tools - Fix backup file permissions for hammer-backup.sh
[dragonfly.git] / sys / kern / kern_clock.c
blob0ec5edc57439f55d8fb9d8a152479d609700cadc
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
67 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
68 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
71 #include "opt_ntp.h"
72 #include "opt_ifpoll.h"
73 #include "opt_pctrack.h"
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/callout.h>
78 #include <sys/kernel.h>
79 #include <sys/kinfo.h>
80 #include <sys/proc.h>
81 #include <sys/malloc.h>
82 #include <sys/resource.h>
83 #include <sys/resourcevar.h>
84 #include <sys/signalvar.h>
85 #include <sys/timex.h>
86 #include <sys/timepps.h>
87 #include <vm/vm.h>
88 #include <sys/lock.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_extern.h>
92 #include <sys/sysctl.h>
94 #include <sys/thread2.h>
95 #include <sys/mplock2.h>
97 #include <machine/cpu.h>
98 #include <machine/limits.h>
99 #include <machine/smp.h>
100 #include <machine/cpufunc.h>
101 #include <machine/specialreg.h>
102 #include <machine/clock.h>
104 #ifdef GPROF
105 #include <sys/gmon.h>
106 #endif
108 #ifdef IFPOLL_ENABLE
109 extern void ifpoll_init_pcpu(int);
110 #endif
112 #ifdef DEBUG_PCTRACK
113 static void do_pctrack(struct intrframe *frame, int which);
114 #endif
116 static void initclocks (void *dummy);
117 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
120 * Some of these don't belong here, but it's easiest to concentrate them.
121 * Note that cpu_time counts in microseconds, but most userland programs
122 * just compare relative times against the total by delta.
124 struct kinfo_cputime cputime_percpu[MAXCPU];
125 #ifdef DEBUG_PCTRACK
126 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
127 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
128 #endif
130 static int
131 sysctl_cputime(SYSCTL_HANDLER_ARGS)
133 int cpu, error = 0;
134 size_t size = sizeof(struct kinfo_cputime);
136 for (cpu = 0; cpu < ncpus; ++cpu) {
137 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
138 break;
141 return (error);
143 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
144 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
146 static int
147 sysctl_cp_time(SYSCTL_HANDLER_ARGS)
149 long cpu_states[5] = {0};
150 int cpu, error = 0;
151 size_t size = sizeof(cpu_states);
153 for (cpu = 0; cpu < ncpus; ++cpu) {
154 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user;
155 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice;
156 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys;
157 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr;
158 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle;
161 error = SYSCTL_OUT(req, cpu_states, size);
163 return (error);
166 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0,
167 sysctl_cp_time, "LU", "CPU time statistics");
170 * boottime is used to calculate the 'real' uptime. Do not confuse this with
171 * microuptime(). microtime() is not drift compensated. The real uptime
172 * with compensation is nanotime() - bootime. boottime is recalculated
173 * whenever the real time is set based on the compensated elapsed time
174 * in seconds (gd->gd_time_seconds).
176 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
177 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
178 * the real time.
180 struct timespec boottime; /* boot time (realtime) for reference only */
181 time_t time_second; /* read-only 'passive' uptime in seconds */
182 time_t time_uptime; /* read-only 'passive' uptime in seconds */
185 * basetime is used to calculate the compensated real time of day. The
186 * basetime can be modified on a per-tick basis by the adjtime(),
187 * ntp_adjtime(), and sysctl-based time correction APIs.
189 * Note that frequency corrections can also be made by adjusting
190 * gd_cpuclock_base.
192 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
193 * used on both SMP and UP systems to avoid MP races between cpu's and
194 * interrupt races on UP systems.
196 #define BASETIME_ARYSIZE 16
197 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
198 static struct timespec basetime[BASETIME_ARYSIZE];
199 static volatile int basetime_index;
201 static int
202 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
204 struct timespec *bt;
205 int error;
206 int index;
209 * Because basetime data and index may be updated by another cpu,
210 * a load fence is required to ensure that the data we read has
211 * not been speculatively read relative to a possibly updated index.
213 index = basetime_index;
214 cpu_lfence();
215 bt = &basetime[index];
216 error = SYSCTL_OUT(req, bt, sizeof(*bt));
217 return (error);
220 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
221 &boottime, timespec, "System boottime");
222 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
223 sysctl_get_basetime, "S,timespec", "System basetime");
225 static void hardclock(systimer_t info, int, struct intrframe *frame);
226 static void statclock(systimer_t info, int, struct intrframe *frame);
227 static void schedclock(systimer_t info, int, struct intrframe *frame);
228 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
230 int ticks; /* system master ticks at hz */
231 int clocks_running; /* tsleep/timeout clocks operational */
232 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
233 int64_t nsec_acc; /* accumulator */
234 int sched_ticks; /* global schedule clock ticks */
236 /* NTPD time correction fields */
237 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */
238 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */
239 int64_t ntp_delta; /* one-time correction in nsec */
240 int64_t ntp_big_delta = 1000000000;
241 int32_t ntp_tick_delta; /* current adjustment rate */
242 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */
243 time_t ntp_leap_second; /* time of next leap second */
244 int ntp_leap_insert; /* whether to insert or remove a second */
247 * Finish initializing clock frequencies and start all clocks running.
249 /* ARGSUSED*/
250 static void
251 initclocks(void *dummy)
253 /*psratio = profhz / stathz;*/
254 initclocks_pcpu();
255 clocks_running = 1;
259 * Called on a per-cpu basis from the idle thread bootstrap on each cpu
260 * during SMP initialization.
262 * This routine is called concurrently during low-level SMP initialization
263 * and may not block in any way. Meaning, among other things, we can't
264 * acquire any tokens.
266 void
267 initclocks_pcpu(void)
269 struct globaldata *gd = mycpu;
271 crit_enter();
272 if (gd->gd_cpuid == 0) {
273 gd->gd_time_seconds = 1;
274 gd->gd_cpuclock_base = sys_cputimer->count();
275 } else {
276 /* XXX */
277 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
278 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
281 systimer_intr_enable();
283 crit_exit();
287 * This routine is called on just the BSP, just after SMP initialization
288 * completes to * finish initializing any clocks that might contend/block
289 * (e.g. like on a token). We can't do this in initclocks_pcpu() because
290 * that function is called from the idle thread bootstrap for each cpu and
291 * not allowed to block at all.
293 static
294 void
295 initclocks_other(void *dummy)
297 struct globaldata *ogd = mycpu;
298 struct globaldata *gd;
299 int n;
301 for (n = 0; n < ncpus; ++n) {
302 lwkt_setcpu_self(globaldata_find(n));
303 gd = mycpu;
306 * Use a non-queued periodic systimer to prevent multiple
307 * ticks from building up if the sysclock jumps forward
308 * (8254 gets reset). The sysclock will never jump backwards.
309 * Our time sync is based on the actual sysclock, not the
310 * ticks count.
312 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock,
313 NULL, hz);
314 systimer_init_periodic_nq(&gd->gd_statclock, statclock,
315 NULL, stathz);
316 /* XXX correct the frequency for scheduler / estcpu tests */
317 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
318 NULL, ESTCPUFREQ);
319 #ifdef IFPOLL_ENABLE
320 ifpoll_init_pcpu(gd->gd_cpuid);
321 #endif
323 lwkt_setcpu_self(ogd);
325 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL)
328 * This sets the current real time of day. Timespecs are in seconds and
329 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
330 * instead we adjust basetime so basetime + gd_* results in the current
331 * time of day. This way the gd_* fields are guarenteed to represent
332 * a monotonically increasing 'uptime' value.
334 * When set_timeofday() is called from userland, the system call forces it
335 * onto cpu #0 since only cpu #0 can update basetime_index.
337 void
338 set_timeofday(struct timespec *ts)
340 struct timespec *nbt;
341 int ni;
344 * XXX SMP / non-atomic basetime updates
346 crit_enter();
347 ni = (basetime_index + 1) & BASETIME_ARYMASK;
348 nbt = &basetime[ni];
349 nanouptime(nbt);
350 nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
351 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
352 if (nbt->tv_nsec < 0) {
353 nbt->tv_nsec += 1000000000;
354 --nbt->tv_sec;
358 * Note that basetime diverges from boottime as the clock drift is
359 * compensated for, so we cannot do away with boottime. When setting
360 * the absolute time of day the drift is 0 (for an instant) and we
361 * can simply assign boottime to basetime.
363 * Note that nanouptime() is based on gd_time_seconds which is drift
364 * compensated up to a point (it is guarenteed to remain monotonically
365 * increasing). gd_time_seconds is thus our best uptime guess and
366 * suitable for use in the boottime calculation. It is already taken
367 * into account in the basetime calculation above.
369 boottime.tv_sec = nbt->tv_sec;
370 ntp_delta = 0;
373 * We now have a new basetime, make sure all other cpus have it,
374 * then update the index.
376 cpu_sfence();
377 basetime_index = ni;
379 crit_exit();
383 * Each cpu has its own hardclock, but we only increments ticks and softticks
384 * on cpu #0.
386 * NOTE! systimer! the MP lock might not be held here. We can only safely
387 * manipulate objects owned by the current cpu.
389 static void
390 hardclock(systimer_t info, int in_ipi __unused, struct intrframe *frame)
392 sysclock_t cputicks;
393 struct proc *p;
394 struct globaldata *gd = mycpu;
397 * Realtime updates are per-cpu. Note that timer corrections as
398 * returned by microtime() and friends make an additional adjustment
399 * using a system-wise 'basetime', but the running time is always
400 * taken from the per-cpu globaldata area. Since the same clock
401 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
402 * stay in synch.
404 * Note that we never allow info->time (aka gd->gd_hardclock.time)
405 * to reverse index gd_cpuclock_base, but that it is possible for
406 * it to temporarily get behind in the seconds if something in the
407 * system locks interrupts for a long period of time. Since periodic
408 * timers count events, though everything should resynch again
409 * immediately.
411 cputicks = info->time - gd->gd_cpuclock_base;
412 if (cputicks >= sys_cputimer->freq) {
413 ++gd->gd_time_seconds;
414 gd->gd_cpuclock_base += sys_cputimer->freq;
415 if (gd->gd_cpuid == 0)
416 ++time_uptime; /* uncorrected monotonic 1-sec gran */
420 * The system-wide ticks counter and NTP related timedelta/tickdelta
421 * adjustments only occur on cpu #0. NTP adjustments are accomplished
422 * by updating basetime.
424 if (gd->gd_cpuid == 0) {
425 struct timespec *nbt;
426 struct timespec nts;
427 int leap;
428 int ni;
430 ++ticks;
432 #if 0
433 if (tco->tc_poll_pps)
434 tco->tc_poll_pps(tco);
435 #endif
438 * Calculate the new basetime index. We are in a critical section
439 * on cpu #0 and can safely play with basetime_index. Start
440 * with the current basetime and then make adjustments.
442 ni = (basetime_index + 1) & BASETIME_ARYMASK;
443 nbt = &basetime[ni];
444 *nbt = basetime[basetime_index];
447 * Apply adjtime corrections. (adjtime() API)
449 * adjtime() only runs on cpu #0 so our critical section is
450 * sufficient to access these variables.
452 if (ntp_delta != 0) {
453 nbt->tv_nsec += ntp_tick_delta;
454 ntp_delta -= ntp_tick_delta;
455 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
456 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
457 ntp_tick_delta = ntp_delta;
462 * Apply permanent frequency corrections. (sysctl API)
464 if (ntp_tick_permanent != 0) {
465 ntp_tick_acc += ntp_tick_permanent;
466 if (ntp_tick_acc >= (1LL << 32)) {
467 nbt->tv_nsec += ntp_tick_acc >> 32;
468 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
469 } else if (ntp_tick_acc <= -(1LL << 32)) {
470 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
471 nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
472 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
476 if (nbt->tv_nsec >= 1000000000) {
477 nbt->tv_sec++;
478 nbt->tv_nsec -= 1000000000;
479 } else if (nbt->tv_nsec < 0) {
480 nbt->tv_sec--;
481 nbt->tv_nsec += 1000000000;
485 * Another per-tick compensation. (for ntp_adjtime() API)
487 if (nsec_adj != 0) {
488 nsec_acc += nsec_adj;
489 if (nsec_acc >= 0x100000000LL) {
490 nbt->tv_nsec += nsec_acc >> 32;
491 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
492 } else if (nsec_acc <= -0x100000000LL) {
493 nbt->tv_nsec -= -nsec_acc >> 32;
494 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
496 if (nbt->tv_nsec >= 1000000000) {
497 nbt->tv_nsec -= 1000000000;
498 ++nbt->tv_sec;
499 } else if (nbt->tv_nsec < 0) {
500 nbt->tv_nsec += 1000000000;
501 --nbt->tv_sec;
505 /************************************************************
506 * LEAP SECOND CORRECTION *
507 ************************************************************
509 * Taking into account all the corrections made above, figure
510 * out the new real time. If the seconds field has changed
511 * then apply any pending leap-second corrections.
513 getnanotime_nbt(nbt, &nts);
515 if (time_second != nts.tv_sec) {
517 * Apply leap second (sysctl API). Adjust nts for changes
518 * so we do not have to call getnanotime_nbt again.
520 if (ntp_leap_second) {
521 if (ntp_leap_second == nts.tv_sec) {
522 if (ntp_leap_insert) {
523 nbt->tv_sec++;
524 nts.tv_sec++;
525 } else {
526 nbt->tv_sec--;
527 nts.tv_sec--;
529 ntp_leap_second--;
534 * Apply leap second (ntp_adjtime() API), calculate a new
535 * nsec_adj field. ntp_update_second() returns nsec_adj
536 * as a per-second value but we need it as a per-tick value.
538 leap = ntp_update_second(time_second, &nsec_adj);
539 nsec_adj /= hz;
540 nbt->tv_sec += leap;
541 nts.tv_sec += leap;
544 * Update the time_second 'approximate time' global.
546 time_second = nts.tv_sec;
550 * Finally, our new basetime is ready to go live!
552 cpu_sfence();
553 basetime_index = ni;
557 * lwkt thread scheduler fair queueing
559 lwkt_schedulerclock(curthread);
562 * softticks are handled for all cpus
564 hardclock_softtick(gd);
567 * ITimer handling is per-tick, per-cpu.
569 * We must acquire the per-process token in order for ksignal()
570 * to be non-blocking. For the moment this requires an AST fault,
571 * the ksignal() cannot be safely issued from this hard interrupt.
573 * XXX Even the trytoken here isn't right, and itimer operation in
574 * a multi threaded environment is going to be weird at the
575 * very least.
577 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) {
578 crit_enter_hard();
579 if (frame && CLKF_USERMODE(frame) &&
580 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
581 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) {
582 p->p_flags |= P_SIGVTALRM;
583 need_user_resched();
585 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
586 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) {
587 p->p_flags |= P_SIGPROF;
588 need_user_resched();
590 crit_exit_hard();
591 lwkt_reltoken(&p->p_token);
593 setdelayed();
597 * The statistics clock typically runs at a 125Hz rate, and is intended
598 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
600 * NOTE! systimer! the MP lock might not be held here. We can only safely
601 * manipulate objects owned by the current cpu.
603 * The stats clock is responsible for grabbing a profiling sample.
604 * Most of the statistics are only used by user-level statistics programs.
605 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
606 * p->p_estcpu.
608 * Like the other clocks, the stat clock is called from what is effectively
609 * a fast interrupt, so the context should be the thread/process that got
610 * interrupted.
612 static void
613 statclock(systimer_t info, int in_ipi, struct intrframe *frame)
615 #ifdef GPROF
616 struct gmonparam *g;
617 int i;
618 #endif
619 thread_t td;
620 struct proc *p;
621 int bump;
622 sysclock_t cv;
623 sysclock_t scv;
626 * How big was our timeslice relative to the last time? Calculate
627 * in microseconds.
629 * NOTE: Use of microuptime() is typically MPSAFE, but usually not
630 * during early boot. Just use the systimer count to be nice
631 * to e.g. qemu. The systimer has a better chance of being
632 * MPSAFE at early boot.
634 cv = sys_cputimer->count();
635 scv = mycpu->statint.gd_statcv;
636 if (scv == 0) {
637 bump = 1;
638 } else {
639 bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32;
640 if (bump < 0)
641 bump = 0;
642 if (bump > 1000000)
643 bump = 1000000;
645 mycpu->statint.gd_statcv = cv;
647 #if 0
648 stv = &mycpu->gd_stattv;
649 if (stv->tv_sec == 0) {
650 bump = 1;
651 } else {
652 bump = tv.tv_usec - stv->tv_usec +
653 (tv.tv_sec - stv->tv_sec) * 1000000;
654 if (bump < 0)
655 bump = 0;
656 if (bump > 1000000)
657 bump = 1000000;
659 *stv = tv;
660 #endif
662 td = curthread;
663 p = td->td_proc;
665 if (frame && CLKF_USERMODE(frame)) {
667 * Came from userland, handle user time and deal with
668 * possible process.
670 if (p && (p->p_flags & P_PROFIL))
671 addupc_intr(p, CLKF_PC(frame), 1);
672 td->td_uticks += bump;
675 * Charge the time as appropriate
677 if (p && p->p_nice > NZERO)
678 cpu_time.cp_nice += bump;
679 else
680 cpu_time.cp_user += bump;
681 } else {
682 int intr_nest = mycpu->gd_intr_nesting_level;
684 if (in_ipi) {
686 * IPI processing code will bump gd_intr_nesting_level
687 * up by one, which breaks following CLKF_INTR testing,
688 * so we substract it by one here.
690 --intr_nest;
692 #ifdef GPROF
694 * Kernel statistics are just like addupc_intr, only easier.
696 g = &_gmonparam;
697 if (g->state == GMON_PROF_ON && frame) {
698 i = CLKF_PC(frame) - g->lowpc;
699 if (i < g->textsize) {
700 i /= HISTFRACTION * sizeof(*g->kcount);
701 g->kcount[i]++;
704 #endif
706 #define IS_INTR_RUNNING ((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td))
709 * Came from kernel mode, so we were:
710 * - handling an interrupt,
711 * - doing syscall or trap work on behalf of the current
712 * user process, or
713 * - spinning in the idle loop.
714 * Whichever it is, charge the time as appropriate.
715 * Note that we charge interrupts to the current process,
716 * regardless of whether they are ``for'' that process,
717 * so that we know how much of its real time was spent
718 * in ``non-process'' (i.e., interrupt) work.
720 * XXX assume system if frame is NULL. A NULL frame
721 * can occur if ipi processing is done from a crit_exit().
723 if (IS_INTR_RUNNING)
724 td->td_iticks += bump;
725 else
726 td->td_sticks += bump;
728 if (IS_INTR_RUNNING) {
730 * If we interrupted an interrupt thread, well,
731 * count it as interrupt time.
733 #ifdef DEBUG_PCTRACK
734 if (frame)
735 do_pctrack(frame, PCTRACK_INT);
736 #endif
737 cpu_time.cp_intr += bump;
738 } else {
739 if (td == &mycpu->gd_idlethread) {
741 * Even if the current thread is the idle
742 * thread it could be due to token contention
743 * in the LWKT scheduler. Count such as
744 * system time.
746 if (mycpu->gd_reqflags & RQF_IDLECHECK_WK_MASK)
747 cpu_time.cp_sys += bump;
748 else
749 cpu_time.cp_idle += bump;
750 } else {
752 * System thread was running.
754 #ifdef DEBUG_PCTRACK
755 if (frame)
756 do_pctrack(frame, PCTRACK_SYS);
757 #endif
758 cpu_time.cp_sys += bump;
762 #undef IS_INTR_RUNNING
766 #ifdef DEBUG_PCTRACK
768 * Sample the PC when in the kernel or in an interrupt. User code can
769 * retrieve the information and generate a histogram or other output.
772 static void
773 do_pctrack(struct intrframe *frame, int which)
775 struct kinfo_pctrack *pctrack;
777 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
778 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
779 (void *)CLKF_PC(frame);
780 ++pctrack->pc_index;
783 static int
784 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
786 struct kinfo_pcheader head;
787 int error;
788 int cpu;
789 int ntrack;
791 head.pc_ntrack = PCTRACK_SIZE;
792 head.pc_arysize = PCTRACK_ARYSIZE;
794 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
795 return (error);
797 for (cpu = 0; cpu < ncpus; ++cpu) {
798 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
799 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
800 sizeof(struct kinfo_pctrack));
801 if (error)
802 break;
804 if (error)
805 break;
807 return (error);
809 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
810 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
812 #endif
815 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
816 * the MP lock might not be held. We can safely manipulate parts of curproc
817 * but that's about it.
819 * Each cpu has its own scheduler clock.
821 static void
822 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame)
824 struct lwp *lp;
825 struct rusage *ru;
826 struct vmspace *vm;
827 long rss;
829 if ((lp = lwkt_preempted_proc()) != NULL) {
831 * Account for cpu time used and hit the scheduler. Note
832 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
833 * HERE.
835 ++lp->lwp_cpticks;
836 usched_schedulerclock(lp, info->periodic, info->time);
837 } else {
838 usched_schedulerclock(NULL, info->periodic, info->time);
840 if ((lp = curthread->td_lwp) != NULL) {
842 * Update resource usage integrals and maximums.
844 if ((ru = &lp->lwp_proc->p_ru) &&
845 (vm = lp->lwp_proc->p_vmspace) != NULL) {
846 ru->ru_ixrss += pgtok(vm->vm_tsize);
847 ru->ru_idrss += pgtok(vm->vm_dsize);
848 ru->ru_isrss += pgtok(vm->vm_ssize);
849 if (lwkt_trytoken(&vm->vm_map.token)) {
850 rss = pgtok(vmspace_resident_count(vm));
851 if (ru->ru_maxrss < rss)
852 ru->ru_maxrss = rss;
853 lwkt_reltoken(&vm->vm_map.token);
857 /* Increment the global sched_ticks */
858 if (mycpu->gd_cpuid == 0)
859 ++sched_ticks;
863 * Compute number of ticks for the specified amount of time. The
864 * return value is intended to be used in a clock interrupt timed
865 * operation and guarenteed to meet or exceed the requested time.
866 * If the representation overflows, return INT_MAX. The minimum return
867 * value is 1 ticks and the function will average the calculation up.
868 * If any value greater then 0 microseconds is supplied, a value
869 * of at least 2 will be returned to ensure that a near-term clock
870 * interrupt does not cause the timeout to occur (degenerately) early.
872 * Note that limit checks must take into account microseconds, which is
873 * done simply by using the smaller signed long maximum instead of
874 * the unsigned long maximum.
876 * If ints have 32 bits, then the maximum value for any timeout in
877 * 10ms ticks is 248 days.
880 tvtohz_high(struct timeval *tv)
882 int ticks;
883 long sec, usec;
885 sec = tv->tv_sec;
886 usec = tv->tv_usec;
887 if (usec < 0) {
888 sec--;
889 usec += 1000000;
891 if (sec < 0) {
892 #ifdef DIAGNOSTIC
893 if (usec > 0) {
894 sec++;
895 usec -= 1000000;
897 kprintf("tvtohz_high: negative time difference "
898 "%ld sec %ld usec\n",
899 sec, usec);
900 #endif
901 ticks = 1;
902 } else if (sec <= INT_MAX / hz) {
903 ticks = (int)(sec * hz +
904 ((u_long)usec + (ustick - 1)) / ustick) + 1;
905 } else {
906 ticks = INT_MAX;
908 return (ticks);
912 tstohz_high(struct timespec *ts)
914 int ticks;
915 long sec, nsec;
917 sec = ts->tv_sec;
918 nsec = ts->tv_nsec;
919 if (nsec < 0) {
920 sec--;
921 nsec += 1000000000;
923 if (sec < 0) {
924 #ifdef DIAGNOSTIC
925 if (nsec > 0) {
926 sec++;
927 nsec -= 1000000000;
929 kprintf("tstohz_high: negative time difference "
930 "%ld sec %ld nsec\n",
931 sec, nsec);
932 #endif
933 ticks = 1;
934 } else if (sec <= INT_MAX / hz) {
935 ticks = (int)(sec * hz +
936 ((u_long)nsec + (nstick - 1)) / nstick) + 1;
937 } else {
938 ticks = INT_MAX;
940 return (ticks);
945 * Compute number of ticks for the specified amount of time, erroring on
946 * the side of it being too low to ensure that sleeping the returned number
947 * of ticks will not result in a late return.
949 * The supplied timeval may not be negative and should be normalized. A
950 * return value of 0 is possible if the timeval converts to less then
951 * 1 tick.
953 * If ints have 32 bits, then the maximum value for any timeout in
954 * 10ms ticks is 248 days.
957 tvtohz_low(struct timeval *tv)
959 int ticks;
960 long sec;
962 sec = tv->tv_sec;
963 if (sec <= INT_MAX / hz)
964 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick);
965 else
966 ticks = INT_MAX;
967 return (ticks);
971 tstohz_low(struct timespec *ts)
973 int ticks;
974 long sec;
976 sec = ts->tv_sec;
977 if (sec <= INT_MAX / hz)
978 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick);
979 else
980 ticks = INT_MAX;
981 return (ticks);
985 * Start profiling on a process.
987 * Kernel profiling passes proc0 which never exits and hence
988 * keeps the profile clock running constantly.
990 void
991 startprofclock(struct proc *p)
993 if ((p->p_flags & P_PROFIL) == 0) {
994 p->p_flags |= P_PROFIL;
995 #if 0 /* XXX */
996 if (++profprocs == 1 && stathz != 0) {
997 crit_enter();
998 psdiv = psratio;
999 setstatclockrate(profhz);
1000 crit_exit();
1002 #endif
1007 * Stop profiling on a process.
1009 * caller must hold p->p_token
1011 void
1012 stopprofclock(struct proc *p)
1014 if (p->p_flags & P_PROFIL) {
1015 p->p_flags &= ~P_PROFIL;
1016 #if 0 /* XXX */
1017 if (--profprocs == 0 && stathz != 0) {
1018 crit_enter();
1019 psdiv = 1;
1020 setstatclockrate(stathz);
1021 crit_exit();
1023 #endif
1028 * Return information about system clocks.
1030 static int
1031 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
1033 struct kinfo_clockinfo clkinfo;
1035 * Construct clockinfo structure.
1037 clkinfo.ci_hz = hz;
1038 clkinfo.ci_tick = ustick;
1039 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
1040 clkinfo.ci_profhz = profhz;
1041 clkinfo.ci_stathz = stathz ? stathz : hz;
1042 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
1045 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
1046 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
1049 * We have eight functions for looking at the clock, four for
1050 * microseconds and four for nanoseconds. For each there is fast
1051 * but less precise version "get{nano|micro}[up]time" which will
1052 * return a time which is up to 1/HZ previous to the call, whereas
1053 * the raw version "{nano|micro}[up]time" will return a timestamp
1054 * which is as precise as possible. The "up" variants return the
1055 * time relative to system boot, these are well suited for time
1056 * interval measurements.
1058 * Each cpu independantly maintains the current time of day, so all
1059 * we need to do to protect ourselves from changes is to do a loop
1060 * check on the seconds field changing out from under us.
1062 * The system timer maintains a 32 bit count and due to various issues
1063 * it is possible for the calculated delta to occassionally exceed
1064 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
1065 * multiplication can easily overflow, so we deal with the case. For
1066 * uniformity we deal with the case in the usec case too.
1068 * All the [get][micro,nano][time,uptime]() routines are MPSAFE.
1070 void
1071 getmicrouptime(struct timeval *tvp)
1073 struct globaldata *gd = mycpu;
1074 sysclock_t delta;
1076 do {
1077 tvp->tv_sec = gd->gd_time_seconds;
1078 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1079 } while (tvp->tv_sec != gd->gd_time_seconds);
1081 if (delta >= sys_cputimer->freq) {
1082 tvp->tv_sec += delta / sys_cputimer->freq;
1083 delta %= sys_cputimer->freq;
1085 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1086 if (tvp->tv_usec >= 1000000) {
1087 tvp->tv_usec -= 1000000;
1088 ++tvp->tv_sec;
1092 void
1093 getnanouptime(struct timespec *tsp)
1095 struct globaldata *gd = mycpu;
1096 sysclock_t delta;
1098 do {
1099 tsp->tv_sec = gd->gd_time_seconds;
1100 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1101 } while (tsp->tv_sec != gd->gd_time_seconds);
1103 if (delta >= sys_cputimer->freq) {
1104 tsp->tv_sec += delta / sys_cputimer->freq;
1105 delta %= sys_cputimer->freq;
1107 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1110 void
1111 microuptime(struct timeval *tvp)
1113 struct globaldata *gd = mycpu;
1114 sysclock_t delta;
1116 do {
1117 tvp->tv_sec = gd->gd_time_seconds;
1118 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1119 } while (tvp->tv_sec != gd->gd_time_seconds);
1121 if (delta >= sys_cputimer->freq) {
1122 tvp->tv_sec += delta / sys_cputimer->freq;
1123 delta %= sys_cputimer->freq;
1125 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1128 void
1129 nanouptime(struct timespec *tsp)
1131 struct globaldata *gd = mycpu;
1132 sysclock_t delta;
1134 do {
1135 tsp->tv_sec = gd->gd_time_seconds;
1136 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1137 } while (tsp->tv_sec != gd->gd_time_seconds);
1139 if (delta >= sys_cputimer->freq) {
1140 tsp->tv_sec += delta / sys_cputimer->freq;
1141 delta %= sys_cputimer->freq;
1143 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1147 * realtime routines
1149 void
1150 getmicrotime(struct timeval *tvp)
1152 struct globaldata *gd = mycpu;
1153 struct timespec *bt;
1154 sysclock_t delta;
1156 do {
1157 tvp->tv_sec = gd->gd_time_seconds;
1158 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1159 } while (tvp->tv_sec != gd->gd_time_seconds);
1161 if (delta >= sys_cputimer->freq) {
1162 tvp->tv_sec += delta / sys_cputimer->freq;
1163 delta %= sys_cputimer->freq;
1165 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1167 bt = &basetime[basetime_index];
1168 tvp->tv_sec += bt->tv_sec;
1169 tvp->tv_usec += bt->tv_nsec / 1000;
1170 while (tvp->tv_usec >= 1000000) {
1171 tvp->tv_usec -= 1000000;
1172 ++tvp->tv_sec;
1176 void
1177 getnanotime(struct timespec *tsp)
1179 struct globaldata *gd = mycpu;
1180 struct timespec *bt;
1181 sysclock_t delta;
1183 do {
1184 tsp->tv_sec = gd->gd_time_seconds;
1185 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1186 } while (tsp->tv_sec != gd->gd_time_seconds);
1188 if (delta >= sys_cputimer->freq) {
1189 tsp->tv_sec += delta / sys_cputimer->freq;
1190 delta %= sys_cputimer->freq;
1192 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1194 bt = &basetime[basetime_index];
1195 tsp->tv_sec += bt->tv_sec;
1196 tsp->tv_nsec += bt->tv_nsec;
1197 while (tsp->tv_nsec >= 1000000000) {
1198 tsp->tv_nsec -= 1000000000;
1199 ++tsp->tv_sec;
1203 static void
1204 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1206 struct globaldata *gd = mycpu;
1207 sysclock_t delta;
1209 do {
1210 tsp->tv_sec = gd->gd_time_seconds;
1211 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1212 } while (tsp->tv_sec != gd->gd_time_seconds);
1214 if (delta >= sys_cputimer->freq) {
1215 tsp->tv_sec += delta / sys_cputimer->freq;
1216 delta %= sys_cputimer->freq;
1218 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1220 tsp->tv_sec += nbt->tv_sec;
1221 tsp->tv_nsec += nbt->tv_nsec;
1222 while (tsp->tv_nsec >= 1000000000) {
1223 tsp->tv_nsec -= 1000000000;
1224 ++tsp->tv_sec;
1229 void
1230 microtime(struct timeval *tvp)
1232 struct globaldata *gd = mycpu;
1233 struct timespec *bt;
1234 sysclock_t delta;
1236 do {
1237 tvp->tv_sec = gd->gd_time_seconds;
1238 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1239 } while (tvp->tv_sec != gd->gd_time_seconds);
1241 if (delta >= sys_cputimer->freq) {
1242 tvp->tv_sec += delta / sys_cputimer->freq;
1243 delta %= sys_cputimer->freq;
1245 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1247 bt = &basetime[basetime_index];
1248 tvp->tv_sec += bt->tv_sec;
1249 tvp->tv_usec += bt->tv_nsec / 1000;
1250 while (tvp->tv_usec >= 1000000) {
1251 tvp->tv_usec -= 1000000;
1252 ++tvp->tv_sec;
1256 void
1257 nanotime(struct timespec *tsp)
1259 struct globaldata *gd = mycpu;
1260 struct timespec *bt;
1261 sysclock_t delta;
1263 do {
1264 tsp->tv_sec = gd->gd_time_seconds;
1265 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1266 } while (tsp->tv_sec != gd->gd_time_seconds);
1268 if (delta >= sys_cputimer->freq) {
1269 tsp->tv_sec += delta / sys_cputimer->freq;
1270 delta %= sys_cputimer->freq;
1272 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1274 bt = &basetime[basetime_index];
1275 tsp->tv_sec += bt->tv_sec;
1276 tsp->tv_nsec += bt->tv_nsec;
1277 while (tsp->tv_nsec >= 1000000000) {
1278 tsp->tv_nsec -= 1000000000;
1279 ++tsp->tv_sec;
1284 * note: this is not exactly synchronized with real time. To do that we
1285 * would have to do what microtime does and check for a nanoseconds overflow.
1287 time_t
1288 get_approximate_time_t(void)
1290 struct globaldata *gd = mycpu;
1291 struct timespec *bt;
1293 bt = &basetime[basetime_index];
1294 return(gd->gd_time_seconds + bt->tv_sec);
1298 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1300 pps_params_t *app;
1301 struct pps_fetch_args *fapi;
1302 #ifdef PPS_SYNC
1303 struct pps_kcbind_args *kapi;
1304 #endif
1306 switch (cmd) {
1307 case PPS_IOC_CREATE:
1308 return (0);
1309 case PPS_IOC_DESTROY:
1310 return (0);
1311 case PPS_IOC_SETPARAMS:
1312 app = (pps_params_t *)data;
1313 if (app->mode & ~pps->ppscap)
1314 return (EINVAL);
1315 pps->ppsparam = *app;
1316 return (0);
1317 case PPS_IOC_GETPARAMS:
1318 app = (pps_params_t *)data;
1319 *app = pps->ppsparam;
1320 app->api_version = PPS_API_VERS_1;
1321 return (0);
1322 case PPS_IOC_GETCAP:
1323 *(int*)data = pps->ppscap;
1324 return (0);
1325 case PPS_IOC_FETCH:
1326 fapi = (struct pps_fetch_args *)data;
1327 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1328 return (EINVAL);
1329 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1330 return (EOPNOTSUPP);
1331 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1332 fapi->pps_info_buf = pps->ppsinfo;
1333 return (0);
1334 case PPS_IOC_KCBIND:
1335 #ifdef PPS_SYNC
1336 kapi = (struct pps_kcbind_args *)data;
1337 /* XXX Only root should be able to do this */
1338 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1339 return (EINVAL);
1340 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1341 return (EINVAL);
1342 if (kapi->edge & ~pps->ppscap)
1343 return (EINVAL);
1344 pps->kcmode = kapi->edge;
1345 return (0);
1346 #else
1347 return (EOPNOTSUPP);
1348 #endif
1349 default:
1350 return (ENOTTY);
1354 void
1355 pps_init(struct pps_state *pps)
1357 pps->ppscap |= PPS_TSFMT_TSPEC;
1358 if (pps->ppscap & PPS_CAPTUREASSERT)
1359 pps->ppscap |= PPS_OFFSETASSERT;
1360 if (pps->ppscap & PPS_CAPTURECLEAR)
1361 pps->ppscap |= PPS_OFFSETCLEAR;
1364 void
1365 pps_event(struct pps_state *pps, sysclock_t count, int event)
1367 struct globaldata *gd;
1368 struct timespec *tsp;
1369 struct timespec *osp;
1370 struct timespec *bt;
1371 struct timespec ts;
1372 sysclock_t *pcount;
1373 #ifdef PPS_SYNC
1374 sysclock_t tcount;
1375 #endif
1376 sysclock_t delta;
1377 pps_seq_t *pseq;
1378 int foff;
1379 int fhard;
1381 gd = mycpu;
1383 /* Things would be easier with arrays... */
1384 if (event == PPS_CAPTUREASSERT) {
1385 tsp = &pps->ppsinfo.assert_timestamp;
1386 osp = &pps->ppsparam.assert_offset;
1387 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1388 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1389 pcount = &pps->ppscount[0];
1390 pseq = &pps->ppsinfo.assert_sequence;
1391 } else {
1392 tsp = &pps->ppsinfo.clear_timestamp;
1393 osp = &pps->ppsparam.clear_offset;
1394 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1395 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1396 pcount = &pps->ppscount[1];
1397 pseq = &pps->ppsinfo.clear_sequence;
1400 /* Nothing really happened */
1401 if (*pcount == count)
1402 return;
1404 *pcount = count;
1406 do {
1407 ts.tv_sec = gd->gd_time_seconds;
1408 delta = count - gd->gd_cpuclock_base;
1409 } while (ts.tv_sec != gd->gd_time_seconds);
1411 if (delta >= sys_cputimer->freq) {
1412 ts.tv_sec += delta / sys_cputimer->freq;
1413 delta %= sys_cputimer->freq;
1415 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1416 bt = &basetime[basetime_index];
1417 ts.tv_sec += bt->tv_sec;
1418 ts.tv_nsec += bt->tv_nsec;
1419 while (ts.tv_nsec >= 1000000000) {
1420 ts.tv_nsec -= 1000000000;
1421 ++ts.tv_sec;
1424 (*pseq)++;
1425 *tsp = ts;
1427 if (foff) {
1428 timespecadd(tsp, osp);
1429 if (tsp->tv_nsec < 0) {
1430 tsp->tv_nsec += 1000000000;
1431 tsp->tv_sec -= 1;
1434 #ifdef PPS_SYNC
1435 if (fhard) {
1436 /* magic, at its best... */
1437 tcount = count - pps->ppscount[2];
1438 pps->ppscount[2] = count;
1439 if (tcount >= sys_cputimer->freq) {
1440 delta = (1000000000 * (tcount / sys_cputimer->freq) +
1441 sys_cputimer->freq64_nsec *
1442 (tcount % sys_cputimer->freq)) >> 32;
1443 } else {
1444 delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1446 hardpps(tsp, delta);
1448 #endif
1452 * Return the tsc target value for a delay of (ns).
1454 * Returns -1 if the TSC is not supported.
1456 int64_t
1457 tsc_get_target(int ns)
1459 #if defined(_RDTSC_SUPPORTED_)
1460 if (cpu_feature & CPUID_TSC) {
1461 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000);
1463 #endif
1464 return(-1);
1468 * Compare the tsc against the passed target
1470 * Returns +1 if the target has been reached
1471 * Returns 0 if the target has not yet been reached
1472 * Returns -1 if the TSC is not supported.
1474 * Typical use: while (tsc_test_target(target) == 0) { ...poll... }
1477 tsc_test_target(int64_t target)
1479 #if defined(_RDTSC_SUPPORTED_)
1480 if (cpu_feature & CPUID_TSC) {
1481 if ((int64_t)(target - rdtsc()) <= 0)
1482 return(1);
1483 return(0);
1485 #endif
1486 return(-1);
1490 * Delay the specified number of nanoseconds using the tsc. This function
1491 * returns immediately if the TSC is not supported. At least one cpu_pause()
1492 * will be issued.
1494 void
1495 tsc_delay(int ns)
1497 int64_t clk;
1499 clk = tsc_get_target(ns);
1500 cpu_pause();
1501 while (tsc_test_target(clk) == 0)
1502 cpu_pause();