mbr: convert to preprocessed source
[dragonfly.git] / sys / vm / vnode_pager.c
blob061ce6cb72fdeef1472b58447405df61f04660e5
1 /*
2 * Copyright (c) 1990 University of Utah.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 * Copyright (c) 1993, 1994 John S. Dyson
6 * Copyright (c) 1995, David Greenman
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91
41 * $FreeBSD: src/sys/vm/vnode_pager.c,v 1.116.2.7 2002/12/31 09:34:51 dillon Exp $
42 * $DragonFly: src/sys/vm/vnode_pager.c,v 1.43 2008/06/19 23:27:39 dillon Exp $
46 * Page to/from files (vnodes).
50 * TODO:
51 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
52 * greatly re-simplify the vnode_pager.
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/vnode.h>
60 #include <sys/mount.h>
61 #include <sys/buf.h>
62 #include <sys/vmmeter.h>
63 #include <sys/conf.h>
64 #include <sys/sfbuf.h>
65 #include <sys/thread2.h>
67 #include <vm/vm.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_page.h>
70 #include <vm/vm_pager.h>
71 #include <vm/vm_map.h>
72 #include <vm/vnode_pager.h>
73 #include <vm/vm_extern.h>
75 static void vnode_pager_dealloc (vm_object_t);
76 static int vnode_pager_getpages (vm_object_t, vm_page_t *, int, int);
77 static void vnode_pager_putpages (vm_object_t, vm_page_t *, int, boolean_t, int *);
78 static boolean_t vnode_pager_haspage (vm_object_t, vm_pindex_t, int *, int *);
80 struct pagerops vnodepagerops = {
81 NULL,
82 vnode_pager_alloc,
83 vnode_pager_dealloc,
84 vnode_pager_getpages,
85 vnode_pager_putpages,
86 vnode_pager_haspage,
87 NULL
90 static struct krate vbadrate = { 1 };
91 static struct krate vresrate = { 1 };
93 int vnode_pbuf_freecnt = -1; /* start out unlimited */
96 * Allocate (or lookup) pager for a vnode.
97 * Handle is a vnode pointer.
99 vm_object_t
100 vnode_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
102 vm_object_t object;
103 struct vnode *vp;
106 * Pageout to vnode, no can do yet.
108 if (handle == NULL)
109 return (NULL);
112 * XXX hack - This initialization should be put somewhere else.
114 if (vnode_pbuf_freecnt < 0) {
115 vnode_pbuf_freecnt = nswbuf / 2 + 1;
118 vp = (struct vnode *) handle;
121 * Prevent race condition when allocating the object. This
122 * can happen with NFS vnodes since the nfsnode isn't locked.
124 while (vp->v_flag & VOLOCK) {
125 vp->v_flag |= VOWANT;
126 tsleep(vp, 0, "vnpobj", 0);
128 vp->v_flag |= VOLOCK;
131 * If the object is being terminated, wait for it to
132 * go away.
134 while (((object = vp->v_object) != NULL) &&
135 (object->flags & OBJ_DEAD)) {
136 vm_object_dead_sleep(object, "vadead");
139 if (vp->v_sysref.refcnt <= 0)
140 panic("vnode_pager_alloc: no vnode reference");
142 if (object == NULL) {
144 * And an object of the appropriate size
146 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
147 object->flags = 0;
148 object->handle = handle;
149 vp->v_object = object;
150 vp->v_filesize = size;
151 } else {
152 object->ref_count++;
153 if (vp->v_filesize != size)
154 kprintf("vnode_pager_alloc: Warning, filesize mismatch %lld/%lld\n", vp->v_filesize, size);
156 vref(vp);
158 vp->v_flag &= ~VOLOCK;
159 if (vp->v_flag & VOWANT) {
160 vp->v_flag &= ~VOWANT;
161 wakeup(vp);
163 return (object);
166 static void
167 vnode_pager_dealloc(vm_object_t object)
169 struct vnode *vp = object->handle;
171 if (vp == NULL)
172 panic("vnode_pager_dealloc: pager already dealloced");
174 vm_object_pip_wait(object, "vnpdea");
176 object->handle = NULL;
177 object->type = OBJT_DEAD;
178 vp->v_object = NULL;
179 vp->v_filesize = NOOFFSET;
180 vp->v_flag &= ~(VTEXT | VOBJBUF);
184 * Return whether the vnode pager has the requested page. Return the
185 * number of disk-contiguous pages before and after the requested page,
186 * not including the requested page.
188 static boolean_t
189 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
190 int *after)
192 struct vnode *vp = object->handle;
193 off_t loffset;
194 off_t doffset;
195 int voff;
196 int bsize;
197 int error;
200 * If no vp or vp is doomed or marked transparent to VM, we do not
201 * have the page.
203 if ((vp == NULL) || (vp->v_flag & VRECLAIMED))
204 return FALSE;
207 * If filesystem no longer mounted or offset beyond end of file we do
208 * not have the page.
210 loffset = IDX_TO_OFF(pindex);
212 if (vp->v_mount == NULL || loffset >= vp->v_filesize)
213 return FALSE;
215 bsize = vp->v_mount->mnt_stat.f_iosize;
216 voff = loffset % bsize;
219 * BMAP returns byte counts before and after, where after
220 * is inclusive of the base page. haspage must return page
221 * counts before and after where after does not include the
222 * base page.
224 * BMAP is allowed to return a *after of 0 for backwards
225 * compatibility. The base page is still considered valid if
226 * no error is returned.
228 error = VOP_BMAP(vp, loffset - voff, &doffset, after, before, 0);
229 if (error) {
230 if (before)
231 *before = 0;
232 if (after)
233 *after = 0;
234 return TRUE;
236 if (doffset == NOOFFSET)
237 return FALSE;
239 if (before) {
240 *before = (*before + voff) >> PAGE_SHIFT;
242 if (after) {
243 *after -= voff;
244 if (loffset + *after > vp->v_filesize)
245 *after = vp->v_filesize - loffset;
246 *after >>= PAGE_SHIFT;
247 if (*after < 0)
248 *after = 0;
250 return TRUE;
254 * Lets the VM system know about a change in size for a file.
255 * We adjust our own internal size and flush any cached pages in
256 * the associated object that are affected by the size change.
258 * NOTE: This routine may be invoked as a result of a pager put
259 * operation (possibly at object termination time), so we must be careful.
261 * NOTE: vp->v_filesize is initialized to NOOFFSET (-1), be sure that
262 * we do not blow up on the case. nsize will always be >= 0, however.
264 void
265 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
267 vm_pindex_t nobjsize;
268 vm_pindex_t oobjsize;
269 vm_object_t object = vp->v_object;
271 if (object == NULL)
272 return;
275 * Hasn't changed size
277 if (nsize == vp->v_filesize)
278 return;
281 * Has changed size. Adjust the VM object's size and v_filesize
282 * before we start scanning pages to prevent new pages from being
283 * allocated during the scan.
285 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
286 oobjsize = object->size;
287 object->size = nobjsize;
290 * File has shrunk. Toss any cached pages beyond the new EOF.
292 if (nsize < vp->v_filesize) {
293 vp->v_filesize = nsize;
294 if (nobjsize < oobjsize) {
295 vm_object_page_remove(object, nobjsize, oobjsize,
296 FALSE);
299 * This gets rid of garbage at the end of a page that is now
300 * only partially backed by the vnode. Since we are setting
301 * the entire page valid & clean after we are done we have
302 * to be sure that the portion of the page within the file
303 * bounds is already valid. If it isn't then making it
304 * valid would create a corrupt block.
306 if (nsize & PAGE_MASK) {
307 vm_offset_t kva;
308 vm_page_t m;
310 do {
311 m = vm_page_lookup(object, OFF_TO_IDX(nsize));
312 } while (m && vm_page_sleep_busy(m, TRUE, "vsetsz"));
314 if (m && m->valid) {
315 int base = (int)nsize & PAGE_MASK;
316 int size = PAGE_SIZE - base;
317 struct sf_buf *sf;
320 * Clear out partial-page garbage in case
321 * the page has been mapped.
323 vm_page_busy(m);
324 sf = sf_buf_alloc(m, SFB_CPUPRIVATE);
325 kva = sf_buf_kva(sf);
326 bzero((caddr_t)kva + base, size);
327 sf_buf_free(sf);
330 * XXX work around SMP data integrity race
331 * by unmapping the page from user processes.
332 * The garbage we just cleared may be mapped
333 * to a user process running on another cpu
334 * and this code is not running through normal
335 * I/O channels which handle SMP issues for
336 * us, so unmap page to synchronize all cpus.
338 * XXX should vm_pager_unmap_page() have
339 * dealt with this?
341 vm_page_protect(m, VM_PROT_NONE);
344 * Clear out partial-page dirty bits. This
345 * has the side effect of setting the valid
346 * bits, but that is ok. There are a bunch
347 * of places in the VM system where we expected
348 * m->dirty == VM_PAGE_BITS_ALL. The file EOF
349 * case is one of them. If the page is still
350 * partially dirty, make it fully dirty.
352 * note that we do not clear out the valid
353 * bits. This would prevent bogus_page
354 * replacement from working properly.
356 vm_page_set_validclean(m, base, size);
357 if (m->dirty != 0)
358 m->dirty = VM_PAGE_BITS_ALL;
359 vm_page_wakeup(m);
362 } else {
363 vp->v_filesize = nsize;
368 * Release a page busied for a getpages operation. The page may have become
369 * wired (typically due to being used by the buffer cache) or otherwise been
370 * soft-busied and cannot be freed in that case. A held page can still be
371 * freed.
373 void
374 vnode_pager_freepage(vm_page_t m)
376 if (m->busy || m->wire_count) {
377 vm_page_activate(m);
378 vm_page_wakeup(m);
379 } else {
380 vm_page_free(m);
385 * EOPNOTSUPP is no longer legal. For local media VFS's that do not
386 * implement their own VOP_GETPAGES, their VOP_GETPAGES should call to
387 * vnode_pager_generic_getpages() to implement the previous behaviour.
389 * All other FS's should use the bypass to get to the local media
390 * backing vp's VOP_GETPAGES.
392 static int
393 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
395 int rtval;
396 struct vnode *vp;
397 int bytes = count * PAGE_SIZE;
399 vp = object->handle;
400 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
401 if (rtval == EOPNOTSUPP)
402 panic("vnode_pager: vfs's must implement vop_getpages\n");
403 return rtval;
407 * This is now called from local media FS's to operate against their
408 * own vnodes if they fail to implement VOP_GETPAGES.
410 * With all the caching local media devices do these days there is really
411 * very little point to attempting to restrict the I/O size to contiguous
412 * blocks on-disk, especially if our caller thinks we need all the specified
413 * pages. Just construct and issue a READ.
416 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int bytecount,
417 int reqpage)
419 struct iovec aiov;
420 struct uio auio;
421 off_t foff;
422 int error;
423 int count;
424 int i;
425 int ioflags;
428 * Do not do anything if the vnode is bad.
430 if (vp->v_mount == NULL)
431 return VM_PAGER_BAD;
434 * Calculate the number of pages. Since we are paging in whole
435 * pages, adjust bytecount to be an integral multiple of the page
436 * size. It will be clipped to the file EOF later on.
438 bytecount = round_page(bytecount);
439 count = bytecount / PAGE_SIZE;
442 * If we have a completely valid page available to us, we can
443 * clean up and return. Otherwise we have to re-read the
444 * media.
446 * Note that this does not work with NFS, so NFS has its own
447 * getpages routine. The problem is that NFS can have partially
448 * valid pages associated with the buffer cache due to the piecemeal
449 * write support. If we were to fall through and re-read the media
450 * as we do here, dirty data could be lost.
452 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
453 for (i = 0; i < count; i++) {
454 if (i != reqpage)
455 vnode_pager_freepage(m[i]);
457 return VM_PAGER_OK;
461 * Discard pages past the file EOF. If the requested page is past
462 * the file EOF we just leave its valid bits set to 0, the caller
463 * expects to maintain ownership of the requested page. If the
464 * entire range is past file EOF discard everything and generate
465 * a pagein error.
467 foff = IDX_TO_OFF(m[0]->pindex);
468 if (foff >= vp->v_filesize) {
469 for (i = 0; i < count; i++) {
470 if (i != reqpage)
471 vnode_pager_freepage(m[i]);
473 return VM_PAGER_ERROR;
476 if (foff + bytecount > vp->v_filesize) {
477 bytecount = vp->v_filesize - foff;
478 i = round_page(bytecount) / PAGE_SIZE;
479 while (count > i) {
480 --count;
481 if (count != reqpage)
482 vnode_pager_freepage(m[count]);
487 * The size of the transfer is bytecount. bytecount will be an
488 * integral multiple of the page size unless it has been clipped
489 * to the file EOF. The transfer cannot exceed the file EOF.
491 * When dealing with real devices we must round-up to the device
492 * sector size.
494 if (vp->v_type == VBLK || vp->v_type == VCHR) {
495 int secmask = vp->v_rdev->si_bsize_phys - 1;
496 KASSERT(secmask < PAGE_SIZE, ("vnode_pager_generic_getpages: sector size %d too large\n", secmask + 1));
497 bytecount = (bytecount + secmask) & ~secmask;
501 * Severe hack to avoid deadlocks with the buffer cache
503 for (i = 0; i < count; ++i) {
504 vm_page_t mt = m[i];
506 vm_page_io_start(mt);
507 vm_page_wakeup(mt);
511 * Issue the I/O without any read-ahead
513 ioflags = IO_VMIO;
514 /*ioflags |= IO_SEQMAX << IO_SEQSHIFT;*/
516 aiov.iov_base = (caddr_t) 0;
517 aiov.iov_len = bytecount;
518 auio.uio_iov = &aiov;
519 auio.uio_iovcnt = 1;
520 auio.uio_offset = foff;
521 auio.uio_segflg = UIO_NOCOPY;
522 auio.uio_rw = UIO_READ;
523 auio.uio_resid = bytecount;
524 auio.uio_td = NULL;
525 mycpu->gd_cnt.v_vnodein++;
526 mycpu->gd_cnt.v_vnodepgsin += count;
528 error = VOP_READ(vp, &auio, ioflags, proc0.p_ucred);
531 * Severe hack to avoid deadlocks with the buffer cache
533 for (i = 0; i < count; ++i) {
534 vm_page_t mt = m[i];
536 while (vm_page_sleep_busy(mt, FALSE, "getpgs"))
538 vm_page_busy(mt);
539 vm_page_io_finish(mt);
543 * Calculate the actual number of bytes read and clean up the
544 * page list.
546 bytecount -= auio.uio_resid;
548 for (i = 0; i < count; ++i) {
549 vm_page_t mt = m[i];
551 if (i != reqpage) {
552 if (error == 0 && mt->valid) {
553 if (mt->flags & PG_WANTED)
554 vm_page_activate(mt);
555 else
556 vm_page_deactivate(mt);
557 vm_page_wakeup(mt);
558 } else {
559 vnode_pager_freepage(mt);
561 } else if (mt->valid == 0) {
562 if (error == 0) {
563 kprintf("page failed but no I/O error page %p object %p pindex %d\n", mt, mt->object, (int) mt->pindex);
564 /* whoops, something happened */
565 error = EINVAL;
567 } else if (mt->valid != VM_PAGE_BITS_ALL) {
569 * Zero-extend the requested page if necessary (if
570 * the filesystem is using a small block size).
572 vm_page_zero_invalid(mt, TRUE);
575 if (error) {
576 kprintf("vnode_pager_getpages: I/O read error\n");
578 return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
582 * EOPNOTSUPP is no longer legal. For local media VFS's that do not
583 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
584 * vnode_pager_generic_putpages() to implement the previous behaviour.
586 * All other FS's should use the bypass to get to the local media
587 * backing vp's VOP_PUTPAGES.
589 static void
590 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
591 boolean_t sync, int *rtvals)
593 int rtval;
594 struct vnode *vp;
595 int bytes = count * PAGE_SIZE;
598 * Force synchronous operation if we are extremely low on memory
599 * to prevent a low-memory deadlock. VOP operations often need to
600 * allocate more memory to initiate the I/O ( i.e. do a BMAP
601 * operation ). The swapper handles the case by limiting the amount
602 * of asynchronous I/O, but that sort of solution doesn't scale well
603 * for the vnode pager without a lot of work.
605 * Also, the backing vnode's iodone routine may not wake the pageout
606 * daemon up. This should be probably be addressed XXX.
609 if ((vmstats.v_free_count + vmstats.v_cache_count) < vmstats.v_pageout_free_min)
610 sync |= OBJPC_SYNC;
613 * Call device-specific putpages function
616 vp = object->handle;
617 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
618 if (rtval == EOPNOTSUPP) {
619 kprintf("vnode_pager: *** WARNING *** stale FS putpages\n");
620 rtval = vnode_pager_generic_putpages( vp, m, bytes, sync, rtvals);
626 * This is now called from local media FS's to operate against their
627 * own vnodes if they fail to implement VOP_PUTPAGES.
629 * This is typically called indirectly via the pageout daemon and
630 * clustering has already typically occured, so in general we ask the
631 * underlying filesystem to write the data out asynchronously rather
632 * then delayed.
635 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *m, int bytecount,
636 int flags, int *rtvals)
638 int i;
639 vm_object_t object;
640 int count;
642 int maxsize, ncount;
643 vm_ooffset_t poffset;
644 struct uio auio;
645 struct iovec aiov;
646 int error;
647 int ioflags;
649 object = vp->v_object;
650 count = bytecount / PAGE_SIZE;
652 for (i = 0; i < count; i++)
653 rtvals[i] = VM_PAGER_AGAIN;
655 if ((int) m[0]->pindex < 0) {
656 kprintf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%x)\n",
657 (long)m[0]->pindex, m[0]->dirty);
658 rtvals[0] = VM_PAGER_BAD;
659 return VM_PAGER_BAD;
662 maxsize = count * PAGE_SIZE;
663 ncount = count;
665 poffset = IDX_TO_OFF(m[0]->pindex);
668 * If the page-aligned write is larger then the actual file we
669 * have to invalidate pages occuring beyond the file EOF. However,
670 * there is an edge case where a file may not be page-aligned where
671 * the last page is partially invalid. In this case the filesystem
672 * may not properly clear the dirty bits for the entire page (which
673 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
674 * With the page locked we are free to fix-up the dirty bits here.
676 * We do not under any circumstances truncate the valid bits, as
677 * this will screw up bogus page replacement.
679 * The caller has already read-protected the pages. The VFS must
680 * use the buffer cache to wrap the pages. The pages might not
681 * be immediately flushed by the buffer cache but once under its
682 * control the pages themselves can wind up being marked clean
683 * and their covering buffer cache buffer can be marked dirty.
685 if (maxsize + poffset > vp->v_filesize) {
686 if (vp->v_filesize > poffset) {
687 int pgoff;
689 maxsize = vp->v_filesize - poffset;
690 ncount = btoc(maxsize);
691 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
692 vm_page_clear_dirty(m[ncount - 1], pgoff,
693 PAGE_SIZE - pgoff);
695 } else {
696 maxsize = 0;
697 ncount = 0;
699 if (ncount < count) {
700 for (i = ncount; i < count; i++) {
701 rtvals[i] = VM_PAGER_BAD;
707 * pageouts are already clustered, use IO_ASYNC to force a bawrite()
708 * rather then a bdwrite() to prevent paging I/O from saturating
709 * the buffer cache. Dummy-up the sequential heuristic to cause
710 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set,
711 * the system decides how to cluster.
713 ioflags = IO_VMIO;
714 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
715 ioflags |= IO_SYNC;
716 else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
717 ioflags |= IO_ASYNC;
718 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
719 ioflags |= IO_SEQMAX << IO_SEQSHIFT;
721 aiov.iov_base = (caddr_t) 0;
722 aiov.iov_len = maxsize;
723 auio.uio_iov = &aiov;
724 auio.uio_iovcnt = 1;
725 auio.uio_offset = poffset;
726 auio.uio_segflg = UIO_NOCOPY;
727 auio.uio_rw = UIO_WRITE;
728 auio.uio_resid = maxsize;
729 auio.uio_td = NULL;
730 error = VOP_WRITE(vp, &auio, ioflags, proc0.p_ucred);
731 mycpu->gd_cnt.v_vnodeout++;
732 mycpu->gd_cnt.v_vnodepgsout += ncount;
734 if (error) {
735 krateprintf(&vbadrate,
736 "vnode_pager_putpages: I/O error %d\n", error);
738 if (auio.uio_resid) {
739 krateprintf(&vresrate,
740 "vnode_pager_putpages: residual I/O %d at %lu\n",
741 auio.uio_resid, (u_long)m[0]->pindex);
743 for (i = 0; i < ncount; i++)
744 rtvals[i] = VM_PAGER_OK;
745 return rtvals[0];
748 struct vnode *
749 vnode_pager_lock(vm_object_t object)
751 struct thread *td = curthread; /* XXX */
752 int error;
754 for (; object != NULL; object = object->backing_object) {
755 if (object->type != OBJT_VNODE)
756 continue;
757 if (object->flags & OBJ_DEAD)
758 return NULL;
760 for (;;) {
761 struct vnode *vp = object->handle;
762 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
763 if (error == 0) {
764 if (object->handle != vp) {
765 vput(vp);
766 continue;
768 return (vp);
770 if ((object->flags & OBJ_DEAD) ||
771 (object->type != OBJT_VNODE)) {
772 return NULL;
774 kprintf("vnode_pager_lock: vp %p error %d lockstatus %d, retrying\n", vp, error, lockstatus(&vp->v_lock, td));
775 tsleep(object->handle, 0, "vnpgrl", hz);
778 return NULL;