t mpte, vm_page_t m);
211 static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);
213 static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
214 static vm_page_t _pmap_allocpte (pmap_t pmap, unsigned ptepindex);
215 static unsigned * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
216 static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
217 static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t, pmap_inval_info_t);
218 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
220 static unsigned pdir4mb;
223 * Move the kernel virtual free pointer to the next
224 * 4MB. This is used to help improve performance
225 * by using a large (4MB) page for much of the kernel
226 * (.text, .data, .bss)
228 static vm_offset_t
229 pmap_kmem_choose(vm_offset_t addr)
231 vm_offset_t newaddr = addr;
232 #ifndef DISABLE_PSE
233 if (cpu_feature & CPUID_PSE) {
234 newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
236 #endif
237 return newaddr;
241 * pmap_pte:
243 * Extract the page table entry associated with the given map/virtual
244 * pair.
246 * This function may NOT be called from an interrupt.
248 PMAP_INLINE unsigned *
249 pmap_pte(pmap_t pmap, vm_offset_t va)
251 unsigned *pdeaddr;
253 if (pmap) {
254 pdeaddr = (unsigned *) pmap_pde(pmap, va);
255 if (*pdeaddr & PG_PS)
256 return pdeaddr;
257 if (*pdeaddr) {
258 return get_ptbase(pmap) + i386_btop(va);
261 return (0);
265 * pmap_pte_quick:
267 * Super fast pmap_pte routine best used when scanning the pv lists.
268 * This eliminates many course-grained invltlb calls. Note that many of
269 * the pv list scans are across different pmaps and it is very wasteful
270 * to do an entire invltlb when checking a single mapping.
272 * Should only be called while in a critical section.
274 static unsigned *
275 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
277 struct mdglobaldata *gd = mdcpu;
278 unsigned pde, newpf;
280 if ((pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) != 0) {
281 unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
282 unsigned index = i386_btop(va);
283 /* are we current address space or kernel? */
284 if ((pmap == &kernel_pmap) ||
285 (frame == (((unsigned) PTDpde) & PG_FRAME))) {
286 return (unsigned *) PTmap + index;
288 newpf = pde & PG_FRAME;
289 if ( ((* (unsigned *) gd->gd_PMAP1) & PG_FRAME) != newpf) {
290 * (unsigned *) gd->gd_PMAP1 = newpf | PG_RW | PG_V;
291 cpu_invlpg(gd->gd_PADDR1);
293 return gd->gd_PADDR1 + ((unsigned) index & (NPTEPG - 1));
295 return (0);
300 * Bootstrap the system enough to run with virtual memory.
302 * On the i386 this is called after mapping has already been enabled
303 * and just syncs the pmap module with what has already been done.
304 * [We can't call it easily with mapping off since the kernel is not
305 * mapped with PA == VA, hence we would have to relocate every address
306 * from the linked base (virtual) address "KERNBASE" to the actual
307 * (physical) address starting relative to 0]
309 void
310 pmap_bootstrap(vm_paddr_t firstaddr, vm_paddr_t loadaddr)
312 vm_offset_t va;
313 pt_entry_t *pte;
314 struct mdglobaldata *gd;
315 int i;
316 int pg;
318 KvaStart = (vm_offset_t)VADDR(PTDPTDI, 0);
319 KvaSize = (vm_offset_t)VADDR(APTDPTDI, 0) - KvaStart;
320 KvaEnd = KvaStart + KvaSize;
322 avail_start = firstaddr;
325 * XXX The calculation of virtual_start is wrong. It's NKPT*PAGE_SIZE
326 * too large. It should instead be correctly calculated in locore.s and
327 * not based on 'first' (which is a physical address, not a virtual
328 * address, for the start of unused physical memory). The kernel
329 * page tables are NOT double mapped and thus should not be included
330 * in this calculation.
332 virtual_start = (vm_offset_t) KERNBASE + firstaddr;
333 virtual_start = pmap_kmem_choose(virtual_start);
334 virtual_end = VADDR(KPTDI+NKPDE-1, NPTEPG-1);
337 * Initialize protection array.
339 i386_protection_init();
342 * The kernel's pmap is statically allocated so we don't have to use
343 * pmap_create, which is unlikely to work correctly at this part of
344 * the boot sequence (XXX and which no longer exists).
346 kernel_pmap.pm_pdir = (pd_entry_t *)(KERNBASE + (u_int)IdlePTD);
347 kernel_pmap.pm_count = 1;
348 kernel_pmap.pm_active = (cpumask_t)-1; /* don't allow deactivation */
349 TAILQ_INIT(&kernel_pmap.pm_pvlist);
350 nkpt = NKPT;
353 * Reserve some special page table entries/VA space for temporary
354 * mapping of pages.
356 #define SYSMAP(c, p, v, n) \
357 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
359 va = virtual_start;
360 pte = (pt_entry_t *) pmap_pte(&kernel_pmap, va);
363 * CMAP1/CMAP2 are used for zeroing and copying pages.
365 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
368 * Crashdump maps.
370 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
373 * ptvmmap is used for reading arbitrary physical pages via
374 * /dev/mem.
376 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
379 * msgbufp is used to map the system message buffer.
380 * XXX msgbufmap is not used.
382 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
383 atop(round_page(MSGBUF_SIZE)))
385 virtual_start = va;
387 *(int *) CMAP1 = 0;
388 for (i = 0; i < NKPT; i++)
389 PTD[i] = 0;
392 * PG_G is terribly broken on SMP because we IPI invltlb's in some
393 * cases rather then invl1pg. Actually, I don't even know why it
394 * works under UP because self-referential page table mappings
396 #ifdef SMP
397 pgeflag = 0;
398 #else
399 if (cpu_feature & CPUID_PGE)
400 pgeflag = PG_G;
401 #endif
404 * Initialize the 4MB page size flag
406 pseflag = 0;
408 * The 4MB page version of the initial
409 * kernel page mapping.
411 pdir4mb = 0;
413 #if !defined(DISABLE_PSE)
414 if (cpu_feature & CPUID_PSE) {
415 unsigned ptditmp;
417 * Note that we have enabled PSE mode
419 pseflag = PG_PS;
420 ptditmp = *((unsigned *)PTmap + i386_btop(KERNBASE));
421 ptditmp &= ~(NBPDR - 1);
422 ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
423 pdir4mb = ptditmp;
425 #ifndef SMP
427 * Enable the PSE mode. If we are SMP we can't do this
428 * now because the APs will not be able to use it when
429 * they boot up.
431 load_cr4(rcr4() | CR4_PSE);
434 * We can do the mapping here for the single processor
435 * case. We simply ignore the old page table page from
436 * now on.
439 * For SMP, we still need 4K pages to bootstrap APs,
440 * PSE will be enabled as soon as all APs are up.
442 PTD[KPTDI] = (pd_entry_t)ptditmp;
443 kernel_pmap.pm_pdir[KPTDI] = (pd_entry_t)ptditmp;
444 cpu_invltlb();
445 #endif
447 #endif
448 #ifdef SMP
449 if (cpu_apic_address == 0)
450 panic("pmap_bootstrap: no local apic!");
452 /* local apic is mapped on last page */
453 SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
454 (cpu_apic_address & PG_FRAME));
455 #endif
458 * We need to finish setting up the globaldata page for the BSP.
459 * locore has already populated the page table for the mdglobaldata
460 * portion.
462 pg = MDGLOBALDATA_BASEALLOC_PAGES;
463 gd = &CPU_prvspace[0].mdglobaldata;
464 gd->gd_CMAP1 = &SMPpt[pg + 0];
465 gd->gd_CMAP2 = &SMPpt[pg + 1];
466 gd->gd_CMAP3 = &SMPpt[pg + 2];
467 gd->gd_PMAP1 = &SMPpt[pg + 3];
468 gd->gd_CADDR1 = CPU_prvspace[0].CPAGE1;
469 gd->gd_CADDR2 = CPU_prvspace[0].CPAGE2;
470 gd->gd_CADDR3 = CPU_prvspace[0].CPAGE3;
471 gd->gd_PADDR1 = (unsigned *)CPU_prvspace[0].PPAGE1;
473 cpu_invltlb();
476 #ifdef SMP
478 * Set 4mb pdir for mp startup
480 void
481 pmap_set_opt(void)
483 if (pseflag && (cpu_feature & CPUID_PSE)) {
484 load_cr4(rcr4() | CR4_PSE);
485 if (pdir4mb && mycpu->gd_cpuid == 0) { /* only on BSP */
486 kernel_pmap.pm_pdir[KPTDI] =
487 PTD[KPTDI] = (pd_entry_t)pdir4mb;
488 cpu_invltlb();
492 #endif
495 * Initialize the pmap module.
496 * Called by vm_init, to initialize any structures that the pmap
497 * system needs to map virtual memory.
498 * pmap_init has been enhanced to support in a fairly consistant
499 * way, discontiguous physical memory.
501 void
502 pmap_init(void)
504 int i;
505 int initial_pvs;
508 * object for kernel page table pages
510 kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
513 * Allocate memory for random pmap data structures. Includes the
514 * pv_head_table.
517 for(i = 0; i < vm_page_array_size; i++) {
518 vm_page_t m;
520 m = &vm_page_array[i];
521 TAILQ_INIT(&m->md.pv_list);
522 m->md.pv_list_count = 0;
526 * init the pv free list
528 initial_pvs = vm_page_array_size;
529 if (initial_pvs < MINPV)
530 initial_pvs = MINPV;
531 pvzone = &pvzone_store;
532 pvinit = (struct pv_entry *) kmem_alloc(&kernel_map,
533 initial_pvs * sizeof (struct pv_entry));
534 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
535 initial_pvs);
538 * Now it is safe to enable pv_table recording.
540 pmap_initialized = TRUE;
544 * Initialize the address space (zone) for the pv_entries. Set a
545 * high water mark so that the system can recover from excessive
546 * numbers of pv entries.
548 void
549 pmap_init2(void)
551 int shpgperproc = PMAP_SHPGPERPROC;
553 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
554 pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
555 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
556 pv_entry_high_water = 9 * (pv_entry_max / 10);
557 zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
561 /***************************************************
562 * Low level helper routines.....
563 ***************************************************/
565 #if defined(PMAP_DIAGNOSTIC)
568 * This code checks for non-writeable/modified pages.
569 * This should be an invalid condition.
571 static int
572 pmap_nw_modified(pt_entry_t ptea)
574 int pte;
576 pte = (int) ptea;
578 if ((pte & (PG_M|PG_RW)) == PG_M)
579 return 1;
580 else
581 return 0;
583 #endif
587 * this routine defines the region(s) of memory that should
588 * not be tested for the modified bit.
590 static PMAP_INLINE int
591 pmap_track_modified(vm_offset_t va)
593 if ((va < clean_sva) || (va >= clean_eva))
594 return 1;
595 else
596 return 0;
599 static unsigned *
600 get_ptbase(pmap_t pmap)
602 unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
603 struct globaldata *gd = mycpu;
605 /* are we current address space or kernel? */
606 if (pmap == &kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
607 return (unsigned *) PTmap;
610 /* otherwise, we are alternate address space */
611 KKASSERT(gd->gd_intr_nesting_level == 0 &&
612 (gd->gd_curthread->td_flags & TDF_INTTHREAD) == 0);
614 if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
615 APTDpde = (pd_entry_t)(frame | PG_RW | PG_V);
616 /* The page directory is not shared between CPUs */
617 cpu_invltlb();
619 return (unsigned *) APTmap;
623 * pmap_extract:
625 * Extract the physical page address associated with the map/VA pair.
627 * This function may not be called from an interrupt if the pmap is
628 * not kernel_pmap.
630 vm_paddr_t
631 pmap_extract(pmap_t pmap, vm_offset_t va)
633 vm_offset_t rtval;
634 vm_offset_t pdirindex;
636 pdirindex = va >> PDRSHIFT;
637 if (pmap && (rtval = (unsigned) pmap->pm_pdir[pdirindex])) {
638 unsigned *pte;
639 if ((rtval & PG_PS) != 0) {
640 rtval &= ~(NBPDR - 1);
641 rtval |= va & (NBPDR - 1);
642 return rtval;
644 pte = get_ptbase(pmap) + i386_btop(va);
645 rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
646 return rtval;
648 return 0;
651 /***************************************************
652 * Low level mapping routines.....
653 ***************************************************/
656 * Routine: pmap_kenter
657 * Function:
658 * Add a wired page to the KVA
659 * NOTE! note that in order for the mapping to take effect -- you
660 * should do an invltlb after doing the pmap_kenter().
662 void
663 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
665 unsigned *pte;
666 unsigned npte;
667 pmap_inval_info info;
669 pmap_inval_init(&info);
670 npte = pa | PG_RW | PG_V | pgeflag;
671 pte = (unsigned *)vtopte(va);
672 pmap_inval_add(&info, &kernel_pmap, va);
673 *pte = npte;
674 pmap_inval_flush(&info);
678 * Routine: pmap_kenter_quick
679 * Function:
680 * Similar to pmap_kenter(), except we only invalidate the
681 * mapping on the current CPU.
683 void
684 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
686 unsigned *pte;
687 unsigned npte;
689 npte = pa | PG_RW | PG_V | pgeflag;
690 pte = (unsigned *)vtopte(va);
691 *pte = npte;
692 cpu_invlpg((void *)va);
695 void
696 pmap_kenter_sync(vm_offset_t va)
698 pmap_inval_info info;
700 pmap_inval_init(&info);
701 pmap_inval_add(&info, &kernel_pmap, va);
702 pmap_inval_flush(&info);
705 void
706 pmap_kenter_sync_quick(vm_offset_t va)
708 cpu_invlpg((void *)va);
712 * remove a page from the kernel pagetables
714 void
715 pmap_kremove(vm_offset_t va)
717 unsigned *pte;
718 pmap_inval_info info;
720 pmap_inval_init(&info);
721 pte = (unsigned *)vtopte(va);
722 pmap_inval_add(&info, &kernel_pmap, va);
723 *pte = 0;
724 pmap_inval_flush(&info);
727 void
728 pmap_kremove_quick(vm_offset_t va)
730 unsigned *pte;
731 pte = (unsigned *)vtopte(va);
732 *pte = 0;
733 cpu_invlpg((void *)va);
737 * XXX these need to be recoded. They are not used in any critical path.
739 void
740 pmap_kmodify_rw(vm_offset_t va)
742 *vtopte(va) |= PG_RW;
743 cpu_invlpg((void *)va);
746 void
747 pmap_kmodify_nc(vm_offset_t va)
749 *vtopte(va) |= PG_N;
750 cpu_invlpg((void *)va);
754 * Used to map a range of physical addresses into kernel
755 * virtual address space.
757 * For now, VM is already on, we only need to map the
758 * specified memory.
760 vm_offset_t
761 pmap_map(vm_offset_t virt, vm_paddr_t start, vm_paddr_t end, int prot)
763 while (start < end) {
764 pmap_kenter(virt, start);
765 virt += PAGE_SIZE;
766 start += PAGE_SIZE;
768 return (virt);
773 * Add a list of wired pages to the kva
774 * this routine is only used for temporary
775 * kernel mappings that do not need to have
776 * page modification or references recorded.
777 * Note that old mappings are simply written
778 * over. The page *must* be wired.
780 void
781 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
783 vm_offset_t end_va;
785 end_va = va + count * PAGE_SIZE;
787 while (va < end_va) {
788 unsigned *pte;
790 pte = (unsigned *)vtopte(va);
791 *pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
792 cpu_invlpg((void *)va);
793 va += PAGE_SIZE;
794 m++;
796 #ifdef SMP
797 smp_invltlb(); /* XXX */
798 #endif
801 void
802 pmap_qenter2(vm_offset_t va, vm_page_t *m, int count, cpumask_t *mask)
804 vm_offset_t end_va;
805 cpumask_t cmask = mycpu->gd_cpumask;
807 end_va = va + count * PAGE_SIZE;
809 while (va < end_va) {
810 unsigned *pte;
811 unsigned pteval;
814 * Install the new PTE. If the pte changed from the prior
815 * mapping we must reset the cpu mask and invalidate the page.
816 * If the pte is the same but we have not seen it on the
817 * current cpu, invlpg the existing mapping. Otherwise the
818 * entry is optimal and no invalidation is required.
820 pte = (unsigned *)vtopte(va);
821 pteval = VM_PAGE_TO_PHYS(*m) | PG_A | PG_RW | PG_V | pgeflag;
822 if (*pte != pteval) {
823 *mask = 0;
824 *pte = pteval;
825 cpu_invlpg((void *)va);
826 } else if ((*mask & cmask) == 0) {
827 cpu_invlpg((void *)va);
829 va += PAGE_SIZE;
830 m++;
832 *mask |= cmask;
836 * this routine jerks page mappings from the
837 * kernel -- it is meant only for temporary mappings.
839 void
840 pmap_qremove(vm_offset_t va, int count)
842 vm_offset_t end_va;
844 end_va = va + count*PAGE_SIZE;
846 while (va < end_va) {
847 unsigned *pte;
849 pte = (unsigned *)vtopte(va);
850 *pte = 0;
851 cpu_invlpg((void *)va);
852 va += PAGE_SIZE;
854 #ifdef SMP
855 smp_invltlb();
856 #endif
860 * This routine works like vm_page_lookup() but also blocks as long as the
861 * page is busy. This routine does not busy the page it returns.
863 * Unless the caller is managing objects whos pages are in a known state,
864 * the call should be made with a critical section held so the page's object
865 * association remains valid on return.
867 static vm_page_t
868 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
870 vm_page_t m;
872 do {
873 m = vm_page_lookup(object, pindex);
874 } while (m && vm_page_sleep_busy(m, FALSE, "pplookp"));
876 return(m);
880 * Create a new thread and optionally associate it with a (new) process.
881 * NOTE! the new thread's cpu may not equal the current cpu.
883 void
884 pmap_init_thread(thread_t td)
886 /* enforce pcb placement */
887 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
888 td->td_savefpu = &td->td_pcb->pcb_save;
889 td->td_sp = (char *)td->td_pcb - 16;
893 * This routine directly affects the fork perf for a process.
895 void
896 pmap_init_proc(struct proc *p)
901 * Dispose the UPAGES for a process that has exited.
902 * This routine directly impacts the exit perf of a process.
904 void
905 pmap_dispose_proc(struct proc *p)
907 KASSERT(p->p_lock == 0, ("attempt to dispose referenced proc! %p", p));
910 /***************************************************
911 * Page table page management routines.....
912 ***************************************************/
915 * This routine unholds page table pages, and if the hold count
916 * drops to zero, then it decrements the wire count.
918 static int
919 _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, pmap_inval_info_t info)
922 * Wait until we can busy the page ourselves. We cannot have
923 * any active flushes if we block.
925 if (m->flags & PG_BUSY) {
926 pmap_inval_flush(info);
927 while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
930 KASSERT(m->queue == PQ_NONE,
931 ("_pmap_unwire_pte_hold: %p->queue != PQ_NONE", m));
933 if (m->hold_count == 1) {
935 * Unmap the page table page
937 vm_page_busy(m);
938 pmap_inval_add(info, pmap, -1);
939 pmap->pm_pdir[m->pindex] = 0;
941 KKASSERT(pmap->pm_stats.resident_count > 0);
942 --pmap->pm_stats.resident_count;
944 if (pmap->pm_ptphint == m)
945 pmap->pm_ptphint = NULL;
948 * This was our last hold, the page had better be unwired
949 * after we decrement wire_count.
951 * FUTURE NOTE: shared page directory page could result in
952 * multiple wire counts.
954 vm_page_unhold(m);
955 --m->wire_count;
956 KKASSERT(m->wire_count == 0);
957 --vmstats.v_wire_count;
958 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
959 vm_page_flash(m);
960 vm_page_free_zero(m);
961 return 1;
962 } else {
963 KKASSERT(m->hold_count > 1);
964 vm_page_unhold(m);
965 return 0;
969 static PMAP_INLINE int
970 pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, pmap_inval_info_t info)
972 KKASSERT(m->hold_count > 0);
973 if (m->hold_count > 1) {
974 vm_page_unhold(m);
975 return 0;
976 } else {
977 return _pmap_unwire_pte_hold(pmap, m, info);
982 * After removing a page table entry, this routine is used to
983 * conditionally free the page, and manage the hold/wire counts.
985 static int
986 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte,
987 pmap_inval_info_t info)
989 unsigned ptepindex;
990 if (va >= UPT_MIN_ADDRESS)
991 return 0;
993 if (mpte == NULL) {
994 ptepindex = (va >> PDRSHIFT);
995 if (pmap->pm_ptphint &&
996 (pmap->pm_ptphint->pindex == ptepindex)) {
997 mpte = pmap->pm_ptphint;
998 } else {
999 pmap_inval_flush(info);
1000 mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1001 pmap->pm_ptphint = mpte;
1005 return pmap_unwire_pte_hold(pmap, mpte, info);
1009 * Initialize pmap0/vmspace0. This pmap is not added to pmap_list because
1010 * it, and IdlePTD, represents the template used to update all other pmaps.
1012 * On architectures where the kernel pmap is not integrated into the user
1013 * process pmap, this pmap represents the process pmap, not the kernel pmap.
1014 * kernel_pmap should be used to directly access the kernel_pmap.
1016 void
1017 pmap_pinit0(struct pmap *pmap)
1019 pmap->pm_pdir =
1020 (pd_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1021 pmap_kenter((vm_offset_t)pmap->pm_pdir, (vm_offset_t) IdlePTD);
1022 pmap->pm_count = 1;
1023 pmap->pm_active = 0;
1024 pmap->pm_ptphint = NULL;
1025 TAILQ_INIT(&pmap->pm_pvlist);
1026 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1030 * Initialize a preallocated and zeroed pmap structure,
1031 * such as one in a vmspace structure.
1033 void
1034 pmap_pinit(struct pmap *pmap)
1036 vm_page_t ptdpg;
1039 * No need to allocate page table space yet but we do need a valid
1040 * page directory table.
1042 if (pmap->pm_pdir == NULL) {
1043 pmap->pm_pdir =
1044 (pd_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1048 * Allocate an object for the ptes
1050 if (pmap->pm_pteobj == NULL)
1051 pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1054 * Allocate the page directory page, unless we already have
1055 * one cached. If we used the cached page the wire_count will
1056 * already be set appropriately.
1058 if ((ptdpg = pmap->pm_pdirm) == NULL) {
1059 ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1060 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1061 pmap->pm_pdirm = ptdpg;
1062 vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY);
1063 ptdpg->valid = VM_PAGE_BITS_ALL;
1064 ptdpg->wire_count = 1;
1065 ++vmstats.v_wire_count;
1066 pmap_kenter((vm_offset_t)pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1068 if ((ptdpg->flags & PG_ZERO) == 0)
1069 bzero(pmap->pm_pdir, PAGE_SIZE);
1071 pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1073 /* install self-referential address mapping entry */
1074 *(unsigned *) (pmap->pm_pdir + PTDPTDI) =
1075 VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1077 pmap->pm_count = 1;
1078 pmap->pm_active = 0;
1079 pmap->pm_ptphint = NULL;
1080 TAILQ_INIT(&pmap->pm_pvlist);
1081 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1082 pmap->pm_stats.resident_count = 1;
1086 * Clean up a pmap structure so it can be physically freed. This routine
1087 * is called by the vmspace dtor function. A great deal of pmap data is
1088 * left passively mapped to improve vmspace management so we have a bit
1089 * of cleanup work to do here.
1091 void
1092 pmap_puninit(pmap_t pmap)
1094 vm_page_t p;
1096 KKASSERT(pmap->pm_active == 0);
1097 if ((p = pmap->pm_pdirm) != NULL) {
1098 KKASSERT(pmap->pm_pdir != NULL);
1099 pmap_kremove((vm_offset_t)pmap->pm_pdir);
1100 p->wire_count--;
1101 vmstats.v_wire_count--;
1102 KKASSERT((p->flags & PG_BUSY) == 0);
1103 vm_page_busy(p);
1104 vm_page_free_zero(p);
1105 pmap->pm_pdirm = NULL;
1107 if (pmap->pm_pdir) {
1108 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pdir, PAGE_SIZE);
1109 pmap->pm_pdir = NULL;
1111 if (pmap->pm_pteobj) {
1112 vm_object_deallocate(pmap->pm_pteobj);
1113 pmap->pm_pteobj = NULL;
1118 * Wire in kernel global address entries. To avoid a race condition
1119 * between pmap initialization and pmap_growkernel, this procedure
1120 * adds the pmap to the master list (which growkernel scans to update),
1121 * then copies the template.
1123 void
1124 pmap_pinit2(struct pmap *pmap)
1126 crit_enter();
1127 TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1128 /* XXX copies current process, does not fill in MPPTDI */
1129 bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1130 crit_exit();
1134 * Attempt to release and free a vm_page in a pmap. Returns 1 on success,
1135 * 0 on failure (if the procedure had to sleep).
1137 * When asked to remove the page directory page itself, we actually just
1138 * leave it cached so we do not have to incur the SMP inval overhead of
1139 * removing the kernel mapping. pmap_puninit() will take care of it.
1141 static int
1142 pmap_release_free_page(struct pmap *pmap, vm_page_t p)
1144 unsigned *pde = (unsigned *) pmap->pm_pdir;
1146 * This code optimizes the case of freeing non-busy
1147 * page-table pages. Those pages are zero now, and
1148 * might as well be placed directly into the zero queue.
1150 if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1151 return 0;
1153 vm_page_busy(p);
1156 * Remove the page table page from the processes address space.
1158 pde[p->pindex] = 0;
1159 KKASSERT(pmap->pm_stats.resident_count > 0);
1160 --pmap->pm_stats.resident_count;
1162 if (p->hold_count) {
1163 panic("pmap_release: freeing held page table page");
1165 if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1166 pmap->pm_ptphint = NULL;
1169 * We leave the page directory page cached, wired, and mapped in
1170 * the pmap until the dtor function (pmap_puninit()) gets called.
1171 * However, still clean it up so we can set PG_ZERO.
1173 if (p->pindex == PTDPTDI) {
1174 bzero(pde + KPTDI, nkpt * PTESIZE);
1175 pde[MPPTDI] = 0;
1176 pde[APTDPTDI] = 0;
1177 vm_page_flag_set(p, PG_ZERO);
1178 vm_page_wakeup(p);
1179 } else {
1180 p->wire_count--;
1181 vmstats.v_wire_count--;
1182 vm_page_free_zero(p);
1184 return 1;
1188 * this routine is called if the page table page is not
1189 * mapped correctly.
1191 static vm_page_t
1192 _pmap_allocpte(pmap_t pmap, unsigned ptepindex)
1194 vm_offset_t pteva, ptepa;
1195 vm_page_t m;
1198 * Find or fabricate a new pagetable page
1200 m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1201 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1203 KASSERT(m->queue == PQ_NONE,
1204 ("_pmap_allocpte: %p->queue != PQ_NONE", m));
1207 * Increment the hold count for the page we will be returning to
1208 * the caller.
1210 m->hold_count++;
1213 * It is possible that someone else got in and mapped by the page
1214 * directory page while we were blocked, if so just unbusy and
1215 * return the held page.
1217 if ((ptepa = pmap->pm_pdir[ptepindex]) != 0) {
1218 KKASSERT((ptepa & PG_FRAME) == VM_PAGE_TO_PHYS(m));
1219 vm_page_wakeup(m);
1220 return(m);
1223 if (m->wire_count == 0)
1224 vmstats.v_wire_count++;
1225 m->wire_count++;
1229 * Map the pagetable page into the process address space, if
1230 * it isn't already there.
1233 ++pmap->pm_stats.resident_count;
1235 ptepa = VM_PAGE_TO_PHYS(m);
1236 pmap->pm_pdir[ptepindex] =
1237 (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1240 * Set the page table hint
1242 pmap->pm_ptphint = m;
1245 * Try to use the new mapping, but if we cannot, then
1246 * do it with the routine that maps the page explicitly.
1248 if ((m->flags & PG_ZERO) == 0) {
1249 if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1250 (((unsigned) PTDpde) & PG_FRAME)) {
1251 pteva = UPT_MIN_ADDRESS + i386_ptob(ptepindex);
1252 bzero((caddr_t) pteva, PAGE_SIZE);
1253 } else {
1254 pmap_zero_page(ptepa);
1258 m->valid = VM_PAGE_BITS_ALL;
1259 vm_page_flag_clear(m, PG_ZERO);
1260 vm_page_flag_set(m, PG_MAPPED);
1261 vm_page_wakeup(m);
1263 return m;
1266 static vm_page_t
1267 pmap_allocpte(pmap_t pmap, vm_offset_t va)
1269 unsigned ptepindex;
1270 vm_offset_t ptepa;
1271 vm_page_t m;
1274 * Calculate pagetable page index
1276 ptepindex = va >> PDRSHIFT;
1279 * Get the page directory entry
1281 ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1284 * This supports switching from a 4MB page to a
1285 * normal 4K page.
1287 if (ptepa & PG_PS) {
1288 pmap->pm_pdir[ptepindex] = 0;
1289 ptepa = 0;
1290 cpu_invltlb();
1291 smp_invltlb();
1295 * If the page table page is mapped, we just increment the
1296 * hold count, and activate it.
1298 if (ptepa) {
1300 * In order to get the page table page, try the
1301 * hint first.
1303 if (pmap->pm_ptphint &&
1304 (pmap->pm_ptphint->pindex == ptepindex)) {
1305 m = pmap->pm_ptphint;
1306 } else {
1307 m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1308 pmap->pm_ptphint = m;
1310 m->hold_count++;
1311 return m;
1314 * Here if the pte page isn't mapped, or if it has been deallocated.
1316 return _pmap_allocpte(pmap, ptepindex);
1320 /***************************************************
1321 * Pmap allocation/deallocation routines.
1322 ***************************************************/
1325 * Release any resources held by the given physical map.
1326 * Called when a pmap initialized by pmap_pinit is being released.
1327 * Should only be called if the map contains no valid mappings.
1329 static int pmap_release_callback(struct vm_page *p, void *data);
1331 void
1332 pmap_release(struct pmap *pmap)
1334 vm_object_t object = pmap->pm_pteobj;
1335 struct rb_vm_page_scan_info info;
1337 KASSERT(pmap->pm_active == 0, ("pmap still active! %08x", pmap->pm_active));
1338 #if defined(DIAGNOSTIC)
1339 if (object->ref_count != 1)
1340 panic("pmap_release: pteobj reference count != 1");
1341 #endif
1343 info.pmap = pmap;
1344 info.object = object;
1345 crit_enter();
1346 TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
1347 crit_exit();
1349 do {
1350 crit_enter();
1351 info.error = 0;
1352 info.mpte = NULL;
1353 info.limit = object->generation;
1355 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1356 pmap_release_callback, &info);
1357 if (info.error == 0 && info.mpte) {
1358 if (!pmap_release_free_page(pmap, info.mpte))
1359 info.error = 1;
1361 crit_exit();
1362 } while (info.error);
1365 static int
1366 pmap_release_callback(struct vm_page *p, void *data)
1368 struct rb_vm_page_scan_info *info = data;
1370 if (p->pindex == PTDPTDI) {
1371 info->mpte = p;
1372 return(0);
1374 if (!pmap_release_free_page(info->pmap, p)) {
1375 info->error = 1;
1376 return(-1);
1378 if (info->object->generation != info->limit) {
1379 info->error = 1;
1380 return(-1);
1382 return(0);
1386 * Grow the number of kernel page table entries, if needed.
1389 void
1390 pmap_growkernel(vm_offset_t addr)
1392 struct pmap *pmap;
1393 vm_offset_t ptppaddr;
1394 vm_page_t nkpg;
1395 pd_entry_t newpdir;
1397 crit_enter();
1398 if (kernel_vm_end == 0) {
1399 kernel_vm_end = KERNBASE;
1400 nkpt = 0;
1401 while (pdir_pde(PTD, kernel_vm_end)) {
1402 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1403 nkpt++;
1406 addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1407 while (kernel_vm_end < addr) {
1408 if (pdir_pde(PTD, kernel_vm_end)) {
1409 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1410 continue;
1414 * This index is bogus, but out of the way
1416 nkpg = vm_page_alloc(kptobj, nkpt,
1417 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT);
1418 if (nkpg == NULL)
1419 panic("pmap_growkernel: no memory to grow kernel");
1421 vm_page_wire(nkpg);
1422 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1423 pmap_zero_page(ptppaddr);
1424 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1425 pdir_pde(PTD, kernel_vm_end) = newpdir;
1426 *pmap_pde(&kernel_pmap, kernel_vm_end) = newpdir;
1427 nkpt++;
1430 * This update must be interlocked with pmap_pinit2.
1432 TAILQ_FOREACH(pmap, &pmap_list, pm_pmnode) {
1433 *pmap_pde(pmap, kernel_vm_end) = newpdir;
1435 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1436 ~(PAGE_SIZE * NPTEPG - 1);
1438 crit_exit();
1442 * Retire the given physical map from service.
1443 * Should only be called if the map contains
1444 * no valid mappings.
1446 void
1447 pmap_destroy(pmap_t pmap)
1449 int count;
1451 if (pmap == NULL)
1452 return;
1454 count = --pmap->pm_count;
1455 if (count == 0) {
1456 pmap_release(pmap);
1457 panic("destroying a pmap is not yet implemented");
1462 * Add a reference to the specified pmap.
1464 void
1465 pmap_reference(pmap_t pmap)
1467 if (pmap != NULL) {
1468 pmap->pm_count++;
1472 /***************************************************
1473 * page management routines.
1474 ***************************************************/
1477 * free the pv_entry back to the free list. This function may be
1478 * called from an interrupt.
1480 static PMAP_INLINE void
1481 free_pv_entry(pv_entry_t pv)
1483 pv_entry_count--;
1484 zfree(pvzone, pv);
1488 * get a new pv_entry, allocating a block from the system
1489 * when needed. This function may be called from an interrupt.
1491 static pv_entry_t
1492 get_pv_entry(void)
1494 pv_entry_count++;
1495 if (pv_entry_high_water &&
1496 (pv_entry_count > pv_entry_high_water) &&
1497 (pmap_pagedaemon_waken == 0)) {
1498 pmap_pagedaemon_waken = 1;
1499 wakeup (&vm_pages_needed);
1501 return zalloc(pvzone);
1505 * This routine is very drastic, but can save the system
1506 * in a pinch.
1508 void
1509 pmap_collect(void)
1511 int i;
1512 vm_page_t m;
1513 static int warningdone=0;
1515 if (pmap_pagedaemon_waken == 0)
1516 return;
1517 pmap_pagedaemon_waken = 0;
1519 if (warningdone < 5) {
1520 kprintf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1521 warningdone++;
1524 for(i = 0; i < vm_page_array_size; i++) {
1525 m = &vm_page_array[i];
1526 if (m->wire_count || m->hold_count || m->busy ||
1527 (m->flags & PG_BUSY))
1528 continue;
1529 pmap_remove_all(m);
1535 * If it is the first entry on the list, it is actually
1536 * in the header and we must copy the following entry up
1537 * to the header. Otherwise we must search the list for
1538 * the entry. In either case we free the now unused entry.
1540 static int
1541 pmap_remove_entry(struct pmap *pmap, vm_page_t m,
1542 vm_offset_t va, pmap_inval_info_t info)
1544 pv_entry_t pv;
1545 int rtval;
1547 crit_enter();
1548 if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1549 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1550 if (pmap == pv->pv_pmap && va == pv->pv_va)
1551 break;
1553 } else {
1554 TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1555 if (va == pv->pv_va)
1556 break;
1560 rtval = 0;
1561 if (pv) {
1562 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1563 m->md.pv_list_count--;
1564 if (TAILQ_EMPTY(&m->md.pv_list))
1565 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1566 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1567 ++pmap->pm_generation;
1568 rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem, info);
1569 free_pv_entry(pv);
1571 crit_exit();
1572 return rtval;
1576 * Create a pv entry for page at pa for
1577 * (pmap, va).
1579 static void
1580 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1582 pv_entry_t pv;
1584 crit_enter();
1585 pv = get_pv_entry();
1586 pv->pv_va = va;
1587 pv->pv_pmap = pmap;
1588 pv->pv_ptem = mpte;
1590 TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1591 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1592 m->md.pv_list_count++;
1594 crit_exit();
1598 * pmap_remove_pte: do the things to unmap a page in a process
1600 static int
1601 pmap_remove_pte(struct pmap *pmap, unsigned *ptq, vm_offset_t va,
1602 pmap_inval_info_t info)
1604 unsigned oldpte;
1605 vm_page_t m;
1607 pmap_inval_add(info, pmap, va);
1608 oldpte = loadandclear(ptq);
1609 if (oldpte & PG_W)
1610 pmap->pm_stats.wired_count -= 1;
1612 * Machines that don't support invlpg, also don't support
1613 * PG_G. XXX PG_G is disabled for SMP so don't worry about
1614 * the SMP case.
1616 if (oldpte & PG_G)
1617 cpu_invlpg((void *)va);
1618 KKASSERT(pmap->pm_stats.resident_count > 0);
1619 --pmap->pm_stats.resident_count;
1620 if (oldpte & PG_MANAGED) {
1621 m = PHYS_TO_VM_PAGE(oldpte);
1622 if (oldpte & PG_M) {
1623 #if defined(PMAP_DIAGNOSTIC)
1624 if (pmap_nw_modified((pt_entry_t) oldpte)) {
1625 kprintf(
1626 "pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1627 va, oldpte);
1629 #endif
1630 if (pmap_track_modified(va))
1631 vm_page_dirty(m);
1633 if (oldpte & PG_A)
1634 vm_page_flag_set(m, PG_REFERENCED);
1635 return pmap_remove_entry(pmap, m, va, info);
1636 } else {
1637 return pmap_unuse_pt(pmap, va, NULL, info);
1640 return 0;
1644 * pmap_remove_page:
1646 * Remove a single page from a process address space.
1648 * This function may not be called from an interrupt if the pmap is
1649 * not kernel_pmap.
1651 static void
1652 pmap_remove_page(struct pmap *pmap, vm_offset_t va, pmap_inval_info_t info)
1654 unsigned *ptq;
1657 * if there is no pte for this address, just skip it!!! Otherwise
1658 * get a local va for mappings for this pmap and remove the entry.
1660 if (*pmap_pde(pmap, va) != 0) {
1661 ptq = get_ptbase(pmap) + i386_btop(va);
1662 if (*ptq) {
1663 pmap_remove_pte(pmap, ptq, va, info);
1669 * pmap_remove:
1671 * Remove the given range of addresses from the specified map.
1673 * It is assumed that the start and end are properly
1674 * rounded to the page size.
1676 * This function may not be called from an interrupt if the pmap is
1677 * not kernel_pmap.
1679 void
1680 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1682 unsigned *ptbase;
1683 vm_offset_t pdnxt;
1684 vm_offset_t ptpaddr;
1685 vm_offset_t sindex, eindex;
1686 struct pmap_inval_info info;
1688 if (pmap == NULL)
1689 return;
1691 if (pmap->pm_stats.resident_count == 0)
1692 return;
1694 pmap_inval_init(&info);
1697 * special handling of removing one page. a very
1698 * common operation and easy to short circuit some
1699 * code.
1701 if (((sva + PAGE_SIZE) == eva) &&
1702 (((unsigned) pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1703 pmap_remove_page(pmap, sva, &info);
1704 pmap_inval_flush(&info);
1705 return;
1709 * Get a local virtual address for the mappings that are being
1710 * worked with.
1712 sindex = i386_btop(sva);
1713 eindex = i386_btop(eva);
1715 for (; sindex < eindex; sindex = pdnxt) {
1716 unsigned pdirindex;
1719 * Calculate index for next page table.
1721 pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1722 if (pmap->pm_stats.resident_count == 0)
1723 break;
1725 pdirindex = sindex / NPDEPG;
1726 if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
1727 pmap_inval_add(&info, pmap, -1);
1728 pmap->pm_pdir[pdirindex] = 0;
1729 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1730 continue;
1734 * Weed out invalid mappings. Note: we assume that the page
1735 * directory table is always allocated, and in kernel virtual.
1737 if (ptpaddr == 0)
1738 continue;
1741 * Limit our scan to either the end of the va represented
1742 * by the current page table page, or to the end of the
1743 * range being removed.
1745 if (pdnxt > eindex) {
1746 pdnxt = eindex;
1750 * NOTE: pmap_remove_pte() can block.
1752 for (; sindex != pdnxt; sindex++) {
1753 vm_offset_t va;
1755 ptbase = get_ptbase(pmap);
1756 if (ptbase[sindex] == 0)
1757 continue;
1758 va = i386_ptob(sindex);
1759 if (pmap_remove_pte(pmap, ptbase + sindex, va, &info))
1760 break;
1763 pmap_inval_flush(&info);
1767 * pmap_remove_all:
1769 * Removes this physical page from all physical maps in which it resides.
1770 * Reflects back modify bits to the pager.
1772 * This routine may not be called from an interrupt.
1775 static void
1776 pmap_remove_all(vm_page_t m)
1778 struct pmap_inval_info info;
1779 unsigned *pte, tpte;
1780 pv_entry_t pv;
1782 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
1783 return;
1785 pmap_inval_init(&info);
1786 crit_enter();
1787 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1788 KKASSERT(pv->pv_pmap->pm_stats.resident_count > 0);
1789 --pv->pv_pmap->pm_stats.resident_count;
1791 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1792 pmap_inval_add(&info, pv->pv_pmap, pv->pv_va);
1793 tpte = loadandclear(pte);
1795 if (tpte & PG_W)
1796 pv->pv_pmap->pm_stats.wired_count--;
1798 if (tpte & PG_A)
1799 vm_page_flag_set(m, PG_REFERENCED);
1802 * Update the vm_page_t clean and reference bits.
1804 if (tpte & PG_M) {
1805 #if defined(PMAP_DIAGNOSTIC)
1806 if (pmap_nw_modified((pt_entry_t) tpte)) {
1807 kprintf(
1808 "pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1809 pv->pv_va, tpte);
1811 #endif
1812 if (pmap_track_modified(pv->pv_va))
1813 vm_page_dirty(m);
1815 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1816 TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1817 ++pv->pv_pmap->pm_generation;
1818 m->md.pv_list_count--;
1819 if (TAILQ_EMPTY(&m->md.pv_list))
1820 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1821 pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem, &info);
1822 free_pv_entry(pv);
1824 crit_exit();
1825 KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
1826 pmap_inval_flush(&info);
1830 * pmap_protect:
1832 * Set the physical protection on the specified range of this map
1833 * as requested.
1835 * This function may not be called from an interrupt if the map is
1836 * not the kernel_pmap.
1838 void
1839 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1841 unsigned *ptbase;
1842 vm_offset_t pdnxt, ptpaddr;
1843 vm_pindex_t sindex, eindex;
1844 pmap_inval_info info;
1846 if (pmap == NULL)
1847 return;
1849 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1850 pmap_remove(pmap, sva, eva);
1851 return;
1854 if (prot & VM_PROT_WRITE)
1855 return;
1857 pmap_inval_init(&info);
1859 ptbase = get_ptbase(pmap);
1861 sindex = i386_btop(sva);
1862 eindex = i386_btop(eva);
1864 for (; sindex < eindex; sindex = pdnxt) {
1866 unsigned pdirindex;
1868 pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1870 pdirindex = sindex / NPDEPG;
1871 if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
1872 pmap_inval_add(&info, pmap, -1);
1873 pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1874 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1875 continue;
1879 * Weed out invalid mappings. Note: we assume that the page
1880 * directory table is always allocated, and in kernel virtual.
1882 if (ptpaddr == 0)
1883 continue;
1885 if (pdnxt > eindex) {
1886 pdnxt = eindex;
1889 for (; sindex != pdnxt; sindex++) {
1891 unsigned pbits;
1892 vm_page_t m;
1895 * XXX non-optimal. Note also that there can be
1896 * no pmap_inval_flush() calls until after we modify
1897 * ptbase[sindex] (or otherwise we have to do another
1898 * pmap_inval_add() call).
1900 pmap_inval_add(&info, pmap, i386_ptob(sindex));
1901 pbits = ptbase[sindex];
1903 if (pbits & PG_MANAGED) {
1904 m = NULL;
1905 if (pbits & PG_A) {
1906 m = PHYS_TO_VM_PAGE(pbits);
1907 vm_page_flag_set(m, PG_REFERENCED);
1908 pbits &= ~PG_A;
1910 if (pbits & PG_M) {
1911 if (pmap_track_modified(i386_ptob(sindex))) {
1912 if (m == NULL)
1913 m = PHYS_TO_VM_PAGE(pbits);
1914 vm_page_dirty(m);
1915 pbits &= ~PG_M;
1920 pbits &= ~PG_RW;
1922 if (pbits != ptbase[sindex]) {
1923 ptbase[sindex] = pbits;
1927 pmap_inval_flush(&info);
1931 * Insert the given physical page (p) at
1932 * the specified virtual address (v) in the
1933 * target physical map with the protection requested.
1935 * If specified, the page will be wired down, meaning
1936 * that the related pte can not be reclaimed.
1938 * NB: This is the only routine which MAY NOT lazy-evaluate
1939 * or lose information. That is, this routine must actually
1940 * insert this page into the given map NOW.
1942 void
1943 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1944 boolean_t wired)
1946 vm_paddr_t pa;
1947 unsigned *pte;
1948 vm_paddr_t opa;
1949 vm_offset_t origpte, newpte;
1950 vm_page_t mpte;
1951 pmap_inval_info info;
1953 if (pmap == NULL)
1954 return;
1956 va &= PG_FRAME;
1957 #ifdef PMAP_DIAGNOSTIC
1958 if (va >= KvaEnd)
1959 panic("pmap_enter: toobig");
1960 if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1961 panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1962 #endif
1963 if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
1964 kprintf("Warning: pmap_enter called on UVA with kernel_pmap\n");
1965 print_backtrace();
1967 if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
1968 kprintf("Warning: pmap_enter called on KVA without kernel_pmap\n");
1969 print_backtrace();
1973 * In the case that a page table page is not
1974 * resident, we are creating it here.
1976 if (va < UPT_MIN_ADDRESS)
1977 mpte = pmap_allocpte(pmap, va);
1978 else
1979 mpte = NULL;
1981 pmap_inval_init(&info);
1982 pte = pmap_pte(pmap, va);
1985 * Page Directory table entry not valid, we need a new PT page
1987 if (pte == NULL) {
1988 panic("pmap_enter: invalid page directory pdir=%x, va=0x%x\n",
1989 (unsigned) pmap->pm_pdir[PTDPTDI], va);
1992 pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
1993 origpte = *(vm_offset_t *)pte;
1994 opa = origpte & PG_FRAME;
1996 if (origpte & PG_PS)
1997 panic("pmap_enter: attempted pmap_enter on 4MB page");
2000 * Mapping has not changed, must be protection or wiring change.
2002 if (origpte && (opa == pa)) {
2004 * Wiring change, just update stats. We don't worry about
2005 * wiring PT pages as they remain resident as long as there
2006 * are valid mappings in them. Hence, if a user page is wired,
2007 * the PT page will be also.
2009 if (wired && ((origpte & PG_W) == 0))
2010 pmap->pm_stats.wired_count++;
2011 else if (!wired && (origpte & PG_W))
2012 pmap->pm_stats.wired_count--;
2014 #if defined(PMAP_DIAGNOSTIC)
2015 if (pmap_nw_modified((pt_entry_t) origpte)) {
2016 kprintf(
2017 "pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2018 va, origpte);
2020 #endif
2023 * Remove the extra pte reference. Note that we cannot
2024 * optimize the RO->RW case because we have adjusted the
2025 * wiring count above and may need to adjust the wiring
2026 * bits below.
2028 if (mpte)
2029 mpte->hold_count--;
2032 * We might be turning off write access to the page,
2033 * so we go ahead and sense modify status.
2035 if (origpte & PG_MANAGED) {
2036 if ((origpte & PG_M) && pmap_track_modified(va)) {
2037 vm_page_t om;
2038 om = PHYS_TO_VM_PAGE(opa);
2039 vm_page_dirty(om);
2041 pa |= PG_MANAGED;
2042 KKASSERT(m->flags & PG_MAPPED);
2044 goto validate;
2047 * Mapping has changed, invalidate old range and fall through to
2048 * handle validating new mapping.
2050 if (opa) {
2051 int err;
2052 err = pmap_remove_pte(pmap, pte, va, &info);
2053 if (err)
2054 panic("pmap_enter: pte vanished, va: 0x%x", va);
2058 * Enter on the PV list if part of our managed memory. Note that we
2059 * raise IPL while manipulating pv_table since pmap_enter can be
2060 * called at interrupt time.
2062 if (pmap_initialized &&
2063 (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2064 pmap_insert_entry(pmap, va, mpte, m);
2065 pa |= PG_MANAGED;
2066 vm_page_flag_set(m, PG_MAPPED);
2070 * Increment counters
2072 ++pmap->pm_stats.resident_count;
2073 if (wired)
2074 pmap->pm_stats.wired_count++;
2076 validate:
2078 * Now validate mapping with desired protection/wiring.
2080 newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2082 if (wired)
2083 newpte |= PG_W;
2084 if (va < UPT_MIN_ADDRESS)
2085 newpte |= PG_U;
2086 if (pmap == &kernel_pmap)
2087 newpte |= pgeflag;
2090 * if the mapping or permission bits are different, we need
2091 * to update the pte.
2093 if ((origpte & ~(PG_M|PG_A)) != newpte) {
2094 pmap_inval_add(&info, pmap, va);
2095 *pte = newpte | PG_A;
2096 if (newpte & PG_RW)
2097 vm_page_flag_set(m, PG_WRITEABLE);
2099 KKASSERT((newpte & PG_MANAGED) == 0 || (m->flags & PG_MAPPED));
2100 pmap_inval_flush(&info);
2104 * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
2105 * This code also assumes that the pmap has no pre-existing entry for this
2106 * VA.
2108 * This code currently may only be used on user pmaps, not kernel_pmap.
2110 static void
2111 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
2113 unsigned *pte;
2114 vm_paddr_t pa;
2115 vm_page_t mpte;
2116 unsigned ptepindex;
2117 vm_offset_t ptepa;
2118 pmap_inval_info info;
2120 pmap_inval_init(&info);
2122 if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
2123 kprintf("Warning: pmap_enter_quick called on UVA with kernel_pmap\n");
2124 print_backtrace();
2126 if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
2127 kprintf("Warning: pmap_enter_quick called on KVA without kernel_pmap\n");
2128 print_backtrace();
2131 KKASSERT(va < UPT_MIN_ADDRESS); /* assert used on user pmaps only */
2134 * Calculate the page table page (mpte), allocating it if necessary.
2136 * A held page table page (mpte), or NULL, is passed onto the
2137 * section following.
2139 if (va < UPT_MIN_ADDRESS) {
2141 * Calculate pagetable page index
2143 ptepindex = va >> PDRSHIFT;
2145 do {
2147 * Get the page directory entry
2149 ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
2152 * If the page table page is mapped, we just increment
2153 * the hold count, and activate it.
2155 if (ptepa) {
2156 if (ptepa & PG_PS)
2157 panic("pmap_enter_quick: unexpected mapping into 4MB page");
2158 if (pmap->pm_ptphint &&
2159 (pmap->pm_ptphint->pindex == ptepindex)) {
2160 mpte = pmap->pm_ptphint;
2161 } else {
2162 mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2163 pmap->pm_ptphint = mpte;
2165 if (mpte)
2166 mpte->hold_count++;
2167 } else {
2168 mpte = _pmap_allocpte(pmap, ptepindex);
2170 } while (mpte == NULL);
2171 } else {
2172 mpte = NULL;
2173 /* this code path is not yet used */
2177 * With a valid (and held) page directory page, we can just use
2178 * vtopte() to get to the pte. If the pte is already present
2179 * we do not disturb it.
2181 pte = (unsigned *)vtopte(va);
2182 if (*pte & PG_V) {
2183 if (mpte)
2184 pmap_unwire_pte_hold(pmap, mpte, &info);
2185 pa = VM_PAGE_TO_PHYS(m);
2186 KKASSERT(((*pte ^ pa) & PG_FRAME) == 0);
2187 return;
2191 * Enter on the PV list if part of our managed memory
2193 if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2194 pmap_insert_entry(pmap, va, mpte, m);
2195 vm_page_flag_set(m, PG_MAPPED);
2199 * Increment counters
2201 ++pmap->pm_stats.resident_count;
2203 pa = VM_PAGE_TO_PHYS(m);
2206 * Now validate mapping with RO protection
2208 if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2209 *pte = pa | PG_V | PG_U;
2210 else
2211 *pte = pa | PG_V | PG_U | PG_MANAGED;
2212 /* pmap_inval_add(&info, pmap, va); shouldn't be needed inval->valid */
2213 pmap_inval_flush(&info);
2217 * Make a temporary mapping for a physical address. This is only intended
2218 * to be used for panic dumps.
2220 void *
2221 pmap_kenter_temporary(vm_paddr_t pa, int i)
2223 pmap_kenter((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
2224 return ((void *)crashdumpmap);
2227 #define MAX_INIT_PT (96)
2230 * This routine preloads the ptes for a given object into the specified pmap.
2231 * This eliminates the blast of soft faults on process startup and
2232 * immediately after an mmap.
2234 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
2236 void
2237 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
2238 vm_object_t object, vm_pindex_t pindex,
2239 vm_size_t size, int limit)
2241 struct rb_vm_page_scan_info info;
2242 struct lwp *lp;
2243 int psize;
2246 * We can't preinit if read access isn't set or there is no pmap
2247 * or object.
2249 if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
2250 return;
2253 * We can't preinit if the pmap is not the current pmap
2255 lp = curthread->td_lwp;
2256 if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
2257 return;
2259 psize = i386_btop(size);
2261 if ((object->type != OBJT_VNODE) ||
2262 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2263 (object->resident_page_count > MAX_INIT_PT))) {
2264 return;
2267 if (psize + pindex > object->size) {
2268 if (object->size < pindex)
2269 return;
2270 psize = object->size - pindex;
2273 if (psize == 0)
2274 return;
2277 * Use a red-black scan to traverse the requested range and load
2278 * any valid pages found into the pmap.
2280 * We cannot safely scan the object's memq unless we are in a
2281 * critical section since interrupts can remove pages from objects.
2283 info.start_pindex = pindex;
2284 info.end_pindex = pindex + psize - 1;
2285 info.limit = limit;
2286 info.mpte = NULL;
2287 info.addr = addr;
2288 info.pmap = pmap;
2290 crit_enter();
2291 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2292 pmap_object_init_pt_callback, &info);
2293 crit_exit();
2296 static
2298 pmap_object_init_pt_callback(vm_page_t p, void *data)
2300 struct rb_vm_page_scan_info *info = data;
2301 vm_pindex_t rel_index;
2303 * don't allow an madvise to blow away our really
2304 * free pages allocating pv entries.
2306 if ((info->limit & MAP_PREFAULT_MADVISE) &&
2307 vmstats.v_free_count < vmstats.v_free_reserved) {
2308 return(-1);
2310 if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2311 (p->busy == 0) && (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2312 if ((p->queue - p->pc) == PQ_CACHE)
2313 vm_page_deactivate(p);
2314 vm_page_busy(p);
2315 rel_index = p->pindex - info->start_pindex;
2316 pmap_enter_quick(info->pmap,
2317 info->addr + i386_ptob(rel_index), p);
2318 vm_page_wakeup(p);
2320 return(0);
2324 * pmap_prefault provides a quick way of clustering pagefaults into a
2325 * processes address space. It is a "cousin" of pmap_object_init_pt,
2326 * except it runs at page fault time instead of mmap time.
2328 #define PFBAK 4
2329 #define PFFOR 4
2330 #define PAGEORDER_SIZE (PFBAK+PFFOR)
2332 static int pmap_prefault_pageorder[] = {
2333 -PAGE_SIZE, PAGE_SIZE,
2334 -2 * PAGE_SIZE, 2 * PAGE_SIZE,
2335 -3 * PAGE_SIZE, 3 * PAGE_SIZE,
2336 -4 * PAGE_SIZE, 4 * PAGE_SIZE
2339 void
2340 pmap_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
2342 int i;
2343 vm_offset_t starta;
2344 vm_offset_t addr;
2345 vm_pindex_t pindex;
2346 vm_page_t m;
2347 vm_object_t object;
2348 struct lwp *lp;
2351 * We do not currently prefault mappings that use virtual page
2352 * tables. We do not prefault foreign pmaps.
2354 if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2355 return;
2356 lp = curthread->td_lwp;
2357 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2358 return;
2360 object = entry->object.vm_object;
2362 starta = addra - PFBAK * PAGE_SIZE;
2363 if (starta < entry->start)
2364 starta = entry->start;
2365 else if (starta > addra)
2366 starta = 0;
2369 * critical section protection is required to maintain the
2370 * page/object association, interrupts can free pages and remove
2371 * them from their objects.
2373 crit_enter();
2374 for (i = 0; i < PAGEORDER_SIZE; i++) {
2375 vm_object_t lobject;
2376 unsigned *pte;
2378 addr = addra + pmap_prefault_pageorder[i];
2379 if (addr > addra + (PFFOR * PAGE_SIZE))
2380 addr = 0;
2382 if (addr < starta || addr >= entry->end)
2383 continue;
2385 if ((*pmap_pde(pmap, addr)) == 0)
2386 continue;
2388 pte = (unsigned *) vtopte(addr);
2389 if (*pte)
2390 continue;
2392 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2393 lobject = object;
2395 for (m = vm_page_lookup(lobject, pindex);
2396 (!m && (lobject->type == OBJT_DEFAULT) &&
2397 (lobject->backing_object));
2398 lobject = lobject->backing_object
2400 if (lobject->backing_object_offset & PAGE_MASK)
2401 break;
2402 pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2403 m = vm_page_lookup(lobject->backing_object, pindex);
2407 * give-up when a page is not in memory
2409 if (m == NULL)
2410 break;
2412 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2413 (m->busy == 0) &&
2414 (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2416 if ((m->queue - m->pc) == PQ_CACHE) {
2417 vm_page_deactivate(m);
2419 vm_page_busy(m);
2420 pmap_enter_quick(pmap, addr, m);
2421 vm_page_wakeup(m);
2424 crit_exit();
2428 * Routine: pmap_change_wiring
2429 * Function: Change the wiring attribute for a map/virtual-address
2430 * pair.
2431 * In/out conditions:
2432 * The mapping must already exist in the pmap.
2434 void
2435 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2437 unsigned *pte;
2439 if (pmap == NULL)
2440 return;
2442 pte = pmap_pte(pmap, va);
2444 if (wired && !pmap_pte_w(pte))
2445 pmap->pm_stats.wired_count++;
2446 else if (!wired && pmap_pte_w(pte))
2447 pmap->pm_stats.wired_count--;
2450 * Wiring is not a hardware characteristic so there is no need to
2451 * invalidate TLB. However, in an SMP environment we must use
2452 * a locked bus cycle to update the pte (if we are not using
2453 * the pmap_inval_*() API that is)... it's ok to do this for simple
2454 * wiring changes.
2456 #ifdef SMP
2457 if (wired)
2458 atomic_set_int(pte, PG_W);
2459 else
2460 atomic_clear_int(pte, PG_W);
2461 #else
2462 if (wired)
2463 atomic_set_int_nonlocked(pte, PG_W);
2464 else
2465 atomic_clear_int_nonlocked(pte, PG_W);
2466 #endif
2472 * Copy the range specified by src_addr/len
2473 * from the source map to the range dst_addr/len
2474 * in the destination map.
2476 * This routine is only advisory and need not do anything.
2478 void
2479 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2480 vm_size_t len, vm_offset_t src_addr)
2482 pmap_inval_info info;
2483 vm_offset_t addr;
2484 vm_offset_t end_addr = src_addr + len;
2485 vm_offset_t pdnxt;
2486 unsigned src_frame, dst_frame;
2487 vm_page_t m;
2489 if (dst_addr != src_addr)
2490 return;
2492 * XXX BUGGY. Amoung other things srcmpte is assumed to remain
2493 * valid through blocking calls, and that's just not going to
2494 * be the case.
2496 * FIXME!
2498 return;
2500 src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2501 if (src_frame != (((unsigned) PTDpde) & PG_FRAME)) {
2502 return;
2505 dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2506 if (dst_frame != (((unsigned) APTDpde) & PG_FRAME)) {
2507 APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
2508 /* The page directory is not shared between CPUs */
2509 cpu_invltlb();
2511 pmap_inval_init(&info);
2512 pmap_inval_add(&info, dst_pmap, -1);
2513 pmap_inval_add(&info, src_pmap, -1);
2516 * critical section protection is required to maintain the page/object
2517 * association, interrupts can free pages and remove them from
2518 * their objects.
2520 crit_enter();
2521 for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2522 unsigned *src_pte, *dst_pte;
2523 vm_page_t dstmpte, srcmpte;
2524 vm_offset_t srcptepaddr;
2525 unsigned ptepindex;
2527 if (addr >= UPT_MIN_ADDRESS)
2528 panic("pmap_copy: invalid to pmap_copy page tables\n");
2531 * Don't let optional prefaulting of pages make us go
2532 * way below the low water mark of free pages or way
2533 * above high water mark of used pv entries.
2535 if (vmstats.v_free_count < vmstats.v_free_reserved ||
2536 pv_entry_count > pv_entry_high_water)
2537 break;
2539 pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2540 ptepindex = addr >> PDRSHIFT;
2542 srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
2543 if (srcptepaddr == 0)
2544 continue;
2546 if (srcptepaddr & PG_PS) {
2547 if (dst_pmap->pm_pdir[ptepindex] == 0) {
2548 dst_pmap->pm_pdir[ptepindex] = (pd_entry_t) srcptepaddr;
2549 dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2551 continue;
2554 srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2555 if ((srcmpte == NULL) || (srcmpte->hold_count == 0) ||
2556 (srcmpte->flags & PG_BUSY)) {
2557 continue;
2560 if (pdnxt > end_addr)
2561 pdnxt = end_addr;
2563 src_pte = (unsigned *) vtopte(addr);
2564 dst_pte = (unsigned *) avtopte(addr);
2565 while (addr < pdnxt) {
2566 unsigned ptetemp;
2568 ptetemp = *src_pte;
2570 * we only virtual copy managed pages
2572 if ((ptetemp & PG_MANAGED) != 0) {
2574 * We have to check after allocpte for the
2575 * pte still being around... allocpte can
2576 * block.
2578 * pmap_allocpte() can block. If we lose
2579 * our page directory mappings we stop.
2581 dstmpte = pmap_allocpte(dst_pmap, addr);
2583 if (src_frame != (((unsigned) PTDpde) & PG_FRAME) ||
2584 dst_frame != (((unsigned) APTDpde) & PG_FRAME)
2586 kprintf("WARNING: pmap_copy: detected and corrected race\n");
2587 pmap_unwire_pte_hold(dst_pmap, dstmpte, &info);
2588 goto failed;
2589 } else if ((*dst_pte == 0) &&
2590 (ptetemp = *src_pte) != 0 &&
2591 (ptetemp & PG_MANAGED)) {
2593 * Clear the modified and
2594 * accessed (referenced) bits
2595 * during the copy.
2597 m = PHYS_TO_VM_PAGE(ptetemp);
2598 *dst_pte = ptetemp & ~(PG_M | PG_A);
2599 ++dst_pmap->pm_stats.resident_count;
2600 pmap_insert_entry(dst_pmap, addr,
2601 dstmpte, m);
2602 KKASSERT(m->flags & PG_MAPPED);
2603 } else {
2604 kprintf("WARNING: pmap_copy: dst_pte race detected and corrected\n");
2605 pmap_unwire_pte_hold(dst_pmap, dstmpte, &info);
2606 goto failed;
2608 if (dstmpte->hold_count >= srcmpte->hold_count)
2609 break;
2611 addr += PAGE_SIZE;
2612 src_pte++;
2613 dst_pte++;
2616 failed:
2617 crit_exit();
2618 pmap_inval_flush(&info);
2622 * pmap_zero_page:
2624 * Zero the specified PA by mapping the page into KVM and clearing its
2625 * contents.
2627 * This function may be called from an interrupt and no locking is
2628 * required.
2630 void
2631 pmap_zero_page(vm_paddr_t phys)
2633 struct mdglobaldata *gd = mdcpu;
2635 crit_enter();
2636 if (*(int *)gd->gd_CMAP3)
2637 panic("pmap_zero_page: CMAP3 busy");
2638 *(int *)gd->gd_CMAP3 =
2639 PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2640 cpu_invlpg(gd->gd_CADDR3);
2642 #if defined(I686_CPU)
2643 if (cpu_class == CPUCLASS_686)
2644 i686_pagezero(gd->gd_CADDR3);
2645 else
2646 #endif
2647 bzero(gd->gd_CADDR3, PAGE_SIZE);
2648 *(int *) gd->gd_CMAP3 = 0;
2649 crit_exit();
2653 * pmap_page_assertzero:
2655 * Assert that a page is empty, panic if it isn't.
2657 void
2658 pmap_page_assertzero(vm_paddr_t phys)
2660 struct mdglobaldata *gd = mdcpu;
2661 int i;
2663 crit_enter();
2664 if (*(int *)gd->gd_CMAP3)
2665 panic("pmap_zero_page: CMAP3 busy");
2666 *(int *)gd->gd_CMAP3 =
2667 PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2668 cpu_invlpg(gd->gd_CADDR3);
2669 for (i = 0; i < PAGE_SIZE; i += 4) {
2670 if (*(int *)((char *)gd->gd_CADDR3 + i) != 0) {
2671 panic("pmap_page_assertzero() @ %p not zero!\n",
2672 (void *)gd->gd_CADDR3);
2675 *(int *) gd->gd_CMAP3 = 0;
2676 crit_exit();
2680 * pmap_zero_page:
2682 * Zero part of a physical page by mapping it into memory and clearing
2683 * its contents with bzero.
2685 * off and size may not cover an area beyond a single hardware page.
2687 void
2688 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
2690 struct mdglobaldata *gd = mdcpu;
2692 crit_enter();
2693 if (*(int *) gd->gd_CMAP3)
2694 panic("pmap_zero_page: CMAP3 busy");
2695 *(int *) gd->gd_CMAP3 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2696 cpu_invlpg(gd->gd_CADDR3);
2698 #if defined(I686_CPU)
2699 if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2700 i686_pagezero(gd->gd_CADDR3);
2701 else
2702 #endif
2703 bzero((char *)gd->gd_CADDR3 + off, size);
2704 *(int *) gd->gd_CMAP3 = 0;
2705 crit_exit();
2709 * pmap_copy_page:
2711 * Copy the physical page from the source PA to the target PA.
2712 * This function may be called from an interrupt. No locking
2713 * is required.
2715 void
2716 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
2718 struct mdglobaldata *gd = mdcpu;
2720 crit_enter();
2721 if (*(int *) gd->gd_CMAP1)
2722 panic("pmap_copy_page: CMAP1 busy");
2723 if (*(int *) gd->gd_CMAP2)
2724 panic("pmap_copy_page: CMAP2 busy");
2726 *(int *) gd->gd_CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2727 *(int *) gd->gd_CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2729 cpu_invlpg(gd->gd_CADDR1);
2730 cpu_invlpg(gd->gd_CADDR2);
2732 bcopy(gd->gd_CADDR1, gd->gd_CADDR2, PAGE_SIZE);
2734 *(int *) gd->gd_CMAP1 = 0;
2735 *(int *) gd->gd_CMAP2 = 0;
2736 crit_exit();
2740 * pmap_copy_page_frag:
2742 * Copy the physical page from the source PA to the target PA.
2743 * This function may be called from an interrupt. No locking
2744 * is required.
2746 void
2747 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
2749 struct mdglobaldata *gd = mdcpu;
2751 crit_enter();
2752 if (*(int *) gd->gd_CMAP1)
2753 panic("pmap_copy_page: CMAP1 busy");
2754 if (*(int *) gd->gd_CMAP2)
2755 panic("pmap_copy_page: CMAP2 busy");
2757 *(int *) gd->gd_CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2758 *(int *) gd->gd_CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2760 cpu_invlpg(gd->gd_CADDR1);
2761 cpu_invlpg(gd->gd_CADDR2);
2763 bcopy((char *)gd->gd_CADDR1 + (src & PAGE_MASK),
2764 (char *)gd->gd_CADDR2 + (dst & PAGE_MASK),
2765 bytes);
2767 *(int *) gd->gd_CMAP1 = 0;
2768 *(int *) gd->gd_CMAP2 = 0;
2769 crit_exit();
2773 * Returns true if the pmap's pv is one of the first
2774 * 16 pvs linked to from this page. This count may
2775 * be changed upwards or downwards in the future; it
2776 * is only necessary that true be returned for a small
2777 * subset of pmaps for proper page aging.
2779 boolean_t
2780 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2782 pv_entry_t pv;
2783 int loops = 0;
2785 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2786 return FALSE;
2788 crit_enter();
2790 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2791 if (pv->pv_pmap == pmap) {
2792 crit_exit();
2793 return TRUE;
2795 loops++;
2796 if (loops >= 16)
2797 break;
2799 crit_exit();
2800 return (FALSE);
2804 * Remove all pages from specified address space
2805 * this aids process exit speeds. Also, this code
2806 * is special cased for current process only, but
2807 * can have the more generic (and slightly slower)
2808 * mode enabled. This is much faster than pmap_remove
2809 * in the case of running down an entire address space.
2811 void
2812 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2814 struct lwp *lp;
2815 unsigned *pte, tpte;
2816 pv_entry_t pv, npv;
2817 vm_page_t m;
2818 pmap_inval_info info;
2819 int iscurrentpmap;
2820 int32_t save_generation;
2822 lp = curthread->td_lwp;
2823 if (lp && pmap == vmspace_pmap(lp->lwp_vmspace))
2824 iscurrentpmap = 1;
2825 else
2826 iscurrentpmap = 0;
2828 pmap_inval_init(&info);
2829 crit_enter();
2830 for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2831 if (pv->pv_va >= eva || pv->pv_va < sva) {
2832 npv = TAILQ_NEXT(pv, pv_plist);
2833 continue;
2836 KKASSERT(pmap == pv->pv_pmap);
2838 if (iscurrentpmap)
2839 pte = (unsigned *)vtopte(pv->pv_va);
2840 else
2841 pte = pmap_pte_quick(pmap, pv->pv_va);
2842 if (pmap->pm_active)
2843 pmap_inval_add(&info, pmap, pv->pv_va);
2846 * We cannot remove wired pages from a process' mapping
2847 * at this time
2849 if (*pte & PG_W) {
2850 npv = TAILQ_NEXT(pv, pv_plist);
2851 continue;
2853 tpte = loadandclear(pte);
2855 m = PHYS_TO_VM_PAGE(tpte);
2857 KASSERT(m < &vm_page_array[vm_page_array_size],
2858 ("pmap_remove_pages: bad tpte %x", tpte));
2860 KKASSERT(pmap->pm_stats.resident_count > 0);
2861 --pmap->pm_stats.resident_count;
2864 * Update the vm_page_t clean and reference bits.
2866 if (tpte & PG_M) {
2867 vm_page_dirty(m);
2870 npv = TAILQ_NEXT(pv, pv_plist);
2871 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2872 save_generation = ++pmap->pm_generation;
2874 m->md.pv_list_count--;
2875 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2876 if (TAILQ_EMPTY(&m->md.pv_list))
2877 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2879 pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem, &info);
2880 free_pv_entry(pv);
2883 * Restart the scan if we blocked during the unuse or free
2884 * calls and other removals were made.
2886 if (save_generation != pmap->pm_generation) {
2887 kprintf("Warning: pmap_remove_pages race-A avoided\n");
2888 pv = TAILQ_FIRST(&pmap->pm_pvlist);
2891 pmap_inval_flush(&info);
2892 crit_exit();
2896 * pmap_testbit tests bits in pte's
2897 * note that the testbit/clearbit routines are inline,
2898 * and a lot of things compile-time evaluate.
2900 static boolean_t
2901 pmap_testbit(vm_page_t m, int bit)
2903 pv_entry_t pv;
2904 unsigned *pte;
2906 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2907 return FALSE;
2909 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2910 return FALSE;
2912 crit_enter();
2914 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2916 * if the bit being tested is the modified bit, then
2917 * mark clean_map and ptes as never
2918 * modified.
2920 if (bit & (PG_A|PG_M)) {
2921 if (!pmap_track_modified(pv->pv_va))
2922 continue;
2925 #if defined(PMAP_DIAGNOSTIC)
2926 if (!pv->pv_pmap) {
2927 kprintf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2928 continue;
2930 #endif
2931 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2932 if (*pte & bit) {
2933 crit_exit();
2934 return TRUE;
2937 crit_exit();
2938 return (FALSE);
2942 * this routine is used to modify bits in ptes
2944 static __inline void
2945 pmap_clearbit(vm_page_t m, int bit)
2947 struct pmap_inval_info info;
2948 pv_entry_t pv;
2949 unsigned *pte;
2950 unsigned pbits;
2952 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2953 return;
2955 pmap_inval_init(&info);
2956 crit_enter();
2959 * Loop over all current mappings setting/clearing as appropos If
2960 * setting RO do we need to clear the VAC?
2962 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2964 * don't write protect pager mappings
2966 if (bit == PG_RW) {
2967 if (!pmap_track_modified(pv->pv_va))
2968 continue;
2971 #if defined(PMAP_DIAGNOSTIC)
2972 if (!pv->pv_pmap) {
2973 kprintf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2974 continue;
2976 #endif
2979 * Careful here. We can use a locked bus instruction to
2980 * clear PG_A or PG_M safely but we need to synchronize
2981 * with the target cpus when we mess with PG_RW.
2983 * We do not have to force synchronization when clearing
2984 * PG_M even for PTEs generated via virtual memory maps,
2985 * because the virtual kernel will invalidate the pmap
2986 * entry when/if it needs to resynchronize the Modify bit.
2988 if (bit & PG_RW)
2989 pmap_inval_add(&info, pv->pv_pmap, pv->pv_va);
2990 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2991 again:
2992 pbits = *pte;
2993 if (pbits & bit) {
2994 if (bit == PG_RW) {
2995 if (pbits & PG_M) {
2996 vm_page_dirty(m);
2997 atomic_clear_int(pte, PG_M|PG_RW);
2998 } else {
3000 * The cpu may be trying to set PG_M
3001 * simultaniously with our clearing
3002 * of PG_RW.
3004 if (!atomic_cmpset_int(pte, pbits,
3005 pbits & ~PG_RW))
3006 goto again;
3008 } else if (bit == PG_M) {
3010 * We could also clear PG_RW here to force
3011 * a fault on write to redetect PG_M for
3012 * virtual kernels, but it isn't necessary
3013 * since virtual kernels invalidate the pte
3014 * when they clear the VPTE_M bit in their
3015 * virtual page tables.
3017 atomic_clear_int(pte, PG_M);
3018 } else {
3019 atomic_clear_int(pte, bit);
3023 pmap_inval_flush(&info);
3024 crit_exit();
3028 * pmap_page_protect:
3030 * Lower the permission for all mappings to a given page.
3032 void
3033 pmap_page_protect(vm_page_t m, vm_prot_t prot)
3035 if ((prot & VM_PROT_WRITE) == 0) {
3036 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3037 pmap_clearbit(m, PG_RW);
3038 vm_page_flag_clear(m, PG_WRITEABLE);
3039 } else {
3040 pmap_remove_all(m);
3045 vm_paddr_t
3046 pmap_phys_address(vm_pindex_t ppn)
3048 return (i386_ptob(ppn));
3052 * pmap_ts_referenced:
3054 * Return a count of reference bits for a page, clearing those bits.
3055 * It is not necessary for every reference bit to be cleared, but it
3056 * is necessary that 0 only be returned when there are truly no
3057 * reference bits set.
3059 * XXX: The exact number of bits to check and clear is a matter that
3060 * should be tested and standardized at some point in the future for
3061 * optimal aging of shared pages.
3064 pmap_ts_referenced(vm_page_t m)
3066 pv_entry_t pv, pvf, pvn;
3067 unsigned *pte;
3068 int rtval = 0;
3070 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3071 return (rtval);
3073 crit_enter();
3075 if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3077 pvf = pv;
3079 do {
3080 pvn = TAILQ_NEXT(pv, pv_list);
3082 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3084 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3086 if (!pmap_track_modified(pv->pv_va))
3087 continue;
3089 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3091 if (pte && (*pte & PG_A)) {
3092 #ifdef SMP
3093 atomic_clear_int(pte, PG_A);
3094 #else
3095 atomic_clear_int_nonlocked(pte, PG_A);
3096 #endif
3097 rtval++;
3098 if (rtval > 4) {
3099 break;
3102 } while ((pv = pvn) != NULL && pv != pvf);
3104 crit_exit();
3106 return (rtval);
3110 * pmap_is_modified:
3112 * Return whether or not the specified physical page was modified
3113 * in any physical maps.
3115 boolean_t
3116 pmap_is_modified(vm_page_t m)
3118 return pmap_testbit(m, PG_M);
3122 * Clear the modify bits on the specified physical page.
3124 void
3125 pmap_clear_modify(vm_page_t m)
3127 pmap_clearbit(m, PG_M);
3131 * pmap_clear_reference:
3133 * Clear the reference bit on the specified physical page.
3135 void
3136 pmap_clear_reference(vm_page_t m)
3138 pmap_clearbit(m, PG_A);
3142 * Miscellaneous support routines follow
3145 static void
3146 i386_protection_init(void)
3148 int *kp, prot;
3150 kp = protection_codes;
3151 for (prot = 0; prot < 8; prot++) {
3152 switch (prot) {
3153 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3155 * Read access is also 0. There isn't any execute bit,
3156 * so just make it readable.
3158 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3159 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3160 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3161 *kp++ = 0;
3162 break;
3163 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3164 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3165 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3166 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3167 *kp++ = PG_RW;
3168 break;
3174 * Map a set of physical memory pages into the kernel virtual
3175 * address space. Return a pointer to where it is mapped. This
3176 * routine is intended to be used for mapping device memory,
3177 * NOT real memory.
3179 * NOTE: we can't use pgeflag unless we invalidate the pages one at
3180 * a time.
3182 void *
3183 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3185 vm_offset_t va, tmpva, offset;
3186 unsigned *pte;
3188 offset = pa & PAGE_MASK;
3189 size = roundup(offset + size, PAGE_SIZE);
3191 va = kmem_alloc_nofault(&kernel_map, size);
3192 if (!va)
3193 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3195 pa = pa & PG_FRAME;
3196 for (tmpva = va; size > 0;) {
3197 pte = (unsigned *)vtopte(tmpva);
3198 *pte = pa | PG_RW | PG_V; /* | pgeflag; */
3199 size -= PAGE_SIZE;
3200 tmpva += PAGE_SIZE;
3201 pa += PAGE_SIZE;
3203 cpu_invltlb();
3204 smp_invltlb();
3206 return ((void *)(va + offset));
3209 void
3210 pmap_unmapdev(vm_offset_t va, vm_size_t size)
3212 vm_offset_t base, offset;
3214 base = va & PG_FRAME;
3215 offset = va & PAGE_MASK;
3216 size = roundup(offset + size, PAGE_SIZE);
3217 pmap_qremove(va, size >> PAGE_SHIFT);
3218 kmem_free(&kernel_map, base, size);
3222 * perform the pmap work for mincore
3225 pmap_mincore(pmap_t pmap, vm_offset_t addr)
3227 unsigned *ptep, pte;
3228 vm_page_t m;
3229 int val = 0;
3231 ptep = pmap_pte(pmap, addr);
3232 if (ptep == 0) {
3233 return 0;
3236 if ((pte = *ptep) != 0) {
3237 vm_offset_t pa;
3239 val = MINCORE_INCORE;
3240 if ((pte & PG_MANAGED) == 0)
3241 return val;
3243 pa = pte & PG_FRAME;
3245 m = PHYS_TO_VM_PAGE(pa);
3248 * Modified by us
3250 if (pte & PG_M)
3251 val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3253 * Modified by someone
3255 else if (m->dirty || pmap_is_modified(m))
3256 val |= MINCORE_MODIFIED_OTHER;
3258 * Referenced by us
3260 if (pte & PG_A)
3261 val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3264 * Referenced by someone
3266 else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3267 val |= MINCORE_REFERENCED_OTHER;
3268 vm_page_flag_set(m, PG_REFERENCED);
3271 return val;
3275 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
3276 * vmspace will be ref'd and the old one will be deref'd.
3278 * The vmspace for all lwps associated with the process will be adjusted
3279 * and cr3 will be reloaded if any lwp is the current lwp.
3281 void
3282 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3284 struct vmspace *oldvm;
3285 struct lwp *lp;
3287 crit_enter();
3288 oldvm = p->p_vmspace;
3289 if (oldvm != newvm) {
3290 p->p_vmspace = newvm;
3291 KKASSERT(p->p_nthreads == 1);
3292 lp = RB_ROOT(&p->p_lwp_tree);
3293 pmap_setlwpvm(lp, newvm);
3294 if (adjrefs) {
3295 sysref_get(&newvm->vm_sysref);
3296 sysref_put(&oldvm->vm_sysref);
3299 crit_exit();
3303 * Set the vmspace for a LWP. The vmspace is almost universally set the
3304 * same as the process vmspace, but virtual kernels need to swap out contexts
3305 * on a per-lwp basis.
3307 void
3308 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3310 struct vmspace *oldvm;
3311 struct pmap *pmap;
3313 crit_enter();
3314 oldvm = lp->lwp_vmspace;
3316 if (oldvm != newvm) {
3317 lp->lwp_vmspace = newvm;
3318 if (curthread->td_lwp == lp) {
3319 pmap = vmspace_pmap(newvm);
3320 #if defined(SMP)
3321 atomic_set_int(&pmap->pm_active, 1 << mycpu->gd_cpuid);
3322 #else
3323 pmap->pm_active |= 1;
3324 #endif
3325 #if defined(SWTCH_OPTIM_STATS)
3326 tlb_flush_count++;
3327 #endif
3328 curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pdir);
3329 load_cr3(curthread->td_pcb->pcb_cr3);
3330 pmap = vmspace_pmap(oldvm);
3331 #if defined(SMP)
3332 atomic_clear_int(&pmap->pm_active,
3333 1 << mycpu->gd_cpuid);
3334 #else
3335 pmap->pm_active &= ~1;
3336 #endif
3339 crit_exit();
3342 vm_offset_t
3343 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3346 if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3347 return addr;
3350 addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3351 return addr;
3355 #if defined(DEBUG)
3357 static void pads (pmap_t pm);
3358 void pmap_pvdump (vm_paddr_t pa);
3360 /* print address space of pmap*/
3361 static void
3362 pads(pmap_t pm)
3364 unsigned va, i, j;
3365 unsigned *ptep;
3367 if (pm == &kernel_pmap)
3368 return;
3369 crit_enter();
3370 for (i = 0; i < 1024; i++) {
3371 if (pm->pm_pdir[i]) {
3372 for (j = 0; j < 1024; j++) {
3373 va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3374 if (pm == &kernel_pmap && va < KERNBASE)
3375 continue;
3376 if (pm != &kernel_pmap && va > UPT_MAX_ADDRESS)
3377 continue;
3378 ptep = pmap_pte_quick(pm, va);
3379 if (pmap_pte_v(ptep))
3380 kprintf("%x:%x ", va, *(int *) ptep);
3384 crit_exit();
3388 void
3389 pmap_pvdump(vm_paddr_t pa)
3391 pv_entry_t pv;
3392 vm_page_t m;
3394 kprintf("pa %08llx", (long long)pa);
3395 m = PHYS_TO_VM_PAGE(pa);
3396 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3397 #ifdef used_to_be
3398 kprintf(" -> pmap %p, va %x, flags %x",
3399 (void *)pv->pv_pmap, pv->pv_va, pv->pv_flags);
3400 #endif
3401 kprintf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3402 pads(pv->pv_pmap);
3404 kprintf(" ");
3406 #endif