Sync CAM with FreeBSD using lockmgr locks instead of mutexes.
[dragonfly.git] / sys / dev / disk / aic7xxx / aic79xx.c
blob50c366e6f01013a7e15f8eea48d8f218b4e8458d
1 /*
2 * Core routines and tables shareable across OS platforms.
4 * Copyright (c) 1994-2002, 2004 Justin T. Gibbs.
5 * Copyright (c) 2000-2003 Adaptec Inc.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification.
14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15 * substantially similar to the "NO WARRANTY" disclaimer below
16 * ("Disclaimer") and any redistribution must be conditioned upon
17 * including a substantially similar Disclaimer requirement for further
18 * binary redistribution.
19 * 3. Neither the names of the above-listed copyright holders nor the names
20 * of any contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
23 * Alternatively, this software may be distributed under the terms of the
24 * GNU General Public License ("GPL") version 2 as published by the Free
25 * Software Foundation.
27 * NO WARRANTY
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGES.
40 * $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#246 $
42 * $FreeBSD: src/sys/dev/aic7xxx/aic79xx.c,v 1.40 2007/04/19 18:53:52 scottl Exp $
43 * $DragonFly: src/sys/dev/disk/aic7xxx/aic79xx.c,v 1.31 2008/05/18 20:30:21 pavalos Exp $
46 #include "aic79xx_osm.h"
47 #include "aic79xx_inline.h"
48 #include "aicasm/aicasm_insformat.h"
50 /******************************** Globals *************************************/
51 struct ahd_softc_tailq ahd_tailq = TAILQ_HEAD_INITIALIZER(ahd_tailq);
52 uint32_t ahd_attach_to_HostRAID_controllers = 1;
54 /***************************** Lookup Tables **********************************/
55 char *ahd_chip_names[] =
57 "NONE",
58 "aic7901",
59 "aic7902",
60 "aic7901A"
62 static const u_int num_chip_names = NUM_ELEMENTS(ahd_chip_names);
65 * Hardware error codes.
67 struct ahd_hard_error_entry {
68 uint8_t error;
69 char *errmesg;
72 static struct ahd_hard_error_entry ahd_hard_errors[] = {
73 { DSCTMOUT, "Discard Timer has timed out" },
74 { ILLOPCODE, "Illegal Opcode in sequencer program" },
75 { SQPARERR, "Sequencer Parity Error" },
76 { DPARERR, "Data-path Parity Error" },
77 { MPARERR, "Scratch or SCB Memory Parity Error" },
78 { CIOPARERR, "CIOBUS Parity Error" },
80 static const u_int num_errors = NUM_ELEMENTS(ahd_hard_errors);
82 static struct ahd_phase_table_entry ahd_phase_table[] =
84 { P_DATAOUT, MSG_NOOP, "in Data-out phase" },
85 { P_DATAIN, MSG_INITIATOR_DET_ERR, "in Data-in phase" },
86 { P_DATAOUT_DT, MSG_NOOP, "in DT Data-out phase" },
87 { P_DATAIN_DT, MSG_INITIATOR_DET_ERR, "in DT Data-in phase" },
88 { P_COMMAND, MSG_NOOP, "in Command phase" },
89 { P_MESGOUT, MSG_NOOP, "in Message-out phase" },
90 { P_STATUS, MSG_INITIATOR_DET_ERR, "in Status phase" },
91 { P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" },
92 { P_BUSFREE, MSG_NOOP, "while idle" },
93 { 0, MSG_NOOP, "in unknown phase" }
97 * In most cases we only wish to itterate over real phases, so
98 * exclude the last element from the count.
100 static const u_int num_phases = NUM_ELEMENTS(ahd_phase_table) - 1;
102 /* Our Sequencer Program */
103 #include "aic79xx_seq.h"
105 /**************************** Function Declarations ***************************/
106 static void ahd_handle_transmission_error(struct ahd_softc *ahd);
107 static void ahd_handle_lqiphase_error(struct ahd_softc *ahd,
108 u_int lqistat1);
109 static int ahd_handle_pkt_busfree(struct ahd_softc *ahd,
110 u_int busfreetime);
111 static int ahd_handle_nonpkt_busfree(struct ahd_softc *ahd);
112 static void ahd_handle_proto_violation(struct ahd_softc *ahd);
113 static void ahd_force_renegotiation(struct ahd_softc *ahd,
114 struct ahd_devinfo *devinfo);
116 static struct ahd_tmode_tstate*
117 ahd_alloc_tstate(struct ahd_softc *ahd,
118 u_int scsi_id, char channel);
119 #ifdef AHD_TARGET_MODE
120 static void ahd_free_tstate(struct ahd_softc *ahd,
121 u_int scsi_id, char channel, int force);
122 #endif
123 static void ahd_devlimited_syncrate(struct ahd_softc *ahd,
124 struct ahd_initiator_tinfo *,
125 u_int *period,
126 u_int *ppr_options,
127 role_t role);
128 static void ahd_update_neg_table(struct ahd_softc *ahd,
129 struct ahd_devinfo *devinfo,
130 struct ahd_transinfo *tinfo);
131 static void ahd_update_pending_scbs(struct ahd_softc *ahd);
132 static void ahd_fetch_devinfo(struct ahd_softc *ahd,
133 struct ahd_devinfo *devinfo);
134 static void ahd_scb_devinfo(struct ahd_softc *ahd,
135 struct ahd_devinfo *devinfo,
136 struct scb *scb);
137 static void ahd_setup_initiator_msgout(struct ahd_softc *ahd,
138 struct ahd_devinfo *devinfo,
139 struct scb *scb);
140 static void ahd_build_transfer_msg(struct ahd_softc *ahd,
141 struct ahd_devinfo *devinfo);
142 static void ahd_construct_sdtr(struct ahd_softc *ahd,
143 struct ahd_devinfo *devinfo,
144 u_int period, u_int offset);
145 static void ahd_construct_wdtr(struct ahd_softc *ahd,
146 struct ahd_devinfo *devinfo,
147 u_int bus_width);
148 static void ahd_construct_ppr(struct ahd_softc *ahd,
149 struct ahd_devinfo *devinfo,
150 u_int period, u_int offset,
151 u_int bus_width, u_int ppr_options);
152 static void ahd_clear_msg_state(struct ahd_softc *ahd);
153 static void ahd_handle_message_phase(struct ahd_softc *ahd);
154 typedef enum {
155 AHDMSG_1B,
156 AHDMSG_2B,
157 AHDMSG_EXT
158 } ahd_msgtype;
159 static int ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type,
160 u_int msgval, int full);
161 static int ahd_parse_msg(struct ahd_softc *ahd,
162 struct ahd_devinfo *devinfo);
163 static int ahd_handle_msg_reject(struct ahd_softc *ahd,
164 struct ahd_devinfo *devinfo);
165 static void ahd_handle_ign_wide_residue(struct ahd_softc *ahd,
166 struct ahd_devinfo *devinfo);
167 static void ahd_reinitialize_dataptrs(struct ahd_softc *ahd);
168 static void ahd_handle_devreset(struct ahd_softc *ahd,
169 struct ahd_devinfo *devinfo,
170 u_int lun, cam_status status,
171 char *message, int verbose_level);
172 #ifdef AHD_TARGET_MODE
173 static void ahd_setup_target_msgin(struct ahd_softc *ahd,
174 struct ahd_devinfo *devinfo,
175 struct scb *scb);
176 #endif
178 static u_int ahd_sglist_size(struct ahd_softc *ahd);
179 static u_int ahd_sglist_allocsize(struct ahd_softc *ahd);
180 static bus_dmamap_callback_t
181 ahd_dmamap_cb;
182 static void ahd_initialize_hscbs(struct ahd_softc *ahd);
183 static int ahd_init_scbdata(struct ahd_softc *ahd);
184 static void ahd_fini_scbdata(struct ahd_softc *ahd);
185 static void ahd_setup_iocell_workaround(struct ahd_softc *ahd);
186 static void ahd_iocell_first_selection(struct ahd_softc *ahd);
187 static void ahd_add_col_list(struct ahd_softc *ahd,
188 struct scb *scb, u_int col_idx);
189 static void ahd_rem_col_list(struct ahd_softc *ahd,
190 struct scb *scb);
191 static void ahd_chip_init(struct ahd_softc *ahd);
192 static void ahd_qinfifo_requeue(struct ahd_softc *ahd,
193 struct scb *prev_scb,
194 struct scb *scb);
195 static int ahd_qinfifo_count(struct ahd_softc *ahd);
196 static int ahd_search_scb_list(struct ahd_softc *ahd, int target,
197 char channel, int lun, u_int tag,
198 role_t role, uint32_t status,
199 ahd_search_action action,
200 u_int *list_head, u_int *list_tail,
201 u_int tid);
202 static void ahd_stitch_tid_list(struct ahd_softc *ahd,
203 u_int tid_prev, u_int tid_cur,
204 u_int tid_next);
205 static void ahd_add_scb_to_free_list(struct ahd_softc *ahd,
206 u_int scbid);
207 static u_int ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
208 u_int prev, u_int next, u_int tid);
209 static void ahd_reset_current_bus(struct ahd_softc *ahd);
210 static ahd_callback_t ahd_reset_poll;
211 static ahd_callback_t ahd_stat_timer;
212 #ifdef AHD_DUMP_SEQ
213 static void ahd_dumpseq(struct ahd_softc *ahd);
214 #endif
215 static void ahd_loadseq(struct ahd_softc *ahd);
216 static int ahd_check_patch(struct ahd_softc *ahd,
217 struct patch **start_patch,
218 u_int start_instr, u_int *skip_addr);
219 static u_int ahd_resolve_seqaddr(struct ahd_softc *ahd,
220 u_int address);
221 static void ahd_download_instr(struct ahd_softc *ahd,
222 u_int instrptr, uint8_t *dconsts);
223 static int ahd_probe_stack_size(struct ahd_softc *ahd);
224 static int ahd_other_scb_timeout(struct ahd_softc *ahd,
225 struct scb *scb,
226 struct scb *other_scb);
227 static int ahd_scb_active_in_fifo(struct ahd_softc *ahd,
228 struct scb *scb);
229 static void ahd_run_data_fifo(struct ahd_softc *ahd,
230 struct scb *scb);
232 #ifdef AHD_TARGET_MODE
233 static void ahd_queue_lstate_event(struct ahd_softc *ahd,
234 struct ahd_tmode_lstate *lstate,
235 u_int initiator_id,
236 u_int event_type,
237 u_int event_arg);
238 static void ahd_update_scsiid(struct ahd_softc *ahd,
239 u_int targid_mask);
240 static int ahd_handle_target_cmd(struct ahd_softc *ahd,
241 struct target_cmd *cmd);
242 #endif
244 /******************************** Private Inlines *****************************/
245 static __inline void ahd_assert_atn(struct ahd_softc *ahd);
246 static __inline int ahd_currently_packetized(struct ahd_softc *ahd);
247 static __inline int ahd_set_active_fifo(struct ahd_softc *ahd);
249 static __inline void
250 ahd_assert_atn(struct ahd_softc *ahd)
252 ahd_outb(ahd, SCSISIGO, ATNO);
256 * Determine if the current connection has a packetized
257 * agreement. This does not necessarily mean that we
258 * are currently in a packetized transfer. We could
259 * just as easily be sending or receiving a message.
261 static __inline int
262 ahd_currently_packetized(struct ahd_softc *ahd)
264 ahd_mode_state saved_modes;
265 int packetized;
267 saved_modes = ahd_save_modes(ahd);
268 if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) {
270 * The packetized bit refers to the last
271 * connection, not the current one. Check
272 * for non-zero LQISTATE instead.
274 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
275 packetized = ahd_inb(ahd, LQISTATE) != 0;
276 } else {
277 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
278 packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED;
280 ahd_restore_modes(ahd, saved_modes);
281 return (packetized);
284 static __inline int
285 ahd_set_active_fifo(struct ahd_softc *ahd)
287 u_int active_fifo;
289 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
290 active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
291 switch (active_fifo) {
292 case 0:
293 case 1:
294 ahd_set_modes(ahd, active_fifo, active_fifo);
295 return (1);
296 default:
297 return (0);
301 /************************* Sequencer Execution Control ************************/
303 * Restart the sequencer program from address zero
305 void
306 ahd_restart(struct ahd_softc *ahd)
309 ahd_pause(ahd);
311 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
313 /* No more pending messages */
314 ahd_clear_msg_state(ahd);
315 ahd_outb(ahd, SCSISIGO, 0); /* De-assert BSY */
316 ahd_outb(ahd, MSG_OUT, MSG_NOOP); /* No message to send */
317 ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET);
318 ahd_outb(ahd, SEQINTCTL, 0);
319 ahd_outb(ahd, LASTPHASE, P_BUSFREE);
320 ahd_outb(ahd, SEQ_FLAGS, 0);
321 ahd_outb(ahd, SAVED_SCSIID, 0xFF);
322 ahd_outb(ahd, SAVED_LUN, 0xFF);
325 * Ensure that the sequencer's idea of TQINPOS
326 * matches our own. The sequencer increments TQINPOS
327 * only after it sees a DMA complete and a reset could
328 * occur before the increment leaving the kernel to believe
329 * the command arrived but the sequencer to not.
331 ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
333 /* Always allow reselection */
334 ahd_outb(ahd, SCSISEQ1,
335 ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
336 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
339 * Clear any pending sequencer interrupt. It is no
340 * longer relevant since we're resetting the Program
341 * Counter.
343 ahd_outb(ahd, CLRINT, CLRSEQINT);
345 ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
346 ahd_unpause(ahd);
349 void
350 ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo)
352 ahd_mode_state saved_modes;
354 #ifdef AHD_DEBUG
355 if ((ahd_debug & AHD_SHOW_FIFOS) != 0)
356 kprintf("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo);
357 #endif
358 saved_modes = ahd_save_modes(ahd);
359 ahd_set_modes(ahd, fifo, fifo);
360 ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
361 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
362 ahd_outb(ahd, CCSGCTL, CCSGRESET);
363 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
364 ahd_outb(ahd, SG_STATE, 0);
365 ahd_restore_modes(ahd, saved_modes);
368 /************************* Input/Output Queues ********************************/
370 * Flush and completed commands that are sitting in the command
371 * complete queues down on the chip but have yet to be dma'ed back up.
373 void
374 ahd_flush_qoutfifo(struct ahd_softc *ahd)
376 struct scb *scb;
377 ahd_mode_state saved_modes;
378 u_int saved_scbptr;
379 u_int ccscbctl;
380 u_int scbid;
381 u_int next_scbid;
383 saved_modes = ahd_save_modes(ahd);
386 * Flush the good status FIFO for completed packetized commands.
388 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
389 saved_scbptr = ahd_get_scbptr(ahd);
390 while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) {
391 u_int fifo_mode;
392 u_int i;
394 scbid = ahd_inw(ahd, GSFIFO);
395 scb = ahd_lookup_scb(ahd, scbid);
396 if (scb == NULL) {
397 kprintf("%s: Warning - GSFIFO SCB %d invalid\n",
398 ahd_name(ahd), scbid);
399 continue;
402 * Determine if this transaction is still active in
403 * any FIFO. If it is, we must flush that FIFO to
404 * the host before completing the command.
406 fifo_mode = 0;
407 rescan_fifos:
408 for (i = 0; i < 2; i++) {
409 /* Toggle to the other mode. */
410 fifo_mode ^= 1;
411 ahd_set_modes(ahd, fifo_mode, fifo_mode);
413 if (ahd_scb_active_in_fifo(ahd, scb) == 0)
414 continue;
416 ahd_run_data_fifo(ahd, scb);
419 * Running this FIFO may cause a CFG4DATA for
420 * this same transaction to assert in the other
421 * FIFO or a new snapshot SAVEPTRS interrupt
422 * in this FIFO. Even running a FIFO may not
423 * clear the transaction if we are still waiting
424 * for data to drain to the host. We must loop
425 * until the transaction is not active in either
426 * FIFO just to be sure. Reset our loop counter
427 * so we will visit both FIFOs again before
428 * declaring this transaction finished. We
429 * also delay a bit so that status has a chance
430 * to change before we look at this FIFO again.
432 aic_delay(200);
433 goto rescan_fifos;
435 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
436 ahd_set_scbptr(ahd, scbid);
437 if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0
438 && ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0
439 || (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR)
440 & SG_LIST_NULL) != 0)) {
441 u_int comp_head;
444 * The transfer completed with a residual.
445 * Place this SCB on the complete DMA list
446 * so that we update our in-core copy of the
447 * SCB before completing the command.
449 ahd_outb(ahd, SCB_SCSI_STATUS, 0);
450 ahd_outb(ahd, SCB_SGPTR,
451 ahd_inb_scbram(ahd, SCB_SGPTR)
452 | SG_STATUS_VALID);
453 ahd_outw(ahd, SCB_TAG, scbid);
454 ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL);
455 comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
456 if (SCBID_IS_NULL(comp_head)) {
457 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid);
458 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
459 } else {
460 u_int tail;
462 tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL);
463 ahd_set_scbptr(ahd, tail);
464 ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid);
465 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
466 ahd_set_scbptr(ahd, scbid);
468 } else
469 ahd_complete_scb(ahd, scb);
471 ahd_set_scbptr(ahd, saved_scbptr);
474 * Setup for command channel portion of flush.
476 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
479 * Wait for any inprogress DMA to complete and clear DMA state
480 * if this if for an SCB in the qinfifo.
482 while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) {
484 if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) {
485 if ((ccscbctl & ARRDONE) != 0)
486 break;
487 } else if ((ccscbctl & CCSCBDONE) != 0)
488 break;
489 aic_delay(200);
492 * We leave the sequencer to cleanup in the case of DMA's to
493 * update the qoutfifo. In all other cases (DMA's to the
494 * chip or a push of an SCB from the COMPLETE_DMA_SCB list),
495 * we disable the DMA engine so that the sequencer will not
496 * attempt to handle the DMA completion.
498 if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0)
499 ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN));
502 * Complete any SCBs that just finished
503 * being DMA'ed into the qoutfifo.
505 ahd_run_qoutfifo(ahd);
507 saved_scbptr = ahd_get_scbptr(ahd);
509 * Manually update/complete any completed SCBs that are waiting to be
510 * DMA'ed back up to the host.
512 scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
513 while (!SCBID_IS_NULL(scbid)) {
514 uint8_t *hscb_ptr;
515 u_int i;
517 ahd_set_scbptr(ahd, scbid);
518 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
519 scb = ahd_lookup_scb(ahd, scbid);
520 if (scb == NULL) {
521 kprintf("%s: Warning - DMA-up and complete "
522 "SCB %d invalid\n", ahd_name(ahd), scbid);
523 continue;
525 hscb_ptr = (uint8_t *)scb->hscb;
526 for (i = 0; i < sizeof(struct hardware_scb); i++)
527 *hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i);
529 ahd_complete_scb(ahd, scb);
530 scbid = next_scbid;
532 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
533 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
535 scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
536 while (!SCBID_IS_NULL(scbid)) {
538 ahd_set_scbptr(ahd, scbid);
539 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
540 scb = ahd_lookup_scb(ahd, scbid);
541 if (scb == NULL) {
542 kprintf("%s: Warning - Complete Qfrz SCB %d invalid\n",
543 ahd_name(ahd), scbid);
544 continue;
547 ahd_complete_scb(ahd, scb);
548 scbid = next_scbid;
550 ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
552 scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD);
553 while (!SCBID_IS_NULL(scbid)) {
555 ahd_set_scbptr(ahd, scbid);
556 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
557 scb = ahd_lookup_scb(ahd, scbid);
558 if (scb == NULL) {
559 kprintf("%s: Warning - Complete SCB %d invalid\n",
560 ahd_name(ahd), scbid);
561 continue;
564 ahd_complete_scb(ahd, scb);
565 scbid = next_scbid;
567 ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
570 * Restore state.
572 ahd_set_scbptr(ahd, saved_scbptr);
573 ahd_restore_modes(ahd, saved_modes);
574 ahd->flags |= AHD_UPDATE_PEND_CMDS;
578 * Determine if an SCB for a packetized transaction
579 * is active in a FIFO.
581 static int
582 ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb)
586 * The FIFO is only active for our transaction if
587 * the SCBPTR matches the SCB's ID and the firmware
588 * has installed a handler for the FIFO or we have
589 * a pending SAVEPTRS or CFG4DATA interrupt.
591 if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb)
592 || ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0
593 && (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0))
594 return (0);
596 return (1);
600 * Run a data fifo to completion for a transaction we know
601 * has completed across the SCSI bus (good status has been
602 * received). We are already set to the correct FIFO mode
603 * on entry to this routine.
605 * This function attempts to operate exactly as the firmware
606 * would when running this FIFO. Care must be taken to update
607 * this routine any time the firmware's FIFO algorithm is
608 * changed.
610 static void
611 ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb)
613 u_int seqintsrc;
615 seqintsrc = ahd_inb(ahd, SEQINTSRC);
616 if ((seqintsrc & CFG4DATA) != 0) {
617 uint32_t datacnt;
618 uint32_t sgptr;
621 * Clear full residual flag.
623 sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID;
624 ahd_outb(ahd, SCB_SGPTR, sgptr);
627 * Load datacnt and address.
629 datacnt = ahd_inl_scbram(ahd, SCB_DATACNT);
630 if ((datacnt & AHD_DMA_LAST_SEG) != 0) {
631 sgptr |= LAST_SEG;
632 ahd_outb(ahd, SG_STATE, 0);
633 } else
634 ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
635 ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR));
636 ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK);
637 ahd_outb(ahd, SG_CACHE_PRE, sgptr);
638 ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
641 * Initialize Residual Fields.
643 ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24);
644 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK);
647 * Mark the SCB as having a FIFO in use.
649 ahd_outb(ahd, SCB_FIFO_USE_COUNT,
650 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1);
653 * Install a "fake" handler for this FIFO.
655 ahd_outw(ahd, LONGJMP_ADDR, 0);
658 * Notify the hardware that we have satisfied
659 * this sequencer interrupt.
661 ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA);
662 } else if ((seqintsrc & SAVEPTRS) != 0) {
663 uint32_t sgptr;
664 uint32_t resid;
666 if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) {
668 * Snapshot Save Pointers. All that
669 * is necessary to clear the snapshot
670 * is a CLRCHN.
672 goto clrchn;
676 * Disable S/G fetch so the DMA engine
677 * is available to future users.
679 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
680 ahd_outb(ahd, CCSGCTL, 0);
681 ahd_outb(ahd, SG_STATE, 0);
684 * Flush the data FIFO. Strickly only
685 * necessary for Rev A parts.
687 ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH);
690 * Calculate residual.
692 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
693 resid = ahd_inl(ahd, SHCNT);
694 resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24;
695 ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid);
696 if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) {
698 * Must back up to the correct S/G element.
699 * Typically this just means resetting our
700 * low byte to the offset in the SG_CACHE,
701 * but if we wrapped, we have to correct
702 * the other bytes of the sgptr too.
704 if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0
705 && (sgptr & 0x80) == 0)
706 sgptr -= 0x100;
707 sgptr &= ~0xFF;
708 sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW)
709 & SG_ADDR_MASK;
710 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
711 ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0);
712 } else if ((resid & AHD_SG_LEN_MASK) == 0) {
713 ahd_outb(ahd, SCB_RESIDUAL_SGPTR,
714 sgptr | SG_LIST_NULL);
717 * Save Pointers.
719 ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR));
720 ahd_outl(ahd, SCB_DATACNT, resid);
721 ahd_outl(ahd, SCB_SGPTR, sgptr);
722 ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS);
723 ahd_outb(ahd, SEQIMODE,
724 ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS);
726 * If the data is to the SCSI bus, we are
727 * done, otherwise wait for FIFOEMP.
729 if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0)
730 goto clrchn;
731 } else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) {
732 uint32_t sgptr;
733 uint64_t data_addr;
734 uint32_t data_len;
735 u_int dfcntrl;
738 * Disable S/G fetch so the DMA engine
739 * is available to future users. We won't
740 * be using the DMA engine to load segments.
742 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) {
743 ahd_outb(ahd, CCSGCTL, 0);
744 ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
748 * Wait for the DMA engine to notice that the
749 * host transfer is enabled and that there is
750 * space in the S/G FIFO for new segments before
751 * loading more segments.
753 if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0
754 && (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) {
757 * Determine the offset of the next S/G
758 * element to load.
760 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
761 sgptr &= SG_PTR_MASK;
762 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
763 struct ahd_dma64_seg *sg;
765 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
766 data_addr = sg->addr;
767 data_len = sg->len;
768 sgptr += sizeof(*sg);
769 } else {
770 struct ahd_dma_seg *sg;
772 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
773 data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK;
774 data_addr <<= 8;
775 data_addr |= sg->addr;
776 data_len = sg->len;
777 sgptr += sizeof(*sg);
781 * Update residual information.
783 ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24);
784 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
787 * Load the S/G.
789 if (data_len & AHD_DMA_LAST_SEG) {
790 sgptr |= LAST_SEG;
791 ahd_outb(ahd, SG_STATE, 0);
793 ahd_outq(ahd, HADDR, data_addr);
794 ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK);
795 ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF);
798 * Advertise the segment to the hardware.
800 dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN;
801 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
803 * Use SCSIENWRDIS so that SCSIEN
804 * is never modified by this
805 * operation.
807 dfcntrl |= SCSIENWRDIS;
809 ahd_outb(ahd, DFCNTRL, dfcntrl);
811 } else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) {
814 * Transfer completed to the end of SG list
815 * and has flushed to the host.
817 ahd_outb(ahd, SCB_SGPTR,
818 ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL);
819 goto clrchn;
820 } else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) {
821 clrchn:
823 * Clear any handler for this FIFO, decrement
824 * the FIFO use count for the SCB, and release
825 * the FIFO.
827 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
828 ahd_outb(ahd, SCB_FIFO_USE_COUNT,
829 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1);
830 ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
835 * Look for entries in the QoutFIFO that have completed.
836 * The valid_tag completion field indicates the validity
837 * of the entry - the valid value toggles each time through
838 * the queue. We use the sg_status field in the completion
839 * entry to avoid referencing the hscb if the completion
840 * occurred with no errors and no residual. sg_status is
841 * a copy of the first byte (little endian) of the sgptr
842 * hscb field.
844 void
845 ahd_run_qoutfifo(struct ahd_softc *ahd)
847 struct ahd_completion *completion;
848 struct scb *scb;
849 u_int scb_index;
851 if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0)
852 panic("ahd_run_qoutfifo recursion");
853 ahd->flags |= AHD_RUNNING_QOUTFIFO;
854 ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD);
855 for (;;) {
856 completion = &ahd->qoutfifo[ahd->qoutfifonext];
858 if (completion->valid_tag != ahd->qoutfifonext_valid_tag)
859 break;
861 scb_index = aic_le16toh(completion->tag);
862 scb = ahd_lookup_scb(ahd, scb_index);
863 if (scb == NULL) {
864 kprintf("%s: WARNING no command for scb %d "
865 "(cmdcmplt)\nQOUTPOS = %d\n",
866 ahd_name(ahd), scb_index,
867 ahd->qoutfifonext);
868 ahd_dump_card_state(ahd);
869 } else if ((completion->sg_status & SG_STATUS_VALID) != 0) {
870 ahd_handle_scb_status(ahd, scb);
871 } else {
872 ahd_done(ahd, scb);
875 ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1);
876 if (ahd->qoutfifonext == 0)
877 ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID;
879 ahd->flags &= ~AHD_RUNNING_QOUTFIFO;
882 /************************* Interrupt Handling *********************************/
883 void
884 ahd_handle_hwerrint(struct ahd_softc *ahd)
887 * Some catastrophic hardware error has occurred.
888 * Print it for the user and disable the controller.
890 int i;
891 int error;
893 error = ahd_inb(ahd, ERROR);
894 for (i = 0; i < num_errors; i++) {
895 if ((error & ahd_hard_errors[i].error) != 0)
896 kprintf("%s: hwerrint, %s\n",
897 ahd_name(ahd), ahd_hard_errors[i].errmesg);
900 ahd_dump_card_state(ahd);
901 panic("BRKADRINT");
903 /* Tell everyone that this HBA is no longer available */
904 ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
905 CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
906 CAM_NO_HBA);
908 /* Tell the system that this controller has gone away. */
909 ahd_free(ahd);
912 void
913 ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat)
915 u_int seqintcode;
918 * Save the sequencer interrupt code and clear the SEQINT
919 * bit. We will unpause the sequencer, if appropriate,
920 * after servicing the request.
922 seqintcode = ahd_inb(ahd, SEQINTCODE);
923 ahd_outb(ahd, CLRINT, CLRSEQINT);
924 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
926 * Unpause the sequencer and let it clear
927 * SEQINT by writing NO_SEQINT to it. This
928 * will cause the sequencer to be paused again,
929 * which is the expected state of this routine.
931 ahd_unpause(ahd);
932 while (!ahd_is_paused(ahd))
934 ahd_outb(ahd, CLRINT, CLRSEQINT);
936 ahd_update_modes(ahd);
937 #ifdef AHD_DEBUG
938 if ((ahd_debug & AHD_SHOW_MISC) != 0)
939 kprintf("%s: Handle Seqint Called for code %d\n",
940 ahd_name(ahd), seqintcode);
941 #endif
942 switch (seqintcode) {
943 case ENTERING_NONPACK:
945 struct scb *scb;
946 u_int scbid;
948 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
949 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
950 scbid = ahd_get_scbptr(ahd);
951 scb = ahd_lookup_scb(ahd, scbid);
952 if (scb == NULL) {
954 * Somehow need to know if this
955 * is from a selection or reselection.
956 * From that, we can determine target
957 * ID so we at least have an I_T nexus.
959 } else {
960 ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
961 ahd_outb(ahd, SAVED_LUN, scb->hscb->lun);
962 ahd_outb(ahd, SEQ_FLAGS, 0x0);
964 if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0
965 && (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
967 * Phase change after read stream with
968 * CRC error with P0 asserted on last
969 * packet.
971 #ifdef AHD_DEBUG
972 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
973 kprintf("%s: Assuming LQIPHASE_NLQ with "
974 "P0 assertion\n", ahd_name(ahd));
975 #endif
977 #ifdef AHD_DEBUG
978 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
979 kprintf("%s: Entering NONPACK\n", ahd_name(ahd));
980 #endif
981 break;
983 case INVALID_SEQINT:
984 kprintf("%s: Invalid Sequencer interrupt occurred.\n",
985 ahd_name(ahd));
986 ahd_dump_card_state(ahd);
987 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
988 break;
989 case STATUS_OVERRUN:
991 struct scb *scb;
992 u_int scbid;
994 scbid = ahd_get_scbptr(ahd);
995 scb = ahd_lookup_scb(ahd, scbid);
996 if (scb != NULL)
997 ahd_print_path(ahd, scb);
998 else
999 kprintf("%s: ", ahd_name(ahd));
1000 kprintf("SCB %d Packetized Status Overrun", scbid);
1001 ahd_dump_card_state(ahd);
1002 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1003 break;
1005 case CFG4ISTAT_INTR:
1007 struct scb *scb;
1008 u_int scbid;
1010 scbid = ahd_get_scbptr(ahd);
1011 scb = ahd_lookup_scb(ahd, scbid);
1012 if (scb == NULL) {
1013 ahd_dump_card_state(ahd);
1014 kprintf("CFG4ISTAT: Free SCB %d referenced", scbid);
1015 panic("For safety");
1017 ahd_outq(ahd, HADDR, scb->sense_busaddr);
1018 ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE);
1019 ahd_outb(ahd, HCNT + 2, 0);
1020 ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG);
1021 ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1022 break;
1024 case ILLEGAL_PHASE:
1026 u_int bus_phase;
1028 bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
1029 kprintf("%s: ILLEGAL_PHASE 0x%x\n",
1030 ahd_name(ahd), bus_phase);
1032 switch (bus_phase) {
1033 case P_DATAOUT:
1034 case P_DATAIN:
1035 case P_DATAOUT_DT:
1036 case P_DATAIN_DT:
1037 case P_MESGOUT:
1038 case P_STATUS:
1039 case P_MESGIN:
1040 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1041 kprintf("%s: Issued Bus Reset.\n", ahd_name(ahd));
1042 break;
1043 case P_COMMAND:
1045 struct ahd_devinfo devinfo;
1046 struct scb *scb;
1047 struct ahd_initiator_tinfo *targ_info;
1048 struct ahd_tmode_tstate *tstate;
1049 struct ahd_transinfo *tinfo;
1050 u_int scbid;
1053 * If a target takes us into the command phase
1054 * assume that it has been externally reset and
1055 * has thus lost our previous packetized negotiation
1056 * agreement. Since we have not sent an identify
1057 * message and may not have fully qualified the
1058 * connection, we change our command to TUR, assert
1059 * ATN and ABORT the task when we go to message in
1060 * phase. The OSM will see the REQUEUE_REQUEST
1061 * status and retry the command.
1063 scbid = ahd_get_scbptr(ahd);
1064 scb = ahd_lookup_scb(ahd, scbid);
1065 if (scb == NULL) {
1066 kprintf("Invalid phase with no valid SCB. "
1067 "Resetting bus.\n");
1068 ahd_reset_channel(ahd, 'A',
1069 /*Initiate Reset*/TRUE);
1070 break;
1072 ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
1073 SCB_GET_TARGET(ahd, scb),
1074 SCB_GET_LUN(scb),
1075 SCB_GET_CHANNEL(ahd, scb),
1076 ROLE_INITIATOR);
1077 targ_info = ahd_fetch_transinfo(ahd,
1078 devinfo.channel,
1079 devinfo.our_scsiid,
1080 devinfo.target,
1081 &tstate);
1082 tinfo = &targ_info->curr;
1083 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
1084 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1085 ahd_set_syncrate(ahd, &devinfo, /*period*/0,
1086 /*offset*/0, /*ppr_options*/0,
1087 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1088 ahd_outb(ahd, SCB_CDB_STORE, 0);
1089 ahd_outb(ahd, SCB_CDB_STORE+1, 0);
1090 ahd_outb(ahd, SCB_CDB_STORE+2, 0);
1091 ahd_outb(ahd, SCB_CDB_STORE+3, 0);
1092 ahd_outb(ahd, SCB_CDB_STORE+4, 0);
1093 ahd_outb(ahd, SCB_CDB_STORE+5, 0);
1094 ahd_outb(ahd, SCB_CDB_LEN, 6);
1095 scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE);
1096 scb->hscb->control |= MK_MESSAGE;
1097 ahd_outb(ahd, SCB_CONTROL, scb->hscb->control);
1098 ahd_outb(ahd, MSG_OUT, HOST_MSG);
1099 ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1101 * The lun is 0, regardless of the SCB's lun
1102 * as we have not sent an identify message.
1104 ahd_outb(ahd, SAVED_LUN, 0);
1105 ahd_outb(ahd, SEQ_FLAGS, 0);
1106 ahd_assert_atn(ahd);
1107 scb->flags &= ~SCB_PACKETIZED;
1108 scb->flags |= SCB_ABORT|SCB_CMDPHASE_ABORT;
1109 ahd_freeze_devq(ahd, scb);
1110 aic_set_transaction_status(scb, CAM_REQUEUE_REQ);
1111 aic_freeze_scb(scb);
1114 * Allow the sequencer to continue with
1115 * non-pack processing.
1117 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1118 ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT);
1119 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
1120 ahd_outb(ahd, CLRLQOINT1, 0);
1122 #ifdef AHD_DEBUG
1123 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1124 ahd_print_path(ahd, scb);
1125 kprintf("Unexpected command phase from "
1126 "packetized target\n");
1128 #endif
1129 break;
1132 break;
1134 case CFG4OVERRUN:
1136 struct scb *scb;
1137 u_int scb_index;
1139 #ifdef AHD_DEBUG
1140 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1141 kprintf("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd),
1142 ahd_inb(ahd, MODE_PTR));
1144 #endif
1145 scb_index = ahd_get_scbptr(ahd);
1146 scb = ahd_lookup_scb(ahd, scb_index);
1147 if (scb == NULL) {
1149 * Attempt to transfer to an SCB that is
1150 * not outstanding.
1152 ahd_assert_atn(ahd);
1153 ahd_outb(ahd, MSG_OUT, HOST_MSG);
1154 ahd->msgout_buf[0] = MSG_ABORT_TASK;
1155 ahd->msgout_len = 1;
1156 ahd->msgout_index = 0;
1157 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
1159 * Clear status received flag to prevent any
1160 * attempt to complete this bogus SCB.
1162 ahd_outb(ahd, SCB_CONTROL,
1163 ahd_inb_scbram(ahd, SCB_CONTROL)
1164 & ~STATUS_RCVD);
1166 break;
1168 case DUMP_CARD_STATE:
1170 ahd_dump_card_state(ahd);
1171 break;
1173 case PDATA_REINIT:
1175 #ifdef AHD_DEBUG
1176 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1177 kprintf("%s: PDATA_REINIT - DFCNTRL = 0x%x "
1178 "SG_CACHE_SHADOW = 0x%x\n",
1179 ahd_name(ahd), ahd_inb(ahd, DFCNTRL),
1180 ahd_inb(ahd, SG_CACHE_SHADOW));
1182 #endif
1183 ahd_reinitialize_dataptrs(ahd);
1184 break;
1186 case HOST_MSG_LOOP:
1188 struct ahd_devinfo devinfo;
1191 * The sequencer has encountered a message phase
1192 * that requires host assistance for completion.
1193 * While handling the message phase(s), we will be
1194 * notified by the sequencer after each byte is
1195 * transfered so we can track bus phase changes.
1197 * If this is the first time we've seen a HOST_MSG_LOOP
1198 * interrupt, initialize the state of the host message
1199 * loop.
1201 ahd_fetch_devinfo(ahd, &devinfo);
1202 if (ahd->msg_type == MSG_TYPE_NONE) {
1203 struct scb *scb;
1204 u_int scb_index;
1205 u_int bus_phase;
1207 bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
1208 if (bus_phase != P_MESGIN
1209 && bus_phase != P_MESGOUT) {
1210 kprintf("ahd_intr: HOST_MSG_LOOP bad "
1211 "phase 0x%x\n", bus_phase);
1213 * Probably transitioned to bus free before
1214 * we got here. Just punt the message.
1216 ahd_dump_card_state(ahd);
1217 ahd_clear_intstat(ahd);
1218 ahd_restart(ahd);
1219 return;
1222 scb_index = ahd_get_scbptr(ahd);
1223 scb = ahd_lookup_scb(ahd, scb_index);
1224 if (devinfo.role == ROLE_INITIATOR) {
1225 if (bus_phase == P_MESGOUT)
1226 ahd_setup_initiator_msgout(ahd,
1227 &devinfo,
1228 scb);
1229 else {
1230 ahd->msg_type =
1231 MSG_TYPE_INITIATOR_MSGIN;
1232 ahd->msgin_index = 0;
1235 #ifdef AHD_TARGET_MODE
1236 else {
1237 if (bus_phase == P_MESGOUT) {
1238 ahd->msg_type =
1239 MSG_TYPE_TARGET_MSGOUT;
1240 ahd->msgin_index = 0;
1242 else
1243 ahd_setup_target_msgin(ahd,
1244 &devinfo,
1245 scb);
1247 #endif
1250 ahd_handle_message_phase(ahd);
1251 break;
1253 case NO_MATCH:
1255 /* Ensure we don't leave the selection hardware on */
1256 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
1257 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
1259 kprintf("%s:%c:%d: no active SCB for reconnecting "
1260 "target - issuing BUS DEVICE RESET\n",
1261 ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4);
1262 kprintf("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
1263 "REG0 == 0x%x ACCUM = 0x%x\n",
1264 ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN),
1265 ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM));
1266 kprintf("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
1267 "SINDEX == 0x%x\n",
1268 ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd),
1269 ahd_find_busy_tcl(ahd,
1270 BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID),
1271 ahd_inb(ahd, SAVED_LUN))),
1272 ahd_inw(ahd, SINDEX));
1273 kprintf("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
1274 "SCB_CONTROL == 0x%x\n",
1275 ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID),
1276 ahd_inb_scbram(ahd, SCB_LUN),
1277 ahd_inb_scbram(ahd, SCB_CONTROL));
1278 kprintf("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n",
1279 ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI));
1280 kprintf("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0));
1281 kprintf("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0));
1282 ahd_dump_card_state(ahd);
1283 ahd->msgout_buf[0] = MSG_BUS_DEV_RESET;
1284 ahd->msgout_len = 1;
1285 ahd->msgout_index = 0;
1286 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
1287 ahd_outb(ahd, MSG_OUT, HOST_MSG);
1288 ahd_assert_atn(ahd);
1289 break;
1291 case PROTO_VIOLATION:
1293 ahd_handle_proto_violation(ahd);
1294 break;
1296 case IGN_WIDE_RES:
1298 struct ahd_devinfo devinfo;
1300 ahd_fetch_devinfo(ahd, &devinfo);
1301 ahd_handle_ign_wide_residue(ahd, &devinfo);
1302 break;
1304 case BAD_PHASE:
1306 u_int lastphase;
1308 lastphase = ahd_inb(ahd, LASTPHASE);
1309 kprintf("%s:%c:%d: unknown scsi bus phase %x, "
1310 "lastphase = 0x%x. Attempting to continue\n",
1311 ahd_name(ahd), 'A',
1312 SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
1313 lastphase, ahd_inb(ahd, SCSISIGI));
1314 break;
1316 case MISSED_BUSFREE:
1318 u_int lastphase;
1320 lastphase = ahd_inb(ahd, LASTPHASE);
1321 kprintf("%s:%c:%d: Missed busfree. "
1322 "Lastphase = 0x%x, Curphase = 0x%x\n",
1323 ahd_name(ahd), 'A',
1324 SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
1325 lastphase, ahd_inb(ahd, SCSISIGI));
1326 ahd_restart(ahd);
1327 return;
1329 case DATA_OVERRUN:
1332 * When the sequencer detects an overrun, it
1333 * places the controller in "BITBUCKET" mode
1334 * and allows the target to complete its transfer.
1335 * Unfortunately, none of the counters get updated
1336 * when the controller is in this mode, so we have
1337 * no way of knowing how large the overrun was.
1339 struct scb *scb;
1340 u_int scbindex;
1341 #ifdef AHD_DEBUG
1342 u_int lastphase;
1343 #endif
1345 scbindex = ahd_get_scbptr(ahd);
1346 scb = ahd_lookup_scb(ahd, scbindex);
1347 #ifdef AHD_DEBUG
1348 lastphase = ahd_inb(ahd, LASTPHASE);
1349 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1350 ahd_print_path(ahd, scb);
1351 kprintf("data overrun detected %s. Tag == 0x%x.\n",
1352 ahd_lookup_phase_entry(lastphase)->phasemsg,
1353 SCB_GET_TAG(scb));
1354 ahd_print_path(ahd, scb);
1355 kprintf("%s seen Data Phase. Length = %ld. "
1356 "NumSGs = %d.\n",
1357 ahd_inb(ahd, SEQ_FLAGS) & DPHASE
1358 ? "Have" : "Haven't",
1359 aic_get_transfer_length(scb), scb->sg_count);
1360 ahd_dump_sglist(scb);
1362 #endif
1365 * Set this and it will take effect when the
1366 * target does a command complete.
1368 ahd_freeze_devq(ahd, scb);
1369 aic_set_transaction_status(scb, CAM_DATA_RUN_ERR);
1370 aic_freeze_scb(scb);
1371 break;
1373 case MKMSG_FAILED:
1375 struct ahd_devinfo devinfo;
1376 struct scb *scb;
1377 u_int scbid;
1379 ahd_fetch_devinfo(ahd, &devinfo);
1380 kprintf("%s:%c:%d:%d: Attempt to issue message failed\n",
1381 ahd_name(ahd), devinfo.channel, devinfo.target,
1382 devinfo.lun);
1383 scbid = ahd_get_scbptr(ahd);
1384 scb = ahd_lookup_scb(ahd, scbid);
1385 if (scb != NULL
1386 && (scb->flags & SCB_RECOVERY_SCB) != 0)
1388 * Ensure that we didn't put a second instance of this
1389 * SCB into the QINFIFO.
1391 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
1392 SCB_GET_CHANNEL(ahd, scb),
1393 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
1394 ROLE_INITIATOR, /*status*/0,
1395 SEARCH_REMOVE);
1396 ahd_outb(ahd, SCB_CONTROL,
1397 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
1398 break;
1400 case TASKMGMT_FUNC_COMPLETE:
1402 u_int scbid;
1403 struct scb *scb;
1405 scbid = ahd_get_scbptr(ahd);
1406 scb = ahd_lookup_scb(ahd, scbid);
1407 if (scb != NULL) {
1408 u_int lun;
1409 u_int tag;
1410 cam_status error;
1412 ahd_print_path(ahd, scb);
1413 kprintf("Task Management Func 0x%x Complete\n",
1414 scb->hscb->task_management);
1415 lun = CAM_LUN_WILDCARD;
1416 tag = SCB_LIST_NULL;
1418 switch (scb->hscb->task_management) {
1419 case SIU_TASKMGMT_ABORT_TASK:
1420 tag = SCB_GET_TAG(scb);
1421 case SIU_TASKMGMT_ABORT_TASK_SET:
1422 case SIU_TASKMGMT_CLEAR_TASK_SET:
1423 lun = scb->hscb->lun;
1424 error = CAM_REQ_ABORTED;
1425 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
1426 'A', lun, tag, ROLE_INITIATOR,
1427 error);
1428 break;
1429 case SIU_TASKMGMT_LUN_RESET:
1430 lun = scb->hscb->lun;
1431 case SIU_TASKMGMT_TARGET_RESET:
1433 struct ahd_devinfo devinfo;
1435 ahd_scb_devinfo(ahd, &devinfo, scb);
1436 error = CAM_BDR_SENT;
1437 ahd_handle_devreset(ahd, &devinfo, lun,
1438 CAM_BDR_SENT,
1439 lun != CAM_LUN_WILDCARD
1440 ? "Lun Reset"
1441 : "Target Reset",
1442 /*verbose_level*/0);
1443 break;
1445 default:
1446 panic("Unexpected TaskMgmt Func\n");
1447 break;
1450 break;
1452 case TASKMGMT_CMD_CMPLT_OKAY:
1454 u_int scbid;
1455 struct scb *scb;
1458 * An ABORT TASK TMF failed to be delivered before
1459 * the targeted command completed normally.
1461 scbid = ahd_get_scbptr(ahd);
1462 scb = ahd_lookup_scb(ahd, scbid);
1463 if (scb != NULL) {
1465 * Remove the second instance of this SCB from
1466 * the QINFIFO if it is still there.
1468 ahd_print_path(ahd, scb);
1469 kprintf("SCB completes before TMF\n");
1471 * Handle losing the race. Wait until any
1472 * current selection completes. We will then
1473 * set the TMF back to zero in this SCB so that
1474 * the sequencer doesn't bother to issue another
1475 * sequencer interrupt for its completion.
1477 while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
1478 && (ahd_inb(ahd, SSTAT0) & SELDO) == 0
1479 && (ahd_inb(ahd, SSTAT1) & SELTO) == 0)
1481 ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0);
1482 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
1483 SCB_GET_CHANNEL(ahd, scb),
1484 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
1485 ROLE_INITIATOR, /*status*/0,
1486 SEARCH_REMOVE);
1488 break;
1490 case TRACEPOINT0:
1491 case TRACEPOINT1:
1492 case TRACEPOINT2:
1493 case TRACEPOINT3:
1494 kprintf("%s: Tracepoint %d\n", ahd_name(ahd),
1495 seqintcode - TRACEPOINT0);
1496 break;
1497 case NO_SEQINT:
1498 break;
1499 case SAW_HWERR:
1500 ahd_handle_hwerrint(ahd);
1501 break;
1502 default:
1503 kprintf("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd),
1504 seqintcode);
1505 break;
1508 * The sequencer is paused immediately on
1509 * a SEQINT, so we should restart it when
1510 * we're done.
1512 ahd_unpause(ahd);
1515 void
1516 ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat)
1518 struct scb *scb;
1519 u_int status0;
1520 u_int status3;
1521 u_int status;
1522 u_int lqistat1;
1523 u_int lqostat0;
1524 u_int scbid;
1525 u_int busfreetime;
1527 ahd_update_modes(ahd);
1528 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1530 status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR);
1531 status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO);
1532 status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
1533 lqistat1 = ahd_inb(ahd, LQISTAT1);
1534 lqostat0 = ahd_inb(ahd, LQOSTAT0);
1535 busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
1536 if ((status0 & (SELDI|SELDO)) != 0) {
1537 u_int simode0;
1539 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
1540 simode0 = ahd_inb(ahd, SIMODE0);
1541 status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO);
1542 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1544 scbid = ahd_get_scbptr(ahd);
1545 scb = ahd_lookup_scb(ahd, scbid);
1546 if (scb != NULL
1547 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
1548 scb = NULL;
1550 if ((status0 & IOERR) != 0) {
1551 u_int now_lvd;
1553 now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40;
1554 kprintf("%s: Transceiver State Has Changed to %s mode\n",
1555 ahd_name(ahd), now_lvd ? "LVD" : "SE");
1556 ahd_outb(ahd, CLRSINT0, CLRIOERR);
1558 * A change in I/O mode is equivalent to a bus reset.
1560 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1561 ahd_pause(ahd);
1562 ahd_setup_iocell_workaround(ahd);
1563 ahd_unpause(ahd);
1564 } else if ((status0 & OVERRUN) != 0) {
1566 kprintf("%s: SCSI offset overrun detected. Resetting bus.\n",
1567 ahd_name(ahd));
1568 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1569 } else if ((status & SCSIRSTI) != 0) {
1571 kprintf("%s: Someone reset channel A\n", ahd_name(ahd));
1572 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE);
1573 } else if ((status & SCSIPERR) != 0) {
1575 /* Make sure the sequencer is in a safe location. */
1576 ahd_clear_critical_section(ahd);
1578 ahd_handle_transmission_error(ahd);
1579 } else if (lqostat0 != 0) {
1581 kprintf("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0);
1582 ahd_outb(ahd, CLRLQOINT0, lqostat0);
1583 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
1584 ahd_outb(ahd, CLRLQOINT1, 0);
1585 } else if ((status & SELTO) != 0) {
1586 u_int scbid;
1588 /* Stop the selection */
1589 ahd_outb(ahd, SCSISEQ0, 0);
1591 /* Make sure the sequencer is in a safe location. */
1592 ahd_clear_critical_section(ahd);
1594 /* No more pending messages */
1595 ahd_clear_msg_state(ahd);
1597 /* Clear interrupt state */
1598 ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
1601 * Although the driver does not care about the
1602 * 'Selection in Progress' status bit, the busy
1603 * LED does. SELINGO is only cleared by a successful
1604 * selection, so we must manually clear it to insure
1605 * the LED turns off just in case no future successful
1606 * selections occur (e.g. no devices on the bus).
1608 ahd_outb(ahd, CLRSINT0, CLRSELINGO);
1610 scbid = ahd_inw(ahd, WAITING_TID_HEAD);
1611 scb = ahd_lookup_scb(ahd, scbid);
1612 if (scb == NULL) {
1613 kprintf("%s: ahd_intr - referenced scb not "
1614 "valid during SELTO scb(0x%x)\n",
1615 ahd_name(ahd), scbid);
1616 ahd_dump_card_state(ahd);
1617 } else {
1618 struct ahd_devinfo devinfo;
1619 #ifdef AHD_DEBUG
1620 if ((ahd_debug & AHD_SHOW_SELTO) != 0) {
1621 ahd_print_path(ahd, scb);
1622 kprintf("Saw Selection Timeout for SCB 0x%x\n",
1623 scbid);
1625 #endif
1626 ahd_scb_devinfo(ahd, &devinfo, scb);
1627 aic_set_transaction_status(scb, CAM_SEL_TIMEOUT);
1628 ahd_freeze_devq(ahd, scb);
1631 * Cancel any pending transactions on the device
1632 * now that it seems to be missing. This will
1633 * also revert us to async/narrow transfers until
1634 * we can renegotiate with the device.
1636 ahd_handle_devreset(ahd, &devinfo,
1637 CAM_LUN_WILDCARD,
1638 CAM_SEL_TIMEOUT,
1639 "Selection Timeout",
1640 /*verbose_level*/1);
1642 ahd_outb(ahd, CLRINT, CLRSCSIINT);
1643 ahd_iocell_first_selection(ahd);
1644 ahd_unpause(ahd);
1645 } else if ((status0 & (SELDI|SELDO)) != 0) {
1647 ahd_iocell_first_selection(ahd);
1648 ahd_unpause(ahd);
1649 } else if (status3 != 0) {
1650 kprintf("%s: SCSI Cell parity error SSTAT3 == 0x%x\n",
1651 ahd_name(ahd), status3);
1652 ahd_outb(ahd, CLRSINT3, status3);
1653 } else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) {
1655 /* Make sure the sequencer is in a safe location. */
1656 ahd_clear_critical_section(ahd);
1658 ahd_handle_lqiphase_error(ahd, lqistat1);
1659 } else if ((lqistat1 & LQICRCI_NLQ) != 0) {
1661 * This status can be delayed during some
1662 * streaming operations. The SCSIPHASE
1663 * handler has already dealt with this case
1664 * so just clear the error.
1666 ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ);
1667 } else if ((status & BUSFREE) != 0
1668 || (lqistat1 & LQOBUSFREE) != 0) {
1669 u_int lqostat1;
1670 int restart;
1671 int clear_fifo;
1672 int packetized;
1673 u_int mode;
1676 * Clear our selection hardware as soon as possible.
1677 * We may have an entry in the waiting Q for this target,
1678 * that is affected by this busfree and we don't want to
1679 * go about selecting the target while we handle the event.
1681 ahd_outb(ahd, SCSISEQ0, 0);
1683 /* Make sure the sequencer is in a safe location. */
1684 ahd_clear_critical_section(ahd);
1687 * Determine what we were up to at the time of
1688 * the busfree.
1690 mode = AHD_MODE_SCSI;
1691 busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
1692 lqostat1 = ahd_inb(ahd, LQOSTAT1);
1693 switch (busfreetime) {
1694 case BUSFREE_DFF0:
1695 case BUSFREE_DFF1:
1697 u_int scbid;
1698 struct scb *scb;
1700 mode = busfreetime == BUSFREE_DFF0
1701 ? AHD_MODE_DFF0 : AHD_MODE_DFF1;
1702 ahd_set_modes(ahd, mode, mode);
1703 scbid = ahd_get_scbptr(ahd);
1704 scb = ahd_lookup_scb(ahd, scbid);
1705 if (scb == NULL) {
1706 kprintf("%s: Invalid SCB %d in DFF%d "
1707 "during unexpected busfree\n",
1708 ahd_name(ahd), scbid, mode);
1709 packetized = 0;
1710 } else
1711 packetized = (scb->flags & SCB_PACKETIZED) != 0;
1712 clear_fifo = 1;
1713 break;
1715 case BUSFREE_LQO:
1716 clear_fifo = 0;
1717 packetized = 1;
1718 break;
1719 default:
1720 clear_fifo = 0;
1721 packetized = (lqostat1 & LQOBUSFREE) != 0;
1722 if (!packetized
1723 && ahd_inb(ahd, LASTPHASE) == P_BUSFREE
1724 && (ahd_inb(ahd, SSTAT0) & SELDI) == 0
1725 && ((ahd_inb(ahd, SSTAT0) & SELDO) == 0
1726 || (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0))
1728 * Assume packetized if we are not
1729 * on the bus in a non-packetized
1730 * capacity and any pending selection
1731 * was a packetized selection.
1733 packetized = 1;
1734 break;
1737 #ifdef AHD_DEBUG
1738 if ((ahd_debug & AHD_SHOW_MISC) != 0)
1739 kprintf("Saw Busfree. Busfreetime = 0x%x.\n",
1740 busfreetime);
1741 #endif
1743 * Busfrees that occur in non-packetized phases are
1744 * handled by the nonpkt_busfree handler.
1746 if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) {
1747 restart = ahd_handle_pkt_busfree(ahd, busfreetime);
1748 } else {
1749 packetized = 0;
1750 restart = ahd_handle_nonpkt_busfree(ahd);
1753 * Clear the busfree interrupt status. The setting of
1754 * the interrupt is a pulse, so in a perfect world, we
1755 * would not need to muck with the ENBUSFREE logic. This
1756 * would ensure that if the bus moves on to another
1757 * connection, busfree protection is still in force. If
1758 * BUSFREEREV is broken, however, we must manually clear
1759 * the ENBUSFREE if the busfree occurred during a non-pack
1760 * connection so that we don't get false positives during
1761 * future, packetized, connections.
1763 ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
1764 if (packetized == 0
1765 && (ahd->bugs & AHD_BUSFREEREV_BUG) != 0)
1766 ahd_outb(ahd, SIMODE1,
1767 ahd_inb(ahd, SIMODE1) & ~ENBUSFREE);
1769 if (clear_fifo)
1770 ahd_clear_fifo(ahd, mode);
1772 ahd_clear_msg_state(ahd);
1773 ahd_outb(ahd, CLRINT, CLRSCSIINT);
1774 if (restart) {
1775 ahd_restart(ahd);
1776 } else {
1777 ahd_unpause(ahd);
1779 } else {
1780 kprintf("%s: Missing case in ahd_handle_scsiint. status = %x\n",
1781 ahd_name(ahd), status);
1782 ahd_dump_card_state(ahd);
1783 ahd_clear_intstat(ahd);
1784 ahd_unpause(ahd);
1788 static void
1789 ahd_handle_transmission_error(struct ahd_softc *ahd)
1791 struct scb *scb;
1792 u_int scbid;
1793 u_int lqistat1;
1794 u_int lqistat2;
1795 u_int msg_out;
1796 u_int curphase;
1797 u_int lastphase;
1798 u_int perrdiag;
1799 u_int cur_col;
1800 int silent;
1802 scb = NULL;
1803 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1804 lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ);
1805 lqistat2 = ahd_inb(ahd, LQISTAT2);
1806 if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0
1807 && (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) {
1808 u_int lqistate;
1810 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
1811 lqistate = ahd_inb(ahd, LQISTATE);
1812 if ((lqistate >= 0x1E && lqistate <= 0x24)
1813 || (lqistate == 0x29)) {
1814 #ifdef AHD_DEBUG
1815 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1816 kprintf("%s: NLQCRC found via LQISTATE\n",
1817 ahd_name(ahd));
1819 #endif
1820 lqistat1 |= LQICRCI_NLQ;
1822 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1825 ahd_outb(ahd, CLRLQIINT1, lqistat1);
1826 lastphase = ahd_inb(ahd, LASTPHASE);
1827 curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
1828 perrdiag = ahd_inb(ahd, PERRDIAG);
1829 msg_out = MSG_INITIATOR_DET_ERR;
1830 ahd_outb(ahd, CLRSINT1, CLRSCSIPERR);
1833 * Try to find the SCB associated with this error.
1835 silent = FALSE;
1836 if (lqistat1 == 0
1837 || (lqistat1 & LQICRCI_NLQ) != 0) {
1838 if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0)
1839 ahd_set_active_fifo(ahd);
1840 scbid = ahd_get_scbptr(ahd);
1841 scb = ahd_lookup_scb(ahd, scbid);
1842 if (scb != NULL && SCB_IS_SILENT(scb))
1843 silent = TRUE;
1846 cur_col = 0;
1847 if (silent == FALSE) {
1848 kprintf("%s: Transmission error detected\n", ahd_name(ahd));
1849 ahd_lqistat1_print(lqistat1, &cur_col, 50);
1850 ahd_lastphase_print(lastphase, &cur_col, 50);
1851 ahd_scsisigi_print(curphase, &cur_col, 50);
1852 ahd_perrdiag_print(perrdiag, &cur_col, 50);
1853 kprintf("\n");
1854 ahd_dump_card_state(ahd);
1857 if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) {
1858 if (silent == FALSE) {
1859 kprintf("%s: Gross protocol error during incoming "
1860 "packet. lqistat1 == 0x%x. Resetting bus.\n",
1861 ahd_name(ahd), lqistat1);
1863 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1864 return;
1865 } else if ((lqistat1 & LQICRCI_LQ) != 0) {
1867 * A CRC error has been detected on an incoming LQ.
1868 * The bus is currently hung on the last ACK.
1869 * Hit LQIRETRY to release the last ack, and
1870 * wait for the sequencer to determine that ATNO
1871 * is asserted while in message out to take us
1872 * to our host message loop. No NONPACKREQ or
1873 * LQIPHASE type errors will occur in this
1874 * scenario. After this first LQIRETRY, the LQI
1875 * manager will be in ISELO where it will
1876 * happily sit until another packet phase begins.
1877 * Unexpected bus free detection is enabled
1878 * through any phases that occur after we release
1879 * this last ack until the LQI manager sees a
1880 * packet phase. This implies we may have to
1881 * ignore a perfectly valid "unexected busfree"
1882 * after our "initiator detected error" message is
1883 * sent. A busfree is the expected response after
1884 * we tell the target that it's L_Q was corrupted.
1885 * (SPI4R09 10.7.3.3.3)
1887 ahd_outb(ahd, LQCTL2, LQIRETRY);
1888 kprintf("LQIRetry for LQICRCI_LQ to release ACK\n");
1889 } else if ((lqistat1 & LQICRCI_NLQ) != 0) {
1891 * We detected a CRC error in a NON-LQ packet.
1892 * The hardware has varying behavior in this situation
1893 * depending on whether this packet was part of a
1894 * stream or not.
1896 * PKT by PKT mode:
1897 * The hardware has already acked the complete packet.
1898 * If the target honors our outstanding ATN condition,
1899 * we should be (or soon will be) in MSGOUT phase.
1900 * This will trigger the LQIPHASE_LQ status bit as the
1901 * hardware was expecting another LQ. Unexpected
1902 * busfree detection is enabled. Once LQIPHASE_LQ is
1903 * true (first entry into host message loop is much
1904 * the same), we must clear LQIPHASE_LQ and hit
1905 * LQIRETRY so the hardware is ready to handle
1906 * a future LQ. NONPACKREQ will not be asserted again
1907 * once we hit LQIRETRY until another packet is
1908 * processed. The target may either go busfree
1909 * or start another packet in response to our message.
1911 * Read Streaming P0 asserted:
1912 * If we raise ATN and the target completes the entire
1913 * stream (P0 asserted during the last packet), the
1914 * hardware will ack all data and return to the ISTART
1915 * state. When the target reponds to our ATN condition,
1916 * LQIPHASE_LQ will be asserted. We should respond to
1917 * this with an LQIRETRY to prepare for any future
1918 * packets. NONPACKREQ will not be asserted again
1919 * once we hit LQIRETRY until another packet is
1920 * processed. The target may either go busfree or
1921 * start another packet in response to our message.
1922 * Busfree detection is enabled.
1924 * Read Streaming P0 not asserted:
1925 * If we raise ATN and the target transitions to
1926 * MSGOUT in or after a packet where P0 is not
1927 * asserted, the hardware will assert LQIPHASE_NLQ.
1928 * We should respond to the LQIPHASE_NLQ with an
1929 * LQIRETRY. Should the target stay in a non-pkt
1930 * phase after we send our message, the hardware
1931 * will assert LQIPHASE_LQ. Recovery is then just as
1932 * listed above for the read streaming with P0 asserted.
1933 * Busfree detection is enabled.
1935 if (silent == FALSE)
1936 kprintf("LQICRC_NLQ\n");
1937 if (scb == NULL) {
1938 kprintf("%s: No SCB valid for LQICRC_NLQ. "
1939 "Resetting bus\n", ahd_name(ahd));
1940 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1941 return;
1943 } else if ((lqistat1 & LQIBADLQI) != 0) {
1944 kprintf("Need to handle BADLQI!\n");
1945 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1946 return;
1947 } else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) {
1948 if ((curphase & ~P_DATAIN_DT) != 0) {
1949 /* Ack the byte. So we can continue. */
1950 if (silent == FALSE)
1951 kprintf("Acking %s to clear perror\n",
1952 ahd_lookup_phase_entry(curphase)->phasemsg);
1953 ahd_inb(ahd, SCSIDAT);
1956 if (curphase == P_MESGIN)
1957 msg_out = MSG_PARITY_ERROR;
1961 * We've set the hardware to assert ATN if we
1962 * get a parity error on "in" phases, so all we
1963 * need to do is stuff the message buffer with
1964 * the appropriate message. "In" phases have set
1965 * mesg_out to something other than MSG_NOP.
1967 ahd->send_msg_perror = msg_out;
1968 if (scb != NULL && msg_out == MSG_INITIATOR_DET_ERR)
1969 scb->flags |= SCB_TRANSMISSION_ERROR;
1970 ahd_outb(ahd, MSG_OUT, HOST_MSG);
1971 ahd_outb(ahd, CLRINT, CLRSCSIINT);
1972 ahd_unpause(ahd);
1975 static void
1976 ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1)
1979 * Clear the sources of the interrupts.
1981 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1982 ahd_outb(ahd, CLRLQIINT1, lqistat1);
1985 * If the "illegal" phase changes were in response
1986 * to our ATN to flag a CRC error, AND we ended up
1987 * on packet boundaries, clear the error, restart the
1988 * LQI manager as appropriate, and go on our merry
1989 * way toward sending the message. Otherwise, reset
1990 * the bus to clear the error.
1992 ahd_set_active_fifo(ahd);
1993 if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0
1994 && (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) {
1995 if ((lqistat1 & LQIPHASE_LQ) != 0) {
1996 kprintf("LQIRETRY for LQIPHASE_LQ\n");
1997 ahd_outb(ahd, LQCTL2, LQIRETRY);
1998 } else if ((lqistat1 & LQIPHASE_NLQ) != 0) {
1999 kprintf("LQIRETRY for LQIPHASE_NLQ\n");
2000 ahd_outb(ahd, LQCTL2, LQIRETRY);
2001 } else
2002 panic("ahd_handle_lqiphase_error: No phase errors\n");
2003 ahd_dump_card_state(ahd);
2004 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2005 ahd_unpause(ahd);
2006 } else {
2007 kprintf("Reseting Channel for LQI Phase error\n");
2008 ahd_dump_card_state(ahd);
2009 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2014 * Packetized unexpected or expected busfree.
2015 * Entered in mode based on busfreetime.
2017 static int
2018 ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime)
2020 u_int lqostat1;
2022 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
2023 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
2024 lqostat1 = ahd_inb(ahd, LQOSTAT1);
2025 if ((lqostat1 & LQOBUSFREE) != 0) {
2026 struct scb *scb;
2027 u_int scbid;
2028 u_int saved_scbptr;
2029 u_int waiting_h;
2030 u_int waiting_t;
2031 u_int next;
2034 * The LQO manager detected an unexpected busfree
2035 * either:
2037 * 1) During an outgoing LQ.
2038 * 2) After an outgoing LQ but before the first
2039 * REQ of the command packet.
2040 * 3) During an outgoing command packet.
2042 * In all cases, CURRSCB is pointing to the
2043 * SCB that encountered the failure. Clean
2044 * up the queue, clear SELDO and LQOBUSFREE,
2045 * and allow the sequencer to restart the select
2046 * out at its lesure.
2048 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2049 scbid = ahd_inw(ahd, CURRSCB);
2050 scb = ahd_lookup_scb(ahd, scbid);
2051 if (scb == NULL)
2052 panic("SCB not valid during LQOBUSFREE");
2054 * Clear the status.
2056 ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE);
2057 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2058 ahd_outb(ahd, CLRLQOINT1, 0);
2059 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2060 ahd_flush_device_writes(ahd);
2061 ahd_outb(ahd, CLRSINT0, CLRSELDO);
2064 * Return the LQO manager to its idle loop. It will
2065 * not do this automatically if the busfree occurs
2066 * after the first REQ of either the LQ or command
2067 * packet or between the LQ and command packet.
2069 ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE);
2072 * Update the waiting for selection queue so
2073 * we restart on the correct SCB.
2075 waiting_h = ahd_inw(ahd, WAITING_TID_HEAD);
2076 saved_scbptr = ahd_get_scbptr(ahd);
2077 if (waiting_h != scbid) {
2079 ahd_outw(ahd, WAITING_TID_HEAD, scbid);
2080 waiting_t = ahd_inw(ahd, WAITING_TID_TAIL);
2081 if (waiting_t == waiting_h) {
2082 ahd_outw(ahd, WAITING_TID_TAIL, scbid);
2083 next = SCB_LIST_NULL;
2084 } else {
2085 ahd_set_scbptr(ahd, waiting_h);
2086 next = ahd_inw_scbram(ahd, SCB_NEXT2);
2088 ahd_set_scbptr(ahd, scbid);
2089 ahd_outw(ahd, SCB_NEXT2, next);
2091 ahd_set_scbptr(ahd, saved_scbptr);
2092 if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) {
2093 if (SCB_IS_SILENT(scb) == FALSE) {
2094 ahd_print_path(ahd, scb);
2095 kprintf("Probable outgoing LQ CRC error. "
2096 "Retrying command\n");
2098 scb->crc_retry_count++;
2099 } else {
2100 aic_set_transaction_status(scb, CAM_UNCOR_PARITY);
2101 aic_freeze_scb(scb);
2102 ahd_freeze_devq(ahd, scb);
2104 /* Return unpausing the sequencer. */
2105 return (0);
2106 } else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) {
2108 * Ignore what are really parity errors that
2109 * occur on the last REQ of a free running
2110 * clock prior to going busfree. Some drives
2111 * do not properly active negate just before
2112 * going busfree resulting in a parity glitch.
2114 ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE);
2115 #ifdef AHD_DEBUG
2116 if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0)
2117 kprintf("%s: Parity on last REQ detected "
2118 "during busfree phase.\n",
2119 ahd_name(ahd));
2120 #endif
2121 /* Return unpausing the sequencer. */
2122 return (0);
2124 if (ahd->src_mode != AHD_MODE_SCSI) {
2125 u_int scbid;
2126 struct scb *scb;
2128 scbid = ahd_get_scbptr(ahd);
2129 scb = ahd_lookup_scb(ahd, scbid);
2130 ahd_print_path(ahd, scb);
2131 kprintf("Unexpected PKT busfree condition\n");
2132 ahd_dump_card_state(ahd);
2133 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A',
2134 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2135 ROLE_INITIATOR, CAM_UNEXP_BUSFREE);
2137 /* Return restarting the sequencer. */
2138 return (1);
2140 kprintf("%s: Unexpected PKT busfree condition\n", ahd_name(ahd));
2141 ahd_dump_card_state(ahd);
2142 /* Restart the sequencer. */
2143 return (1);
2147 * Non-packetized unexpected or expected busfree.
2149 static int
2150 ahd_handle_nonpkt_busfree(struct ahd_softc *ahd)
2152 struct ahd_devinfo devinfo;
2153 struct scb *scb;
2154 u_int lastphase;
2155 u_int saved_scsiid;
2156 u_int saved_lun;
2157 u_int target;
2158 u_int initiator_role_id;
2159 u_int scbid;
2160 u_int ppr_busfree;
2161 int printerror;
2164 * Look at what phase we were last in. If its message out,
2165 * chances are pretty good that the busfree was in response
2166 * to one of our abort requests.
2168 lastphase = ahd_inb(ahd, LASTPHASE);
2169 saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
2170 saved_lun = ahd_inb(ahd, SAVED_LUN);
2171 target = SCSIID_TARGET(ahd, saved_scsiid);
2172 initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
2173 ahd_compile_devinfo(&devinfo, initiator_role_id,
2174 target, saved_lun, 'A', ROLE_INITIATOR);
2175 printerror = 1;
2177 scbid = ahd_get_scbptr(ahd);
2178 scb = ahd_lookup_scb(ahd, scbid);
2179 if (scb != NULL
2180 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
2181 scb = NULL;
2183 ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0;
2184 if (lastphase == P_MESGOUT) {
2185 u_int tag;
2187 tag = SCB_LIST_NULL;
2188 if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT_TAG, TRUE)
2189 || ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT, TRUE)) {
2190 int found;
2191 int sent_msg;
2193 if (scb == NULL) {
2194 ahd_print_devinfo(ahd, &devinfo);
2195 kprintf("Abort for unidentified "
2196 "connection completed.\n");
2197 /* restart the sequencer. */
2198 return (1);
2200 sent_msg = ahd->msgout_buf[ahd->msgout_index - 1];
2201 ahd_print_path(ahd, scb);
2202 kprintf("SCB %d - Abort%s Completed.\n",
2203 SCB_GET_TAG(scb),
2204 sent_msg == MSG_ABORT_TAG ? "" : " Tag");
2206 if (sent_msg == MSG_ABORT_TAG)
2207 tag = SCB_GET_TAG(scb);
2209 if ((scb->flags & SCB_CMDPHASE_ABORT) != 0) {
2211 * This abort is in response to an
2212 * unexpected switch to command phase
2213 * for a packetized connection. Since
2214 * the identify message was never sent,
2215 * "saved lun" is 0. We really want to
2216 * abort only the SCB that encountered
2217 * this error, which could have a different
2218 * lun. The SCB will be retried so the OS
2219 * will see the UA after renegotiating to
2220 * packetized.
2222 tag = SCB_GET_TAG(scb);
2223 saved_lun = scb->hscb->lun;
2225 found = ahd_abort_scbs(ahd, target, 'A', saved_lun,
2226 tag, ROLE_INITIATOR,
2227 CAM_REQ_ABORTED);
2228 kprintf("found == 0x%x\n", found);
2229 printerror = 0;
2230 } else if (ahd_sent_msg(ahd, AHDMSG_1B,
2231 MSG_BUS_DEV_RESET, TRUE)) {
2232 #if defined(__DragonFly__) || defined(__FreeBSD__)
2234 * Don't mark the user's request for this BDR
2235 * as completing with CAM_BDR_SENT. CAM3
2236 * specifies CAM_REQ_CMP.
2238 if (scb != NULL
2239 && scb->io_ctx->ccb_h.func_code== XPT_RESET_DEV
2240 && ahd_match_scb(ahd, scb, target, 'A',
2241 CAM_LUN_WILDCARD, SCB_LIST_NULL,
2242 ROLE_INITIATOR))
2243 aic_set_transaction_status(scb, CAM_REQ_CMP);
2244 #endif
2245 ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD,
2246 CAM_BDR_SENT, "Bus Device Reset",
2247 /*verbose_level*/0);
2248 printerror = 0;
2249 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, FALSE)
2250 && ppr_busfree == 0) {
2251 struct ahd_initiator_tinfo *tinfo;
2252 struct ahd_tmode_tstate *tstate;
2255 * PPR Rejected.
2257 * If the previous negotiation was packetized,
2258 * this could be because the device has been
2259 * reset without our knowledge. Force our
2260 * current negotiation to async and retry the
2261 * negotiation. Otherwise retry the command
2262 * with non-ppr negotiation.
2264 #ifdef AHD_DEBUG
2265 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
2266 kprintf("PPR negotiation rejected busfree.\n");
2267 #endif
2268 tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
2269 devinfo.our_scsiid,
2270 devinfo.target, &tstate);
2271 if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) {
2272 ahd_set_width(ahd, &devinfo,
2273 MSG_EXT_WDTR_BUS_8_BIT,
2274 AHD_TRANS_CUR,
2275 /*paused*/TRUE);
2276 ahd_set_syncrate(ahd, &devinfo,
2277 /*period*/0, /*offset*/0,
2278 /*ppr_options*/0,
2279 AHD_TRANS_CUR,
2280 /*paused*/TRUE);
2282 * The expect PPR busfree handler below
2283 * will effect the retry and necessary
2284 * abort.
2286 } else {
2287 tinfo->curr.transport_version = 2;
2288 tinfo->goal.transport_version = 2;
2289 tinfo->goal.ppr_options = 0;
2291 * Remove any SCBs in the waiting for selection
2292 * queue that may also be for this target so
2293 * that command ordering is preserved.
2295 ahd_freeze_devq(ahd, scb);
2296 ahd_qinfifo_requeue_tail(ahd, scb);
2297 printerror = 0;
2299 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, FALSE)
2300 && ppr_busfree == 0) {
2302 * Negotiation Rejected. Go-narrow and
2303 * retry command.
2305 #ifdef AHD_DEBUG
2306 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
2307 kprintf("WDTR negotiation rejected busfree.\n");
2308 #endif
2309 ahd_set_width(ahd, &devinfo,
2310 MSG_EXT_WDTR_BUS_8_BIT,
2311 AHD_TRANS_CUR|AHD_TRANS_GOAL,
2312 /*paused*/TRUE);
2314 * Remove any SCBs in the waiting for selection
2315 * queue that may also be for this target so that
2316 * command ordering is preserved.
2318 ahd_freeze_devq(ahd, scb);
2319 ahd_qinfifo_requeue_tail(ahd, scb);
2320 printerror = 0;
2321 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, FALSE)
2322 && ppr_busfree == 0) {
2324 * Negotiation Rejected. Go-async and
2325 * retry command.
2327 #ifdef AHD_DEBUG
2328 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
2329 kprintf("SDTR negotiation rejected busfree.\n");
2330 #endif
2331 ahd_set_syncrate(ahd, &devinfo,
2332 /*period*/0, /*offset*/0,
2333 /*ppr_options*/0,
2334 AHD_TRANS_CUR|AHD_TRANS_GOAL,
2335 /*paused*/TRUE);
2337 * Remove any SCBs in the waiting for selection
2338 * queue that may also be for this target so that
2339 * command ordering is preserved.
2341 ahd_freeze_devq(ahd, scb);
2342 ahd_qinfifo_requeue_tail(ahd, scb);
2343 printerror = 0;
2344 } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0
2345 && ahd_sent_msg(ahd, AHDMSG_1B,
2346 MSG_INITIATOR_DET_ERR, TRUE)) {
2348 #ifdef AHD_DEBUG
2349 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
2350 kprintf("Expected IDE Busfree\n");
2351 #endif
2352 printerror = 0;
2353 } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE)
2354 && ahd_sent_msg(ahd, AHDMSG_1B,
2355 MSG_MESSAGE_REJECT, TRUE)) {
2357 #ifdef AHD_DEBUG
2358 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
2359 kprintf("Expected QAS Reject Busfree\n");
2360 #endif
2361 printerror = 0;
2366 * The busfree required flag is honored at the end of
2367 * the message phases. We check it last in case we
2368 * had to send some other message that caused a busfree.
2370 if (printerror != 0
2371 && (lastphase == P_MESGIN || lastphase == P_MESGOUT)
2372 && ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) {
2374 ahd_freeze_devq(ahd, scb);
2375 aic_set_transaction_status(scb, CAM_REQUEUE_REQ);
2376 aic_freeze_scb(scb);
2377 if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) {
2378 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
2379 SCB_GET_CHANNEL(ahd, scb),
2380 SCB_GET_LUN(scb), SCB_LIST_NULL,
2381 ROLE_INITIATOR, CAM_REQ_ABORTED);
2382 } else {
2383 #ifdef AHD_DEBUG
2384 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
2385 kprintf("PPR Negotiation Busfree.\n");
2386 #endif
2387 ahd_done(ahd, scb);
2389 printerror = 0;
2391 if (printerror != 0) {
2392 int aborted;
2394 aborted = 0;
2395 if (scb != NULL) {
2396 u_int tag;
2398 if ((scb->hscb->control & TAG_ENB) != 0)
2399 tag = SCB_GET_TAG(scb);
2400 else
2401 tag = SCB_LIST_NULL;
2402 ahd_print_path(ahd, scb);
2403 aborted = ahd_abort_scbs(ahd, target, 'A',
2404 SCB_GET_LUN(scb), tag,
2405 ROLE_INITIATOR,
2406 CAM_UNEXP_BUSFREE);
2407 } else {
2409 * We had not fully identified this connection,
2410 * so we cannot abort anything.
2412 kprintf("%s: ", ahd_name(ahd));
2414 kprintf("Unexpected busfree %s, %d SCBs aborted, "
2415 "PRGMCNT == 0x%x\n",
2416 ahd_lookup_phase_entry(lastphase)->phasemsg,
2417 aborted,
2418 ahd_inw(ahd, PRGMCNT));
2419 ahd_dump_card_state(ahd);
2420 if (lastphase != P_BUSFREE)
2421 ahd_force_renegotiation(ahd, &devinfo);
2423 /* Always restart the sequencer. */
2424 return (1);
2427 static void
2428 ahd_handle_proto_violation(struct ahd_softc *ahd)
2430 struct ahd_devinfo devinfo;
2431 struct scb *scb;
2432 u_int scbid;
2433 u_int seq_flags;
2434 u_int curphase;
2435 u_int lastphase;
2436 int found;
2438 ahd_fetch_devinfo(ahd, &devinfo);
2439 scbid = ahd_get_scbptr(ahd);
2440 scb = ahd_lookup_scb(ahd, scbid);
2441 seq_flags = ahd_inb(ahd, SEQ_FLAGS);
2442 curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2443 lastphase = ahd_inb(ahd, LASTPHASE);
2444 if ((seq_flags & NOT_IDENTIFIED) != 0) {
2447 * The reconnecting target either did not send an
2448 * identify message, or did, but we didn't find an SCB
2449 * to match.
2451 ahd_print_devinfo(ahd, &devinfo);
2452 kprintf("Target did not send an IDENTIFY message. "
2453 "LASTPHASE = 0x%x.\n", lastphase);
2454 scb = NULL;
2455 } else if (scb == NULL) {
2457 * We don't seem to have an SCB active for this
2458 * transaction. Print an error and reset the bus.
2460 ahd_print_devinfo(ahd, &devinfo);
2461 kprintf("No SCB found during protocol violation\n");
2462 goto proto_violation_reset;
2463 } else {
2464 aic_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
2465 if ((seq_flags & NO_CDB_SENT) != 0) {
2466 ahd_print_path(ahd, scb);
2467 kprintf("No or incomplete CDB sent to device.\n");
2468 } else if ((ahd_inb_scbram(ahd, SCB_CONTROL)
2469 & STATUS_RCVD) == 0) {
2471 * The target never bothered to provide status to
2472 * us prior to completing the command. Since we don't
2473 * know the disposition of this command, we must attempt
2474 * to abort it. Assert ATN and prepare to send an abort
2475 * message.
2477 ahd_print_path(ahd, scb);
2478 kprintf("Completed command without status.\n");
2479 } else {
2480 ahd_print_path(ahd, scb);
2481 kprintf("Unknown protocol violation.\n");
2482 ahd_dump_card_state(ahd);
2485 if ((lastphase & ~P_DATAIN_DT) == 0
2486 || lastphase == P_COMMAND) {
2487 proto_violation_reset:
2489 * Target either went directly to data
2490 * phase or didn't respond to our ATN.
2491 * The only safe thing to do is to blow
2492 * it away with a bus reset.
2494 found = ahd_reset_channel(ahd, 'A', TRUE);
2495 kprintf("%s: Issued Channel %c Bus Reset. "
2496 "%d SCBs aborted\n", ahd_name(ahd), 'A', found);
2497 } else {
2499 * Leave the selection hardware off in case
2500 * this abort attempt will affect yet to
2501 * be sent commands.
2503 ahd_outb(ahd, SCSISEQ0,
2504 ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2505 ahd_assert_atn(ahd);
2506 ahd_outb(ahd, MSG_OUT, HOST_MSG);
2507 if (scb == NULL) {
2508 ahd_print_devinfo(ahd, &devinfo);
2509 ahd->msgout_buf[0] = MSG_ABORT_TASK;
2510 ahd->msgout_len = 1;
2511 ahd->msgout_index = 0;
2512 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2513 } else {
2514 ahd_print_path(ahd, scb);
2515 scb->flags |= SCB_ABORT;
2517 kprintf("Protocol violation %s. Attempting to abort.\n",
2518 ahd_lookup_phase_entry(curphase)->phasemsg);
2523 * Force renegotiation to occur the next time we initiate
2524 * a command to the current device.
2526 static void
2527 ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
2529 struct ahd_initiator_tinfo *targ_info;
2530 struct ahd_tmode_tstate *tstate;
2532 #ifdef AHD_DEBUG
2533 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
2534 ahd_print_devinfo(ahd, devinfo);
2535 kprintf("Forcing renegotiation\n");
2537 #endif
2538 targ_info = ahd_fetch_transinfo(ahd,
2539 devinfo->channel,
2540 devinfo->our_scsiid,
2541 devinfo->target,
2542 &tstate);
2543 ahd_update_neg_request(ahd, devinfo, tstate,
2544 targ_info, AHD_NEG_IF_NON_ASYNC);
2547 #define AHD_MAX_STEPS 2000
2548 void
2549 ahd_clear_critical_section(struct ahd_softc *ahd)
2551 ahd_mode_state saved_modes;
2552 int stepping;
2553 int steps;
2554 int first_instr;
2555 u_int simode0;
2556 u_int simode1;
2557 u_int simode3;
2558 u_int lqimode0;
2559 u_int lqimode1;
2560 u_int lqomode0;
2561 u_int lqomode1;
2563 if (ahd->num_critical_sections == 0)
2564 return;
2566 stepping = FALSE;
2567 steps = 0;
2568 first_instr = 0;
2569 simode0 = 0;
2570 simode1 = 0;
2571 simode3 = 0;
2572 lqimode0 = 0;
2573 lqimode1 = 0;
2574 lqomode0 = 0;
2575 lqomode1 = 0;
2576 saved_modes = ahd_save_modes(ahd);
2577 for (;;) {
2578 struct cs *cs;
2579 u_int seqaddr;
2580 u_int i;
2582 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2583 seqaddr = ahd_inw(ahd, CURADDR);
2585 cs = ahd->critical_sections;
2586 for (i = 0; i < ahd->num_critical_sections; i++, cs++) {
2588 if (cs->begin < seqaddr && cs->end >= seqaddr)
2589 break;
2592 if (i == ahd->num_critical_sections)
2593 break;
2595 if (steps > AHD_MAX_STEPS) {
2596 kprintf("%s: Infinite loop in critical section\n"
2597 "%s: First Instruction 0x%x now 0x%x\n",
2598 ahd_name(ahd), ahd_name(ahd), first_instr,
2599 seqaddr);
2600 ahd_dump_card_state(ahd);
2601 panic("critical section loop");
2604 steps++;
2605 #ifdef AHD_DEBUG
2606 if ((ahd_debug & AHD_SHOW_MISC) != 0)
2607 kprintf("%s: Single stepping at 0x%x\n", ahd_name(ahd),
2608 seqaddr);
2609 #endif
2610 if (stepping == FALSE) {
2612 first_instr = seqaddr;
2613 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2614 simode0 = ahd_inb(ahd, SIMODE0);
2615 simode3 = ahd_inb(ahd, SIMODE3);
2616 lqimode0 = ahd_inb(ahd, LQIMODE0);
2617 lqimode1 = ahd_inb(ahd, LQIMODE1);
2618 lqomode0 = ahd_inb(ahd, LQOMODE0);
2619 lqomode1 = ahd_inb(ahd, LQOMODE1);
2620 ahd_outb(ahd, SIMODE0, 0);
2621 ahd_outb(ahd, SIMODE3, 0);
2622 ahd_outb(ahd, LQIMODE0, 0);
2623 ahd_outb(ahd, LQIMODE1, 0);
2624 ahd_outb(ahd, LQOMODE0, 0);
2625 ahd_outb(ahd, LQOMODE1, 0);
2626 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2627 simode1 = ahd_inb(ahd, SIMODE1);
2629 * We don't clear ENBUSFREE. Unfortunately
2630 * we cannot re-enable busfree detection within
2631 * the current connection, so we must leave it
2632 * on while single stepping.
2634 ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE);
2635 ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP);
2636 stepping = TRUE;
2638 ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
2639 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2640 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
2641 ahd_outb(ahd, HCNTRL, ahd->unpause);
2642 while (!ahd_is_paused(ahd))
2643 aic_delay(200);
2644 ahd_update_modes(ahd);
2646 if (stepping) {
2647 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2648 ahd_outb(ahd, SIMODE0, simode0);
2649 ahd_outb(ahd, SIMODE3, simode3);
2650 ahd_outb(ahd, LQIMODE0, lqimode0);
2651 ahd_outb(ahd, LQIMODE1, lqimode1);
2652 ahd_outb(ahd, LQOMODE0, lqomode0);
2653 ahd_outb(ahd, LQOMODE1, lqomode1);
2654 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2655 ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP);
2656 ahd_outb(ahd, SIMODE1, simode1);
2658 * SCSIINT seems to glitch occassionally when
2659 * the interrupt masks are restored. Clear SCSIINT
2660 * one more time so that only persistent errors
2661 * are seen as a real interrupt.
2663 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2665 ahd_restore_modes(ahd, saved_modes);
2669 * Clear any pending interrupt status.
2671 void
2672 ahd_clear_intstat(struct ahd_softc *ahd)
2674 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
2675 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
2676 /* Clear any interrupt conditions this may have caused */
2677 ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2
2678 |CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD);
2679 ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT
2680 |CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI
2681 |CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ);
2682 ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ
2683 |CLRLQOATNPKT|CLRLQOTCRC);
2684 ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS
2685 |CLRLQOBUSFREE|CLRLQOPHACHGINPKT);
2686 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
2687 ahd_outb(ahd, CLRLQOINT0, 0);
2688 ahd_outb(ahd, CLRLQOINT1, 0);
2690 ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR);
2691 ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
2692 |CLRBUSFREE|CLRSCSIPERR|CLRREQINIT);
2693 ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO
2694 |CLRIOERR|CLROVERRUN);
2695 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2698 /**************************** Debugging Routines ******************************/
2699 #ifdef AHD_DEBUG
2700 uint32_t ahd_debug = AHD_DEBUG_OPTS;
2701 #endif
2702 void
2703 ahd_print_scb(struct scb *scb)
2705 struct hardware_scb *hscb;
2706 int i;
2708 hscb = scb->hscb;
2709 kprintf("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
2710 (void *)scb,
2711 hscb->control,
2712 hscb->scsiid,
2713 hscb->lun,
2714 hscb->cdb_len);
2715 kprintf("Shared Data: ");
2716 for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++)
2717 kprintf("%#02x", hscb->shared_data.idata.cdb[i]);
2718 kprintf(" dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n",
2719 (uint32_t)((aic_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF),
2720 (uint32_t)(aic_le64toh(hscb->dataptr) & 0xFFFFFFFF),
2721 aic_le32toh(hscb->datacnt),
2722 aic_le32toh(hscb->sgptr),
2723 SCB_GET_TAG(scb));
2724 ahd_dump_sglist(scb);
2727 void
2728 ahd_dump_sglist(struct scb *scb)
2730 int i;
2732 if (scb->sg_count > 0) {
2733 if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) {
2734 struct ahd_dma64_seg *sg_list;
2736 sg_list = (struct ahd_dma64_seg*)scb->sg_list;
2737 for (i = 0; i < scb->sg_count; i++) {
2738 uint64_t addr;
2739 uint32_t len;
2741 addr = aic_le64toh(sg_list[i].addr);
2742 len = aic_le32toh(sg_list[i].len);
2743 kprintf("sg[%d] - Addr 0x%x%x : Length %d%s\n",
2745 (uint32_t)((addr >> 32) & 0xFFFFFFFF),
2746 (uint32_t)(addr & 0xFFFFFFFF),
2747 sg_list[i].len & AHD_SG_LEN_MASK,
2748 (sg_list[i].len & AHD_DMA_LAST_SEG)
2749 ? " Last" : "");
2751 } else {
2752 struct ahd_dma_seg *sg_list;
2754 sg_list = (struct ahd_dma_seg*)scb->sg_list;
2755 for (i = 0; i < scb->sg_count; i++) {
2756 uint32_t len;
2758 len = aic_le32toh(sg_list[i].len);
2759 kprintf("sg[%d] - Addr 0x%x%x : Length %d%s\n",
2761 (len & AHD_SG_HIGH_ADDR_MASK) >> 24,
2762 aic_le32toh(sg_list[i].addr),
2763 len & AHD_SG_LEN_MASK,
2764 len & AHD_DMA_LAST_SEG ? " Last" : "");
2770 /************************* Transfer Negotiation *******************************/
2772 * Allocate per target mode instance (ID we respond to as a target)
2773 * transfer negotiation data structures.
2775 static struct ahd_tmode_tstate *
2776 ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel)
2778 struct ahd_tmode_tstate *master_tstate;
2779 struct ahd_tmode_tstate *tstate;
2780 int i;
2782 master_tstate = ahd->enabled_targets[ahd->our_id];
2783 if (ahd->enabled_targets[scsi_id] != NULL
2784 && ahd->enabled_targets[scsi_id] != master_tstate)
2785 panic("%s: ahd_alloc_tstate - Target already allocated",
2786 ahd_name(ahd));
2787 tstate = kmalloc(sizeof(*tstate), M_DEVBUF, M_INTWAIT);
2790 * If we have allocated a master tstate, copy user settings from
2791 * the master tstate (taken from SRAM or the EEPROM) for this
2792 * channel, but reset our current and goal settings to async/narrow
2793 * until an initiator talks to us.
2795 if (master_tstate != NULL) {
2796 memcpy(tstate, master_tstate, sizeof(*tstate));
2797 memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
2798 for (i = 0; i < 16; i++) {
2799 memset(&tstate->transinfo[i].curr, 0,
2800 sizeof(tstate->transinfo[i].curr));
2801 memset(&tstate->transinfo[i].goal, 0,
2802 sizeof(tstate->transinfo[i].goal));
2804 } else
2805 memset(tstate, 0, sizeof(*tstate));
2806 ahd->enabled_targets[scsi_id] = tstate;
2807 return (tstate);
2810 #ifdef AHD_TARGET_MODE
2812 * Free per target mode instance (ID we respond to as a target)
2813 * transfer negotiation data structures.
2815 static void
2816 ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force)
2818 struct ahd_tmode_tstate *tstate;
2821 * Don't clean up our "master" tstate.
2822 * It has our default user settings.
2824 if (scsi_id == ahd->our_id
2825 && force == FALSE)
2826 return;
2828 tstate = ahd->enabled_targets[scsi_id];
2829 if (tstate != NULL)
2830 kfree(tstate, M_DEVBUF);
2831 ahd->enabled_targets[scsi_id] = NULL;
2833 #endif
2836 * Called when we have an active connection to a target on the bus,
2837 * this function finds the nearest period to the input period limited
2838 * by the capabilities of the bus connectivity of and sync settings for
2839 * the target.
2841 void
2842 ahd_devlimited_syncrate(struct ahd_softc *ahd,
2843 struct ahd_initiator_tinfo *tinfo,
2844 u_int *period, u_int *ppr_options, role_t role)
2846 struct ahd_transinfo *transinfo;
2847 u_int maxsync;
2849 if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0
2850 && (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) {
2851 maxsync = AHD_SYNCRATE_PACED;
2852 } else {
2853 maxsync = AHD_SYNCRATE_ULTRA;
2854 /* Can't do DT related options on an SE bus */
2855 *ppr_options &= MSG_EXT_PPR_QAS_REQ;
2858 * Never allow a value higher than our current goal
2859 * period otherwise we may allow a target initiated
2860 * negotiation to go above the limit as set by the
2861 * user. In the case of an initiator initiated
2862 * sync negotiation, we limit based on the user
2863 * setting. This allows the system to still accept
2864 * incoming negotiations even if target initiated
2865 * negotiation is not performed.
2867 if (role == ROLE_TARGET)
2868 transinfo = &tinfo->user;
2869 else
2870 transinfo = &tinfo->goal;
2871 *ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN);
2872 if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
2873 maxsync = MAX(maxsync, AHD_SYNCRATE_ULTRA2);
2874 *ppr_options &= ~MSG_EXT_PPR_DT_REQ;
2876 if (transinfo->period == 0) {
2877 *period = 0;
2878 *ppr_options = 0;
2879 } else {
2880 *period = MAX(*period, transinfo->period);
2881 ahd_find_syncrate(ahd, period, ppr_options, maxsync);
2886 * Look up the valid period to SCSIRATE conversion in our table.
2887 * Return the period and offset that should be sent to the target
2888 * if this was the beginning of an SDTR.
2890 void
2891 ahd_find_syncrate(struct ahd_softc *ahd, u_int *period,
2892 u_int *ppr_options, u_int maxsync)
2894 if (*period < maxsync)
2895 *period = maxsync;
2897 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0
2898 && *period > AHD_SYNCRATE_MIN_DT)
2899 *ppr_options &= ~MSG_EXT_PPR_DT_REQ;
2901 if (*period > AHD_SYNCRATE_MIN)
2902 *period = 0;
2904 /* Honor PPR option conformance rules. */
2905 if (*period > AHD_SYNCRATE_PACED)
2906 *ppr_options &= ~MSG_EXT_PPR_RTI;
2908 if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
2909 *ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ);
2911 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0)
2912 *ppr_options &= MSG_EXT_PPR_QAS_REQ;
2914 /* Skip all PACED only entries if IU is not available */
2915 if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0
2916 && *period < AHD_SYNCRATE_DT)
2917 *period = AHD_SYNCRATE_DT;
2919 /* Skip all DT only entries if DT is not available */
2920 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
2921 && *period < AHD_SYNCRATE_ULTRA2)
2922 *period = AHD_SYNCRATE_ULTRA2;
2926 * Truncate the given synchronous offset to a value the
2927 * current adapter type and syncrate are capable of.
2929 void
2930 ahd_validate_offset(struct ahd_softc *ahd,
2931 struct ahd_initiator_tinfo *tinfo,
2932 u_int period, u_int *offset, int wide,
2933 role_t role)
2935 u_int maxoffset;
2937 /* Limit offset to what we can do */
2938 if (period == 0)
2939 maxoffset = 0;
2940 else if (period <= AHD_SYNCRATE_PACED) {
2941 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0)
2942 maxoffset = MAX_OFFSET_PACED_BUG;
2943 else
2944 maxoffset = MAX_OFFSET_PACED;
2945 } else
2946 maxoffset = MAX_OFFSET_NON_PACED;
2947 *offset = MIN(*offset, maxoffset);
2948 if (tinfo != NULL) {
2949 if (role == ROLE_TARGET)
2950 *offset = MIN(*offset, tinfo->user.offset);
2951 else
2952 *offset = MIN(*offset, tinfo->goal.offset);
2957 * Truncate the given transfer width parameter to a value the
2958 * current adapter type is capable of.
2960 void
2961 ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo,
2962 u_int *bus_width, role_t role)
2964 switch (*bus_width) {
2965 default:
2966 if (ahd->features & AHD_WIDE) {
2967 /* Respond Wide */
2968 *bus_width = MSG_EXT_WDTR_BUS_16_BIT;
2969 break;
2971 /* FALLTHROUGH */
2972 case MSG_EXT_WDTR_BUS_8_BIT:
2973 *bus_width = MSG_EXT_WDTR_BUS_8_BIT;
2974 break;
2976 if (tinfo != NULL) {
2977 if (role == ROLE_TARGET)
2978 *bus_width = MIN(tinfo->user.width, *bus_width);
2979 else
2980 *bus_width = MIN(tinfo->goal.width, *bus_width);
2985 * Update the bitmask of targets for which the controller should
2986 * negotiate with at the next convenient oportunity. This currently
2987 * means the next time we send the initial identify messages for
2988 * a new transaction.
2991 ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
2992 struct ahd_tmode_tstate *tstate,
2993 struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type)
2995 u_int auto_negotiate_orig;
2997 auto_negotiate_orig = tstate->auto_negotiate;
2998 if (neg_type == AHD_NEG_ALWAYS) {
3000 * Force our "current" settings to be
3001 * unknown so that unless a bus reset
3002 * occurs the need to renegotiate is
3003 * recorded persistently.
3005 if ((ahd->features & AHD_WIDE) != 0)
3006 tinfo->curr.width = AHD_WIDTH_UNKNOWN;
3007 tinfo->curr.period = AHD_PERIOD_UNKNOWN;
3008 tinfo->curr.offset = AHD_OFFSET_UNKNOWN;
3010 if (tinfo->curr.period != tinfo->goal.period
3011 || tinfo->curr.width != tinfo->goal.width
3012 || tinfo->curr.offset != tinfo->goal.offset
3013 || tinfo->curr.ppr_options != tinfo->goal.ppr_options
3014 || (neg_type == AHD_NEG_IF_NON_ASYNC
3015 && (tinfo->goal.offset != 0
3016 || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
3017 || tinfo->goal.ppr_options != 0)))
3018 tstate->auto_negotiate |= devinfo->target_mask;
3019 else
3020 tstate->auto_negotiate &= ~devinfo->target_mask;
3022 return (auto_negotiate_orig != tstate->auto_negotiate);
3026 * Update the user/goal/curr tables of synchronous negotiation
3027 * parameters as well as, in the case of a current or active update,
3028 * any data structures on the host controller. In the case of an
3029 * active update, the specified target is currently talking to us on
3030 * the bus, so the transfer parameter update must take effect
3031 * immediately.
3033 void
3034 ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3035 u_int period, u_int offset, u_int ppr_options,
3036 u_int type, int paused)
3038 struct ahd_initiator_tinfo *tinfo;
3039 struct ahd_tmode_tstate *tstate;
3040 u_int old_period;
3041 u_int old_offset;
3042 u_int old_ppr;
3043 int active;
3044 int update_needed;
3046 active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
3047 update_needed = 0;
3049 if (period == 0 || offset == 0) {
3050 period = 0;
3051 offset = 0;
3054 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
3055 devinfo->target, &tstate);
3057 if ((type & AHD_TRANS_USER) != 0) {
3058 tinfo->user.period = period;
3059 tinfo->user.offset = offset;
3060 tinfo->user.ppr_options = ppr_options;
3063 if ((type & AHD_TRANS_GOAL) != 0) {
3064 tinfo->goal.period = period;
3065 tinfo->goal.offset = offset;
3066 tinfo->goal.ppr_options = ppr_options;
3069 old_period = tinfo->curr.period;
3070 old_offset = tinfo->curr.offset;
3071 old_ppr = tinfo->curr.ppr_options;
3073 if ((type & AHD_TRANS_CUR) != 0
3074 && (old_period != period
3075 || old_offset != offset
3076 || old_ppr != ppr_options)) {
3078 update_needed++;
3080 tinfo->curr.period = period;
3081 tinfo->curr.offset = offset;
3082 tinfo->curr.ppr_options = ppr_options;
3084 ahd_send_async(ahd, devinfo->channel, devinfo->target,
3085 CAM_LUN_WILDCARD, AC_TRANSFER_NEG, NULL);
3086 if (bootverbose) {
3087 if (offset != 0) {
3088 int options;
3090 kprintf("%s: target %d synchronous with "
3091 "period = 0x%x, offset = 0x%x",
3092 ahd_name(ahd), devinfo->target,
3093 period, offset);
3094 options = 0;
3095 if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) {
3096 kprintf("(RDSTRM");
3097 options++;
3099 if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
3100 kprintf("%s", options ? "|DT" : "(DT");
3101 options++;
3103 if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3104 kprintf("%s", options ? "|IU" : "(IU");
3105 options++;
3107 if ((ppr_options & MSG_EXT_PPR_RTI) != 0) {
3108 kprintf("%s", options ? "|RTI" : "(RTI");
3109 options++;
3111 if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) {
3112 kprintf("%s", options ? "|QAS" : "(QAS");
3113 options++;
3115 if (options != 0)
3116 kprintf(")\n");
3117 else
3118 kprintf("\n");
3119 } else {
3120 kprintf("%s: target %d using "
3121 "asynchronous transfers%s\n",
3122 ahd_name(ahd), devinfo->target,
3123 (ppr_options & MSG_EXT_PPR_QAS_REQ) != 0
3124 ? "(QAS)" : "");
3129 * Always refresh the neg-table to handle the case of the
3130 * sequencer setting the ENATNO bit for a MK_MESSAGE request.
3131 * We will always renegotiate in that case if this is a
3132 * packetized request. Also manage the busfree expected flag
3133 * from this common routine so that we catch changes due to
3134 * WDTR or SDTR messages.
3136 if ((type & AHD_TRANS_CUR) != 0) {
3137 if (!paused)
3138 ahd_pause(ahd);
3139 ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
3140 if (!paused)
3141 ahd_unpause(ahd);
3142 if (ahd->msg_type != MSG_TYPE_NONE) {
3143 if ((old_ppr & MSG_EXT_PPR_IU_REQ)
3144 != (ppr_options & MSG_EXT_PPR_IU_REQ)) {
3145 #ifdef AHD_DEBUG
3146 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3147 ahd_print_devinfo(ahd, devinfo);
3148 kprintf("Expecting IU Change busfree\n");
3150 #endif
3151 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
3152 | MSG_FLAG_IU_REQ_CHANGED;
3154 if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) {
3155 #ifdef AHD_DEBUG
3156 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3157 kprintf("PPR with IU_REQ outstanding\n");
3158 #endif
3159 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE;
3164 update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
3165 tinfo, AHD_NEG_TO_GOAL);
3167 if (update_needed && active)
3168 ahd_update_pending_scbs(ahd);
3172 * Update the user/goal/curr tables of wide negotiation
3173 * parameters as well as, in the case of a current or active update,
3174 * any data structures on the host controller. In the case of an
3175 * active update, the specified target is currently talking to us on
3176 * the bus, so the transfer parameter update must take effect
3177 * immediately.
3179 void
3180 ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3181 u_int width, u_int type, int paused)
3183 struct ahd_initiator_tinfo *tinfo;
3184 struct ahd_tmode_tstate *tstate;
3185 u_int oldwidth;
3186 int active;
3187 int update_needed;
3189 active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
3190 update_needed = 0;
3191 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
3192 devinfo->target, &tstate);
3194 if ((type & AHD_TRANS_USER) != 0)
3195 tinfo->user.width = width;
3197 if ((type & AHD_TRANS_GOAL) != 0)
3198 tinfo->goal.width = width;
3200 oldwidth = tinfo->curr.width;
3201 if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) {
3203 update_needed++;
3205 tinfo->curr.width = width;
3206 ahd_send_async(ahd, devinfo->channel, devinfo->target,
3207 CAM_LUN_WILDCARD, AC_TRANSFER_NEG, NULL);
3208 if (bootverbose) {
3209 kprintf("%s: target %d using %dbit transfers\n",
3210 ahd_name(ahd), devinfo->target,
3211 8 * (0x01 << width));
3215 if ((type & AHD_TRANS_CUR) != 0) {
3216 if (!paused)
3217 ahd_pause(ahd);
3218 ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
3219 if (!paused)
3220 ahd_unpause(ahd);
3223 update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
3224 tinfo, AHD_NEG_TO_GOAL);
3225 if (update_needed && active)
3226 ahd_update_pending_scbs(ahd);
3231 * Update the current state of tagged queuing for a given target.
3233 void
3234 ahd_set_tags(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3235 ahd_queue_alg alg)
3237 ahd_platform_set_tags(ahd, devinfo, alg);
3238 ahd_send_async(ahd, devinfo->channel, devinfo->target,
3239 devinfo->lun, AC_TRANSFER_NEG, &alg);
3242 static void
3243 ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3244 struct ahd_transinfo *tinfo)
3246 ahd_mode_state saved_modes;
3247 u_int period;
3248 u_int ppr_opts;
3249 u_int con_opts;
3250 u_int offset;
3251 u_int saved_negoaddr;
3252 uint8_t iocell_opts[sizeof(ahd->iocell_opts)];
3254 saved_modes = ahd_save_modes(ahd);
3255 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3257 saved_negoaddr = ahd_inb(ahd, NEGOADDR);
3258 ahd_outb(ahd, NEGOADDR, devinfo->target);
3259 period = tinfo->period;
3260 offset = tinfo->offset;
3261 memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts));
3262 ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ
3263 |MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI);
3264 con_opts = 0;
3265 if (period == 0)
3266 period = AHD_SYNCRATE_ASYNC;
3267 if (period == AHD_SYNCRATE_160) {
3269 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
3271 * When the SPI4 spec was finalized, PACE transfers
3272 * was not made a configurable option in the PPR
3273 * message. Instead it is assumed to be enabled for
3274 * any syncrate faster than 80MHz. Nevertheless,
3275 * Harpoon2A4 allows this to be configurable.
3277 * Harpoon2A4 also assumes at most 2 data bytes per
3278 * negotiated REQ/ACK offset. Paced transfers take
3279 * 4, so we must adjust our offset.
3281 ppr_opts |= PPROPT_PACE;
3282 offset *= 2;
3285 * Harpoon2A assumed that there would be a
3286 * fallback rate between 160MHz and 80Mhz,
3287 * so 7 is used as the period factor rather
3288 * than 8 for 160MHz.
3290 period = AHD_SYNCRATE_REVA_160;
3292 if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0)
3293 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
3294 ~AHD_PRECOMP_MASK;
3295 } else {
3297 * Precomp should be disabled for non-paced transfers.
3299 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK;
3301 if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0
3302 && (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0
3303 && (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) {
3305 * Slow down our CRC interval to be
3306 * compatible with non-packetized
3307 * U160 devices that can't handle a
3308 * CRC at full speed.
3310 con_opts |= ENSLOWCRC;
3313 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
3315 * On H2A4, revert to a slower slewrate
3316 * on non-paced transfers.
3318 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
3319 ~AHD_SLEWRATE_MASK;
3323 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW);
3324 ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]);
3325 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE);
3326 ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]);
3328 ahd_outb(ahd, NEGPERIOD, period);
3329 ahd_outb(ahd, NEGPPROPTS, ppr_opts);
3330 ahd_outb(ahd, NEGOFFSET, offset);
3332 if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT)
3333 con_opts |= WIDEXFER;
3336 * During packetized transfers, the target will
3337 * give us the oportunity to send command packets
3338 * without us asserting attention.
3340 if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
3341 con_opts |= ENAUTOATNO;
3342 ahd_outb(ahd, NEGCONOPTS, con_opts);
3343 ahd_outb(ahd, NEGOADDR, saved_negoaddr);
3344 ahd_restore_modes(ahd, saved_modes);
3348 * When the transfer settings for a connection change, setup for
3349 * negotiation in pending SCBs to effect the change as quickly as
3350 * possible. We also cancel any negotiations that are scheduled
3351 * for inflight SCBs that have not been started yet.
3353 static void
3354 ahd_update_pending_scbs(struct ahd_softc *ahd)
3356 struct scb *pending_scb;
3357 int pending_scb_count;
3358 int paused;
3359 u_int saved_scbptr;
3360 ahd_mode_state saved_modes;
3363 * Traverse the pending SCB list and ensure that all of the
3364 * SCBs there have the proper settings. We can only safely
3365 * clear the negotiation required flag (setting requires the
3366 * execution queue to be modified) and this is only possible
3367 * if we are not already attempting to select out for this
3368 * SCB. For this reason, all callers only call this routine
3369 * if we are changing the negotiation settings for the currently
3370 * active transaction on the bus.
3372 pending_scb_count = 0;
3373 LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
3374 struct ahd_devinfo devinfo;
3375 struct ahd_initiator_tinfo *tinfo;
3376 struct ahd_tmode_tstate *tstate;
3378 ahd_scb_devinfo(ahd, &devinfo, pending_scb);
3379 tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
3380 devinfo.our_scsiid,
3381 devinfo.target, &tstate);
3382 if ((tstate->auto_negotiate & devinfo.target_mask) == 0
3383 && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
3384 pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
3385 pending_scb->hscb->control &= ~MK_MESSAGE;
3387 ahd_sync_scb(ahd, pending_scb,
3388 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3389 pending_scb_count++;
3392 if (pending_scb_count == 0)
3393 return;
3395 if (ahd_is_paused(ahd)) {
3396 paused = 1;
3397 } else {
3398 paused = 0;
3399 ahd_pause(ahd);
3403 * Force the sequencer to reinitialize the selection for
3404 * the command at the head of the execution queue if it
3405 * has already been setup. The negotiation changes may
3406 * effect whether we select-out with ATN. It is only
3407 * safe to clear ENSELO when the bus is not free and no
3408 * selection is in progres or completed.
3410 saved_modes = ahd_save_modes(ahd);
3411 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3412 if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0
3413 && (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0)
3414 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
3415 saved_scbptr = ahd_get_scbptr(ahd);
3416 /* Ensure that the hscbs down on the card match the new information */
3417 LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
3418 u_int scb_tag;
3419 u_int control;
3421 scb_tag = SCB_GET_TAG(pending_scb);
3422 ahd_set_scbptr(ahd, scb_tag);
3423 control = ahd_inb_scbram(ahd, SCB_CONTROL);
3424 control &= ~MK_MESSAGE;
3425 control |= pending_scb->hscb->control & MK_MESSAGE;
3426 ahd_outb(ahd, SCB_CONTROL, control);
3428 ahd_set_scbptr(ahd, saved_scbptr);
3429 ahd_restore_modes(ahd, saved_modes);
3431 if (paused == 0)
3432 ahd_unpause(ahd);
3435 /**************************** Pathing Information *****************************/
3436 static void
3437 ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3439 ahd_mode_state saved_modes;
3440 u_int saved_scsiid;
3441 role_t role;
3442 int our_id;
3444 saved_modes = ahd_save_modes(ahd);
3445 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3447 if (ahd_inb(ahd, SSTAT0) & TARGET)
3448 role = ROLE_TARGET;
3449 else
3450 role = ROLE_INITIATOR;
3452 if (role == ROLE_TARGET
3453 && (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) {
3454 /* We were selected, so pull our id from TARGIDIN */
3455 our_id = ahd_inb(ahd, TARGIDIN) & OID;
3456 } else if (role == ROLE_TARGET)
3457 our_id = ahd_inb(ahd, TOWNID);
3458 else
3459 our_id = ahd_inb(ahd, IOWNID);
3461 saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
3462 ahd_compile_devinfo(devinfo,
3463 our_id,
3464 SCSIID_TARGET(ahd, saved_scsiid),
3465 ahd_inb(ahd, SAVED_LUN),
3466 SCSIID_CHANNEL(ahd, saved_scsiid),
3467 role);
3468 ahd_restore_modes(ahd, saved_modes);
3471 void
3472 ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3474 kprintf("%s:%c:%d:%d: ", ahd_name(ahd), 'A',
3475 devinfo->target, devinfo->lun);
3478 struct ahd_phase_table_entry*
3479 ahd_lookup_phase_entry(int phase)
3481 struct ahd_phase_table_entry *entry;
3482 struct ahd_phase_table_entry *last_entry;
3485 * num_phases doesn't include the default entry which
3486 * will be returned if the phase doesn't match.
3488 last_entry = &ahd_phase_table[num_phases];
3489 for (entry = ahd_phase_table; entry < last_entry; entry++) {
3490 if (phase == entry->phase)
3491 break;
3493 return (entry);
3496 void
3497 ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target,
3498 u_int lun, char channel, role_t role)
3500 devinfo->our_scsiid = our_id;
3501 devinfo->target = target;
3502 devinfo->lun = lun;
3503 devinfo->target_offset = target;
3504 devinfo->channel = channel;
3505 devinfo->role = role;
3506 if (channel == 'B')
3507 devinfo->target_offset += 8;
3508 devinfo->target_mask = (0x01 << devinfo->target_offset);
3511 static void
3512 ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3513 struct scb *scb)
3515 role_t role;
3516 int our_id;
3518 our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
3519 role = ROLE_INITIATOR;
3520 if ((scb->hscb->control & TARGET_SCB) != 0)
3521 role = ROLE_TARGET;
3522 ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb),
3523 SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role);
3527 /************************ Message Phase Processing ****************************/
3529 * When an initiator transaction with the MK_MESSAGE flag either reconnects
3530 * or enters the initial message out phase, we are interrupted. Fill our
3531 * outgoing message buffer with the appropriate message and beging handing
3532 * the message phase(s) manually.
3534 static void
3535 ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3536 struct scb *scb)
3539 * To facilitate adding multiple messages together,
3540 * each routine should increment the index and len
3541 * variables instead of setting them explicitly.
3543 ahd->msgout_index = 0;
3544 ahd->msgout_len = 0;
3546 if (ahd_currently_packetized(ahd))
3547 ahd->msg_flags |= MSG_FLAG_PACKETIZED;
3549 if (ahd->send_msg_perror
3550 && ahd_inb(ahd, MSG_OUT) == HOST_MSG) {
3551 ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror;
3552 ahd->msgout_len++;
3553 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
3554 #ifdef AHD_DEBUG
3555 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3556 kprintf("Setting up for Parity Error delivery\n");
3557 #endif
3558 return;
3559 } else if (scb == NULL) {
3560 kprintf("%s: WARNING. No pending message for "
3561 "I_T msgin. Issuing NO-OP\n", ahd_name(ahd));
3562 ahd->msgout_buf[ahd->msgout_index++] = MSG_NOOP;
3563 ahd->msgout_len++;
3564 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
3565 return;
3568 if ((scb->flags & SCB_DEVICE_RESET) == 0
3569 && (scb->flags & SCB_PACKETIZED) == 0
3570 && ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) {
3571 u_int identify_msg;
3573 identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
3574 if ((scb->hscb->control & DISCENB) != 0)
3575 identify_msg |= MSG_IDENTIFY_DISCFLAG;
3576 ahd->msgout_buf[ahd->msgout_index++] = identify_msg;
3577 ahd->msgout_len++;
3579 if ((scb->hscb->control & TAG_ENB) != 0) {
3580 ahd->msgout_buf[ahd->msgout_index++] =
3581 scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
3582 ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb);
3583 ahd->msgout_len += 2;
3587 if (scb->flags & SCB_DEVICE_RESET) {
3588 ahd->msgout_buf[ahd->msgout_index++] = MSG_BUS_DEV_RESET;
3589 ahd->msgout_len++;
3590 ahd_print_path(ahd, scb);
3591 kprintf("Bus Device Reset Message Sent\n");
3593 * Clear our selection hardware in advance of
3594 * the busfree. We may have an entry in the waiting
3595 * Q for this target, and we don't want to go about
3596 * selecting while we handle the busfree and blow it
3597 * away.
3599 ahd_outb(ahd, SCSISEQ0, 0);
3600 } else if ((scb->flags & SCB_ABORT) != 0) {
3602 if ((scb->hscb->control & TAG_ENB) != 0) {
3603 ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT_TAG;
3604 } else {
3605 ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT;
3607 ahd->msgout_len++;
3608 ahd_print_path(ahd, scb);
3609 kprintf("Abort%s Message Sent\n",
3610 (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
3612 * Clear our selection hardware in advance of
3613 * the busfree. We may have an entry in the waiting
3614 * Q for this target, and we don't want to go about
3615 * selecting while we handle the busfree and blow it
3616 * away.
3618 ahd_outb(ahd, SCSISEQ0, 0);
3619 } else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
3620 ahd_build_transfer_msg(ahd, devinfo);
3622 * Clear our selection hardware in advance of potential
3623 * PPR IU status change busfree. We may have an entry in
3624 * the waiting Q for this target, and we don't want to go
3625 * about selecting while we handle the busfree and blow
3626 * it away.
3628 ahd_outb(ahd, SCSISEQ0, 0);
3629 } else {
3630 kprintf("ahd_intr: AWAITING_MSG for an SCB that "
3631 "does not have a waiting message\n");
3632 kprintf("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
3633 devinfo->target_mask);
3634 panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x "
3635 "SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control,
3636 ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT),
3637 scb->flags);
3641 * Clear the MK_MESSAGE flag from the SCB so we aren't
3642 * asked to send this message again.
3644 ahd_outb(ahd, SCB_CONTROL,
3645 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
3646 scb->hscb->control &= ~MK_MESSAGE;
3647 ahd->msgout_index = 0;
3648 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
3652 * Build an appropriate transfer negotiation message for the
3653 * currently active target.
3655 static void
3656 ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3659 * We need to initiate transfer negotiations.
3660 * If our current and goal settings are identical,
3661 * we want to renegotiate due to a check condition.
3663 struct ahd_initiator_tinfo *tinfo;
3664 struct ahd_tmode_tstate *tstate;
3665 int dowide;
3666 int dosync;
3667 int doppr;
3668 u_int period;
3669 u_int ppr_options;
3670 u_int offset;
3672 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
3673 devinfo->target, &tstate);
3675 * Filter our period based on the current connection.
3676 * If we can't perform DT transfers on this segment (not in LVD
3677 * mode for instance), then our decision to issue a PPR message
3678 * may change.
3680 period = tinfo->goal.period;
3681 offset = tinfo->goal.offset;
3682 ppr_options = tinfo->goal.ppr_options;
3683 /* Target initiated PPR is not allowed in the SCSI spec */
3684 if (devinfo->role == ROLE_TARGET)
3685 ppr_options = 0;
3686 ahd_devlimited_syncrate(ahd, tinfo, &period,
3687 &ppr_options, devinfo->role);
3688 dowide = tinfo->curr.width != tinfo->goal.width;
3689 dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
3691 * Only use PPR if we have options that need it, even if the device
3692 * claims to support it. There might be an expander in the way
3693 * that doesn't.
3695 doppr = ppr_options != 0;
3697 if (!dowide && !dosync && !doppr) {
3698 dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
3699 dosync = tinfo->goal.offset != 0;
3702 if (!dowide && !dosync && !doppr) {
3704 * Force async with a WDTR message if we have a wide bus,
3705 * or just issue an SDTR with a 0 offset.
3707 if ((ahd->features & AHD_WIDE) != 0)
3708 dowide = 1;
3709 else
3710 dosync = 1;
3712 if (bootverbose) {
3713 ahd_print_devinfo(ahd, devinfo);
3714 kprintf("Ensuring async\n");
3717 /* Target initiated PPR is not allowed in the SCSI spec */
3718 if (devinfo->role == ROLE_TARGET)
3719 doppr = 0;
3722 * Both the PPR message and SDTR message require the
3723 * goal syncrate to be limited to what the target device
3724 * is capable of handling (based on whether an LVD->SE
3725 * expander is on the bus), so combine these two cases.
3726 * Regardless, guarantee that if we are using WDTR and SDTR
3727 * messages that WDTR comes first.
3729 if (doppr || (dosync && !dowide)) {
3731 offset = tinfo->goal.offset;
3732 ahd_validate_offset(ahd, tinfo, period, &offset,
3733 doppr ? tinfo->goal.width
3734 : tinfo->curr.width,
3735 devinfo->role);
3736 if (doppr) {
3737 ahd_construct_ppr(ahd, devinfo, period, offset,
3738 tinfo->goal.width, ppr_options);
3739 } else {
3740 ahd_construct_sdtr(ahd, devinfo, period, offset);
3742 } else {
3743 ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width);
3748 * Build a synchronous negotiation message in our message
3749 * buffer based on the input parameters.
3751 static void
3752 ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3753 u_int period, u_int offset)
3755 if (offset == 0)
3756 period = AHD_ASYNC_XFER_PERIOD;
3757 ahd->msgout_buf[ahd->msgout_index++] = MSG_EXTENDED;
3758 ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_SDTR_LEN;
3759 ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_SDTR;
3760 ahd->msgout_buf[ahd->msgout_index++] = period;
3761 ahd->msgout_buf[ahd->msgout_index++] = offset;
3762 ahd->msgout_len += 5;
3763 if (bootverbose) {
3764 kprintf("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
3765 ahd_name(ahd), devinfo->channel, devinfo->target,
3766 devinfo->lun, period, offset);
3771 * Build a wide negotiateion message in our message
3772 * buffer based on the input parameters.
3774 static void
3775 ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3776 u_int bus_width)
3778 ahd->msgout_buf[ahd->msgout_index++] = MSG_EXTENDED;
3779 ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_WDTR_LEN;
3780 ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_WDTR;
3781 ahd->msgout_buf[ahd->msgout_index++] = bus_width;
3782 ahd->msgout_len += 4;
3783 if (bootverbose) {
3784 kprintf("(%s:%c:%d:%d): Sending WDTR %x\n",
3785 ahd_name(ahd), devinfo->channel, devinfo->target,
3786 devinfo->lun, bus_width);
3791 * Build a parallel protocol request message in our message
3792 * buffer based on the input parameters.
3794 static void
3795 ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3796 u_int period, u_int offset, u_int bus_width,
3797 u_int ppr_options)
3800 * Always request precompensation from
3801 * the other target if we are running
3802 * at paced syncrates.
3804 if (period <= AHD_SYNCRATE_PACED)
3805 ppr_options |= MSG_EXT_PPR_PCOMP_EN;
3806 if (offset == 0)
3807 period = AHD_ASYNC_XFER_PERIOD;
3808 ahd->msgout_buf[ahd->msgout_index++] = MSG_EXTENDED;
3809 ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_PPR_LEN;
3810 ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_PPR;
3811 ahd->msgout_buf[ahd->msgout_index++] = period;
3812 ahd->msgout_buf[ahd->msgout_index++] = 0;
3813 ahd->msgout_buf[ahd->msgout_index++] = offset;
3814 ahd->msgout_buf[ahd->msgout_index++] = bus_width;
3815 ahd->msgout_buf[ahd->msgout_index++] = ppr_options;
3816 ahd->msgout_len += 8;
3817 if (bootverbose) {
3818 kprintf("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
3819 "offset %x, ppr_options %x\n", ahd_name(ahd),
3820 devinfo->channel, devinfo->target, devinfo->lun,
3821 bus_width, period, offset, ppr_options);
3826 * Clear any active message state.
3828 static void
3829 ahd_clear_msg_state(struct ahd_softc *ahd)
3831 ahd_mode_state saved_modes;
3833 saved_modes = ahd_save_modes(ahd);
3834 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3835 ahd->send_msg_perror = 0;
3836 ahd->msg_flags = MSG_FLAG_NONE;
3837 ahd->msgout_len = 0;
3838 ahd->msgin_index = 0;
3839 ahd->msg_type = MSG_TYPE_NONE;
3840 if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
3842 * The target didn't care to respond to our
3843 * message request, so clear ATN.
3845 ahd_outb(ahd, CLRSINT1, CLRATNO);
3847 ahd_outb(ahd, MSG_OUT, MSG_NOOP);
3848 ahd_outb(ahd, SEQ_FLAGS2,
3849 ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
3850 ahd_restore_modes(ahd, saved_modes);
3854 * Manual message loop handler.
3856 static void
3857 ahd_handle_message_phase(struct ahd_softc *ahd)
3859 struct ahd_devinfo devinfo;
3860 u_int bus_phase;
3861 int end_session;
3863 ahd_fetch_devinfo(ahd, &devinfo);
3864 end_session = FALSE;
3865 bus_phase = ahd_inb(ahd, LASTPHASE);
3867 if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) {
3868 kprintf("LQIRETRY for LQIPHASE_OUTPKT\n");
3869 ahd_outb(ahd, LQCTL2, LQIRETRY);
3871 reswitch:
3872 switch (ahd->msg_type) {
3873 case MSG_TYPE_INITIATOR_MSGOUT:
3875 int lastbyte;
3876 int phasemis;
3877 int msgdone;
3879 if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0)
3880 panic("HOST_MSG_LOOP interrupt with no active message");
3882 #ifdef AHD_DEBUG
3883 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3884 ahd_print_devinfo(ahd, &devinfo);
3885 kprintf("INITIATOR_MSG_OUT");
3887 #endif
3888 phasemis = bus_phase != P_MESGOUT;
3889 if (phasemis) {
3890 #ifdef AHD_DEBUG
3891 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3892 kprintf(" PHASEMIS %s\n",
3893 ahd_lookup_phase_entry(bus_phase)
3894 ->phasemsg);
3896 #endif
3897 if (bus_phase == P_MESGIN) {
3899 * Change gears and see if
3900 * this messages is of interest to
3901 * us or should be passed back to
3902 * the sequencer.
3904 ahd_outb(ahd, CLRSINT1, CLRATNO);
3905 ahd->send_msg_perror = 0;
3906 ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN;
3907 ahd->msgin_index = 0;
3908 goto reswitch;
3910 end_session = TRUE;
3911 break;
3914 if (ahd->send_msg_perror) {
3915 ahd_outb(ahd, CLRSINT1, CLRATNO);
3916 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
3917 #ifdef AHD_DEBUG
3918 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3919 kprintf(" byte 0x%x\n", ahd->send_msg_perror);
3920 #endif
3922 * If we are notifying the target of a CRC error
3923 * during packetized operations, the target is
3924 * within its rights to acknowledge our message
3925 * with a busfree.
3927 if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0
3928 && ahd->send_msg_perror == MSG_INITIATOR_DET_ERR)
3929 ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE;
3931 ahd_outb(ahd, RETURN_2, ahd->send_msg_perror);
3932 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
3933 break;
3936 msgdone = ahd->msgout_index == ahd->msgout_len;
3937 if (msgdone) {
3939 * The target has requested a retry.
3940 * Re-assert ATN, reset our message index to
3941 * 0, and try again.
3943 ahd->msgout_index = 0;
3944 ahd_assert_atn(ahd);
3947 lastbyte = ahd->msgout_index == (ahd->msgout_len - 1);
3948 if (lastbyte) {
3949 /* Last byte is signified by dropping ATN */
3950 ahd_outb(ahd, CLRSINT1, CLRATNO);
3954 * Clear our interrupt status and present
3955 * the next byte on the bus.
3957 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
3958 #ifdef AHD_DEBUG
3959 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3960 kprintf(" byte 0x%x\n",
3961 ahd->msgout_buf[ahd->msgout_index]);
3962 #endif
3963 ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]);
3964 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
3965 break;
3967 case MSG_TYPE_INITIATOR_MSGIN:
3969 int phasemis;
3970 int message_done;
3972 #ifdef AHD_DEBUG
3973 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3974 ahd_print_devinfo(ahd, &devinfo);
3975 kprintf("INITIATOR_MSG_IN");
3977 #endif
3978 phasemis = bus_phase != P_MESGIN;
3979 if (phasemis) {
3980 #ifdef AHD_DEBUG
3981 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3982 kprintf(" PHASEMIS %s\n",
3983 ahd_lookup_phase_entry(bus_phase)
3984 ->phasemsg);
3986 #endif
3987 ahd->msgin_index = 0;
3988 if (bus_phase == P_MESGOUT
3989 && (ahd->send_msg_perror != 0
3990 || (ahd->msgout_len != 0
3991 && ahd->msgout_index == 0))) {
3992 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
3993 goto reswitch;
3995 end_session = TRUE;
3996 break;
3999 /* Pull the byte in without acking it */
4000 ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS);
4001 #ifdef AHD_DEBUG
4002 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4003 kprintf(" byte 0x%x\n",
4004 ahd->msgin_buf[ahd->msgin_index]);
4005 #endif
4007 message_done = ahd_parse_msg(ahd, &devinfo);
4009 if (message_done) {
4011 * Clear our incoming message buffer in case there
4012 * is another message following this one.
4014 ahd->msgin_index = 0;
4017 * If this message illicited a response,
4018 * assert ATN so the target takes us to the
4019 * message out phase.
4021 if (ahd->msgout_len != 0) {
4022 #ifdef AHD_DEBUG
4023 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4024 ahd_print_devinfo(ahd, &devinfo);
4025 kprintf("Asserting ATN for response\n");
4027 #endif
4028 ahd_assert_atn(ahd);
4030 } else
4031 ahd->msgin_index++;
4033 if (message_done == MSGLOOP_TERMINATED) {
4034 end_session = TRUE;
4035 } else {
4036 /* Ack the byte */
4037 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4038 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ);
4040 break;
4042 case MSG_TYPE_TARGET_MSGIN:
4044 int msgdone;
4045 int msgout_request;
4048 * By default, the message loop will continue.
4050 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4052 if (ahd->msgout_len == 0)
4053 panic("Target MSGIN with no active message");
4056 * If we interrupted a mesgout session, the initiator
4057 * will not know this until our first REQ. So, we
4058 * only honor mesgout requests after we've sent our
4059 * first byte.
4061 if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0
4062 && ahd->msgout_index > 0)
4063 msgout_request = TRUE;
4064 else
4065 msgout_request = FALSE;
4067 if (msgout_request) {
4070 * Change gears and see if
4071 * this messages is of interest to
4072 * us or should be passed back to
4073 * the sequencer.
4075 ahd->msg_type = MSG_TYPE_TARGET_MSGOUT;
4076 ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO);
4077 ahd->msgin_index = 0;
4078 /* Dummy read to REQ for first byte */
4079 ahd_inb(ahd, SCSIDAT);
4080 ahd_outb(ahd, SXFRCTL0,
4081 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4082 break;
4085 msgdone = ahd->msgout_index == ahd->msgout_len;
4086 if (msgdone) {
4087 ahd_outb(ahd, SXFRCTL0,
4088 ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4089 end_session = TRUE;
4090 break;
4094 * Present the next byte on the bus.
4096 ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4097 ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]);
4098 break;
4100 case MSG_TYPE_TARGET_MSGOUT:
4102 int lastbyte;
4103 int msgdone;
4106 * By default, the message loop will continue.
4108 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4111 * The initiator signals that this is
4112 * the last byte by dropping ATN.
4114 lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0;
4117 * Read the latched byte, but turn off SPIOEN first
4118 * so that we don't inadvertently cause a REQ for the
4119 * next byte.
4121 ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4122 ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT);
4123 msgdone = ahd_parse_msg(ahd, &devinfo);
4124 if (msgdone == MSGLOOP_TERMINATED) {
4126 * The message is *really* done in that it caused
4127 * us to go to bus free. The sequencer has already
4128 * been reset at this point, so pull the ejection
4129 * handle.
4131 return;
4134 ahd->msgin_index++;
4137 * XXX Read spec about initiator dropping ATN too soon
4138 * and use msgdone to detect it.
4140 if (msgdone == MSGLOOP_MSGCOMPLETE) {
4141 ahd->msgin_index = 0;
4144 * If this message illicited a response, transition
4145 * to the Message in phase and send it.
4147 if (ahd->msgout_len != 0) {
4148 ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO);
4149 ahd_outb(ahd, SXFRCTL0,
4150 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4151 ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
4152 ahd->msgin_index = 0;
4153 break;
4157 if (lastbyte)
4158 end_session = TRUE;
4159 else {
4160 /* Ask for the next byte. */
4161 ahd_outb(ahd, SXFRCTL0,
4162 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4165 break;
4167 default:
4168 panic("Unknown REQINIT message type");
4171 if (end_session) {
4172 if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) {
4173 kprintf("%s: Returning to Idle Loop\n",
4174 ahd_name(ahd));
4175 ahd_clear_msg_state(ahd);
4178 * Perform the equivalent of a clear_target_state.
4180 ahd_outb(ahd, LASTPHASE, P_BUSFREE);
4181 ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT);
4182 ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
4183 } else {
4184 ahd_clear_msg_state(ahd);
4185 ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP);
4191 * See if we sent a particular extended message to the target.
4192 * If "full" is true, return true only if the target saw the full
4193 * message. If "full" is false, return true if the target saw at
4194 * least the first byte of the message.
4196 static int
4197 ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full)
4199 int found;
4200 u_int index;
4202 found = FALSE;
4203 index = 0;
4205 while (index < ahd->msgout_len) {
4206 if (ahd->msgout_buf[index] == MSG_EXTENDED) {
4207 u_int end_index;
4209 end_index = index + 1 + ahd->msgout_buf[index + 1];
4210 if (ahd->msgout_buf[index+2] == msgval
4211 && type == AHDMSG_EXT) {
4213 if (full) {
4214 if (ahd->msgout_index > end_index)
4215 found = TRUE;
4216 } else if (ahd->msgout_index > index)
4217 found = TRUE;
4219 index = end_index;
4220 } else if (ahd->msgout_buf[index] >= MSG_SIMPLE_TASK
4221 && ahd->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) {
4223 /* Skip tag type and tag id or residue param*/
4224 index += 2;
4225 } else {
4226 /* Single byte message */
4227 if (type == AHDMSG_1B
4228 && ahd->msgout_index > index
4229 && (ahd->msgout_buf[index] == msgval
4230 || ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
4231 && msgval == MSG_IDENTIFYFLAG)))
4232 found = TRUE;
4233 index++;
4236 if (found)
4237 break;
4239 return (found);
4243 * Wait for a complete incoming message, parse it, and respond accordingly.
4245 static int
4246 ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4248 struct ahd_initiator_tinfo *tinfo;
4249 struct ahd_tmode_tstate *tstate;
4250 int reject;
4251 int done;
4252 int response;
4254 done = MSGLOOP_IN_PROG;
4255 response = FALSE;
4256 reject = FALSE;
4257 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4258 devinfo->target, &tstate);
4261 * Parse as much of the message as is available,
4262 * rejecting it if we don't support it. When
4263 * the entire message is available and has been
4264 * handled, return MSGLOOP_MSGCOMPLETE, indicating
4265 * that we have parsed an entire message.
4267 * In the case of extended messages, we accept the length
4268 * byte outright and perform more checking once we know the
4269 * extended message type.
4271 switch (ahd->msgin_buf[0]) {
4272 case MSG_DISCONNECT:
4273 case MSG_SAVEDATAPOINTER:
4274 case MSG_CMDCOMPLETE:
4275 case MSG_RESTOREPOINTERS:
4276 case MSG_IGN_WIDE_RESIDUE:
4278 * End our message loop as these are messages
4279 * the sequencer handles on its own.
4281 done = MSGLOOP_TERMINATED;
4282 break;
4283 case MSG_MESSAGE_REJECT:
4284 response = ahd_handle_msg_reject(ahd, devinfo);
4285 /* FALLTHROUGH */
4286 case MSG_NOOP:
4287 done = MSGLOOP_MSGCOMPLETE;
4288 break;
4289 case MSG_EXTENDED:
4291 /* Wait for enough of the message to begin validation */
4292 if (ahd->msgin_index < 2)
4293 break;
4294 switch (ahd->msgin_buf[2]) {
4295 case MSG_EXT_SDTR:
4297 u_int period;
4298 u_int ppr_options;
4299 u_int offset;
4300 u_int saved_offset;
4302 if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
4303 reject = TRUE;
4304 break;
4308 * Wait until we have both args before validating
4309 * and acting on this message.
4311 * Add one to MSG_EXT_SDTR_LEN to account for
4312 * the extended message preamble.
4314 if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1))
4315 break;
4317 period = ahd->msgin_buf[3];
4318 ppr_options = 0;
4319 saved_offset = offset = ahd->msgin_buf[4];
4320 ahd_devlimited_syncrate(ahd, tinfo, &period,
4321 &ppr_options, devinfo->role);
4322 ahd_validate_offset(ahd, tinfo, period, &offset,
4323 tinfo->curr.width, devinfo->role);
4324 if (bootverbose) {
4325 kprintf("(%s:%c:%d:%d): Received "
4326 "SDTR period %x, offset %x\n\t"
4327 "Filtered to period %x, offset %x\n",
4328 ahd_name(ahd), devinfo->channel,
4329 devinfo->target, devinfo->lun,
4330 ahd->msgin_buf[3], saved_offset,
4331 period, offset);
4333 ahd_set_syncrate(ahd, devinfo, period,
4334 offset, ppr_options,
4335 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
4336 /*paused*/TRUE);
4339 * See if we initiated Sync Negotiation
4340 * and didn't have to fall down to async
4341 * transfers.
4343 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, TRUE)) {
4344 /* We started it */
4345 if (saved_offset != offset) {
4346 /* Went too low - force async */
4347 reject = TRUE;
4349 } else {
4351 * Send our own SDTR in reply
4353 if (bootverbose
4354 && devinfo->role == ROLE_INITIATOR) {
4355 kprintf("(%s:%c:%d:%d): Target "
4356 "Initiated SDTR\n",
4357 ahd_name(ahd), devinfo->channel,
4358 devinfo->target, devinfo->lun);
4360 ahd->msgout_index = 0;
4361 ahd->msgout_len = 0;
4362 ahd_construct_sdtr(ahd, devinfo,
4363 period, offset);
4364 ahd->msgout_index = 0;
4365 response = TRUE;
4367 done = MSGLOOP_MSGCOMPLETE;
4368 break;
4370 case MSG_EXT_WDTR:
4372 u_int bus_width;
4373 u_int saved_width;
4374 u_int sending_reply;
4376 sending_reply = FALSE;
4377 if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
4378 reject = TRUE;
4379 break;
4383 * Wait until we have our arg before validating
4384 * and acting on this message.
4386 * Add one to MSG_EXT_WDTR_LEN to account for
4387 * the extended message preamble.
4389 if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1))
4390 break;
4392 bus_width = ahd->msgin_buf[3];
4393 saved_width = bus_width;
4394 ahd_validate_width(ahd, tinfo, &bus_width,
4395 devinfo->role);
4396 if (bootverbose) {
4397 kprintf("(%s:%c:%d:%d): Received WDTR "
4398 "%x filtered to %x\n",
4399 ahd_name(ahd), devinfo->channel,
4400 devinfo->target, devinfo->lun,
4401 saved_width, bus_width);
4404 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, TRUE)) {
4406 * Don't send a WDTR back to the
4407 * target, since we asked first.
4408 * If the width went higher than our
4409 * request, reject it.
4411 if (saved_width > bus_width) {
4412 reject = TRUE;
4413 kprintf("(%s:%c:%d:%d): requested %dBit "
4414 "transfers. Rejecting...\n",
4415 ahd_name(ahd), devinfo->channel,
4416 devinfo->target, devinfo->lun,
4417 8 * (0x01 << bus_width));
4418 bus_width = 0;
4420 } else {
4422 * Send our own WDTR in reply
4424 if (bootverbose
4425 && devinfo->role == ROLE_INITIATOR) {
4426 kprintf("(%s:%c:%d:%d): Target "
4427 "Initiated WDTR\n",
4428 ahd_name(ahd), devinfo->channel,
4429 devinfo->target, devinfo->lun);
4431 ahd->msgout_index = 0;
4432 ahd->msgout_len = 0;
4433 ahd_construct_wdtr(ahd, devinfo, bus_width);
4434 ahd->msgout_index = 0;
4435 response = TRUE;
4436 sending_reply = TRUE;
4439 * After a wide message, we are async, but
4440 * some devices don't seem to honor this portion
4441 * of the spec. Force a renegotiation of the
4442 * sync component of our transfer agreement even
4443 * if our goal is async. By updating our width
4444 * after forcing the negotiation, we avoid
4445 * renegotiating for width.
4447 ahd_update_neg_request(ahd, devinfo, tstate,
4448 tinfo, AHD_NEG_ALWAYS);
4449 ahd_set_width(ahd, devinfo, bus_width,
4450 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
4451 /*paused*/TRUE);
4452 if (sending_reply == FALSE && reject == FALSE) {
4455 * We will always have an SDTR to send.
4457 ahd->msgout_index = 0;
4458 ahd->msgout_len = 0;
4459 ahd_build_transfer_msg(ahd, devinfo);
4460 ahd->msgout_index = 0;
4461 response = TRUE;
4463 done = MSGLOOP_MSGCOMPLETE;
4464 break;
4466 case MSG_EXT_PPR:
4468 u_int period;
4469 u_int offset;
4470 u_int bus_width;
4471 u_int ppr_options;
4472 u_int saved_width;
4473 u_int saved_offset;
4474 u_int saved_ppr_options;
4476 if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) {
4477 reject = TRUE;
4478 break;
4482 * Wait until we have all args before validating
4483 * and acting on this message.
4485 * Add one to MSG_EXT_PPR_LEN to account for
4486 * the extended message preamble.
4488 if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1))
4489 break;
4491 period = ahd->msgin_buf[3];
4492 offset = ahd->msgin_buf[5];
4493 bus_width = ahd->msgin_buf[6];
4494 saved_width = bus_width;
4495 ppr_options = ahd->msgin_buf[7];
4497 * According to the spec, a DT only
4498 * period factor with no DT option
4499 * set implies async.
4501 if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
4502 && period <= 9)
4503 offset = 0;
4504 saved_ppr_options = ppr_options;
4505 saved_offset = offset;
4508 * Transfer options are only available if we
4509 * are negotiating wide.
4511 if (bus_width == 0)
4512 ppr_options &= MSG_EXT_PPR_QAS_REQ;
4514 ahd_validate_width(ahd, tinfo, &bus_width,
4515 devinfo->role);
4516 ahd_devlimited_syncrate(ahd, tinfo, &period,
4517 &ppr_options, devinfo->role);
4518 ahd_validate_offset(ahd, tinfo, period, &offset,
4519 bus_width, devinfo->role);
4521 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, TRUE)) {
4523 * If we are unable to do any of the
4524 * requested options (we went too low),
4525 * then we'll have to reject the message.
4527 if (saved_width > bus_width
4528 || saved_offset != offset
4529 || saved_ppr_options != ppr_options) {
4530 reject = TRUE;
4531 period = 0;
4532 offset = 0;
4533 bus_width = 0;
4534 ppr_options = 0;
4536 } else {
4537 if (devinfo->role != ROLE_TARGET)
4538 kprintf("(%s:%c:%d:%d): Target "
4539 "Initiated PPR\n",
4540 ahd_name(ahd), devinfo->channel,
4541 devinfo->target, devinfo->lun);
4542 else
4543 kprintf("(%s:%c:%d:%d): Initiator "
4544 "Initiated PPR\n",
4545 ahd_name(ahd), devinfo->channel,
4546 devinfo->target, devinfo->lun);
4547 ahd->msgout_index = 0;
4548 ahd->msgout_len = 0;
4549 ahd_construct_ppr(ahd, devinfo, period, offset,
4550 bus_width, ppr_options);
4551 ahd->msgout_index = 0;
4552 response = TRUE;
4554 if (bootverbose) {
4555 kprintf("(%s:%c:%d:%d): Received PPR width %x, "
4556 "period %x, offset %x,options %x\n"
4557 "\tFiltered to width %x, period %x, "
4558 "offset %x, options %x\n",
4559 ahd_name(ahd), devinfo->channel,
4560 devinfo->target, devinfo->lun,
4561 saved_width, ahd->msgin_buf[3],
4562 saved_offset, saved_ppr_options,
4563 bus_width, period, offset, ppr_options);
4565 ahd_set_width(ahd, devinfo, bus_width,
4566 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
4567 /*paused*/TRUE);
4568 ahd_set_syncrate(ahd, devinfo, period,
4569 offset, ppr_options,
4570 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
4571 /*paused*/TRUE);
4573 done = MSGLOOP_MSGCOMPLETE;
4574 break;
4576 default:
4577 /* Unknown extended message. Reject it. */
4578 reject = TRUE;
4579 break;
4581 break;
4583 #ifdef AHD_TARGET_MODE
4584 case MSG_BUS_DEV_RESET:
4585 ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD,
4586 CAM_BDR_SENT,
4587 "Bus Device Reset Received",
4588 /*verbose_level*/0);
4589 ahd_restart(ahd);
4590 done = MSGLOOP_TERMINATED;
4591 break;
4592 case MSG_ABORT_TAG:
4593 case MSG_ABORT:
4594 case MSG_CLEAR_QUEUE:
4596 int tag;
4598 /* Target mode messages */
4599 if (devinfo->role != ROLE_TARGET) {
4600 reject = TRUE;
4601 break;
4603 tag = SCB_LIST_NULL;
4604 if (ahd->msgin_buf[0] == MSG_ABORT_TAG)
4605 tag = ahd_inb(ahd, INITIATOR_TAG);
4606 ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
4607 devinfo->lun, tag, ROLE_TARGET,
4608 CAM_REQ_ABORTED);
4610 tstate = ahd->enabled_targets[devinfo->our_scsiid];
4611 if (tstate != NULL) {
4612 struct ahd_tmode_lstate* lstate;
4614 lstate = tstate->enabled_luns[devinfo->lun];
4615 if (lstate != NULL) {
4616 ahd_queue_lstate_event(ahd, lstate,
4617 devinfo->our_scsiid,
4618 ahd->msgin_buf[0],
4619 /*arg*/tag);
4620 ahd_send_lstate_events(ahd, lstate);
4623 ahd_restart(ahd);
4624 done = MSGLOOP_TERMINATED;
4625 break;
4627 #endif
4628 case MSG_QAS_REQUEST:
4629 #ifdef AHD_DEBUG
4630 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4631 kprintf("%s: QAS request. SCSISIGI == 0x%x\n",
4632 ahd_name(ahd), ahd_inb(ahd, SCSISIGI));
4633 #endif
4634 ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE;
4635 /* FALLTHROUGH */
4636 case MSG_TERM_IO_PROC:
4637 default:
4638 reject = TRUE;
4639 break;
4642 if (reject) {
4644 * Setup to reject the message.
4646 ahd->msgout_index = 0;
4647 ahd->msgout_len = 1;
4648 ahd->msgout_buf[0] = MSG_MESSAGE_REJECT;
4649 done = MSGLOOP_MSGCOMPLETE;
4650 response = TRUE;
4653 if (done != MSGLOOP_IN_PROG && !response)
4654 /* Clear the outgoing message buffer */
4655 ahd->msgout_len = 0;
4657 return (done);
4661 * Process a message reject message.
4663 static int
4664 ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4667 * What we care about here is if we had an
4668 * outstanding SDTR or WDTR message for this
4669 * target. If we did, this is a signal that
4670 * the target is refusing negotiation.
4672 struct scb *scb;
4673 struct ahd_initiator_tinfo *tinfo;
4674 struct ahd_tmode_tstate *tstate;
4675 u_int scb_index;
4676 u_int last_msg;
4677 int response = 0;
4679 scb_index = ahd_get_scbptr(ahd);
4680 scb = ahd_lookup_scb(ahd, scb_index);
4681 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
4682 devinfo->our_scsiid,
4683 devinfo->target, &tstate);
4684 /* Might be necessary */
4685 last_msg = ahd_inb(ahd, LAST_MSG);
4687 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) {
4688 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/TRUE)
4689 && tinfo->goal.period <= AHD_SYNCRATE_PACED) {
4691 * Target may not like our SPI-4 PPR Options.
4692 * Attempt to negotiate 80MHz which will turn
4693 * off these options.
4695 if (bootverbose) {
4696 kprintf("(%s:%c:%d:%d): PPR Rejected. "
4697 "Trying simple U160 PPR\n",
4698 ahd_name(ahd), devinfo->channel,
4699 devinfo->target, devinfo->lun);
4701 tinfo->goal.period = AHD_SYNCRATE_DT;
4702 tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ
4703 | MSG_EXT_PPR_QAS_REQ
4704 | MSG_EXT_PPR_DT_REQ;
4705 } else {
4707 * Target does not support the PPR message.
4708 * Attempt to negotiate SPI-2 style.
4710 if (bootverbose) {
4711 kprintf("(%s:%c:%d:%d): PPR Rejected. "
4712 "Trying WDTR/SDTR\n",
4713 ahd_name(ahd), devinfo->channel,
4714 devinfo->target, devinfo->lun);
4716 tinfo->goal.ppr_options = 0;
4717 tinfo->curr.transport_version = 2;
4718 tinfo->goal.transport_version = 2;
4720 ahd->msgout_index = 0;
4721 ahd->msgout_len = 0;
4722 ahd_build_transfer_msg(ahd, devinfo);
4723 ahd->msgout_index = 0;
4724 response = 1;
4725 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) {
4727 /* note 8bit xfers */
4728 kprintf("(%s:%c:%d:%d): refuses WIDE negotiation. Using "
4729 "8bit transfers\n", ahd_name(ahd),
4730 devinfo->channel, devinfo->target, devinfo->lun);
4731 ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
4732 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
4733 /*paused*/TRUE);
4735 * No need to clear the sync rate. If the target
4736 * did not accept the command, our syncrate is
4737 * unaffected. If the target started the negotiation,
4738 * but rejected our response, we already cleared the
4739 * sync rate before sending our WDTR.
4741 if (tinfo->goal.offset != tinfo->curr.offset) {
4743 /* Start the sync negotiation */
4744 ahd->msgout_index = 0;
4745 ahd->msgout_len = 0;
4746 ahd_build_transfer_msg(ahd, devinfo);
4747 ahd->msgout_index = 0;
4748 response = 1;
4750 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) {
4751 /* note asynch xfers and clear flag */
4752 ahd_set_syncrate(ahd, devinfo, /*period*/0,
4753 /*offset*/0, /*ppr_options*/0,
4754 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
4755 /*paused*/TRUE);
4756 kprintf("(%s:%c:%d:%d): refuses synchronous negotiation. "
4757 "Using asynchronous transfers\n",
4758 ahd_name(ahd), devinfo->channel,
4759 devinfo->target, devinfo->lun);
4760 } else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) {
4761 int tag_type;
4762 int mask;
4764 tag_type = (scb->hscb->control & MSG_SIMPLE_TASK);
4766 if (tag_type == MSG_SIMPLE_TASK) {
4767 kprintf("(%s:%c:%d:%d): refuses tagged commands. "
4768 "Performing non-tagged I/O\n", ahd_name(ahd),
4769 devinfo->channel, devinfo->target, devinfo->lun);
4770 ahd_set_tags(ahd, devinfo, AHD_QUEUE_NONE);
4771 mask = ~0x23;
4772 } else {
4773 kprintf("(%s:%c:%d:%d): refuses %s tagged commands. "
4774 "Performing simple queue tagged I/O only\n",
4775 ahd_name(ahd), devinfo->channel, devinfo->target,
4776 devinfo->lun, tag_type == MSG_ORDERED_TASK
4777 ? "ordered" : "head of queue");
4778 ahd_set_tags(ahd, devinfo, AHD_QUEUE_BASIC);
4779 mask = ~0x03;
4783 * Resend the identify for this CCB as the target
4784 * may believe that the selection is invalid otherwise.
4786 ahd_outb(ahd, SCB_CONTROL,
4787 ahd_inb_scbram(ahd, SCB_CONTROL) & mask);
4788 scb->hscb->control &= mask;
4789 aic_set_transaction_tag(scb, /*enabled*/FALSE,
4790 /*type*/MSG_SIMPLE_TASK);
4791 ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG);
4792 ahd_assert_atn(ahd);
4793 ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
4794 SCB_GET_TAG(scb));
4797 * Requeue all tagged commands for this target
4798 * currently in our posession so they can be
4799 * converted to untagged commands.
4801 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
4802 SCB_GET_CHANNEL(ahd, scb),
4803 SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
4804 ROLE_INITIATOR, CAM_REQUEUE_REQ,
4805 SEARCH_COMPLETE);
4806 } else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) {
4808 * Most likely the device believes that we had
4809 * previously negotiated packetized.
4811 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
4812 | MSG_FLAG_IU_REQ_CHANGED;
4814 ahd_force_renegotiation(ahd, devinfo);
4815 ahd->msgout_index = 0;
4816 ahd->msgout_len = 0;
4817 ahd_build_transfer_msg(ahd, devinfo);
4818 ahd->msgout_index = 0;
4819 response = 1;
4820 } else {
4822 * Otherwise, we ignore it.
4824 kprintf("%s:%c:%d: Message reject for %x -- ignored\n",
4825 ahd_name(ahd), devinfo->channel, devinfo->target,
4826 last_msg);
4828 return (response);
4832 * Process an ingnore wide residue message.
4834 static void
4835 ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4837 u_int scb_index;
4838 struct scb *scb;
4840 scb_index = ahd_get_scbptr(ahd);
4841 scb = ahd_lookup_scb(ahd, scb_index);
4843 * XXX Actually check data direction in the sequencer?
4844 * Perhaps add datadir to some spare bits in the hscb?
4846 if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0
4847 || aic_get_transfer_dir(scb) != CAM_DIR_IN) {
4849 * Ignore the message if we haven't
4850 * seen an appropriate data phase yet.
4852 } else {
4854 * If the residual occurred on the last
4855 * transfer and the transfer request was
4856 * expected to end on an odd count, do
4857 * nothing. Otherwise, subtract a byte
4858 * and update the residual count accordingly.
4860 uint32_t sgptr;
4862 sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR);
4863 if ((sgptr & SG_LIST_NULL) != 0
4864 && (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
4865 & SCB_XFERLEN_ODD) != 0) {
4867 * If the residual occurred on the last
4868 * transfer and the transfer request was
4869 * expected to end on an odd count, do
4870 * nothing.
4872 } else {
4873 uint32_t data_cnt;
4874 uint64_t data_addr;
4875 uint32_t sglen;
4877 /* Pull in the rest of the sgptr */
4878 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
4879 data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT);
4880 if ((sgptr & SG_LIST_NULL) != 0) {
4882 * The residual data count is not updated
4883 * for the command run to completion case.
4884 * Explicitly zero the count.
4886 data_cnt &= ~AHD_SG_LEN_MASK;
4888 data_addr = ahd_inq(ahd, SHADDR);
4889 data_cnt += 1;
4890 data_addr -= 1;
4891 sgptr &= SG_PTR_MASK;
4892 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
4893 struct ahd_dma64_seg *sg;
4895 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
4898 * The residual sg ptr points to the next S/G
4899 * to load so we must go back one.
4901 sg--;
4902 sglen = aic_le32toh(sg->len) & AHD_SG_LEN_MASK;
4903 if (sg != scb->sg_list
4904 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
4906 sg--;
4907 sglen = aic_le32toh(sg->len);
4909 * Preserve High Address and SG_LIST
4910 * bits while setting the count to 1.
4912 data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
4913 data_addr = aic_le64toh(sg->addr)
4914 + (sglen & AHD_SG_LEN_MASK)
4915 - 1;
4918 * Increment sg so it points to the
4919 * "next" sg.
4921 sg++;
4922 sgptr = ahd_sg_virt_to_bus(ahd, scb,
4923 sg);
4925 } else {
4926 struct ahd_dma_seg *sg;
4928 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
4931 * The residual sg ptr points to the next S/G
4932 * to load so we must go back one.
4934 sg--;
4935 sglen = aic_le32toh(sg->len) & AHD_SG_LEN_MASK;
4936 if (sg != scb->sg_list
4937 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
4939 sg--;
4940 sglen = aic_le32toh(sg->len);
4942 * Preserve High Address and SG_LIST
4943 * bits while setting the count to 1.
4945 data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
4946 data_addr = aic_le32toh(sg->addr)
4947 + (sglen & AHD_SG_LEN_MASK)
4948 - 1;
4951 * Increment sg so it points to the
4952 * "next" sg.
4954 sg++;
4955 sgptr = ahd_sg_virt_to_bus(ahd, scb,
4956 sg);
4960 * Toggle the "oddness" of the transfer length
4961 * to handle this mid-transfer ignore wide
4962 * residue. This ensures that the oddness is
4963 * correct for subsequent data transfers.
4965 ahd_outb(ahd, SCB_TASK_ATTRIBUTE,
4966 ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
4967 ^ SCB_XFERLEN_ODD);
4969 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
4970 ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt);
4972 * The FIFO's pointers will be updated if/when the
4973 * sequencer re-enters a data phase.
4981 * Reinitialize the data pointers for the active transfer
4982 * based on its current residual.
4984 static void
4985 ahd_reinitialize_dataptrs(struct ahd_softc *ahd)
4987 struct scb *scb;
4988 ahd_mode_state saved_modes;
4989 u_int scb_index;
4990 u_int wait;
4991 uint32_t sgptr;
4992 uint32_t resid;
4993 uint64_t dataptr;
4995 AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK,
4996 AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK);
4998 scb_index = ahd_get_scbptr(ahd);
4999 scb = ahd_lookup_scb(ahd, scb_index);
5002 * Release and reacquire the FIFO so we
5003 * have a clean slate.
5005 ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
5006 wait = 1000;
5007 while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE))
5008 aic_delay(100);
5009 if (wait == 0) {
5010 ahd_print_path(ahd, scb);
5011 kprintf("ahd_reinitialize_dataptrs: Forcing FIFO free.\n");
5012 ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
5014 saved_modes = ahd_save_modes(ahd);
5015 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
5016 ahd_outb(ahd, DFFSTAT,
5017 ahd_inb(ahd, DFFSTAT)
5018 | (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0));
5021 * Determine initial values for data_addr and data_cnt
5022 * for resuming the data phase.
5024 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5025 sgptr &= SG_PTR_MASK;
5027 resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16)
5028 | (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8)
5029 | ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT);
5031 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5032 struct ahd_dma64_seg *sg;
5034 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5036 /* The residual sg_ptr always points to the next sg */
5037 sg--;
5039 dataptr = aic_le64toh(sg->addr)
5040 + (aic_le32toh(sg->len) & AHD_SG_LEN_MASK)
5041 - resid;
5042 ahd_outl(ahd, HADDR + 4, dataptr >> 32);
5043 } else {
5044 struct ahd_dma_seg *sg;
5046 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5048 /* The residual sg_ptr always points to the next sg */
5049 sg--;
5051 dataptr = aic_le32toh(sg->addr)
5052 + (aic_le32toh(sg->len) & AHD_SG_LEN_MASK)
5053 - resid;
5054 ahd_outb(ahd, HADDR + 4,
5055 (aic_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24);
5057 ahd_outl(ahd, HADDR, dataptr);
5058 ahd_outb(ahd, HCNT + 2, resid >> 16);
5059 ahd_outb(ahd, HCNT + 1, resid >> 8);
5060 ahd_outb(ahd, HCNT, resid);
5064 * Handle the effects of issuing a bus device reset message.
5066 static void
5067 ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5068 u_int lun, cam_status status, char *message,
5069 int verbose_level)
5071 #ifdef AHD_TARGET_MODE
5072 struct ahd_tmode_tstate* tstate;
5073 #endif
5074 int found;
5076 found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5077 lun, SCB_LIST_NULL, devinfo->role,
5078 status);
5080 #ifdef AHD_TARGET_MODE
5082 * Send an immediate notify ccb to all target mord peripheral
5083 * drivers affected by this action.
5085 tstate = ahd->enabled_targets[devinfo->our_scsiid];
5086 if (tstate != NULL) {
5087 u_int cur_lun;
5088 u_int max_lun;
5090 if (lun != CAM_LUN_WILDCARD) {
5091 cur_lun = 0;
5092 max_lun = AHD_NUM_LUNS - 1;
5093 } else {
5094 cur_lun = lun;
5095 max_lun = lun;
5097 for (cur_lun <= max_lun; cur_lun++) {
5098 struct ahd_tmode_lstate* lstate;
5100 lstate = tstate->enabled_luns[cur_lun];
5101 if (lstate == NULL)
5102 continue;
5104 ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid,
5105 MSG_BUS_DEV_RESET, /*arg*/0);
5106 ahd_send_lstate_events(ahd, lstate);
5109 #endif
5112 * Go back to async/narrow transfers and renegotiate.
5114 ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5115 AHD_TRANS_CUR, /*paused*/TRUE);
5116 ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0,
5117 /*ppr_options*/0, AHD_TRANS_CUR,
5118 /*paused*/TRUE);
5120 if (status != CAM_SEL_TIMEOUT)
5121 ahd_send_async(ahd, devinfo->channel, devinfo->target,
5122 lun, AC_SENT_BDR, NULL);
5124 if (message != NULL
5125 && (verbose_level <= bootverbose))
5126 kprintf("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd),
5127 message, devinfo->channel, devinfo->target, found);
5130 #ifdef AHD_TARGET_MODE
5131 static void
5132 ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5133 struct scb *scb)
5137 * To facilitate adding multiple messages together,
5138 * each routine should increment the index and len
5139 * variables instead of setting them explicitly.
5141 ahd->msgout_index = 0;
5142 ahd->msgout_len = 0;
5144 if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
5145 ahd_build_transfer_msg(ahd, devinfo);
5146 else
5147 panic("ahd_intr: AWAITING target message with no message");
5149 ahd->msgout_index = 0;
5150 ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
5152 #endif
5153 /**************************** Initialization **********************************/
5154 static u_int
5155 ahd_sglist_size(struct ahd_softc *ahd)
5157 bus_size_t list_size;
5159 list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG;
5160 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
5161 list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG;
5162 return (list_size);
5166 * Calculate the optimum S/G List allocation size. S/G elements used
5167 * for a given transaction must be physically contiguous. Assume the
5168 * OS will allocate full pages to us, so it doesn't make sense to request
5169 * less than a page.
5171 static u_int
5172 ahd_sglist_allocsize(struct ahd_softc *ahd)
5174 bus_size_t sg_list_increment;
5175 bus_size_t sg_list_size;
5176 bus_size_t max_list_size;
5177 bus_size_t best_list_size;
5179 /* Start out with the minimum required for AHD_NSEG. */
5180 sg_list_increment = ahd_sglist_size(ahd);
5181 sg_list_size = sg_list_increment;
5183 /* Get us as close as possible to a page in size. */
5184 while ((sg_list_size + sg_list_increment) <= PAGE_SIZE)
5185 sg_list_size += sg_list_increment;
5188 * Try to reduce the amount of wastage by allocating
5189 * multiple pages.
5191 best_list_size = sg_list_size;
5192 max_list_size = roundup(sg_list_increment, PAGE_SIZE);
5193 if (max_list_size < 4 * PAGE_SIZE)
5194 max_list_size = 4 * PAGE_SIZE;
5195 if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment))
5196 max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment);
5197 while ((sg_list_size + sg_list_increment) <= max_list_size
5198 && (sg_list_size % PAGE_SIZE) != 0) {
5199 bus_size_t new_mod;
5200 bus_size_t best_mod;
5202 sg_list_size += sg_list_increment;
5203 new_mod = sg_list_size % PAGE_SIZE;
5204 best_mod = best_list_size % PAGE_SIZE;
5205 if (new_mod > best_mod || new_mod == 0) {
5206 best_list_size = sg_list_size;
5209 return (best_list_size);
5213 * Allocate a controller structure for a new device
5214 * and perform initial initializion.
5216 struct ahd_softc *
5217 ahd_alloc(void *platform_arg, char *name)
5219 struct ahd_softc *ahd;
5221 #if !defined(__DragonFly__) && !defined(__FreeBSD__)
5222 ahd = kmalloc(sizeof(*ahd), M_DEVBUF, M_INTWAIT);
5223 #else
5224 ahd = device_get_softc((device_t)platform_arg);
5225 #endif
5226 memset(ahd, 0, sizeof(*ahd));
5227 ahd->seep_config = kmalloc(sizeof(*ahd->seep_config),M_DEVBUF,M_INTWAIT);
5228 LIST_INIT(&ahd->pending_scbs);
5229 LIST_INIT(&ahd->timedout_scbs);
5230 /* We don't know our unit number until the OSM sets it */
5231 ahd->name = name;
5232 ahd->unit = -1;
5233 ahd->description = NULL;
5234 ahd->bus_description = NULL;
5235 ahd->channel = 'A';
5236 ahd->chip = AHD_NONE;
5237 ahd->features = AHD_FENONE;
5238 ahd->bugs = AHD_BUGNONE;
5239 ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A
5240 | AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A;
5241 aic_timer_init(&ahd->reset_timer);
5242 aic_timer_init(&ahd->stat_timer);
5243 ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT;
5244 ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT;
5245 ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT;
5246 ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT;
5247 ahd->int_coalescing_stop_threshold =
5248 AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT;
5250 if (ahd_platform_alloc(ahd, platform_arg) != 0) {
5251 ahd_free(ahd);
5252 ahd = NULL;
5254 ahd_lockinit(ahd);
5255 #ifdef AHD_DEBUG
5256 if ((ahd_debug & AHD_SHOW_MEMORY) != 0) {
5257 kprintf("%s: scb size = 0x%x, hscb size = 0x%x\n",
5258 ahd_name(ahd), (u_int)sizeof(struct scb),
5259 (u_int)sizeof(struct hardware_scb));
5261 #endif
5262 return (ahd);
5266 ahd_softc_init(struct ahd_softc *ahd)
5269 ahd->unpause = 0;
5270 ahd->pause = PAUSE;
5271 return (0);
5274 void
5275 ahd_softc_insert(struct ahd_softc *ahd)
5277 struct ahd_softc *list_ahd;
5279 #if AIC_PCI_CONFIG > 0
5281 * Second Function PCI devices need to inherit some
5282 * settings from function 0.
5284 if ((ahd->features & AHD_MULTI_FUNC) != 0) {
5285 TAILQ_FOREACH(list_ahd, &ahd_tailq, links) {
5286 aic_dev_softc_t list_pci;
5287 aic_dev_softc_t pci;
5289 list_pci = list_ahd->dev_softc;
5290 pci = ahd->dev_softc;
5291 if (aic_get_pci_slot(list_pci) == aic_get_pci_slot(pci)
5292 && aic_get_pci_bus(list_pci) == aic_get_pci_bus(pci)) {
5293 struct ahd_softc *master;
5294 struct ahd_softc *slave;
5296 if (aic_get_pci_function(list_pci) == 0) {
5297 master = list_ahd;
5298 slave = ahd;
5299 } else {
5300 master = ahd;
5301 slave = list_ahd;
5303 slave->flags &= ~AHD_BIOS_ENABLED;
5304 slave->flags |=
5305 master->flags & AHD_BIOS_ENABLED;
5306 break;
5310 #endif
5313 * Insertion sort into our list of softcs.
5315 list_ahd = TAILQ_FIRST(&ahd_tailq);
5316 while (list_ahd != NULL
5317 && ahd_softc_comp(ahd, list_ahd) <= 0)
5318 list_ahd = TAILQ_NEXT(list_ahd, links);
5319 if (list_ahd != NULL)
5320 TAILQ_INSERT_BEFORE(list_ahd, ahd, links);
5321 else
5322 TAILQ_INSERT_TAIL(&ahd_tailq, ahd, links);
5323 ahd->init_level++;
5326 void
5327 ahd_set_unit(struct ahd_softc *ahd, int unit)
5329 ahd->unit = unit;
5332 void
5333 ahd_set_name(struct ahd_softc *ahd, char *name)
5335 if (ahd->name != NULL)
5336 kfree(ahd->name, M_DEVBUF);
5337 ahd->name = name;
5340 void
5341 ahd_free(struct ahd_softc *ahd)
5343 int i;
5345 ahd_terminate_recovery_thread(ahd);
5346 switch (ahd->init_level) {
5347 default:
5348 case 5:
5349 ahd_shutdown(ahd);
5350 /* FALLTHROUGH */
5351 case 4:
5352 aic_dmamap_unload(ahd, ahd->shared_data_dmat,
5353 ahd->shared_data_map.dmamap);
5354 /* FALLTHROUGH */
5355 case 3:
5356 aic_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo,
5357 ahd->shared_data_map.dmamap);
5358 aic_dmamap_destroy(ahd, ahd->shared_data_dmat,
5359 ahd->shared_data_map.dmamap);
5360 /* FALLTHROUGH */
5361 case 2:
5362 aic_dma_tag_destroy(ahd, ahd->shared_data_dmat);
5363 case 1:
5364 #ifndef __linux__
5365 aic_dma_tag_destroy(ahd, ahd->buffer_dmat);
5366 #endif
5367 break;
5368 case 0:
5369 break;
5372 #ifndef __linux__
5373 aic_dma_tag_destroy(ahd, ahd->parent_dmat);
5374 #endif
5375 ahd_platform_free(ahd);
5376 ahd_fini_scbdata(ahd);
5377 for (i = 0; i < AHD_NUM_TARGETS; i++) {
5378 struct ahd_tmode_tstate *tstate;
5380 tstate = ahd->enabled_targets[i];
5381 if (tstate != NULL) {
5382 #ifdef AHD_TARGET_MODE
5383 int j;
5385 for (j = 0; j < AHD_NUM_LUNS; j++) {
5386 struct ahd_tmode_lstate *lstate;
5388 lstate = tstate->enabled_luns[j];
5389 if (lstate != NULL) {
5390 xpt_free_path(lstate->path);
5391 kfree(lstate, M_DEVBUF);
5394 #endif
5395 kfree(tstate, M_DEVBUF);
5398 #ifdef AHD_TARGET_MODE
5399 if (ahd->black_hole != NULL) {
5400 xpt_free_path(ahd->black_hole->path);
5401 kfree(ahd->black_hole, M_DEVBUF);
5403 #endif
5404 if (ahd->name != NULL)
5405 kfree(ahd->name, M_DEVBUF);
5406 if (ahd->seep_config != NULL)
5407 kfree(ahd->seep_config, M_DEVBUF);
5408 if (ahd->saved_stack != NULL)
5409 kfree(ahd->saved_stack, M_DEVBUF);
5410 #if !defined(__DragonFly__) && !defined(__FreeBSD__)
5411 kfree(ahd, M_DEVBUF);
5412 #endif
5413 return;
5416 void
5417 ahd_shutdown(void *arg)
5419 struct ahd_softc *ahd;
5421 ahd = (struct ahd_softc *)arg;
5424 * Stop periodic timer callbacks.
5426 aic_timer_stop(&ahd->reset_timer);
5427 aic_timer_stop(&ahd->stat_timer);
5429 /* This will reset most registers to 0, but not all */
5430 ahd_reset(ahd, /*reinit*/FALSE);
5434 * Reset the controller and record some information about it
5435 * that is only available just after a reset. If "reinit" is
5436 * non-zero, this reset occured after initial configuration
5437 * and the caller requests that the chip be fully reinitialized
5438 * to a runable state. Chip interrupts are *not* enabled after
5439 * a reinitialization. The caller must enable interrupts via
5440 * ahd_intr_enable().
5443 ahd_reset(struct ahd_softc *ahd, int reinit)
5445 u_int sxfrctl1;
5446 int wait;
5447 uint32_t cmd;
5450 * Preserve the value of the SXFRCTL1 register for all channels.
5451 * It contains settings that affect termination and we don't want
5452 * to disturb the integrity of the bus.
5454 ahd_pause(ahd);
5455 ahd_update_modes(ahd);
5456 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
5457 sxfrctl1 = ahd_inb(ahd, SXFRCTL1);
5459 cmd = aic_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
5460 if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
5461 uint32_t mod_cmd;
5464 * A4 Razor #632
5465 * During the assertion of CHIPRST, the chip
5466 * does not disable its parity logic prior to
5467 * the start of the reset. This may cause a
5468 * parity error to be detected and thus a
5469 * spurious SERR or PERR assertion. Disble
5470 * PERR and SERR responses during the CHIPRST.
5472 mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN);
5473 aic_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
5474 mod_cmd, /*bytes*/2);
5476 ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause);
5479 * Ensure that the reset has finished. We delay 1000us
5480 * prior to reading the register to make sure the chip
5481 * has sufficiently completed its reset to handle register
5482 * accesses.
5484 wait = 1000;
5485 do {
5486 aic_delay(1000);
5487 } while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK));
5489 if (wait == 0) {
5490 kprintf("%s: WARNING - Failed chip reset! "
5491 "Trying to initialize anyway.\n", ahd_name(ahd));
5493 ahd_outb(ahd, HCNTRL, ahd->pause);
5495 if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
5497 * Clear any latched PCI error status and restore
5498 * previous SERR and PERR response enables.
5500 aic_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
5501 0xFF, /*bytes*/1);
5502 aic_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
5503 cmd, /*bytes*/2);
5507 * Mode should be SCSI after a chip reset, but lets
5508 * set it just to be safe. We touch the MODE_PTR
5509 * register directly so as to bypass the lazy update
5510 * code in ahd_set_modes().
5512 ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
5513 ahd_outb(ahd, MODE_PTR,
5514 ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI));
5517 * Restore SXFRCTL1.
5519 * We must always initialize STPWEN to 1 before we
5520 * restore the saved values. STPWEN is initialized
5521 * to a tri-state condition which can only be cleared
5522 * by turning it on.
5524 ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
5525 ahd_outb(ahd, SXFRCTL1, sxfrctl1);
5527 /* Determine chip configuration */
5528 ahd->features &= ~AHD_WIDE;
5529 if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0)
5530 ahd->features |= AHD_WIDE;
5533 * If a recovery action has forced a chip reset,
5534 * re-initialize the chip to our liking.
5536 if (reinit != 0)
5537 ahd_chip_init(ahd);
5539 return (0);
5543 * Determine the number of SCBs available on the controller
5546 ahd_probe_scbs(struct ahd_softc *ahd) {
5547 int i;
5549 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
5550 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
5551 for (i = 0; i < AHD_SCB_MAX; i++) {
5552 int j;
5554 ahd_set_scbptr(ahd, i);
5555 ahd_outw(ahd, SCB_BASE, i);
5556 for (j = 2; j < 64; j++)
5557 ahd_outb(ahd, SCB_BASE+j, 0);
5558 /* Start out life as unallocated (needing an abort) */
5559 ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE);
5560 if (ahd_inw_scbram(ahd, SCB_BASE) != i)
5561 break;
5562 ahd_set_scbptr(ahd, 0);
5563 if (ahd_inw_scbram(ahd, SCB_BASE) != 0)
5564 break;
5566 return (i);
5569 static void
5570 ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
5572 bus_addr_t *baddr;
5574 baddr = (bus_addr_t *)arg;
5575 *baddr = segs->ds_addr;
5578 static void
5579 ahd_initialize_hscbs(struct ahd_softc *ahd)
5581 int i;
5583 for (i = 0; i < ahd->scb_data.maxhscbs; i++) {
5584 ahd_set_scbptr(ahd, i);
5586 /* Clear the control byte. */
5587 ahd_outb(ahd, SCB_CONTROL, 0);
5589 /* Set the next pointer */
5590 ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL);
5594 static int
5595 ahd_init_scbdata(struct ahd_softc *ahd)
5597 struct scb_data *scb_data;
5598 int i;
5600 scb_data = &ahd->scb_data;
5601 TAILQ_INIT(&scb_data->free_scbs);
5602 for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++)
5603 LIST_INIT(&scb_data->free_scb_lists[i]);
5604 LIST_INIT(&scb_data->any_dev_free_scb_list);
5605 SLIST_INIT(&scb_data->hscb_maps);
5606 SLIST_INIT(&scb_data->sg_maps);
5607 SLIST_INIT(&scb_data->sense_maps);
5609 /* Determine the number of hardware SCBs and initialize them */
5610 scb_data->maxhscbs = ahd_probe_scbs(ahd);
5611 if (scb_data->maxhscbs == 0) {
5612 kprintf("%s: No SCB space found\n", ahd_name(ahd));
5613 return (ENXIO);
5616 ahd_initialize_hscbs(ahd);
5619 * Create our DMA tags. These tags define the kinds of device
5620 * accessible memory allocations and memory mappings we will
5621 * need to perform during normal operation.
5623 * Unless we need to further restrict the allocation, we rely
5624 * on the restrictions of the parent dmat, hence the common
5625 * use of MAXADDR and MAXSIZE.
5628 /* DMA tag for our hardware scb structures */
5629 if (aic_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
5630 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
5631 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
5632 /*highaddr*/BUS_SPACE_MAXADDR,
5633 /*filter*/NULL, /*filterarg*/NULL,
5634 PAGE_SIZE, /*nsegments*/1,
5635 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
5636 /*flags*/0, &scb_data->hscb_dmat) != 0) {
5637 goto error_exit;
5640 scb_data->init_level++;
5642 /* DMA tag for our S/G structures. */
5643 if (aic_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8,
5644 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
5645 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
5646 /*highaddr*/BUS_SPACE_MAXADDR,
5647 /*filter*/NULL, /*filterarg*/NULL,
5648 ahd_sglist_allocsize(ahd), /*nsegments*/1,
5649 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
5650 /*flags*/0, &scb_data->sg_dmat) != 0) {
5651 goto error_exit;
5653 #ifdef AHD_DEBUG
5654 if ((ahd_debug & AHD_SHOW_MEMORY) != 0)
5655 kprintf("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd),
5656 ahd_sglist_allocsize(ahd));
5657 #endif
5659 scb_data->init_level++;
5661 /* DMA tag for our sense buffers. We allocate in page sized chunks */
5662 if (aic_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
5663 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
5664 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
5665 /*highaddr*/BUS_SPACE_MAXADDR,
5666 /*filter*/NULL, /*filterarg*/NULL,
5667 PAGE_SIZE, /*nsegments*/1,
5668 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
5669 /*flags*/0, &scb_data->sense_dmat) != 0) {
5670 goto error_exit;
5673 scb_data->init_level++;
5675 /* Perform initial CCB allocation */
5676 while (ahd_alloc_scbs(ahd) != 0)
5679 if (scb_data->numscbs == 0) {
5680 kprintf("%s: ahd_init_scbdata - "
5681 "Unable to allocate initial scbs\n",
5682 ahd_name(ahd));
5683 goto error_exit;
5687 * Note that we were successful
5689 return (0);
5691 error_exit:
5693 return (ENOMEM);
5696 static struct scb *
5697 ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag)
5699 struct scb *scb;
5702 * Look on the pending list.
5704 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
5705 if (SCB_GET_TAG(scb) == tag)
5706 return (scb);
5710 * Then on all of the collision free lists.
5712 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
5713 struct scb *list_scb;
5715 list_scb = scb;
5716 do {
5717 if (SCB_GET_TAG(list_scb) == tag)
5718 return (list_scb);
5719 list_scb = LIST_NEXT(list_scb, collision_links);
5720 } while (list_scb);
5724 * And finally on the generic free list.
5726 LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
5727 if (SCB_GET_TAG(scb) == tag)
5728 return (scb);
5731 return (NULL);
5734 static void
5735 ahd_fini_scbdata(struct ahd_softc *ahd)
5737 struct scb_data *scb_data;
5739 scb_data = &ahd->scb_data;
5740 if (scb_data == NULL)
5741 return;
5743 switch (scb_data->init_level) {
5744 default:
5745 case 7:
5747 struct map_node *sns_map;
5749 while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) {
5750 SLIST_REMOVE_HEAD(&scb_data->sense_maps, links);
5751 aic_dmamap_unload(ahd, scb_data->sense_dmat,
5752 sns_map->dmamap);
5753 aic_dmamem_free(ahd, scb_data->sense_dmat,
5754 sns_map->vaddr, sns_map->dmamap);
5755 kfree(sns_map, M_DEVBUF);
5757 aic_dma_tag_destroy(ahd, scb_data->sense_dmat);
5758 /* FALLTHROUGH */
5760 case 6:
5762 struct map_node *sg_map;
5764 while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) {
5765 SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
5766 aic_dmamap_unload(ahd, scb_data->sg_dmat,
5767 sg_map->dmamap);
5768 aic_dmamem_free(ahd, scb_data->sg_dmat,
5769 sg_map->vaddr, sg_map->dmamap);
5770 kfree(sg_map, M_DEVBUF);
5772 aic_dma_tag_destroy(ahd, scb_data->sg_dmat);
5773 /* FALLTHROUGH */
5775 case 5:
5777 struct map_node *hscb_map;
5779 while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) {
5780 SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links);
5781 aic_dmamap_unload(ahd, scb_data->hscb_dmat,
5782 hscb_map->dmamap);
5783 aic_dmamem_free(ahd, scb_data->hscb_dmat,
5784 hscb_map->vaddr, hscb_map->dmamap);
5785 kfree(hscb_map, M_DEVBUF);
5787 aic_dma_tag_destroy(ahd, scb_data->hscb_dmat);
5788 /* FALLTHROUGH */
5790 case 4:
5791 case 3:
5792 case 2:
5793 case 1:
5794 case 0:
5795 break;
5800 * DSP filter Bypass must be enabled until the first selection
5801 * after a change in bus mode (Razor #491 and #493).
5803 static void
5804 ahd_setup_iocell_workaround(struct ahd_softc *ahd)
5806 ahd_mode_state saved_modes;
5808 saved_modes = ahd_save_modes(ahd);
5809 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
5810 ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL)
5811 | BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS);
5812 ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI));
5813 #ifdef AHD_DEBUG
5814 if ((ahd_debug & AHD_SHOW_MISC) != 0)
5815 kprintf("%s: Setting up iocell workaround\n", ahd_name(ahd));
5816 #endif
5817 ahd_restore_modes(ahd, saved_modes);
5818 ahd->flags &= ~AHD_HAD_FIRST_SEL;
5821 static void
5822 ahd_iocell_first_selection(struct ahd_softc *ahd)
5824 ahd_mode_state saved_modes;
5825 u_int sblkctl;
5827 if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0)
5828 return;
5829 saved_modes = ahd_save_modes(ahd);
5830 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
5831 sblkctl = ahd_inb(ahd, SBLKCTL);
5832 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
5833 #ifdef AHD_DEBUG
5834 if ((ahd_debug & AHD_SHOW_MISC) != 0)
5835 kprintf("%s: iocell first selection\n", ahd_name(ahd));
5836 #endif
5837 if ((sblkctl & ENAB40) != 0) {
5838 ahd_outb(ahd, DSPDATACTL,
5839 ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB);
5840 #ifdef AHD_DEBUG
5841 if ((ahd_debug & AHD_SHOW_MISC) != 0)
5842 kprintf("%s: BYPASS now disabled\n", ahd_name(ahd));
5843 #endif
5845 ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI));
5846 ahd_outb(ahd, CLRINT, CLRSCSIINT);
5847 ahd_restore_modes(ahd, saved_modes);
5848 ahd->flags |= AHD_HAD_FIRST_SEL;
5851 /*************************** SCB Management ***********************************/
5852 static void
5853 ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx)
5855 struct scb_list *free_list;
5856 struct scb_tailq *free_tailq;
5857 struct scb *first_scb;
5859 scb->flags |= SCB_ON_COL_LIST;
5860 AHD_SET_SCB_COL_IDX(scb, col_idx);
5861 free_list = &ahd->scb_data.free_scb_lists[col_idx];
5862 free_tailq = &ahd->scb_data.free_scbs;
5863 first_scb = LIST_FIRST(free_list);
5864 if (first_scb != NULL) {
5865 LIST_INSERT_AFTER(first_scb, scb, collision_links);
5866 } else {
5867 LIST_INSERT_HEAD(free_list, scb, collision_links);
5868 TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe);
5872 static void
5873 ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb)
5875 struct scb_list *free_list;
5876 struct scb_tailq *free_tailq;
5877 struct scb *first_scb;
5878 u_int col_idx;
5880 scb->flags &= ~SCB_ON_COL_LIST;
5881 col_idx = AHD_GET_SCB_COL_IDX(ahd, scb);
5882 free_list = &ahd->scb_data.free_scb_lists[col_idx];
5883 free_tailq = &ahd->scb_data.free_scbs;
5884 first_scb = LIST_FIRST(free_list);
5885 if (first_scb == scb) {
5886 struct scb *next_scb;
5889 * Maintain order in the collision free
5890 * lists for fairness if this device has
5891 * other colliding tags active.
5893 next_scb = LIST_NEXT(scb, collision_links);
5894 if (next_scb != NULL) {
5895 TAILQ_INSERT_AFTER(free_tailq, scb,
5896 next_scb, links.tqe);
5898 TAILQ_REMOVE(free_tailq, scb, links.tqe);
5900 LIST_REMOVE(scb, collision_links);
5904 * Get a free scb. If there are none, see if we can allocate a new SCB.
5906 struct scb *
5907 ahd_get_scb(struct ahd_softc *ahd, u_int col_idx)
5909 struct scb *scb;
5910 int tries;
5912 tries = 0;
5913 look_again:
5914 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
5915 if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) {
5916 ahd_rem_col_list(ahd, scb);
5917 goto found;
5920 if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) {
5922 if (tries++ != 0)
5923 return (NULL);
5924 if (ahd_alloc_scbs(ahd) == 0)
5925 return (NULL);
5926 goto look_again;
5928 LIST_REMOVE(scb, links.le);
5929 if (col_idx != AHD_NEVER_COL_IDX
5930 && (scb->col_scb != NULL)
5931 && (scb->col_scb->flags & SCB_ACTIVE) == 0) {
5932 LIST_REMOVE(scb->col_scb, links.le);
5933 ahd_add_col_list(ahd, scb->col_scb, col_idx);
5935 found:
5936 scb->flags |= SCB_ACTIVE;
5937 return (scb);
5941 * Return an SCB resource to the free list.
5943 void
5944 ahd_free_scb(struct ahd_softc *ahd, struct scb *scb)
5947 /* Clean up for the next user */
5948 scb->flags = SCB_FLAG_NONE;
5949 scb->hscb->control = 0;
5950 ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL;
5952 if (scb->col_scb == NULL) {
5955 * No collision possible. Just free normally.
5957 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
5958 scb, links.le);
5959 } else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) {
5962 * The SCB we might have collided with is on
5963 * a free collision list. Put both SCBs on
5964 * the generic list.
5966 ahd_rem_col_list(ahd, scb->col_scb);
5967 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
5968 scb, links.le);
5969 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
5970 scb->col_scb, links.le);
5971 } else if ((scb->col_scb->flags
5972 & (SCB_PACKETIZED|SCB_ACTIVE)) == SCB_ACTIVE
5973 && (scb->col_scb->hscb->control & TAG_ENB) != 0) {
5976 * The SCB we might collide with on the next allocation
5977 * is still active in a non-packetized, tagged, context.
5978 * Put us on the SCB collision list.
5980 ahd_add_col_list(ahd, scb,
5981 AHD_GET_SCB_COL_IDX(ahd, scb->col_scb));
5982 } else {
5984 * The SCB we might collide with on the next allocation
5985 * is either active in a packetized context, or free.
5986 * Since we can't collide, put this SCB on the generic
5987 * free list.
5989 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
5990 scb, links.le);
5993 aic_platform_scb_free(ahd, scb);
5997 ahd_alloc_scbs(struct ahd_softc *ahd)
5999 struct scb_data *scb_data;
6000 struct scb *next_scb;
6001 struct hardware_scb *hscb;
6002 struct map_node *hscb_map;
6003 struct map_node *sg_map;
6004 struct map_node *sense_map;
6005 uint8_t *segs;
6006 uint8_t *sense_data;
6007 bus_addr_t hscb_busaddr;
6008 bus_addr_t sg_busaddr;
6009 bus_addr_t sense_busaddr;
6010 int newcount;
6011 int i;
6013 scb_data = &ahd->scb_data;
6014 if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC)
6015 /* Can't allocate any more */
6016 return (0);
6018 if (scb_data->scbs_left != 0) {
6019 int offset;
6021 offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left;
6022 hscb_map = SLIST_FIRST(&scb_data->hscb_maps);
6023 hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset];
6024 hscb_busaddr = hscb_map->busaddr + (offset * sizeof(*hscb));
6025 } else {
6026 hscb_map = kmalloc(sizeof(*hscb_map), M_DEVBUF, M_INTWAIT);
6028 /* Allocate the next batch of hardware SCBs */
6029 if (aic_dmamem_alloc(ahd, scb_data->hscb_dmat,
6030 (void **)&hscb_map->vaddr,
6031 BUS_DMA_NOWAIT, &hscb_map->dmamap) != 0) {
6032 kfree(hscb_map, M_DEVBUF);
6033 return (0);
6036 SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links);
6038 aic_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap,
6039 hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6040 &hscb_map->busaddr, /*flags*/0);
6042 hscb = (struct hardware_scb *)hscb_map->vaddr;
6043 hscb_busaddr = hscb_map->busaddr;
6044 scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb);
6047 if (scb_data->sgs_left != 0) {
6048 int offset;
6050 offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd))
6051 - scb_data->sgs_left) * ahd_sglist_size(ahd);
6052 sg_map = SLIST_FIRST(&scb_data->sg_maps);
6053 segs = sg_map->vaddr + offset;
6054 sg_busaddr = sg_map->busaddr + offset;
6055 } else {
6056 sg_map = kmalloc(sizeof(*sg_map), M_DEVBUF, M_INTWAIT);
6058 /* Allocate the next batch of S/G lists */
6059 if (aic_dmamem_alloc(ahd, scb_data->sg_dmat,
6060 (void **)&sg_map->vaddr,
6061 BUS_DMA_NOWAIT, &sg_map->dmamap) != 0) {
6062 kfree(sg_map, M_DEVBUF);
6063 return (0);
6066 SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
6068 aic_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap,
6069 sg_map->vaddr, ahd_sglist_allocsize(ahd),
6070 ahd_dmamap_cb, &sg_map->busaddr, /*flags*/0);
6072 segs = sg_map->vaddr;
6073 sg_busaddr = sg_map->busaddr;
6074 scb_data->sgs_left =
6075 ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd);
6076 #ifdef AHD_DEBUG
6077 if (ahd_debug & AHD_SHOW_MEMORY)
6078 kprintf("Mapped SG data\n");
6079 #endif
6082 if (scb_data->sense_left != 0) {
6083 int offset;
6085 offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left);
6086 sense_map = SLIST_FIRST(&scb_data->sense_maps);
6087 sense_data = sense_map->vaddr + offset;
6088 sense_busaddr = sense_map->busaddr + offset;
6089 } else {
6090 sense_map = kmalloc(sizeof(*sense_map), M_DEVBUF, M_INTWAIT);
6092 /* Allocate the next batch of sense buffers */
6093 if (aic_dmamem_alloc(ahd, scb_data->sense_dmat,
6094 (void **)&sense_map->vaddr,
6095 BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) {
6096 kfree(sense_map, M_DEVBUF);
6097 return (0);
6100 SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links);
6102 aic_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap,
6103 sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6104 &sense_map->busaddr, /*flags*/0);
6106 sense_data = sense_map->vaddr;
6107 sense_busaddr = sense_map->busaddr;
6108 scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE;
6109 #ifdef AHD_DEBUG
6110 if (ahd_debug & AHD_SHOW_MEMORY)
6111 kprintf("Mapped sense data\n");
6112 #endif
6115 newcount = MIN(scb_data->sense_left, scb_data->scbs_left);
6116 newcount = MIN(newcount, scb_data->sgs_left);
6117 newcount = MIN(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs));
6118 scb_data->sense_left -= newcount;
6119 scb_data->scbs_left -= newcount;
6120 scb_data->sgs_left -= newcount;
6121 for (i = 0; i < newcount; i++) {
6122 struct scb_platform_data *pdata;
6123 u_int col_tag;
6124 #ifndef __linux__
6125 int error;
6126 #endif
6128 next_scb = kmalloc(sizeof(*next_scb), M_DEVBUF, M_INTWAIT);
6129 pdata = kmalloc(sizeof(*pdata), M_DEVBUF, M_INTWAIT);
6130 next_scb->platform_data = pdata;
6131 next_scb->hscb_map = hscb_map;
6132 next_scb->sg_map = sg_map;
6133 next_scb->sense_map = sense_map;
6134 next_scb->sg_list = segs;
6135 next_scb->sense_data = sense_data;
6136 next_scb->sense_busaddr = sense_busaddr;
6137 memset(hscb, 0, sizeof(*hscb));
6138 next_scb->hscb = hscb;
6139 hscb->hscb_busaddr = aic_htole32(hscb_busaddr);
6142 * The sequencer always starts with the second entry.
6143 * The first entry is embedded in the scb.
6145 next_scb->sg_list_busaddr = sg_busaddr;
6146 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
6147 next_scb->sg_list_busaddr
6148 += sizeof(struct ahd_dma64_seg);
6149 else
6150 next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg);
6151 next_scb->ahd_softc = ahd;
6152 next_scb->flags = SCB_FLAG_NONE;
6153 #ifndef __linux__
6154 error = aic_dmamap_create(ahd, ahd->buffer_dmat, /*flags*/0,
6155 &next_scb->dmamap);
6156 if (error != 0) {
6157 kfree(next_scb, M_DEVBUF);
6158 kfree(pdata, M_DEVBUF);
6159 break;
6161 #endif
6162 next_scb->hscb->tag = aic_htole16(scb_data->numscbs);
6163 col_tag = scb_data->numscbs ^ 0x100;
6164 next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag);
6165 if (next_scb->col_scb != NULL)
6166 next_scb->col_scb->col_scb = next_scb;
6167 aic_timer_init(&next_scb->io_timer);
6168 ahd_free_scb(ahd, next_scb);
6169 hscb++;
6170 hscb_busaddr += sizeof(*hscb);
6171 segs += ahd_sglist_size(ahd);
6172 sg_busaddr += ahd_sglist_size(ahd);
6173 sense_data += AHD_SENSE_BUFSIZE;
6174 sense_busaddr += AHD_SENSE_BUFSIZE;
6175 scb_data->numscbs++;
6177 return (i);
6180 void
6181 ahd_controller_info(struct ahd_softc *ahd, char *buf)
6183 const char *speed;
6184 const char *type;
6185 int len;
6187 len = ksprintf(buf, "%s: ",
6188 ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]);
6189 buf += len;
6191 speed = "Ultra320 ";
6192 if ((ahd->features & AHD_WIDE) != 0) {
6193 type = "Wide ";
6194 } else {
6195 type = "Single ";
6197 len = ksprintf(buf, "%s%sChannel %c, SCSI Id=%d, ",
6198 speed, type, ahd->channel, ahd->our_id);
6199 buf += len;
6201 ksprintf(buf, "%s, %d SCBs", ahd->bus_description,
6202 ahd->scb_data.maxhscbs);
6205 static const char *channel_strings[] = {
6206 "Primary Low",
6207 "Primary High",
6208 "Secondary Low",
6209 "Secondary High"
6212 static const char *termstat_strings[] = {
6213 "Terminated Correctly",
6214 "Over Terminated",
6215 "Under Terminated",
6216 "Not Configured"
6220 * Start the board, ready for normal operation
6223 ahd_init(struct ahd_softc *ahd)
6225 uint8_t *next_vaddr;
6226 bus_addr_t next_baddr;
6227 size_t driver_data_size;
6228 int i;
6229 int error;
6230 u_int warn_user;
6231 uint8_t current_sensing;
6232 uint8_t fstat;
6234 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
6236 ahd->stack_size = ahd_probe_stack_size(ahd);
6237 ahd->saved_stack = kmalloc(ahd->stack_size * sizeof(uint16_t),
6238 M_DEVBUF, M_INTWAIT);
6241 * Verify that the compiler hasn't over-agressively
6242 * padded important structures.
6244 if (sizeof(struct hardware_scb) != 64)
6245 panic("Hardware SCB size is incorrect");
6247 #ifdef AHD_DEBUG
6248 if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0)
6249 ahd->flags |= AHD_SEQUENCER_DEBUG;
6250 #endif
6253 * Default to allowing initiator operations.
6255 ahd->flags |= AHD_INITIATORROLE;
6258 * Only allow target mode features if this unit has them enabled.
6260 if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0)
6261 ahd->features &= ~AHD_TARGETMODE;
6263 #ifndef __linux__
6264 /* DMA tag for mapping buffers into device visible space. */
6265 if (aic_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6266 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6267 /*lowaddr*/ahd->flags & AHD_39BIT_ADDRESSING
6268 ? (bus_addr_t)0x7FFFFFFFFFULL
6269 : BUS_SPACE_MAXADDR_32BIT,
6270 /*highaddr*/BUS_SPACE_MAXADDR,
6271 /*filter*/NULL, /*filterarg*/NULL,
6272 /*maxsize*/(AHD_NSEG - 1) * PAGE_SIZE,
6273 /*nsegments*/AHD_NSEG,
6274 /*maxsegsz*/AHD_MAXTRANSFER_SIZE,
6275 /*flags*/BUS_DMA_ALLOCNOW,
6276 &ahd->buffer_dmat) != 0) {
6277 return (ENOMEM);
6279 #endif
6281 ahd->init_level++;
6284 * DMA tag for our command fifos and other data in system memory
6285 * the card's sequencer must be able to access. For initiator
6286 * roles, we need to allocate space for the qoutfifo. When providing
6287 * for the target mode role, we must additionally provide space for
6288 * the incoming target command fifo.
6290 driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo)
6291 + sizeof(struct hardware_scb);
6292 if ((ahd->features & AHD_TARGETMODE) != 0)
6293 driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd);
6294 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0)
6295 driver_data_size += PKT_OVERRUN_BUFSIZE;
6296 if (aic_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6297 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6298 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6299 /*highaddr*/BUS_SPACE_MAXADDR,
6300 /*filter*/NULL, /*filterarg*/NULL,
6301 driver_data_size,
6302 /*nsegments*/1,
6303 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6304 /*flags*/0, &ahd->shared_data_dmat) != 0) {
6305 return (ENOMEM);
6308 ahd->init_level++;
6310 /* Allocation of driver data */
6311 if (aic_dmamem_alloc(ahd, ahd->shared_data_dmat,
6312 (void **)&ahd->shared_data_map.vaddr,
6313 BUS_DMA_NOWAIT,
6314 &ahd->shared_data_map.dmamap) != 0) {
6315 return (ENOMEM);
6318 ahd->init_level++;
6320 /* And permanently map it in */
6321 aic_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
6322 ahd->shared_data_map.vaddr, driver_data_size,
6323 ahd_dmamap_cb, &ahd->shared_data_map.busaddr,
6324 /*flags*/0);
6325 ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr;
6326 next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE];
6327 next_baddr = ahd->shared_data_map.busaddr
6328 + AHD_QOUT_SIZE*sizeof(struct ahd_completion);
6329 if ((ahd->features & AHD_TARGETMODE) != 0) {
6330 ahd->targetcmds = (struct target_cmd *)next_vaddr;
6331 next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
6332 next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
6335 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
6336 ahd->overrun_buf = next_vaddr;
6337 next_vaddr += PKT_OVERRUN_BUFSIZE;
6338 next_baddr += PKT_OVERRUN_BUFSIZE;
6342 * We need one SCB to serve as the "next SCB". Since the
6343 * tag identifier in this SCB will never be used, there is
6344 * no point in using a valid HSCB tag from an SCB pulled from
6345 * the standard free pool. So, we allocate this "sentinel"
6346 * specially from the DMA safe memory chunk used for the QOUTFIFO.
6348 ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr;
6349 ahd->next_queued_hscb_map = &ahd->shared_data_map;
6350 ahd->next_queued_hscb->hscb_busaddr = aic_htole32(next_baddr);
6352 ahd->init_level++;
6354 /* Allocate SCB data now that buffer_dmat is initialized */
6355 if (ahd_init_scbdata(ahd) != 0)
6356 return (ENOMEM);
6358 if ((ahd->flags & AHD_INITIATORROLE) == 0)
6359 ahd->flags &= ~AHD_RESET_BUS_A;
6362 * Before committing these settings to the chip, give
6363 * the OSM one last chance to modify our configuration.
6365 ahd_platform_init(ahd);
6367 /* Bring up the chip. */
6368 ahd_chip_init(ahd);
6370 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
6372 if ((ahd->flags & AHD_CURRENT_SENSING) == 0)
6373 goto init_done;
6376 * Verify termination based on current draw and
6377 * warn user if the bus is over/under terminated.
6379 error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL,
6380 CURSENSE_ENB);
6381 if (error != 0) {
6382 kprintf("%s: current sensing timeout 1\n", ahd_name(ahd));
6383 goto init_done;
6385 for (i = 20, fstat = FLX_FSTAT_BUSY;
6386 (fstat & FLX_FSTAT_BUSY) != 0 && i; i--) {
6387 error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat);
6388 if (error != 0) {
6389 kprintf("%s: current sensing timeout 2\n",
6390 ahd_name(ahd));
6391 goto init_done;
6394 if (i == 0) {
6395 kprintf("%s: Timedout during current-sensing test\n",
6396 ahd_name(ahd));
6397 goto init_done;
6400 /* Latch Current Sensing status. */
6401 error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, &current_sensing);
6402 if (error != 0) {
6403 kprintf("%s: current sensing timeout 3\n", ahd_name(ahd));
6404 goto init_done;
6407 /* Diable current sensing. */
6408 ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
6410 #ifdef AHD_DEBUG
6411 if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) {
6412 kprintf("%s: current_sensing == 0x%x\n",
6413 ahd_name(ahd), current_sensing);
6415 #endif
6416 warn_user = 0;
6417 for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) {
6418 u_int term_stat;
6420 term_stat = (current_sensing & FLX_CSTAT_MASK);
6421 switch (term_stat) {
6422 case FLX_CSTAT_OVER:
6423 case FLX_CSTAT_UNDER:
6424 warn_user++;
6425 case FLX_CSTAT_INVALID:
6426 case FLX_CSTAT_OKAY:
6427 if (warn_user == 0 && bootverbose == 0)
6428 break;
6429 kprintf("%s: %s Channel %s\n", ahd_name(ahd),
6430 channel_strings[i], termstat_strings[term_stat]);
6431 break;
6434 if (warn_user) {
6435 kprintf("%s: WARNING. Termination is not configured correctly.\n"
6436 "%s: WARNING. SCSI bus operations may FAIL.\n",
6437 ahd_name(ahd), ahd_name(ahd));
6439 init_done:
6440 ahd_restart(ahd);
6441 aic_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_MS,
6442 ahd_stat_timer, ahd);
6443 return (0);
6447 * (Re)initialize chip state after a chip reset.
6449 static void
6450 ahd_chip_init(struct ahd_softc *ahd)
6452 uint32_t busaddr;
6453 u_int sxfrctl1;
6454 u_int scsiseq_template;
6455 u_int wait;
6456 u_int i;
6457 u_int target;
6459 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6461 * Take the LED out of diagnostic mode
6463 ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON));
6466 * Return HS_MAILBOX to its default value.
6468 ahd->hs_mailbox = 0;
6469 ahd_outb(ahd, HS_MAILBOX, 0);
6471 /* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */
6472 ahd_outb(ahd, IOWNID, ahd->our_id);
6473 ahd_outb(ahd, TOWNID, ahd->our_id);
6474 sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0;
6475 sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0;
6476 if ((ahd->bugs & AHD_LONG_SETIMO_BUG)
6477 && (ahd->seltime != STIMESEL_MIN)) {
6479 * The selection timer duration is twice as long
6480 * as it should be. Halve it by adding "1" to
6481 * the user specified setting.
6483 sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ;
6484 } else {
6485 sxfrctl1 |= ahd->seltime;
6488 ahd_outb(ahd, SXFRCTL0, DFON);
6489 ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN);
6490 ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
6493 * Now that termination is set, wait for up
6494 * to 500ms for our transceivers to settle. If
6495 * the adapter does not have a cable attached,
6496 * the transceivers may never settle, so don't
6497 * complain if we fail here.
6499 for (wait = 10000;
6500 (ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
6501 wait--)
6502 aic_delay(100);
6504 /* Clear any false bus resets due to the transceivers settling */
6505 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
6506 ahd_outb(ahd, CLRINT, CLRSCSIINT);
6508 /* Initialize mode specific S/G state. */
6509 for (i = 0; i < 2; i++) {
6510 ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
6511 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
6512 ahd_outb(ahd, SG_STATE, 0);
6513 ahd_outb(ahd, CLRSEQINTSRC, 0xFF);
6514 ahd_outb(ahd, SEQIMODE,
6515 ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT
6516 |ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD);
6519 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6520 ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN);
6521 ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75);
6522 ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN);
6523 ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR);
6524 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
6525 ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE);
6526 } else {
6527 ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE);
6529 ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS);
6530 if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX)
6532 * Do not issue a target abort when a split completion
6533 * error occurs. Let our PCIX interrupt handler deal
6534 * with it instead. H2A4 Razor #625
6536 ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS);
6538 if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0)
6539 ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER);
6542 * Tweak IOCELL settings.
6544 if ((ahd->flags & AHD_HP_BOARD) != 0) {
6545 for (i = 0; i < NUMDSPS; i++) {
6546 ahd_outb(ahd, DSPSELECT, i);
6547 ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT);
6549 #ifdef AHD_DEBUG
6550 if ((ahd_debug & AHD_SHOW_MISC) != 0)
6551 kprintf("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd),
6552 WRTBIASCTL_HP_DEFAULT);
6553 #endif
6555 ahd_setup_iocell_workaround(ahd);
6558 * Enable LQI Manager interrupts.
6560 ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT
6561 | ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI
6562 | ENLQIOVERI_LQ|ENLQIOVERI_NLQ);
6563 ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC);
6565 * We choose to have the sequencer catch LQOPHCHGINPKT errors
6566 * manually for the command phase at the start of a packetized
6567 * selection case. ENLQOBUSFREE should be made redundant by
6568 * the BUSFREE interrupt, but it seems that some LQOBUSFREE
6569 * events fail to assert the BUSFREE interrupt so we must
6570 * also enable LQOBUSFREE interrupts.
6572 ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE);
6575 * Setup sequencer interrupt handlers.
6577 ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr));
6578 ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr));
6581 * Setup SCB Offset registers.
6583 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
6584 ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb,
6585 pkt_long_lun));
6586 } else {
6587 ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun));
6589 ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len));
6590 ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute));
6591 ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management));
6592 ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb,
6593 shared_data.idata.cdb));
6594 ahd_outb(ahd, QNEXTPTR,
6595 offsetof(struct hardware_scb, next_hscb_busaddr));
6596 ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET);
6597 ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control));
6598 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
6599 ahd_outb(ahd, LUNLEN,
6600 sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1);
6601 } else {
6602 ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN);
6604 ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1);
6605 ahd_outb(ahd, MAXCMD, 0xFF);
6606 ahd_outb(ahd, SCBAUTOPTR,
6607 AUSCBPTR_EN | offsetof(struct hardware_scb, tag));
6609 /* We haven't been enabled for target mode yet. */
6610 ahd_outb(ahd, MULTARGID, 0);
6611 ahd_outb(ahd, MULTARGID + 1, 0);
6613 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6614 /* Initialize the negotiation table. */
6615 if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) {
6617 * Clear the spare bytes in the neg table to avoid
6618 * spurious parity errors.
6620 for (target = 0; target < AHD_NUM_TARGETS; target++) {
6621 ahd_outb(ahd, NEGOADDR, target);
6622 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0);
6623 for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++)
6624 ahd_outb(ahd, ANNEXDAT, 0);
6627 for (target = 0; target < AHD_NUM_TARGETS; target++) {
6628 struct ahd_devinfo devinfo;
6629 struct ahd_initiator_tinfo *tinfo;
6630 struct ahd_tmode_tstate *tstate;
6632 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
6633 target, &tstate);
6634 ahd_compile_devinfo(&devinfo, ahd->our_id,
6635 target, CAM_LUN_WILDCARD,
6636 'A', ROLE_INITIATOR);
6637 ahd_update_neg_table(ahd, &devinfo, &tinfo->curr);
6640 ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR);
6641 ahd_outb(ahd, CLRINT, CLRSCSIINT);
6643 #ifdef NEEDS_MORE_TESTING
6645 * Always enable abort on incoming L_Qs if this feature is
6646 * supported. We use this to catch invalid SCB references.
6648 if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0)
6649 ahd_outb(ahd, LQCTL1, ABORTPENDING);
6650 else
6651 #endif
6652 ahd_outb(ahd, LQCTL1, 0);
6654 /* All of our queues are empty */
6655 ahd->qoutfifonext = 0;
6656 ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID;
6657 ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID);
6658 for (i = 0; i < AHD_QOUT_SIZE; i++)
6659 ahd->qoutfifo[i].valid_tag = 0;
6660 ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD);
6662 ahd->qinfifonext = 0;
6663 for (i = 0; i < AHD_QIN_SIZE; i++)
6664 ahd->qinfifo[i] = SCB_LIST_NULL;
6666 if ((ahd->features & AHD_TARGETMODE) != 0) {
6667 /* All target command blocks start out invalid. */
6668 for (i = 0; i < AHD_TMODE_CMDS; i++)
6669 ahd->targetcmds[i].cmd_valid = 0;
6670 ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD);
6671 ahd->tqinfifonext = 1;
6672 ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1);
6673 ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
6676 /* Initialize Scratch Ram. */
6677 ahd_outb(ahd, SEQ_FLAGS, 0);
6678 ahd_outb(ahd, SEQ_FLAGS2, 0);
6680 /* We don't have any waiting selections */
6681 ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL);
6682 ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL);
6683 ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL);
6684 ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF);
6685 for (i = 0; i < AHD_NUM_TARGETS; i++)
6686 ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL);
6689 * Nobody is waiting to be DMAed into the QOUTFIFO.
6691 ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
6692 ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL);
6693 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
6694 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
6695 ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
6698 * The Freeze Count is 0.
6700 ahd->qfreeze_cnt = 0;
6701 ahd_outw(ahd, QFREEZE_COUNT, 0);
6702 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0);
6705 * Tell the sequencer where it can find our arrays in memory.
6707 busaddr = ahd->shared_data_map.busaddr;
6708 ahd_outl(ahd, SHARED_DATA_ADDR, busaddr);
6709 ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr);
6712 * Setup the allowed SCSI Sequences based on operational mode.
6713 * If we are a target, we'll enable select in operations once
6714 * we've had a lun enabled.
6716 scsiseq_template = ENAUTOATNP;
6717 if ((ahd->flags & AHD_INITIATORROLE) != 0)
6718 scsiseq_template |= ENRSELI;
6719 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template);
6721 /* There are no busy SCBs yet. */
6722 for (target = 0; target < AHD_NUM_TARGETS; target++) {
6723 int lun;
6725 for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++)
6726 ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun));
6730 * Initialize the group code to command length table.
6731 * Vendor Unique codes are set to 0 so we only capture
6732 * the first byte of the cdb. These can be overridden
6733 * when target mode is enabled.
6735 ahd_outb(ahd, CMDSIZE_TABLE, 5);
6736 ahd_outb(ahd, CMDSIZE_TABLE + 1, 9);
6737 ahd_outb(ahd, CMDSIZE_TABLE + 2, 9);
6738 ahd_outb(ahd, CMDSIZE_TABLE + 3, 0);
6739 ahd_outb(ahd, CMDSIZE_TABLE + 4, 15);
6740 ahd_outb(ahd, CMDSIZE_TABLE + 5, 11);
6741 ahd_outb(ahd, CMDSIZE_TABLE + 6, 0);
6742 ahd_outb(ahd, CMDSIZE_TABLE + 7, 0);
6744 /* Tell the sequencer of our initial queue positions */
6745 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
6746 ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512);
6747 ahd->qinfifonext = 0;
6748 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
6749 ahd_set_hescb_qoff(ahd, 0);
6750 ahd_set_snscb_qoff(ahd, 0);
6751 ahd_set_sescb_qoff(ahd, 0);
6752 ahd_set_sdscb_qoff(ahd, 0);
6755 * Tell the sequencer which SCB will be the next one it receives.
6757 busaddr = aic_le32toh(ahd->next_queued_hscb->hscb_busaddr);
6758 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
6761 * Default to coalescing disabled.
6763 ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0);
6764 ahd_outw(ahd, CMDS_PENDING, 0);
6765 ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer,
6766 ahd->int_coalescing_maxcmds,
6767 ahd->int_coalescing_mincmds);
6768 ahd_enable_coalescing(ahd, FALSE);
6770 ahd_loadseq(ahd);
6771 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6775 * Setup default device and controller settings.
6776 * This should only be called if our probe has
6777 * determined that no configuration data is available.
6780 ahd_default_config(struct ahd_softc *ahd)
6782 int targ;
6784 ahd->our_id = 7;
6787 * Allocate a tstate to house information for our
6788 * initiator presence on the bus as well as the user
6789 * data for any target mode initiator.
6791 if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
6792 kprintf("%s: unable to allocate ahd_tmode_tstate. "
6793 "Failing attach\n", ahd_name(ahd));
6794 return (ENOMEM);
6797 for (targ = 0; targ < AHD_NUM_TARGETS; targ++) {
6798 struct ahd_devinfo devinfo;
6799 struct ahd_initiator_tinfo *tinfo;
6800 struct ahd_tmode_tstate *tstate;
6801 uint16_t target_mask;
6803 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
6804 targ, &tstate);
6806 * We support SPC2 and SPI4.
6808 tinfo->user.protocol_version = 4;
6809 tinfo->user.transport_version = 4;
6811 target_mask = 0x01 << targ;
6812 ahd->user_discenable |= target_mask;
6813 tstate->discenable |= target_mask;
6814 ahd->user_tagenable |= target_mask;
6815 #ifdef AHD_FORCE_160
6816 tinfo->user.period = AHD_SYNCRATE_DT;
6817 #else
6818 tinfo->user.period = AHD_SYNCRATE_160;
6819 #endif
6820 tinfo->user.offset = MAX_OFFSET;
6821 tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM
6822 | MSG_EXT_PPR_WR_FLOW
6823 | MSG_EXT_PPR_HOLD_MCS
6824 | MSG_EXT_PPR_IU_REQ
6825 | MSG_EXT_PPR_QAS_REQ
6826 | MSG_EXT_PPR_DT_REQ;
6827 if ((ahd->features & AHD_RTI) != 0)
6828 tinfo->user.ppr_options |= MSG_EXT_PPR_RTI;
6830 tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
6833 * Start out Async/Narrow/Untagged and with
6834 * conservative protocol support.
6836 tinfo->goal.protocol_version = 2;
6837 tinfo->goal.transport_version = 2;
6838 tinfo->curr.protocol_version = 2;
6839 tinfo->curr.transport_version = 2;
6840 ahd_compile_devinfo(&devinfo, ahd->our_id,
6841 targ, CAM_LUN_WILDCARD,
6842 'A', ROLE_INITIATOR);
6843 tstate->tagenable &= ~target_mask;
6844 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
6845 AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
6846 ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
6847 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
6848 /*paused*/TRUE);
6850 return (0);
6854 * Parse device configuration information.
6857 ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc)
6859 int targ;
6860 int max_targ;
6862 max_targ = sc->max_targets & CFMAXTARG;
6863 ahd->our_id = sc->brtime_id & CFSCSIID;
6866 * Allocate a tstate to house information for our
6867 * initiator presence on the bus as well as the user
6868 * data for any target mode initiator.
6870 if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
6871 kprintf("%s: unable to allocate ahd_tmode_tstate. "
6872 "Failing attach\n", ahd_name(ahd));
6873 return (ENOMEM);
6876 for (targ = 0; targ < max_targ; targ++) {
6877 struct ahd_devinfo devinfo;
6878 struct ahd_initiator_tinfo *tinfo;
6879 struct ahd_transinfo *user_tinfo;
6880 struct ahd_tmode_tstate *tstate;
6881 uint16_t target_mask;
6883 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
6884 targ, &tstate);
6885 user_tinfo = &tinfo->user;
6888 * We support SPC2 and SPI4.
6890 tinfo->user.protocol_version = 4;
6891 tinfo->user.transport_version = 4;
6893 target_mask = 0x01 << targ;
6894 ahd->user_discenable &= ~target_mask;
6895 tstate->discenable &= ~target_mask;
6896 ahd->user_tagenable &= ~target_mask;
6897 if (sc->device_flags[targ] & CFDISC) {
6898 tstate->discenable |= target_mask;
6899 ahd->user_discenable |= target_mask;
6900 ahd->user_tagenable |= target_mask;
6901 } else {
6903 * Cannot be packetized without disconnection.
6905 sc->device_flags[targ] &= ~CFPACKETIZED;
6908 user_tinfo->ppr_options = 0;
6909 user_tinfo->period = (sc->device_flags[targ] & CFXFER);
6910 if (user_tinfo->period < CFXFER_ASYNC) {
6911 if (user_tinfo->period <= AHD_PERIOD_10MHz)
6912 user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ;
6913 user_tinfo->offset = MAX_OFFSET;
6914 } else {
6915 user_tinfo->offset = 0;
6916 user_tinfo->period = AHD_ASYNC_XFER_PERIOD;
6918 #ifdef AHD_FORCE_160
6919 if (user_tinfo->period <= AHD_SYNCRATE_160)
6920 user_tinfo->period = AHD_SYNCRATE_DT;
6921 #endif
6923 if ((sc->device_flags[targ] & CFPACKETIZED) != 0) {
6924 user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM
6925 | MSG_EXT_PPR_WR_FLOW
6926 | MSG_EXT_PPR_HOLD_MCS
6927 | MSG_EXT_PPR_IU_REQ;
6928 if ((ahd->features & AHD_RTI) != 0)
6929 user_tinfo->ppr_options |= MSG_EXT_PPR_RTI;
6932 if ((sc->device_flags[targ] & CFQAS) != 0)
6933 user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ;
6935 if ((sc->device_flags[targ] & CFWIDEB) != 0)
6936 user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT;
6937 else
6938 user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT;
6939 #ifdef AHD_DEBUG
6940 if ((ahd_debug & AHD_SHOW_MISC) != 0)
6941 kprintf("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width,
6942 user_tinfo->period, user_tinfo->offset,
6943 user_tinfo->ppr_options);
6944 #endif
6946 * Start out Async/Narrow/Untagged and with
6947 * conservative protocol support.
6949 tstate->tagenable &= ~target_mask;
6950 tinfo->goal.protocol_version = 2;
6951 tinfo->goal.transport_version = 2;
6952 tinfo->curr.protocol_version = 2;
6953 tinfo->curr.transport_version = 2;
6954 ahd_compile_devinfo(&devinfo, ahd->our_id,
6955 targ, CAM_LUN_WILDCARD,
6956 'A', ROLE_INITIATOR);
6957 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
6958 AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
6959 ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
6960 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
6961 /*paused*/TRUE);
6964 ahd->flags &= ~AHD_SPCHK_ENB_A;
6965 if (sc->bios_control & CFSPARITY)
6966 ahd->flags |= AHD_SPCHK_ENB_A;
6968 ahd->flags &= ~AHD_RESET_BUS_A;
6969 if (sc->bios_control & CFRESETB)
6970 ahd->flags |= AHD_RESET_BUS_A;
6972 ahd->flags &= ~AHD_EXTENDED_TRANS_A;
6973 if (sc->bios_control & CFEXTEND)
6974 ahd->flags |= AHD_EXTENDED_TRANS_A;
6976 ahd->flags &= ~AHD_BIOS_ENABLED;
6977 if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED)
6978 ahd->flags |= AHD_BIOS_ENABLED;
6980 ahd->flags &= ~AHD_STPWLEVEL_A;
6981 if ((sc->adapter_control & CFSTPWLEVEL) != 0)
6982 ahd->flags |= AHD_STPWLEVEL_A;
6984 return (0);
6988 * Parse device configuration information.
6991 ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd)
6993 int error;
6995 error = ahd_verify_vpd_cksum(vpd);
6996 if (error == 0)
6997 return (EINVAL);
6998 if ((vpd->bios_flags & VPDBOOTHOST) != 0)
6999 ahd->flags |= AHD_BOOT_CHANNEL;
7000 return (0);
7003 void
7004 ahd_intr_enable(struct ahd_softc *ahd, int enable)
7006 u_int hcntrl;
7008 hcntrl = ahd_inb(ahd, HCNTRL);
7009 hcntrl &= ~INTEN;
7010 ahd->pause &= ~INTEN;
7011 ahd->unpause &= ~INTEN;
7012 if (enable) {
7013 hcntrl |= INTEN;
7014 ahd->pause |= INTEN;
7015 ahd->unpause |= INTEN;
7017 ahd_outb(ahd, HCNTRL, hcntrl);
7020 void
7021 ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds,
7022 u_int mincmds)
7024 if (timer > AHD_TIMER_MAX_US)
7025 timer = AHD_TIMER_MAX_US;
7026 ahd->int_coalescing_timer = timer;
7028 if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX)
7029 maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX;
7030 if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX)
7031 mincmds = AHD_INT_COALESCING_MINCMDS_MAX;
7032 ahd->int_coalescing_maxcmds = maxcmds;
7033 ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK);
7034 ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds);
7035 ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds);
7038 void
7039 ahd_enable_coalescing(struct ahd_softc *ahd, int enable)
7042 ahd->hs_mailbox &= ~ENINT_COALESCE;
7043 if (enable)
7044 ahd->hs_mailbox |= ENINT_COALESCE;
7045 ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox);
7046 ahd_flush_device_writes(ahd);
7047 ahd_run_qoutfifo(ahd);
7051 * Ensure that the card is paused in a location
7052 * outside of all critical sections and that all
7053 * pending work is completed prior to returning.
7054 * This routine should only be called from outside
7055 * an interrupt context.
7057 void
7058 ahd_pause_and_flushwork(struct ahd_softc *ahd)
7060 u_int intstat;
7061 u_int maxloops;
7063 maxloops = 1000;
7064 ahd->flags |= AHD_ALL_INTERRUPTS;
7065 ahd_pause(ahd);
7067 * Freeze the outgoing selections. We do this only
7068 * until we are safely paused without further selections
7069 * pending.
7071 ahd->qfreeze_cnt--;
7072 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7073 ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN);
7074 do {
7076 ahd_unpause(ahd);
7078 * Give the sequencer some time to service
7079 * any active selections.
7081 aic_delay(500);
7083 ahd_intr(ahd);
7084 ahd_pause(ahd);
7085 intstat = ahd_inb(ahd, INTSTAT);
7086 if ((intstat & INT_PEND) == 0) {
7087 ahd_clear_critical_section(ahd);
7088 intstat = ahd_inb(ahd, INTSTAT);
7090 } while (--maxloops
7091 && (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0)
7092 && ((intstat & INT_PEND) != 0
7093 || (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
7094 || (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0));
7096 if (maxloops == 0) {
7097 kprintf("Infinite interrupt loop, INTSTAT = %x",
7098 ahd_inb(ahd, INTSTAT));
7100 ahd->qfreeze_cnt++;
7101 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7103 ahd_flush_qoutfifo(ahd);
7105 ahd_platform_flushwork(ahd);
7106 ahd->flags &= ~AHD_ALL_INTERRUPTS;
7110 ahd_suspend(struct ahd_softc *ahd)
7113 ahd_pause_and_flushwork(ahd);
7115 if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
7116 ahd_unpause(ahd);
7117 return (EBUSY);
7119 ahd_shutdown(ahd);
7120 return (0);
7124 ahd_resume(struct ahd_softc *ahd)
7127 ahd_reset(ahd, /*reinit*/TRUE);
7128 ahd_intr_enable(ahd, TRUE);
7129 ahd_restart(ahd);
7130 return (0);
7133 /************************** Busy Target Table *********************************/
7135 * Set SCBPTR to the SCB that contains the busy
7136 * table entry for TCL. Return the offset into
7137 * the SCB that contains the entry for TCL.
7138 * saved_scbid is dereferenced and set to the
7139 * scbid that should be restored once manipualtion
7140 * of the TCL entry is complete.
7142 static __inline u_int
7143 ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl)
7146 * Index to the SCB that contains the busy entry.
7148 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7149 *saved_scbid = ahd_get_scbptr(ahd);
7150 ahd_set_scbptr(ahd, TCL_LUN(tcl)
7151 | ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4));
7154 * And now calculate the SCB offset to the entry.
7155 * Each entry is 2 bytes wide, hence the
7156 * multiplication by 2.
7158 return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS);
7162 * Return the untagged transaction id for a given target/channel lun.
7164 u_int
7165 ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl)
7167 u_int scbid;
7168 u_int scb_offset;
7169 u_int saved_scbptr;
7171 scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7172 scbid = ahd_inw_scbram(ahd, scb_offset);
7173 ahd_set_scbptr(ahd, saved_scbptr);
7174 return (scbid);
7177 void
7178 ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid)
7180 u_int scb_offset;
7181 u_int saved_scbptr;
7183 scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7184 ahd_outw(ahd, scb_offset, scbid);
7185 ahd_set_scbptr(ahd, saved_scbptr);
7188 /************************** SCB and SCB queue management **********************/
7190 ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target,
7191 char channel, int lun, u_int tag, role_t role)
7193 int targ = SCB_GET_TARGET(ahd, scb);
7194 char chan = SCB_GET_CHANNEL(ahd, scb);
7195 int slun = SCB_GET_LUN(scb);
7196 int match;
7198 match = ((chan == channel) || (channel == ALL_CHANNELS));
7199 if (match != 0)
7200 match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
7201 if (match != 0)
7202 match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
7203 if (match != 0) {
7204 #ifdef AHD_TARGET_MODE
7205 int group;
7207 group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
7208 if (role == ROLE_INITIATOR) {
7209 match = (group != XPT_FC_GROUP_TMODE)
7210 && ((tag == SCB_GET_TAG(scb))
7211 || (tag == SCB_LIST_NULL));
7212 } else if (role == ROLE_TARGET) {
7213 match = (group == XPT_FC_GROUP_TMODE)
7214 && ((tag == scb->io_ctx->csio.tag_id)
7215 || (tag == SCB_LIST_NULL));
7217 #else /* !AHD_TARGET_MODE */
7218 match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL));
7219 #endif /* AHD_TARGET_MODE */
7222 return match;
7225 void
7226 ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
7228 int target;
7229 char channel;
7230 int lun;
7232 target = SCB_GET_TARGET(ahd, scb);
7233 lun = SCB_GET_LUN(scb);
7234 channel = SCB_GET_CHANNEL(ahd, scb);
7236 ahd_search_qinfifo(ahd, target, channel, lun,
7237 /*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
7238 CAM_REQUEUE_REQ, SEARCH_COMPLETE);
7240 ahd_platform_freeze_devq(ahd, scb);
7243 void
7244 ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb)
7246 struct scb *prev_scb;
7247 ahd_mode_state saved_modes;
7249 saved_modes = ahd_save_modes(ahd);
7250 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
7251 prev_scb = NULL;
7252 if (ahd_qinfifo_count(ahd) != 0) {
7253 u_int prev_tag;
7254 u_int prev_pos;
7256 prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1);
7257 prev_tag = ahd->qinfifo[prev_pos];
7258 prev_scb = ahd_lookup_scb(ahd, prev_tag);
7260 ahd_qinfifo_requeue(ahd, prev_scb, scb);
7261 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
7262 ahd_restore_modes(ahd, saved_modes);
7265 static void
7266 ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb,
7267 struct scb *scb)
7269 if (prev_scb == NULL) {
7270 uint32_t busaddr;
7272 busaddr = aic_le32toh(scb->hscb->hscb_busaddr);
7273 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
7274 } else {
7275 prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
7276 ahd_sync_scb(ahd, prev_scb,
7277 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
7279 ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
7280 ahd->qinfifonext++;
7281 scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr;
7282 ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
7285 static int
7286 ahd_qinfifo_count(struct ahd_softc *ahd)
7288 u_int qinpos;
7289 u_int wrap_qinpos;
7290 u_int wrap_qinfifonext;
7292 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
7293 qinpos = ahd_get_snscb_qoff(ahd);
7294 wrap_qinpos = AHD_QIN_WRAP(qinpos);
7295 wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext);
7296 if (wrap_qinfifonext >= wrap_qinpos)
7297 return (wrap_qinfifonext - wrap_qinpos);
7298 else
7299 return (wrap_qinfifonext
7300 + NUM_ELEMENTS(ahd->qinfifo) - wrap_qinpos);
7303 void
7304 ahd_reset_cmds_pending(struct ahd_softc *ahd)
7306 struct scb *scb;
7307 ahd_mode_state saved_modes;
7308 u_int pending_cmds;
7310 saved_modes = ahd_save_modes(ahd);
7311 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
7314 * Don't count any commands as outstanding that the
7315 * sequencer has already marked for completion.
7317 ahd_flush_qoutfifo(ahd);
7319 pending_cmds = 0;
7320 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
7321 pending_cmds++;
7323 ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd));
7324 ahd_restore_modes(ahd, saved_modes);
7325 ahd->flags &= ~AHD_UPDATE_PEND_CMDS;
7328 void
7329 ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status)
7331 cam_status ostat;
7332 cam_status cstat;
7334 ostat = aic_get_transaction_status(scb);
7335 if (ostat == CAM_REQ_INPROG)
7336 aic_set_transaction_status(scb, status);
7337 cstat = aic_get_transaction_status(scb);
7338 if (cstat != CAM_REQ_CMP)
7339 aic_freeze_scb(scb);
7340 ahd_done(ahd, scb);
7344 ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel,
7345 int lun, u_int tag, role_t role, uint32_t status,
7346 ahd_search_action action)
7348 struct scb *scb;
7349 struct scb *mk_msg_scb;
7350 struct scb *prev_scb;
7351 ahd_mode_state saved_modes;
7352 u_int qinstart;
7353 u_int qinpos;
7354 u_int qintail;
7355 u_int tid_next;
7356 u_int tid_prev;
7357 u_int scbid;
7358 u_int seq_flags2;
7359 u_int savedscbptr;
7360 uint32_t busaddr;
7361 int found;
7362 int targets;
7364 /* Must be in CCHAN mode */
7365 saved_modes = ahd_save_modes(ahd);
7366 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
7369 * Halt any pending SCB DMA. The sequencer will reinitiate
7370 * this dma if the qinfifo is not empty once we unpause.
7372 if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR))
7373 == (CCARREN|CCSCBEN|CCSCBDIR)) {
7374 ahd_outb(ahd, CCSCBCTL,
7375 ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN));
7376 while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0)
7379 /* Determine sequencer's position in the qinfifo. */
7380 qintail = AHD_QIN_WRAP(ahd->qinfifonext);
7381 qinstart = ahd_get_snscb_qoff(ahd);
7382 qinpos = AHD_QIN_WRAP(qinstart);
7383 found = 0;
7384 prev_scb = NULL;
7386 if (action == SEARCH_PRINT) {
7387 kprintf("qinstart = %d qinfifonext = %d\nQINFIFO:",
7388 qinstart, ahd->qinfifonext);
7392 * Start with an empty queue. Entries that are not chosen
7393 * for removal will be re-added to the queue as we go.
7395 ahd->qinfifonext = qinstart;
7396 busaddr = aic_le32toh(ahd->next_queued_hscb->hscb_busaddr);
7397 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
7399 while (qinpos != qintail) {
7400 scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]);
7401 if (scb == NULL) {
7402 kprintf("qinpos = %d, SCB index = %d\n",
7403 qinpos, ahd->qinfifo[qinpos]);
7404 panic("Loop 1\n");
7407 if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) {
7409 * We found an scb that needs to be acted on.
7411 found++;
7412 switch (action) {
7413 case SEARCH_COMPLETE:
7414 if ((scb->flags & SCB_ACTIVE) == 0)
7415 kprintf("Inactive SCB in qinfifo\n");
7416 ahd_done_with_status(ahd, scb, status);
7417 /* FALLTHROUGH */
7418 case SEARCH_REMOVE:
7419 break;
7420 case SEARCH_PRINT:
7421 kprintf(" 0x%x", ahd->qinfifo[qinpos]);
7422 /* FALLTHROUGH */
7423 case SEARCH_COUNT:
7424 ahd_qinfifo_requeue(ahd, prev_scb, scb);
7425 prev_scb = scb;
7426 break;
7428 } else {
7429 ahd_qinfifo_requeue(ahd, prev_scb, scb);
7430 prev_scb = scb;
7432 qinpos = AHD_QIN_WRAP(qinpos+1);
7435 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
7437 if (action == SEARCH_PRINT)
7438 kprintf("\nWAITING_TID_QUEUES:\n");
7441 * Search waiting for selection lists. We traverse the
7442 * list of "their ids" waiting for selection and, if
7443 * appropriate, traverse the SCBs of each "their id"
7444 * looking for matches.
7446 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7447 seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2);
7448 if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) {
7449 scbid = ahd_inw(ahd, MK_MESSAGE_SCB);
7450 mk_msg_scb = ahd_lookup_scb(ahd, scbid);
7451 } else
7452 mk_msg_scb = NULL;
7453 savedscbptr = ahd_get_scbptr(ahd);
7454 tid_next = ahd_inw(ahd, WAITING_TID_HEAD);
7455 tid_prev = SCB_LIST_NULL;
7456 targets = 0;
7457 for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) {
7458 u_int tid_head;
7459 u_int tid_tail;
7461 targets++;
7462 if (targets > AHD_NUM_TARGETS)
7463 panic("TID LIST LOOP");
7465 if (scbid >= ahd->scb_data.numscbs) {
7466 kprintf("%s: Waiting TID List inconsistency. "
7467 "SCB index == 0x%x, yet numscbs == 0x%x.",
7468 ahd_name(ahd), scbid, ahd->scb_data.numscbs);
7469 ahd_dump_card_state(ahd);
7470 panic("for safety");
7472 scb = ahd_lookup_scb(ahd, scbid);
7473 if (scb == NULL) {
7474 kprintf("%s: SCB = 0x%x Not Active!\n",
7475 ahd_name(ahd), scbid);
7476 panic("Waiting TID List traversal\n");
7478 ahd_set_scbptr(ahd, scbid);
7479 tid_next = ahd_inw_scbram(ahd, SCB_NEXT2);
7480 if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
7481 SCB_LIST_NULL, ROLE_UNKNOWN) == 0) {
7482 tid_prev = scbid;
7483 continue;
7487 * We found a list of scbs that needs to be searched.
7489 if (action == SEARCH_PRINT)
7490 kprintf(" %d ( ", SCB_GET_TARGET(ahd, scb));
7491 tid_head = scbid;
7492 found += ahd_search_scb_list(ahd, target, channel,
7493 lun, tag, role, status,
7494 action, &tid_head, &tid_tail,
7495 SCB_GET_TARGET(ahd, scb));
7497 * Check any MK_MESSAGE SCB that is still waiting to
7498 * enter this target's waiting for selection queue.
7500 if (mk_msg_scb != NULL
7501 && ahd_match_scb(ahd, mk_msg_scb, target, channel,
7502 lun, tag, role)) {
7505 * We found an scb that needs to be acted on.
7507 found++;
7508 switch (action) {
7509 case SEARCH_COMPLETE:
7510 if ((mk_msg_scb->flags & SCB_ACTIVE) == 0)
7511 kprintf("Inactive SCB pending MK_MSG\n");
7512 ahd_done_with_status(ahd, mk_msg_scb, status);
7513 /* FALLTHROUGH */
7514 case SEARCH_REMOVE:
7516 u_int tail_offset;
7518 kprintf("Removing MK_MSG scb\n");
7521 * Reset our tail to the tail of the
7522 * main per-target list.
7524 tail_offset = WAITING_SCB_TAILS
7525 + (2 * SCB_GET_TARGET(ahd, mk_msg_scb));
7526 ahd_outw(ahd, tail_offset, tid_tail);
7528 seq_flags2 &= ~PENDING_MK_MESSAGE;
7529 ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
7530 ahd_outw(ahd, CMDS_PENDING,
7531 ahd_inw(ahd, CMDS_PENDING)-1);
7532 mk_msg_scb = NULL;
7533 break;
7535 case SEARCH_PRINT:
7536 kprintf(" 0x%x", SCB_GET_TAG(scb));
7537 /* FALLTHROUGH */
7538 case SEARCH_COUNT:
7539 break;
7543 if (mk_msg_scb != NULL
7544 && SCBID_IS_NULL(tid_head)
7545 && ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
7546 SCB_LIST_NULL, ROLE_UNKNOWN)) {
7549 * When removing the last SCB for a target
7550 * queue with a pending MK_MESSAGE scb, we
7551 * must queue the MK_MESSAGE scb.
7553 kprintf("Queueing mk_msg_scb\n");
7554 tid_head = ahd_inw(ahd, MK_MESSAGE_SCB);
7555 seq_flags2 &= ~PENDING_MK_MESSAGE;
7556 ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
7557 mk_msg_scb = NULL;
7559 if (tid_head != scbid)
7560 ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next);
7561 if (!SCBID_IS_NULL(tid_head))
7562 tid_prev = tid_head;
7563 if (action == SEARCH_PRINT)
7564 kprintf(")\n");
7567 /* Restore saved state. */
7568 ahd_set_scbptr(ahd, savedscbptr);
7569 ahd_restore_modes(ahd, saved_modes);
7570 return (found);
7573 static int
7574 ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel,
7575 int lun, u_int tag, role_t role, uint32_t status,
7576 ahd_search_action action, u_int *list_head,
7577 u_int *list_tail, u_int tid)
7579 struct scb *scb;
7580 u_int scbid;
7581 u_int next;
7582 u_int prev;
7583 int found;
7585 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7586 found = 0;
7587 prev = SCB_LIST_NULL;
7588 next = *list_head;
7589 *list_tail = SCB_LIST_NULL;
7590 for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) {
7591 if (scbid >= ahd->scb_data.numscbs) {
7592 kprintf("%s:SCB List inconsistency. "
7593 "SCB == 0x%x, yet numscbs == 0x%x.",
7594 ahd_name(ahd), scbid, ahd->scb_data.numscbs);
7595 ahd_dump_card_state(ahd);
7596 panic("for safety");
7598 scb = ahd_lookup_scb(ahd, scbid);
7599 if (scb == NULL) {
7600 kprintf("%s: SCB = %d Not Active!\n",
7601 ahd_name(ahd), scbid);
7602 panic("Waiting List traversal\n");
7604 ahd_set_scbptr(ahd, scbid);
7605 *list_tail = scbid;
7606 next = ahd_inw_scbram(ahd, SCB_NEXT);
7607 if (ahd_match_scb(ahd, scb, target, channel,
7608 lun, SCB_LIST_NULL, role) == 0) {
7609 prev = scbid;
7610 continue;
7612 found++;
7613 switch (action) {
7614 case SEARCH_COMPLETE:
7615 if ((scb->flags & SCB_ACTIVE) == 0)
7616 kprintf("Inactive SCB in Waiting List\n");
7617 ahd_done_with_status(ahd, scb, status);
7618 /* FALLTHROUGH */
7619 case SEARCH_REMOVE:
7620 ahd_rem_wscb(ahd, scbid, prev, next, tid);
7621 *list_tail = prev;
7622 if (SCBID_IS_NULL(prev))
7623 *list_head = next;
7624 break;
7625 case SEARCH_PRINT:
7626 kprintf("0x%x ", scbid);
7627 case SEARCH_COUNT:
7628 prev = scbid;
7629 break;
7631 if (found > AHD_SCB_MAX)
7632 panic("SCB LIST LOOP");
7634 if (action == SEARCH_COMPLETE
7635 || action == SEARCH_REMOVE)
7636 ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found);
7637 return (found);
7640 static void
7641 ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev,
7642 u_int tid_cur, u_int tid_next)
7644 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7646 if (SCBID_IS_NULL(tid_cur)) {
7648 /* Bypass current TID list */
7649 if (SCBID_IS_NULL(tid_prev)) {
7650 ahd_outw(ahd, WAITING_TID_HEAD, tid_next);
7651 } else {
7652 ahd_set_scbptr(ahd, tid_prev);
7653 ahd_outw(ahd, SCB_NEXT2, tid_next);
7655 if (SCBID_IS_NULL(tid_next))
7656 ahd_outw(ahd, WAITING_TID_TAIL, tid_prev);
7657 } else {
7659 /* Stitch through tid_cur */
7660 if (SCBID_IS_NULL(tid_prev)) {
7661 ahd_outw(ahd, WAITING_TID_HEAD, tid_cur);
7662 } else {
7663 ahd_set_scbptr(ahd, tid_prev);
7664 ahd_outw(ahd, SCB_NEXT2, tid_cur);
7666 ahd_set_scbptr(ahd, tid_cur);
7667 ahd_outw(ahd, SCB_NEXT2, tid_next);
7669 if (SCBID_IS_NULL(tid_next))
7670 ahd_outw(ahd, WAITING_TID_TAIL, tid_cur);
7675 * Manipulate the waiting for selection list and return the
7676 * scb that follows the one that we remove.
7678 static u_int
7679 ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
7680 u_int prev, u_int next, u_int tid)
7682 u_int tail_offset;
7684 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7685 if (!SCBID_IS_NULL(prev)) {
7686 ahd_set_scbptr(ahd, prev);
7687 ahd_outw(ahd, SCB_NEXT, next);
7691 * SCBs that have MK_MESSAGE set in them may
7692 * cause the tail pointer to be updated without
7693 * setting the next pointer of the previous tail.
7694 * Only clear the tail if the removed SCB was
7695 * the tail.
7697 tail_offset = WAITING_SCB_TAILS + (2 * tid);
7698 if (SCBID_IS_NULL(next)
7699 && ahd_inw(ahd, tail_offset) == scbid)
7700 ahd_outw(ahd, tail_offset, prev);
7702 ahd_add_scb_to_free_list(ahd, scbid);
7703 return (next);
7707 * Add the SCB as selected by SCBPTR onto the on chip list of
7708 * free hardware SCBs. This list is empty/unused if we are not
7709 * performing SCB paging.
7711 static void
7712 ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid)
7714 /* XXX Need some other mechanism to designate "free". */
7716 * Invalidate the tag so that our abort
7717 * routines don't think it's active.
7718 ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL);
7722 /******************************** Error Handling ******************************/
7724 * Abort all SCBs that match the given description (target/channel/lun/tag),
7725 * setting their status to the passed in status if the status has not already
7726 * been modified from CAM_REQ_INPROG. This routine assumes that the sequencer
7727 * is paused before it is called.
7730 ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel,
7731 int lun, u_int tag, role_t role, uint32_t status)
7733 struct scb *scbp;
7734 struct scb *scbp_next;
7735 u_int i, j;
7736 u_int maxtarget;
7737 u_int minlun;
7738 u_int maxlun;
7739 int found;
7740 ahd_mode_state saved_modes;
7742 /* restore this when we're done */
7743 saved_modes = ahd_save_modes(ahd);
7744 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7746 found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL,
7747 role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);
7750 * Clean out the busy target table for any untagged commands.
7752 i = 0;
7753 maxtarget = 16;
7754 if (target != CAM_TARGET_WILDCARD) {
7755 i = target;
7756 if (channel == 'B')
7757 i += 8;
7758 maxtarget = i + 1;
7761 if (lun == CAM_LUN_WILDCARD) {
7762 minlun = 0;
7763 maxlun = AHD_NUM_LUNS_NONPKT;
7764 } else if (lun >= AHD_NUM_LUNS_NONPKT) {
7765 minlun = maxlun = 0;
7766 } else {
7767 minlun = lun;
7768 maxlun = lun + 1;
7771 if (role != ROLE_TARGET) {
7772 for (;i < maxtarget; i++) {
7773 for (j = minlun;j < maxlun; j++) {
7774 u_int scbid;
7775 u_int tcl;
7777 tcl = BUILD_TCL_RAW(i, 'A', j);
7778 scbid = ahd_find_busy_tcl(ahd, tcl);
7779 scbp = ahd_lookup_scb(ahd, scbid);
7780 if (scbp == NULL
7781 || ahd_match_scb(ahd, scbp, target, channel,
7782 lun, tag, role) == 0)
7783 continue;
7784 ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j));
7790 * Don't abort commands that have already completed,
7791 * but haven't quite made it up to the host yet.
7793 ahd_flush_qoutfifo(ahd);
7796 * Go through the pending CCB list and look for
7797 * commands for this target that are still active.
7798 * These are other tagged commands that were
7799 * disconnected when the reset occurred.
7801 scbp_next = LIST_FIRST(&ahd->pending_scbs);
7802 while (scbp_next != NULL) {
7803 scbp = scbp_next;
7804 scbp_next = LIST_NEXT(scbp, pending_links);
7805 if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) {
7806 cam_status ostat;
7808 ostat = aic_get_transaction_status(scbp);
7809 if (ostat == CAM_REQ_INPROG)
7810 aic_set_transaction_status(scbp, status);
7811 if (aic_get_transaction_status(scbp) != CAM_REQ_CMP)
7812 aic_freeze_scb(scbp);
7813 if ((scbp->flags & SCB_ACTIVE) == 0)
7814 kprintf("Inactive SCB on pending list\n");
7815 ahd_done(ahd, scbp);
7816 found++;
7819 ahd_restore_modes(ahd, saved_modes);
7820 ahd_platform_abort_scbs(ahd, target, channel, lun, tag, role, status);
7821 ahd->flags |= AHD_UPDATE_PEND_CMDS;
7822 return found;
7825 static void
7826 ahd_reset_current_bus(struct ahd_softc *ahd)
7828 uint8_t scsiseq;
7830 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7831 ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST);
7832 scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO);
7833 ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO);
7834 ahd_flush_device_writes(ahd);
7835 aic_delay(AHD_BUSRESET_DELAY);
7836 /* Turn off the bus reset */
7837 ahd_outb(ahd, SCSISEQ0, scsiseq);
7838 ahd_flush_device_writes(ahd);
7839 aic_delay(AHD_BUSRESET_DELAY);
7840 if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) {
7842 * 2A Razor #474
7843 * Certain chip state is not cleared for
7844 * SCSI bus resets that we initiate, so
7845 * we must reset the chip.
7847 ahd_reset(ahd, /*reinit*/TRUE);
7848 ahd_intr_enable(ahd, /*enable*/TRUE);
7849 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7852 ahd_clear_intstat(ahd);
7856 ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset)
7858 struct ahd_devinfo devinfo;
7859 u_int initiator;
7860 u_int target;
7861 u_int max_scsiid;
7862 int found;
7863 u_int fifo;
7864 u_int next_fifo;
7866 ahd->pending_device = NULL;
7868 ahd_compile_devinfo(&devinfo,
7869 CAM_TARGET_WILDCARD,
7870 CAM_TARGET_WILDCARD,
7871 CAM_LUN_WILDCARD,
7872 channel, ROLE_UNKNOWN);
7873 ahd_pause(ahd);
7875 /* Make sure the sequencer is in a safe location. */
7876 ahd_clear_critical_section(ahd);
7878 #ifdef AHD_TARGET_MODE
7879 if ((ahd->flags & AHD_TARGETROLE) != 0) {
7880 ahd_run_tqinfifo(ahd, /*paused*/TRUE);
7882 #endif
7883 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7886 * Disable selections so no automatic hardware
7887 * functions will modify chip state.
7889 ahd_outb(ahd, SCSISEQ0, 0);
7890 ahd_outb(ahd, SCSISEQ1, 0);
7893 * Safely shut down our DMA engines. Always start with
7894 * the FIFO that is not currently active (if any are
7895 * actively connected).
7897 next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
7898 if (next_fifo > CURRFIFO_1)
7899 /* If disconneced, arbitrarily start with FIFO1. */
7900 next_fifo = fifo = 0;
7901 do {
7902 next_fifo ^= CURRFIFO_1;
7903 ahd_set_modes(ahd, next_fifo, next_fifo);
7904 ahd_outb(ahd, DFCNTRL,
7905 ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN));
7906 while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0)
7907 aic_delay(10);
7909 * Set CURRFIFO to the now inactive channel.
7911 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7912 ahd_outb(ahd, DFFSTAT, next_fifo);
7913 } while (next_fifo != fifo);
7916 * Reset the bus if we are initiating this reset
7918 ahd_clear_msg_state(ahd);
7919 ahd_outb(ahd, SIMODE1,
7920 ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST));
7922 if (initiate_reset)
7923 ahd_reset_current_bus(ahd);
7925 ahd_clear_intstat(ahd);
7928 * Clean up all the state information for the
7929 * pending transactions on this bus.
7931 found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel,
7932 CAM_LUN_WILDCARD, SCB_LIST_NULL,
7933 ROLE_UNKNOWN, CAM_SCSI_BUS_RESET);
7936 * Cleanup anything left in the FIFOs.
7938 ahd_clear_fifo(ahd, 0);
7939 ahd_clear_fifo(ahd, 1);
7942 * Revert to async/narrow transfers until we renegotiate.
7944 max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
7945 for (target = 0; target <= max_scsiid; target++) {
7947 if (ahd->enabled_targets[target] == NULL)
7948 continue;
7949 for (initiator = 0; initiator <= max_scsiid; initiator++) {
7950 struct ahd_devinfo devinfo;
7952 ahd_compile_devinfo(&devinfo, target, initiator,
7953 CAM_LUN_WILDCARD,
7954 'A', ROLE_UNKNOWN);
7955 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7956 AHD_TRANS_CUR, /*paused*/TRUE);
7957 ahd_set_syncrate(ahd, &devinfo, /*period*/0,
7958 /*offset*/0, /*ppr_options*/0,
7959 AHD_TRANS_CUR, /*paused*/TRUE);
7963 #ifdef AHD_TARGET_MODE
7964 max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
7967 * Send an immediate notify ccb to all target more peripheral
7968 * drivers affected by this action.
7970 for (target = 0; target <= max_scsiid; target++) {
7971 struct ahd_tmode_tstate* tstate;
7972 u_int lun;
7974 tstate = ahd->enabled_targets[target];
7975 if (tstate == NULL)
7976 continue;
7977 for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
7978 struct ahd_tmode_lstate* lstate;
7980 lstate = tstate->enabled_luns[lun];
7981 if (lstate == NULL)
7982 continue;
7984 ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD,
7985 EVENT_TYPE_BUS_RESET, /*arg*/0);
7986 ahd_send_lstate_events(ahd, lstate);
7989 #endif
7990 /* Notify the XPT that a bus reset occurred */
7991 ahd_send_async(ahd, devinfo.channel, CAM_TARGET_WILDCARD,
7992 CAM_LUN_WILDCARD, AC_BUS_RESET, NULL);
7993 ahd_restart(ahd);
7995 * Freeze the SIMQ until our poller can determine that
7996 * the bus reset has really gone away. We set the initial
7997 * timer to 0 to have the check performed as soon as possible
7998 * from the timer context.
8000 if ((ahd->flags & AHD_RESET_POLL_ACTIVE) == 0) {
8001 ahd->flags |= AHD_RESET_POLL_ACTIVE;
8002 aic_freeze_simq(ahd);
8003 aic_timer_reset(&ahd->reset_timer, 0, ahd_reset_poll, ahd);
8005 return (found);
8009 #define AHD_RESET_POLL_MS 1
8010 static void
8011 ahd_reset_poll(void *arg)
8013 struct ahd_softc *ahd = (struct ahd_softc *)arg;
8014 u_int scsiseq1;
8016 ahd_lock(ahd);
8017 ahd_pause(ahd);
8018 ahd_update_modes(ahd);
8019 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8020 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
8021 if ((ahd_inb(ahd, SSTAT1) & SCSIRSTI) != 0) {
8022 aic_timer_reset(&ahd->reset_timer, AHD_RESET_POLL_MS,
8023 ahd_reset_poll, ahd);
8024 ahd_unpause(ahd);
8025 ahd_unlock(ahd);
8026 return;
8029 /* Reset is now low. Complete chip reinitialization. */
8030 ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST);
8031 scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
8032 ahd_outb(ahd, SCSISEQ1, scsiseq1 & (ENSELI|ENRSELI|ENAUTOATNP));
8033 ahd_unpause(ahd);
8034 ahd->flags &= ~AHD_RESET_POLL_ACTIVE;
8035 aic_release_simq(ahd);
8036 ahd_unlock(ahd);
8039 /**************************** Statistics Processing ***************************/
8040 static void
8041 ahd_stat_timer(void *arg)
8043 struct ahd_softc *ahd = (struct ahd_softc *)arg;
8044 int enint_coal;
8046 ahd_lock(ahd);
8047 enint_coal = ahd->hs_mailbox & ENINT_COALESCE;
8048 if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold)
8049 enint_coal |= ENINT_COALESCE;
8050 else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold)
8051 enint_coal &= ~ENINT_COALESCE;
8053 if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) {
8054 ahd_enable_coalescing(ahd, enint_coal);
8055 #ifdef AHD_DEBUG
8056 if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0)
8057 kprintf("%s: Interrupt coalescing "
8058 "now %sabled. Cmds %d\n",
8059 ahd_name(ahd),
8060 (enint_coal & ENINT_COALESCE) ? "en" : "dis",
8061 ahd->cmdcmplt_total);
8062 #endif
8065 ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1);
8066 ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket];
8067 ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0;
8068 aic_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_MS,
8069 ahd_stat_timer, ahd);
8070 ahd_unlock(ahd);
8073 /****************************** Status Processing *****************************/
8074 void
8075 ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb)
8077 if (scb->hscb->shared_data.istatus.scsi_status != 0) {
8078 ahd_handle_scsi_status(ahd, scb);
8079 } else {
8080 ahd_calc_residual(ahd, scb);
8081 ahd_done(ahd, scb);
8085 void
8086 ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb)
8088 struct hardware_scb *hscb;
8089 int paused;
8092 * The sequencer freezes its select-out queue
8093 * anytime a SCSI status error occurs. We must
8094 * handle the error and increment our qfreeze count
8095 * to allow the sequencer to continue. We don't
8096 * bother clearing critical sections here since all
8097 * operations are on data structures that the sequencer
8098 * is not touching once the queue is frozen.
8100 hscb = scb->hscb;
8102 if (ahd_is_paused(ahd)) {
8103 paused = 1;
8104 } else {
8105 paused = 0;
8106 ahd_pause(ahd);
8109 /* Freeze the queue until the client sees the error. */
8110 ahd_freeze_devq(ahd, scb);
8111 aic_freeze_scb(scb);
8112 ahd->qfreeze_cnt++;
8113 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
8115 if (paused == 0)
8116 ahd_unpause(ahd);
8118 /* Don't want to clobber the original sense code */
8119 if ((scb->flags & SCB_SENSE) != 0) {
8121 * Clear the SCB_SENSE Flag and perform
8122 * a normal command completion.
8124 scb->flags &= ~SCB_SENSE;
8125 aic_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
8126 ahd_done(ahd, scb);
8127 return;
8129 aic_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
8130 aic_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status);
8131 switch (hscb->shared_data.istatus.scsi_status) {
8132 case STATUS_PKT_SENSE:
8134 struct scsi_status_iu_header *siu;
8136 ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD);
8137 siu = (struct scsi_status_iu_header *)scb->sense_data;
8138 aic_set_scsi_status(scb, siu->status);
8139 #ifdef AHD_DEBUG
8140 if ((ahd_debug & AHD_SHOW_SENSE) != 0) {
8141 ahd_print_path(ahd, scb);
8142 kprintf("SCB 0x%x Received PKT Status of 0x%x\n",
8143 SCB_GET_TAG(scb), siu->status);
8144 kprintf("\tflags = 0x%x, sense len = 0x%x, "
8145 "pktfail = 0x%x\n",
8146 siu->flags, scsi_4btoul(siu->sense_length),
8147 scsi_4btoul(siu->pkt_failures_length));
8149 #endif
8150 if ((siu->flags & SIU_RSPVALID) != 0) {
8151 ahd_print_path(ahd, scb);
8152 if (scsi_4btoul(siu->pkt_failures_length) < 4) {
8153 kprintf("Unable to parse pkt_failures\n");
8154 } else {
8156 switch (SIU_PKTFAIL_CODE(siu)) {
8157 case SIU_PFC_NONE:
8158 kprintf("No packet failure found\n");
8159 break;
8160 case SIU_PFC_CIU_FIELDS_INVALID:
8161 kprintf("Invalid Command IU Field\n");
8162 break;
8163 case SIU_PFC_TMF_NOT_SUPPORTED:
8164 kprintf("TMF not supportd\n");
8165 break;
8166 case SIU_PFC_TMF_FAILED:
8167 kprintf("TMF failed\n");
8168 break;
8169 case SIU_PFC_INVALID_TYPE_CODE:
8170 kprintf("Invalid L_Q Type code\n");
8171 break;
8172 case SIU_PFC_ILLEGAL_REQUEST:
8173 kprintf("Illegal request\n");
8174 default:
8175 break;
8178 if (siu->status == SCSI_STATUS_OK)
8179 aic_set_transaction_status(scb,
8180 CAM_REQ_CMP_ERR);
8182 if ((siu->flags & SIU_SNSVALID) != 0) {
8183 scb->flags |= SCB_PKT_SENSE;
8184 #ifdef AHD_DEBUG
8185 if ((ahd_debug & AHD_SHOW_SENSE) != 0)
8186 kprintf("Sense data available\n");
8187 #endif
8189 ahd_done(ahd, scb);
8190 break;
8192 case SCSI_STATUS_CMD_TERMINATED:
8193 case SCSI_STATUS_CHECK_COND:
8195 struct ahd_devinfo devinfo;
8196 struct ahd_dma_seg *sg;
8197 struct scsi_sense *sc;
8198 struct ahd_initiator_tinfo *targ_info;
8199 struct ahd_tmode_tstate *tstate;
8200 struct ahd_transinfo *tinfo;
8201 #ifdef AHD_DEBUG
8202 if (ahd_debug & AHD_SHOW_SENSE) {
8203 ahd_print_path(ahd, scb);
8204 kprintf("SCB %d: requests Check Status\n",
8205 SCB_GET_TAG(scb));
8207 #endif
8209 if (aic_perform_autosense(scb) == 0)
8210 break;
8212 ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
8213 SCB_GET_TARGET(ahd, scb),
8214 SCB_GET_LUN(scb),
8215 SCB_GET_CHANNEL(ahd, scb),
8216 ROLE_INITIATOR);
8217 targ_info = ahd_fetch_transinfo(ahd,
8218 devinfo.channel,
8219 devinfo.our_scsiid,
8220 devinfo.target,
8221 &tstate);
8222 tinfo = &targ_info->curr;
8223 sg = scb->sg_list;
8224 sc = (struct scsi_sense *)hscb->shared_data.idata.cdb;
8226 * Save off the residual if there is one.
8228 ahd_update_residual(ahd, scb);
8229 #ifdef AHD_DEBUG
8230 if (ahd_debug & AHD_SHOW_SENSE) {
8231 ahd_print_path(ahd, scb);
8232 kprintf("Sending Sense\n");
8234 #endif
8235 scb->sg_count = 0;
8236 sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb),
8237 aic_get_sense_bufsize(ahd, scb),
8238 /*last*/TRUE);
8239 sc->opcode = REQUEST_SENSE;
8240 sc->byte2 = 0;
8241 if (tinfo->protocol_version <= SCSI_REV_2
8242 && SCB_GET_LUN(scb) < 8)
8243 sc->byte2 = SCB_GET_LUN(scb) << 5;
8244 sc->unused[0] = 0;
8245 sc->unused[1] = 0;
8246 sc->length = aic_get_sense_bufsize(ahd, scb);
8247 sc->control = 0;
8250 * We can't allow the target to disconnect.
8251 * This will be an untagged transaction and
8252 * having the target disconnect will make this
8253 * transaction indestinguishable from outstanding
8254 * tagged transactions.
8256 hscb->control = 0;
8259 * This request sense could be because the
8260 * the device lost power or in some other
8261 * way has lost our transfer negotiations.
8262 * Renegotiate if appropriate. Unit attention
8263 * errors will be reported before any data
8264 * phases occur.
8266 if (aic_get_residual(scb) == aic_get_transfer_length(scb)) {
8267 ahd_update_neg_request(ahd, &devinfo,
8268 tstate, targ_info,
8269 AHD_NEG_IF_NON_ASYNC);
8271 if (tstate->auto_negotiate & devinfo.target_mask) {
8272 hscb->control |= MK_MESSAGE;
8273 scb->flags &=
8274 ~(SCB_NEGOTIATE|SCB_ABORT|SCB_DEVICE_RESET);
8275 scb->flags |= SCB_AUTO_NEGOTIATE;
8277 hscb->cdb_len = sizeof(*sc);
8278 ahd_setup_data_scb(ahd, scb);
8279 scb->flags |= SCB_SENSE;
8280 ahd_queue_scb(ahd, scb);
8282 * Ensure we have enough time to actually
8283 * retrieve the sense, but only schedule
8284 * the timer if we are not in recovery or
8285 * this is a recovery SCB that is allowed
8286 * to have an active timer.
8288 if (ahd->scb_data.recovery_scbs == 0
8289 || (scb->flags & SCB_RECOVERY_SCB) != 0)
8290 aic_scb_timer_reset(scb, 5 * 1000);
8291 break;
8293 case SCSI_STATUS_OK:
8294 kprintf("%s: Interrupted for staus of 0???\n",
8295 ahd_name(ahd));
8296 /* FALLTHROUGH */
8297 default:
8298 ahd_done(ahd, scb);
8299 break;
8304 * Calculate the residual for a just completed SCB.
8306 void
8307 ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb)
8309 struct hardware_scb *hscb;
8310 struct initiator_status *spkt;
8311 uint32_t sgptr;
8312 uint32_t resid_sgptr;
8313 uint32_t resid;
8316 * 5 cases.
8317 * 1) No residual.
8318 * SG_STATUS_VALID clear in sgptr.
8319 * 2) Transferless command
8320 * 3) Never performed any transfers.
8321 * sgptr has SG_FULL_RESID set.
8322 * 4) No residual but target did not
8323 * save data pointers after the
8324 * last transfer, so sgptr was
8325 * never updated.
8326 * 5) We have a partial residual.
8327 * Use residual_sgptr to determine
8328 * where we are.
8331 hscb = scb->hscb;
8332 sgptr = aic_le32toh(hscb->sgptr);
8333 if ((sgptr & SG_STATUS_VALID) == 0)
8334 /* Case 1 */
8335 return;
8336 sgptr &= ~SG_STATUS_VALID;
8338 if ((sgptr & SG_LIST_NULL) != 0)
8339 /* Case 2 */
8340 return;
8343 * Residual fields are the same in both
8344 * target and initiator status packets,
8345 * so we can always use the initiator fields
8346 * regardless of the role for this SCB.
8348 spkt = &hscb->shared_data.istatus;
8349 resid_sgptr = aic_le32toh(spkt->residual_sgptr);
8350 if ((sgptr & SG_FULL_RESID) != 0) {
8351 /* Case 3 */
8352 resid = aic_get_transfer_length(scb);
8353 } else if ((resid_sgptr & SG_LIST_NULL) != 0) {
8354 /* Case 4 */
8355 return;
8356 } else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) {
8357 ahd_print_path(ahd, scb);
8358 kprintf("data overrun detected Tag == 0x%x.\n",
8359 SCB_GET_TAG(scb));
8360 ahd_freeze_devq(ahd, scb);
8361 aic_set_transaction_status(scb, CAM_DATA_RUN_ERR);
8362 aic_freeze_scb(scb);
8363 return;
8364 } else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
8365 panic("Bogus resid sgptr value 0x%x\n", resid_sgptr);
8366 /* NOTREACHED */
8367 } else {
8368 struct ahd_dma_seg *sg;
8371 * Remainder of the SG where the transfer
8372 * stopped.
8374 resid = aic_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK;
8375 sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK);
8377 /* The residual sg_ptr always points to the next sg */
8378 sg--;
8381 * Add up the contents of all residual
8382 * SG segments that are after the SG where
8383 * the transfer stopped.
8385 while ((aic_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) {
8386 sg++;
8387 resid += aic_le32toh(sg->len) & AHD_SG_LEN_MASK;
8390 if ((scb->flags & SCB_SENSE) == 0)
8391 aic_set_residual(scb, resid);
8392 else
8393 aic_set_sense_residual(scb, resid);
8395 #ifdef AHD_DEBUG
8396 if ((ahd_debug & AHD_SHOW_MISC) != 0) {
8397 ahd_print_path(ahd, scb);
8398 kprintf("Handled %sResidual of %d bytes\n",
8399 (scb->flags & SCB_SENSE) ? "Sense " : "", resid);
8401 #endif
8404 /******************************* Target Mode **********************************/
8405 #ifdef AHD_TARGET_MODE
8407 * Add a target mode event to this lun's queue
8409 static void
8410 ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate,
8411 u_int initiator_id, u_int event_type, u_int event_arg)
8413 struct ahd_tmode_event *event;
8414 int pending;
8416 xpt_freeze_devq(lstate->path, /*count*/1);
8417 if (lstate->event_w_idx >= lstate->event_r_idx)
8418 pending = lstate->event_w_idx - lstate->event_r_idx;
8419 else
8420 pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1
8421 - (lstate->event_r_idx - lstate->event_w_idx);
8423 if (event_type == EVENT_TYPE_BUS_RESET
8424 || event_type == MSG_BUS_DEV_RESET) {
8426 * Any earlier events are irrelevant, so reset our buffer.
8427 * This has the effect of allowing us to deal with reset
8428 * floods (an external device holding down the reset line)
8429 * without losing the event that is really interesting.
8431 lstate->event_r_idx = 0;
8432 lstate->event_w_idx = 0;
8433 xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
8436 if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) {
8437 xpt_print_path(lstate->path);
8438 kprintf("immediate event %x:%x lost\n",
8439 lstate->event_buffer[lstate->event_r_idx].event_type,
8440 lstate->event_buffer[lstate->event_r_idx].event_arg);
8441 lstate->event_r_idx++;
8442 if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
8443 lstate->event_r_idx = 0;
8444 xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
8447 event = &lstate->event_buffer[lstate->event_w_idx];
8448 event->initiator_id = initiator_id;
8449 event->event_type = event_type;
8450 event->event_arg = event_arg;
8451 lstate->event_w_idx++;
8452 if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
8453 lstate->event_w_idx = 0;
8457 * Send any target mode events queued up waiting
8458 * for immediate notify resources.
8460 void
8461 ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate)
8463 struct ccb_hdr *ccbh;
8464 struct ccb_immed_notify *inot;
8466 while (lstate->event_r_idx != lstate->event_w_idx
8467 && (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
8468 struct ahd_tmode_event *event;
8470 event = &lstate->event_buffer[lstate->event_r_idx];
8471 SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
8472 inot = (struct ccb_immed_notify *)ccbh;
8473 switch (event->event_type) {
8474 case EVENT_TYPE_BUS_RESET:
8475 ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
8476 break;
8477 default:
8478 ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
8479 inot->message_args[0] = event->event_type;
8480 inot->message_args[1] = event->event_arg;
8481 break;
8483 inot->initiator_id = event->initiator_id;
8484 inot->sense_len = 0;
8485 xpt_done((union ccb *)inot);
8486 lstate->event_r_idx++;
8487 if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
8488 lstate->event_r_idx = 0;
8491 #endif
8493 /******************** Sequencer Program Patching/Download *********************/
8495 #ifdef AHD_DUMP_SEQ
8496 void
8497 ahd_dumpseq(struct ahd_softc* ahd)
8499 int i;
8500 int max_prog;
8502 max_prog = 2048;
8504 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
8505 ahd_outw(ahd, PRGMCNT, 0);
8506 for (i = 0; i < max_prog; i++) {
8507 uint8_t ins_bytes[4];
8509 ahd_insb(ahd, SEQRAM, ins_bytes, 4);
8510 kprintf("0x%08x\n", ins_bytes[0] << 24
8511 | ins_bytes[1] << 16
8512 | ins_bytes[2] << 8
8513 | ins_bytes[3]);
8516 #endif
8518 static void
8519 ahd_loadseq(struct ahd_softc *ahd)
8521 struct cs cs_table[num_critical_sections];
8522 u_int begin_set[num_critical_sections];
8523 u_int end_set[num_critical_sections];
8524 struct patch *cur_patch;
8525 u_int cs_count;
8526 u_int cur_cs;
8527 u_int i;
8528 int downloaded;
8529 u_int skip_addr;
8530 u_int sg_prefetch_cnt;
8531 u_int sg_prefetch_cnt_limit;
8532 u_int sg_prefetch_align;
8533 u_int sg_size;
8534 u_int cacheline_mask;
8535 uint8_t download_consts[DOWNLOAD_CONST_COUNT];
8537 if (bootverbose)
8538 kprintf("%s: Downloading Sequencer Program...",
8539 ahd_name(ahd));
8541 #if DOWNLOAD_CONST_COUNT != 8
8542 #error "Download Const Mismatch"
8543 #endif
8545 * Start out with 0 critical sections
8546 * that apply to this firmware load.
8548 cs_count = 0;
8549 cur_cs = 0;
8550 memset(begin_set, 0, sizeof(begin_set));
8551 memset(end_set, 0, sizeof(end_set));
8554 * Setup downloadable constant table.
8556 * The computation for the S/G prefetch variables is
8557 * a bit complicated. We would like to always fetch
8558 * in terms of cachelined sized increments. However,
8559 * if the cacheline is not an even multiple of the
8560 * SG element size or is larger than our SG RAM, using
8561 * just the cache size might leave us with only a portion
8562 * of an SG element at the tail of a prefetch. If the
8563 * cacheline is larger than our S/G prefetch buffer less
8564 * the size of an SG element, we may round down to a cacheline
8565 * that doesn't contain any or all of the S/G of interest
8566 * within the bounds of our S/G ram. Provide variables to
8567 * the sequencer that will allow it to handle these edge
8568 * cases.
8570 /* Start by aligning to the nearest cacheline. */
8571 sg_prefetch_align = ahd->pci_cachesize;
8572 if (sg_prefetch_align == 0)
8573 sg_prefetch_align = 8;
8574 /* Round down to the nearest power of 2. */
8575 while (powerof2(sg_prefetch_align) == 0)
8576 sg_prefetch_align--;
8578 cacheline_mask = sg_prefetch_align - 1;
8581 * If the cacheline boundary is greater than half our prefetch RAM
8582 * we risk not being able to fetch even a single complete S/G
8583 * segment if we align to that boundary.
8585 if (sg_prefetch_align > CCSGADDR_MAX/2)
8586 sg_prefetch_align = CCSGADDR_MAX/2;
8587 /* Start by fetching a single cacheline. */
8588 sg_prefetch_cnt = sg_prefetch_align;
8590 * Increment the prefetch count by cachelines until
8591 * at least one S/G element will fit.
8593 sg_size = sizeof(struct ahd_dma_seg);
8594 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
8595 sg_size = sizeof(struct ahd_dma64_seg);
8596 while (sg_prefetch_cnt < sg_size)
8597 sg_prefetch_cnt += sg_prefetch_align;
8599 * If the cacheline is not an even multiple of
8600 * the S/G size, we may only get a partial S/G when
8601 * we align. Add a cacheline if this is the case.
8603 if ((sg_prefetch_align % sg_size) != 0
8604 && (sg_prefetch_cnt < CCSGADDR_MAX))
8605 sg_prefetch_cnt += sg_prefetch_align;
8607 * Lastly, compute a value that the sequencer can use
8608 * to determine if the remainder of the CCSGRAM buffer
8609 * has a full S/G element in it.
8611 sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1);
8612 download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
8613 download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit;
8614 download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1);
8615 download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1);
8616 download_consts[SG_SIZEOF] = sg_size;
8617 download_consts[PKT_OVERRUN_BUFOFFSET] =
8618 (ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256;
8619 download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN;
8620 download_consts[CACHELINE_MASK] = cacheline_mask;
8621 cur_patch = patches;
8622 downloaded = 0;
8623 skip_addr = 0;
8624 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
8625 ahd_outw(ahd, PRGMCNT, 0);
8627 for (i = 0; i < sizeof(seqprog)/4; i++) {
8628 if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) {
8630 * Don't download this instruction as it
8631 * is in a patch that was removed.
8633 continue;
8636 * Move through the CS table until we find a CS
8637 * that might apply to this instruction.
8639 for (; cur_cs < num_critical_sections; cur_cs++) {
8640 if (critical_sections[cur_cs].end <= i) {
8641 if (begin_set[cs_count] == TRUE
8642 && end_set[cs_count] == FALSE) {
8643 cs_table[cs_count].end = downloaded;
8644 end_set[cs_count] = TRUE;
8645 cs_count++;
8647 continue;
8649 if (critical_sections[cur_cs].begin <= i
8650 && begin_set[cs_count] == FALSE) {
8651 cs_table[cs_count].begin = downloaded;
8652 begin_set[cs_count] = TRUE;
8654 break;
8656 ahd_download_instr(ahd, i, download_consts);
8657 downloaded++;
8660 ahd->num_critical_sections = cs_count;
8661 if (cs_count != 0) {
8662 cs_count *= sizeof(struct cs);
8663 ahd->critical_sections = kmalloc(cs_count, M_DEVBUF, M_INTWAIT);
8664 memcpy(ahd->critical_sections, cs_table, cs_count);
8666 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE);
8668 if (bootverbose) {
8669 kprintf(" %d instructions downloaded\n", downloaded);
8670 kprintf("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
8671 ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags);
8675 static int
8676 ahd_check_patch(struct ahd_softc *ahd, struct patch **start_patch,
8677 u_int start_instr, u_int *skip_addr)
8679 struct patch *cur_patch;
8680 struct patch *last_patch;
8681 u_int num_patches;
8683 num_patches = sizeof(patches)/sizeof(struct patch);
8684 last_patch = &patches[num_patches];
8685 cur_patch = *start_patch;
8687 while (cur_patch < last_patch && start_instr == cur_patch->begin) {
8689 if (cur_patch->patch_func(ahd) == 0) {
8691 /* Start rejecting code */
8692 *skip_addr = start_instr + cur_patch->skip_instr;
8693 cur_patch += cur_patch->skip_patch;
8694 } else {
8695 /* Accepted this patch. Advance to the next
8696 * one and wait for our intruction pointer to
8697 * hit this point.
8699 cur_patch++;
8703 *start_patch = cur_patch;
8704 if (start_instr < *skip_addr)
8705 /* Still skipping */
8706 return (0);
8708 return (1);
8711 static u_int
8712 ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address)
8714 struct patch *cur_patch;
8715 int address_offset;
8716 u_int skip_addr;
8717 u_int i;
8719 address_offset = 0;
8720 cur_patch = patches;
8721 skip_addr = 0;
8723 for (i = 0; i < address;) {
8725 ahd_check_patch(ahd, &cur_patch, i, &skip_addr);
8727 if (skip_addr > i) {
8728 int end_addr;
8730 end_addr = MIN(address, skip_addr);
8731 address_offset += end_addr - i;
8732 i = skip_addr;
8733 } else {
8734 i++;
8737 return (address - address_offset);
8740 static void
8741 ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts)
8743 union ins_formats instr;
8744 struct ins_format1 *fmt1_ins;
8745 struct ins_format3 *fmt3_ins;
8746 u_int opcode;
8749 * The firmware is always compiled into a little endian format.
8751 instr.integer = aic_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
8753 fmt1_ins = &instr.format1;
8754 fmt3_ins = NULL;
8756 /* Pull the opcode */
8757 opcode = instr.format1.opcode;
8758 switch (opcode) {
8759 case AIC_OP_JMP:
8760 case AIC_OP_JC:
8761 case AIC_OP_JNC:
8762 case AIC_OP_CALL:
8763 case AIC_OP_JNE:
8764 case AIC_OP_JNZ:
8765 case AIC_OP_JE:
8766 case AIC_OP_JZ:
8768 fmt3_ins = &instr.format3;
8769 fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address);
8770 /* FALLTHROUGH */
8772 case AIC_OP_OR:
8773 case AIC_OP_AND:
8774 case AIC_OP_XOR:
8775 case AIC_OP_ADD:
8776 case AIC_OP_ADC:
8777 case AIC_OP_BMOV:
8778 if (fmt1_ins->parity != 0) {
8779 fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
8781 fmt1_ins->parity = 0;
8782 /* FALLTHROUGH */
8783 case AIC_OP_ROL:
8785 int i, count;
8787 /* Calculate odd parity for the instruction */
8788 for (i = 0, count = 0; i < 31; i++) {
8789 uint32_t mask;
8791 mask = 0x01 << i;
8792 if ((instr.integer & mask) != 0)
8793 count++;
8795 if ((count & 0x01) == 0)
8796 instr.format1.parity = 1;
8798 /* The sequencer is a little endian cpu */
8799 instr.integer = aic_htole32(instr.integer);
8800 ahd_outsb(ahd, SEQRAM, instr.bytes, 4);
8801 break;
8803 default:
8804 panic("Unknown opcode encountered in seq program");
8805 break;
8809 static int
8810 ahd_probe_stack_size(struct ahd_softc *ahd)
8812 int last_probe;
8814 last_probe = 0;
8815 while (1) {
8816 int i;
8819 * We avoid using 0 as a pattern to avoid
8820 * confusion if the stack implementation
8821 * "back-fills" with zeros when "poping'
8822 * entries.
8824 for (i = 1; i <= last_probe+1; i++) {
8825 ahd_outb(ahd, STACK, i & 0xFF);
8826 ahd_outb(ahd, STACK, (i >> 8) & 0xFF);
8829 /* Verify */
8830 for (i = last_probe+1; i > 0; i--) {
8831 u_int stack_entry;
8833 stack_entry = ahd_inb(ahd, STACK)
8834 |(ahd_inb(ahd, STACK) << 8);
8835 if (stack_entry != i)
8836 goto sized;
8838 last_probe++;
8840 sized:
8841 return (last_probe);
8844 void
8845 ahd_dump_all_cards_state(void)
8847 struct ahd_softc *list_ahd;
8849 TAILQ_FOREACH(list_ahd, &ahd_tailq, links) {
8850 ahd_dump_card_state(list_ahd);
8855 ahd_print_register(ahd_reg_parse_entry_t *table, u_int num_entries,
8856 const char *name, u_int address, u_int value,
8857 u_int *cur_column, u_int wrap_point)
8859 int printed;
8860 u_int printed_mask;
8861 u_int dummy_column;
8863 if (cur_column == NULL) {
8864 dummy_column = 0;
8865 cur_column = &dummy_column;
8868 if (cur_column != NULL && *cur_column >= wrap_point) {
8869 kprintf("\n");
8870 *cur_column = 0;
8872 printed = kprintf("%s[0x%x]", name, value);
8873 if (table == NULL) {
8874 printed += kprintf(" ");
8875 *cur_column += printed;
8876 return (printed);
8878 printed_mask = 0;
8879 while (printed_mask != 0xFF) {
8880 int entry;
8882 for (entry = 0; entry < num_entries; entry++) {
8883 if (((value & table[entry].mask)
8884 != table[entry].value)
8885 || ((printed_mask & table[entry].mask)
8886 == table[entry].mask))
8887 continue;
8889 printed += kprintf("%s%s",
8890 printed_mask == 0 ? ":(" : "|",
8891 table[entry].name);
8892 printed_mask |= table[entry].mask;
8894 break;
8896 if (entry >= num_entries)
8897 break;
8899 if (printed_mask != 0)
8900 printed += kprintf(") ");
8901 else
8902 printed += kprintf(" ");
8903 *cur_column += printed;
8904 return (printed);
8907 void
8908 ahd_dump_card_state(struct ahd_softc *ahd)
8910 struct scb *scb;
8911 ahd_mode_state saved_modes;
8912 u_int dffstat;
8913 int paused;
8914 u_int scb_index;
8915 u_int saved_scb_index;
8916 u_int cur_col;
8917 int i;
8919 if (ahd_is_paused(ahd)) {
8920 paused = 1;
8921 } else {
8922 paused = 0;
8923 ahd_pause(ahd);
8925 saved_modes = ahd_save_modes(ahd);
8926 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8927 kprintf(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n"
8928 "%s: Dumping Card State at program address 0x%x Mode 0x%x\n",
8929 ahd_name(ahd),
8930 ahd_inw(ahd, CURADDR),
8931 ahd_build_mode_state(ahd, ahd->saved_src_mode,
8932 ahd->saved_dst_mode));
8933 if (paused)
8934 kprintf("Card was paused\n");
8936 if (ahd_check_cmdcmpltqueues(ahd))
8937 kprintf("Completions are pending\n");
8940 * Mode independent registers.
8942 cur_col = 0;
8943 ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50);
8944 ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50);
8945 ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50);
8946 ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50);
8947 ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50);
8948 ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50);
8949 ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50);
8950 ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50);
8951 ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50);
8952 ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50);
8953 ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50);
8954 ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50);
8955 ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50);
8956 ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50);
8957 ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50);
8958 ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50);
8959 ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50);
8960 ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50);
8961 ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50);
8962 ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT),
8963 &cur_col, 50);
8964 ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50);
8965 ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID),
8966 &cur_col, 50);
8967 ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50);
8968 ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50);
8969 ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50);
8970 ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50);
8971 ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50);
8972 ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50);
8973 ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50);
8974 ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50);
8975 ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50);
8976 ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50);
8977 ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50);
8978 ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50);
8979 kprintf("\n");
8980 kprintf("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x "
8981 "CURRSCB 0x%x NEXTSCB 0x%x\n",
8982 ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING),
8983 ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB),
8984 ahd_inw(ahd, NEXTSCB));
8985 cur_col = 0;
8986 /* QINFIFO */
8987 ahd_search_qinfifo(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
8988 CAM_LUN_WILDCARD, SCB_LIST_NULL,
8989 ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT);
8990 saved_scb_index = ahd_get_scbptr(ahd);
8991 kprintf("Pending list:");
8992 i = 0;
8993 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
8994 if (i++ > AHD_SCB_MAX)
8995 break;
8996 cur_col = kprintf("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb),
8997 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT));
8998 ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
8999 ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL),
9000 &cur_col, 60);
9001 ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID),
9002 &cur_col, 60);
9004 kprintf("\nTotal %d\n", i);
9006 kprintf("Kernel Free SCB lists: ");
9007 i = 0;
9008 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
9009 struct scb *list_scb;
9011 kprintf("\n COLIDX[%d]: ", AHD_GET_SCB_COL_IDX(ahd, scb));
9012 list_scb = scb;
9013 do {
9014 kprintf("%d ", SCB_GET_TAG(list_scb));
9015 list_scb = LIST_NEXT(list_scb, collision_links);
9016 } while (list_scb && i++ < AHD_SCB_MAX);
9019 kprintf("\n Any Device: ");
9020 LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
9021 if (i++ > AHD_SCB_MAX)
9022 break;
9023 kprintf("%d ", SCB_GET_TAG(scb));
9025 kprintf("\n");
9027 kprintf("Sequencer Complete DMA-inprog list: ");
9028 scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD);
9029 i = 0;
9030 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9031 ahd_set_scbptr(ahd, scb_index);
9032 kprintf("%d ", scb_index);
9033 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9035 kprintf("\n");
9037 kprintf("Sequencer Complete list: ");
9038 scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD);
9039 i = 0;
9040 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9041 ahd_set_scbptr(ahd, scb_index);
9042 kprintf("%d ", scb_index);
9043 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9045 kprintf("\n");
9048 kprintf("Sequencer DMA-Up and Complete list: ");
9049 scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
9050 i = 0;
9051 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9052 ahd_set_scbptr(ahd, scb_index);
9053 kprintf("%d ", scb_index);
9054 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9056 kprintf("\n");
9057 kprintf("Sequencer On QFreeze and Complete list: ");
9058 scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
9059 i = 0;
9060 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9061 ahd_set_scbptr(ahd, scb_index);
9062 kprintf("%d ", scb_index);
9063 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9065 kprintf("\n");
9066 ahd_set_scbptr(ahd, saved_scb_index);
9067 dffstat = ahd_inb(ahd, DFFSTAT);
9068 for (i = 0; i < 2; i++) {
9069 #ifdef AHD_DEBUG
9070 struct scb *fifo_scb;
9071 #endif
9072 u_int fifo_scbptr;
9074 ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
9075 fifo_scbptr = ahd_get_scbptr(ahd);
9076 kprintf("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n",
9077 ahd_name(ahd), i,
9078 (dffstat & (FIFO0FREE << i)) ? "Free" : "Active",
9079 ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr);
9080 cur_col = 0;
9081 ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50);
9082 ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50);
9083 ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50);
9084 ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50);
9085 ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW),
9086 &cur_col, 50);
9087 ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50);
9088 ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50);
9089 ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50);
9090 ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50);
9091 if (cur_col > 50) {
9092 kprintf("\n");
9093 cur_col = 0;
9095 cur_col += kprintf("SHADDR = 0x%x%x, SHCNT = 0x%x ",
9096 ahd_inl(ahd, SHADDR+4),
9097 ahd_inl(ahd, SHADDR),
9098 (ahd_inb(ahd, SHCNT)
9099 | (ahd_inb(ahd, SHCNT + 1) << 8)
9100 | (ahd_inb(ahd, SHCNT + 2) << 16)));
9101 if (cur_col > 50) {
9102 kprintf("\n");
9103 cur_col = 0;
9105 cur_col += kprintf("HADDR = 0x%x%x, HCNT = 0x%x ",
9106 ahd_inl(ahd, HADDR+4),
9107 ahd_inl(ahd, HADDR),
9108 (ahd_inb(ahd, HCNT)
9109 | (ahd_inb(ahd, HCNT + 1) << 8)
9110 | (ahd_inb(ahd, HCNT + 2) << 16)));
9111 ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50);
9112 #ifdef AHD_DEBUG
9113 if ((ahd_debug & AHD_SHOW_SG) != 0) {
9114 fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr);
9115 if (fifo_scb != NULL)
9116 ahd_dump_sglist(fifo_scb);
9118 #endif
9120 kprintf("\nLQIN: ");
9121 for (i = 0; i < 20; i++)
9122 kprintf("0x%x ", ahd_inb(ahd, LQIN + i));
9123 kprintf("\n");
9124 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
9125 kprintf("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n",
9126 ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE),
9127 ahd_inb(ahd, OPTIONMODE));
9128 kprintf("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n",
9129 ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT),
9130 ahd_inb(ahd, MAXCMDCNT));
9131 kprintf("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n",
9132 ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID),
9133 ahd_inb(ahd, SAVED_LUN));
9134 ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50);
9135 kprintf("\n");
9136 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
9137 cur_col = 0;
9138 ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50);
9139 kprintf("\n");
9140 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
9141 kprintf("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n",
9142 ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX),
9143 ahd_inw(ahd, DINDEX));
9144 kprintf("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n",
9145 ahd_name(ahd), ahd_get_scbptr(ahd),
9146 ahd_inw_scbram(ahd, SCB_NEXT),
9147 ahd_inw_scbram(ahd, SCB_NEXT2));
9148 kprintf("CDB %x %x %x %x %x %x\n",
9149 ahd_inb_scbram(ahd, SCB_CDB_STORE),
9150 ahd_inb_scbram(ahd, SCB_CDB_STORE+1),
9151 ahd_inb_scbram(ahd, SCB_CDB_STORE+2),
9152 ahd_inb_scbram(ahd, SCB_CDB_STORE+3),
9153 ahd_inb_scbram(ahd, SCB_CDB_STORE+4),
9154 ahd_inb_scbram(ahd, SCB_CDB_STORE+5));
9155 kprintf("STACK:");
9156 for (i = 0; i < ahd->stack_size; i++) {
9157 ahd->saved_stack[i] =
9158 ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8);
9159 kprintf(" 0x%x", ahd->saved_stack[i]);
9161 for (i = ahd->stack_size-1; i >= 0; i--) {
9162 ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF);
9163 ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF);
9165 kprintf("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n");
9166 ahd_platform_dump_card_state(ahd);
9167 ahd_restore_modes(ahd, saved_modes);
9168 if (paused == 0)
9169 ahd_unpause(ahd);
9172 void
9173 ahd_dump_scbs(struct ahd_softc *ahd)
9175 ahd_mode_state saved_modes;
9176 u_int saved_scb_index;
9177 int i;
9179 saved_modes = ahd_save_modes(ahd);
9180 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9181 saved_scb_index = ahd_get_scbptr(ahd);
9182 for (i = 0; i < AHD_SCB_MAX; i++) {
9183 ahd_set_scbptr(ahd, i);
9184 kprintf("%3d", i);
9185 kprintf("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n",
9186 ahd_inb_scbram(ahd, SCB_CONTROL),
9187 ahd_inb_scbram(ahd, SCB_SCSIID),
9188 ahd_inw_scbram(ahd, SCB_NEXT),
9189 ahd_inw_scbram(ahd, SCB_NEXT2),
9190 ahd_inl_scbram(ahd, SCB_SGPTR),
9191 ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR));
9193 kprintf("\n");
9194 ahd_set_scbptr(ahd, saved_scb_index);
9195 ahd_restore_modes(ahd, saved_modes);
9199 /*************************** Timeout Handling *********************************/
9200 void
9201 ahd_timeout(struct scb *scb)
9203 struct ahd_softc *ahd;
9205 ahd = scb->ahd_softc;
9206 if ((scb->flags & SCB_ACTIVE) != 0) {
9207 if ((scb->flags & SCB_TIMEDOUT) == 0) {
9208 LIST_INSERT_HEAD(&ahd->timedout_scbs, scb,
9209 timedout_links);
9210 scb->flags |= SCB_TIMEDOUT;
9212 ahd_wakeup_recovery_thread(ahd);
9217 * ahd_recover_commands determines if any of the commands that have currently
9218 * timedout are the root cause for this timeout. Innocent commands are given
9219 * a new timeout while we wait for the command executing on the bus to timeout.
9220 * This routine is invoked from a thread context so we are allowed to sleep.
9221 * Our lock is not held on entry.
9223 void
9224 ahd_recover_commands(struct ahd_softc *ahd)
9226 struct scb *scb;
9227 struct scb *active_scb;
9228 int found;
9229 int was_paused;
9230 u_int active_scbptr;
9231 u_int last_phase;
9234 * Pause the controller and manually flush any
9235 * commands that have just completed but that our
9236 * interrupt handler has yet to see.
9238 was_paused = ahd_is_paused(ahd);
9240 kprintf("%s: Recovery Initiated - Card was %spaused\n", ahd_name(ahd),
9241 was_paused ? "" : "not ");
9242 ahd_dump_card_state(ahd);
9244 ahd_pause_and_flushwork(ahd);
9246 if (LIST_EMPTY(&ahd->timedout_scbs) != 0) {
9248 * The timedout commands have already
9249 * completed. This typically means
9250 * that either the timeout value was on
9251 * the hairy edge of what the device
9252 * requires or - more likely - interrupts
9253 * are not happening.
9255 kprintf("%s: Timedout SCBs already complete. "
9256 "Interrupts may not be functioning.\n", ahd_name(ahd));
9257 ahd_unpause(ahd);
9258 return;
9262 * Determine identity of SCB acting on the bus.
9263 * This test only catches non-packetized transactions.
9264 * Due to the fleeting nature of packetized operations,
9265 * we can't easily determine that a packetized operation
9266 * is on the bus.
9268 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9269 last_phase = ahd_inb(ahd, LASTPHASE);
9270 active_scbptr = ahd_get_scbptr(ahd);
9271 active_scb = NULL;
9272 if (last_phase != P_BUSFREE
9273 || (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) == 0)
9274 active_scb = ahd_lookup_scb(ahd, active_scbptr);
9276 while ((scb = LIST_FIRST(&ahd->timedout_scbs)) != NULL) {
9277 int target;
9278 int lun;
9279 char channel;
9281 target = SCB_GET_TARGET(ahd, scb);
9282 channel = SCB_GET_CHANNEL(ahd, scb);
9283 lun = SCB_GET_LUN(scb);
9285 ahd_print_path(ahd, scb);
9286 kprintf("SCB %d - timed out\n", SCB_GET_TAG(scb));
9288 if (scb->flags & (SCB_DEVICE_RESET|SCB_ABORT)) {
9290 * Been down this road before.
9291 * Do a full bus reset.
9293 aic_set_transaction_status(scb, CAM_CMD_TIMEOUT);
9294 bus_reset:
9295 found = ahd_reset_channel(ahd, channel,
9296 /*Initiate Reset*/TRUE);
9297 kprintf("%s: Issued Channel %c Bus Reset. "
9298 "%d SCBs aborted\n", ahd_name(ahd), channel,
9299 found);
9300 continue;
9304 * Remove the command from the timedout list in
9305 * preparation for requeing it.
9307 LIST_REMOVE(scb, timedout_links);
9308 scb->flags &= ~SCB_TIMEDOUT;
9310 if (active_scb != NULL) {
9312 if (active_scb != scb) {
9315 * If the active SCB is not us, assume that
9316 * the active SCB has a longer timeout than
9317 * the timedout SCB, and wait for the active
9318 * SCB to timeout. As a safeguard, only
9319 * allow this deferral to continue if some
9320 * untimed-out command is outstanding.
9322 if (ahd_other_scb_timeout(ahd, scb,
9323 active_scb) == 0)
9324 goto bus_reset;
9325 continue;
9329 * We're active on the bus, so assert ATN
9330 * and hope that the target responds.
9332 ahd_set_recoveryscb(ahd, active_scb);
9333 active_scb->flags |= SCB_RECOVERY_SCB|SCB_DEVICE_RESET;
9334 ahd_outb(ahd, MSG_OUT, HOST_MSG);
9335 ahd_outb(ahd, SCSISIGO, last_phase|ATNO);
9336 ahd_print_path(ahd, active_scb);
9337 kprintf("BDR message in message buffer\n");
9338 aic_scb_timer_reset(scb, 2 * 1000);
9339 break;
9340 } else if (last_phase != P_BUSFREE
9341 && ahd_inb(ahd, SCSIPHASE) == 0) {
9343 * SCB is not identified, there
9344 * is no pending REQ, and the sequencer
9345 * has not seen a busfree. Looks like
9346 * a stuck connection waiting to
9347 * go busfree. Reset the bus.
9349 kprintf("%s: Connection stuck awaiting busfree or "
9350 "Identify Msg.\n", ahd_name(ahd));
9351 goto bus_reset;
9352 } else if (ahd_search_qinfifo(ahd, target, channel, lun,
9353 SCB_GET_TAG(scb),
9354 ROLE_INITIATOR, /*status*/0,
9355 SEARCH_COUNT) > 0) {
9358 * We haven't even gone out on the bus
9359 * yet, so the timeout must be due to
9360 * some other command. Reset the timer
9361 * and go on.
9363 if (ahd_other_scb_timeout(ahd, scb, NULL) == 0)
9364 goto bus_reset;
9365 } else {
9367 * This SCB is for a disconnected transaction
9368 * and we haven't found a better candidate on
9369 * the bus to explain this timeout.
9371 ahd_set_recoveryscb(ahd, scb);
9374 * Actually re-queue this SCB in an attempt
9375 * to select the device before it reconnects.
9376 * In either case (selection or reselection),
9377 * we will now issue a target reset to the
9378 * timed-out device.
9380 scb->flags |= SCB_DEVICE_RESET;
9381 scb->hscb->cdb_len = 0;
9382 scb->hscb->task_attribute = 0;
9383 scb->hscb->task_management = SIU_TASKMGMT_ABORT_TASK;
9385 ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
9386 if ((scb->flags & SCB_PACKETIZED) != 0) {
9388 * Mark the SCB has having an outstanding
9389 * task management function. Should the command
9390 * complete normally before the task management
9391 * function can be sent, the host will be
9392 * notified to abort our requeued SCB.
9394 ahd_outb(ahd, SCB_TASK_MANAGEMENT,
9395 scb->hscb->task_management);
9396 } else {
9398 * If non-packetized, set the MK_MESSAGE control
9399 * bit indicating that we desire to send a
9400 * message. We also set the disconnected flag
9401 * since there is no guarantee that our SCB
9402 * control byte matches the version on the
9403 * card. We don't want the sequencer to abort
9404 * the command thinking an unsolicited
9405 * reselection occurred.
9407 scb->hscb->control |= MK_MESSAGE|DISCONNECTED;
9410 * The sequencer will never re-reference the
9411 * in-core SCB. To make sure we are notified
9412 * during reslection, set the MK_MESSAGE flag in
9413 * the card's copy of the SCB.
9415 ahd_outb(ahd, SCB_CONTROL,
9416 ahd_inb(ahd, SCB_CONTROL)|MK_MESSAGE);
9420 * Clear out any entries in the QINFIFO first
9421 * so we are the next SCB for this target
9422 * to run.
9424 ahd_search_qinfifo(ahd, target, channel, lun,
9425 SCB_LIST_NULL, ROLE_INITIATOR,
9426 CAM_REQUEUE_REQ, SEARCH_COMPLETE);
9427 ahd_qinfifo_requeue_tail(ahd, scb);
9428 ahd_set_scbptr(ahd, active_scbptr);
9429 ahd_print_path(ahd, scb);
9430 kprintf("Queuing a BDR SCB\n");
9431 aic_scb_timer_reset(scb, 2 * 1000);
9432 break;
9437 * Any remaining SCBs were not the "culprit", so remove
9438 * them from the timeout list. The timer for these commands
9439 * will be reset once the recovery SCB completes.
9441 while ((scb = LIST_FIRST(&ahd->timedout_scbs)) != NULL) {
9443 LIST_REMOVE(scb, timedout_links);
9444 scb->flags &= ~SCB_TIMEDOUT;
9447 ahd_unpause(ahd);
9451 * Re-schedule a timeout for the passed in SCB if we determine that some
9452 * other SCB is in the process of recovery or an SCB with a longer
9453 * timeout is still pending. Limit our search to just "other_scb"
9454 * if it is non-NULL.
9456 static int
9457 ahd_other_scb_timeout(struct ahd_softc *ahd, struct scb *scb,
9458 struct scb *other_scb)
9460 u_int newtimeout;
9461 int found;
9463 ahd_print_path(ahd, scb);
9464 kprintf("Other SCB Timeout%s",
9465 (scb->flags & SCB_OTHERTCL_TIMEOUT) != 0
9466 ? " again\n" : "\n");
9468 newtimeout = aic_get_timeout(scb);
9469 scb->flags |= SCB_OTHERTCL_TIMEOUT;
9470 found = 0;
9471 if (other_scb != NULL) {
9472 if ((other_scb->flags
9473 & (SCB_OTHERTCL_TIMEOUT|SCB_TIMEDOUT)) == 0
9474 || (other_scb->flags & SCB_RECOVERY_SCB) != 0) {
9475 found++;
9476 newtimeout = MAX(aic_get_timeout(other_scb),
9477 newtimeout);
9479 } else {
9480 LIST_FOREACH(other_scb, &ahd->pending_scbs, pending_links) {
9481 if ((other_scb->flags
9482 & (SCB_OTHERTCL_TIMEOUT|SCB_TIMEDOUT)) == 0
9483 || (other_scb->flags & SCB_RECOVERY_SCB) != 0) {
9484 found++;
9485 newtimeout = MAX(aic_get_timeout(other_scb),
9486 newtimeout);
9491 if (found != 0)
9492 aic_scb_timer_reset(scb, newtimeout);
9493 else {
9494 ahd_print_path(ahd, scb);
9495 kprintf("No other SCB worth waiting for...\n");
9498 return (found != 0);
9501 /**************************** Flexport Logic **********************************/
9503 * Read count 16bit words from 16bit word address start_addr from the
9504 * SEEPROM attached to the controller, into buf, using the controller's
9505 * SEEPROM reading state machine. Optionally treat the data as a byte
9506 * stream in terms of byte order.
9509 ahd_read_seeprom(struct ahd_softc *ahd, uint16_t *buf,
9510 u_int start_addr, u_int count, int bytestream)
9512 u_int cur_addr;
9513 u_int end_addr;
9514 int error;
9517 * If we never make it through the loop even once,
9518 * we were passed invalid arguments.
9520 error = EINVAL;
9521 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9522 end_addr = start_addr + count;
9523 for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
9525 ahd_outb(ahd, SEEADR, cur_addr);
9526 ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART);
9528 error = ahd_wait_seeprom(ahd);
9529 if (error)
9530 break;
9531 if (bytestream != 0) {
9532 uint8_t *bytestream_ptr;
9534 bytestream_ptr = (uint8_t *)buf;
9535 *bytestream_ptr++ = ahd_inb(ahd, SEEDAT);
9536 *bytestream_ptr = ahd_inb(ahd, SEEDAT+1);
9537 } else {
9539 * ahd_inw() already handles machine byte order.
9541 *buf = ahd_inw(ahd, SEEDAT);
9543 buf++;
9545 return (error);
9549 * Write count 16bit words from buf, into SEEPROM attache to the
9550 * controller starting at 16bit word address start_addr, using the
9551 * controller's SEEPROM writing state machine.
9554 ahd_write_seeprom(struct ahd_softc *ahd, uint16_t *buf,
9555 u_int start_addr, u_int count)
9557 u_int cur_addr;
9558 u_int end_addr;
9559 int error;
9560 int retval;
9562 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9563 error = ENOENT;
9565 /* Place the chip into write-enable mode */
9566 ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR);
9567 ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART);
9568 error = ahd_wait_seeprom(ahd);
9569 if (error)
9570 return (error);
9573 * Write the data. If we don't get throught the loop at
9574 * least once, the arguments were invalid.
9576 retval = EINVAL;
9577 end_addr = start_addr + count;
9578 for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
9579 ahd_outw(ahd, SEEDAT, *buf++);
9580 ahd_outb(ahd, SEEADR, cur_addr);
9581 ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART);
9583 retval = ahd_wait_seeprom(ahd);
9584 if (retval)
9585 break;
9589 * Disable writes.
9591 ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR);
9592 ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART);
9593 error = ahd_wait_seeprom(ahd);
9594 if (error)
9595 return (error);
9596 return (retval);
9600 * Wait ~100us for the serial eeprom to satisfy our request.
9603 ahd_wait_seeprom(struct ahd_softc *ahd)
9605 int cnt;
9607 cnt = 5000;
9608 while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt)
9609 aic_delay(5);
9611 if (cnt == 0)
9612 return (ETIMEDOUT);
9613 return (0);
9617 * Validate the two checksums in the per_channel
9618 * vital product data struct.
9621 ahd_verify_vpd_cksum(struct vpd_config *vpd)
9623 int i;
9624 int maxaddr;
9625 uint32_t checksum;
9626 uint8_t *vpdarray;
9628 vpdarray = (uint8_t *)vpd;
9629 maxaddr = offsetof(struct vpd_config, vpd_checksum);
9630 checksum = 0;
9631 for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++)
9632 checksum = checksum + vpdarray[i];
9633 if (checksum == 0
9634 || (-checksum & 0xFF) != vpd->vpd_checksum)
9635 return (0);
9637 checksum = 0;
9638 maxaddr = offsetof(struct vpd_config, checksum);
9639 for (i = offsetof(struct vpd_config, default_target_flags);
9640 i < maxaddr; i++)
9641 checksum = checksum + vpdarray[i];
9642 if (checksum == 0
9643 || (-checksum & 0xFF) != vpd->checksum)
9644 return (0);
9645 return (1);
9649 ahd_verify_cksum(struct seeprom_config *sc)
9651 int i;
9652 int maxaddr;
9653 uint32_t checksum;
9654 uint16_t *scarray;
9656 maxaddr = (sizeof(*sc)/2) - 1;
9657 checksum = 0;
9658 scarray = (uint16_t *)sc;
9660 for (i = 0; i < maxaddr; i++)
9661 checksum = checksum + scarray[i];
9662 if (checksum == 0
9663 || (checksum & 0xFFFF) != sc->checksum) {
9664 return (0);
9665 } else {
9666 return (1);
9671 ahd_acquire_seeprom(struct ahd_softc *ahd)
9674 * We should be able to determine the SEEPROM type
9675 * from the flexport logic, but unfortunately not
9676 * all implementations have this logic and there is
9677 * no programatic method for determining if the logic
9678 * is present.
9680 return (1);
9681 #if 0
9682 uint8_t seetype;
9683 int error;
9685 error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype);
9686 if (error != 0
9687 || ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE))
9688 return (0);
9689 return (1);
9690 #endif
9693 void
9694 ahd_release_seeprom(struct ahd_softc *ahd)
9696 /* Currently a no-op */
9700 ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value)
9702 int error;
9704 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9705 if (addr > 7)
9706 panic("ahd_write_flexport: address out of range");
9707 ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
9708 error = ahd_wait_flexport(ahd);
9709 if (error != 0)
9710 return (error);
9711 ahd_outb(ahd, BRDDAT, value);
9712 ahd_flush_device_writes(ahd);
9713 ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3));
9714 ahd_flush_device_writes(ahd);
9715 ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
9716 ahd_flush_device_writes(ahd);
9717 ahd_outb(ahd, BRDCTL, 0);
9718 ahd_flush_device_writes(ahd);
9719 return (0);
9723 ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value)
9725 int error;
9727 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9728 if (addr > 7)
9729 panic("ahd_read_flexport: address out of range");
9730 ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3));
9731 error = ahd_wait_flexport(ahd);
9732 if (error != 0)
9733 return (error);
9734 *value = ahd_inb(ahd, BRDDAT);
9735 ahd_outb(ahd, BRDCTL, 0);
9736 ahd_flush_device_writes(ahd);
9737 return (0);
9741 * Wait at most 2 seconds for flexport arbitration to succeed.
9744 ahd_wait_flexport(struct ahd_softc *ahd)
9746 int cnt;
9748 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9749 cnt = 1000000 * 2 / 5;
9750 while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt)
9751 aic_delay(5);
9753 if (cnt == 0)
9754 return (ETIMEDOUT);
9755 return (0);
9758 /************************* Target Mode ****************************************/
9759 #ifdef AHD_TARGET_MODE
9760 cam_status
9761 ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb,
9762 struct ahd_tmode_tstate **tstate,
9763 struct ahd_tmode_lstate **lstate,
9764 int notfound_failure)
9767 if ((ahd->features & AHD_TARGETMODE) == 0)
9768 return (CAM_REQ_INVALID);
9771 * Handle the 'black hole' device that sucks up
9772 * requests to unattached luns on enabled targets.
9774 if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
9775 && ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
9776 *tstate = NULL;
9777 *lstate = ahd->black_hole;
9778 } else {
9779 u_int max_id;
9781 max_id = (ahd->features & AHD_WIDE) ? 15 : 7;
9782 if (ccb->ccb_h.target_id > max_id)
9783 return (CAM_TID_INVALID);
9785 if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS)
9786 return (CAM_LUN_INVALID);
9788 *tstate = ahd->enabled_targets[ccb->ccb_h.target_id];
9789 *lstate = NULL;
9790 if (*tstate != NULL)
9791 *lstate =
9792 (*tstate)->enabled_luns[ccb->ccb_h.target_lun];
9795 if (notfound_failure != 0 && *lstate == NULL)
9796 return (CAM_PATH_INVALID);
9798 return (CAM_REQ_CMP);
9801 void
9802 ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb)
9804 #if NOT_YET
9805 struct ahd_tmode_tstate *tstate;
9806 struct ahd_tmode_lstate *lstate;
9807 struct ccb_en_lun *cel;
9808 cam_status status;
9809 u_int target;
9810 u_int lun;
9811 u_int target_mask;
9812 u_long s;
9813 char channel;
9815 status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate,
9816 /*notfound_failure*/FALSE);
9818 if (status != CAM_REQ_CMP) {
9819 ccb->ccb_h.status = status;
9820 return;
9823 if ((ahd->features & AHD_MULTIROLE) != 0) {
9824 u_int our_id;
9826 our_id = ahd->our_id;
9827 if (ccb->ccb_h.target_id != our_id) {
9828 if ((ahd->features & AHD_MULTI_TID) != 0
9829 && (ahd->flags & AHD_INITIATORROLE) != 0) {
9831 * Only allow additional targets if
9832 * the initiator role is disabled.
9833 * The hardware cannot handle a re-select-in
9834 * on the initiator id during a re-select-out
9835 * on a different target id.
9837 status = CAM_TID_INVALID;
9838 } else if ((ahd->flags & AHD_INITIATORROLE) != 0
9839 || ahd->enabled_luns > 0) {
9841 * Only allow our target id to change
9842 * if the initiator role is not configured
9843 * and there are no enabled luns which
9844 * are attached to the currently registered
9845 * scsi id.
9847 status = CAM_TID_INVALID;
9852 if (status != CAM_REQ_CMP) {
9853 ccb->ccb_h.status = status;
9854 return;
9858 * We now have an id that is valid.
9859 * If we aren't in target mode, switch modes.
9861 if ((ahd->flags & AHD_TARGETROLE) == 0
9862 && ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
9863 kprintf("Configuring Target Mode\n");
9864 if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
9865 ccb->ccb_h.status = CAM_BUSY;
9866 return;
9868 ahd->flags |= AHD_TARGETROLE;
9869 if ((ahd->features & AHD_MULTIROLE) == 0)
9870 ahd->flags &= ~AHD_INITIATORROLE;
9871 ahd_pause(ahd);
9872 ahd_loadseq(ahd);
9873 ahd_restart(ahd);
9875 cel = &ccb->cel;
9876 target = ccb->ccb_h.target_id;
9877 lun = ccb->ccb_h.target_lun;
9878 channel = SIM_CHANNEL(ahd, sim);
9879 target_mask = 0x01 << target;
9880 if (channel == 'B')
9881 target_mask <<= 8;
9883 if (cel->enable != 0) {
9884 u_int scsiseq1;
9886 /* Are we already enabled?? */
9887 if (lstate != NULL) {
9888 xpt_print_path(ccb->ccb_h.path);
9889 kprintf("Lun already enabled\n");
9890 ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
9891 return;
9894 if (cel->grp6_len != 0
9895 || cel->grp7_len != 0) {
9897 * Don't (yet?) support vendor
9898 * specific commands.
9900 ccb->ccb_h.status = CAM_REQ_INVALID;
9901 kprintf("Non-zero Group Codes\n");
9902 return;
9906 * Seems to be okay.
9907 * Setup our data structures.
9909 if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
9910 tstate = ahd_alloc_tstate(ahd, target, channel);
9911 if (tstate == NULL) {
9912 xpt_print_path(ccb->ccb_h.path);
9913 kprintf("Couldn't allocate tstate\n");
9914 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
9915 return;
9918 lstate = kmalloc(sizeof(*lstate), M_DEVBUF, M_INTWAIT | M_ZERO);
9919 status = xpt_create_path(&lstate->path, /*periph*/NULL,
9920 xpt_path_path_id(ccb->ccb_h.path),
9921 xpt_path_target_id(ccb->ccb_h.path),
9922 xpt_path_lun_id(ccb->ccb_h.path));
9923 if (status != CAM_REQ_CMP) {
9924 kfree(lstate, M_DEVBUF);
9925 xpt_print_path(ccb->ccb_h.path);
9926 kprintf("Couldn't allocate path\n");
9927 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
9928 return;
9930 SLIST_INIT(&lstate->accept_tios);
9931 SLIST_INIT(&lstate->immed_notifies);
9932 ahd_pause(ahd);
9933 if (target != CAM_TARGET_WILDCARD) {
9934 tstate->enabled_luns[lun] = lstate;
9935 ahd->enabled_luns++;
9937 if ((ahd->features & AHD_MULTI_TID) != 0) {
9938 u_int targid_mask;
9940 targid_mask = ahd_inw(ahd, TARGID);
9941 targid_mask |= target_mask;
9942 ahd_outw(ahd, TARGID, targid_mask);
9943 ahd_update_scsiid(ahd, targid_mask);
9944 } else {
9945 u_int our_id;
9946 char channel;
9948 channel = SIM_CHANNEL(ahd, sim);
9949 our_id = SIM_SCSI_ID(ahd, sim);
9952 * This can only happen if selections
9953 * are not enabled
9955 if (target != our_id) {
9956 u_int sblkctl;
9957 char cur_channel;
9958 int swap;
9960 sblkctl = ahd_inb(ahd, SBLKCTL);
9961 cur_channel = (sblkctl & SELBUSB)
9962 ? 'B' : 'A';
9963 if ((ahd->features & AHD_TWIN) == 0)
9964 cur_channel = 'A';
9965 swap = cur_channel != channel;
9966 ahd->our_id = target;
9968 if (swap)
9969 ahd_outb(ahd, SBLKCTL,
9970 sblkctl ^ SELBUSB);
9972 ahd_outb(ahd, SCSIID, target);
9974 if (swap)
9975 ahd_outb(ahd, SBLKCTL, sblkctl);
9978 } else
9979 ahd->black_hole = lstate;
9980 /* Allow select-in operations */
9981 if (ahd->black_hole != NULL && ahd->enabled_luns > 0) {
9982 scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
9983 scsiseq1 |= ENSELI;
9984 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
9985 scsiseq1 = ahd_inb(ahd, SCSISEQ1);
9986 scsiseq1 |= ENSELI;
9987 ahd_outb(ahd, SCSISEQ1, scsiseq1);
9989 ahd_unpause(ahd);
9990 ccb->ccb_h.status = CAM_REQ_CMP;
9991 xpt_print_path(ccb->ccb_h.path);
9992 kprintf("Lun now enabled for target mode\n");
9993 } else {
9994 struct scb *scb;
9995 int i, empty;
9997 if (lstate == NULL) {
9998 ccb->ccb_h.status = CAM_LUN_INVALID;
9999 return;
10002 ccb->ccb_h.status = CAM_REQ_CMP;
10003 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
10004 struct ccb_hdr *ccbh;
10006 ccbh = &scb->io_ctx->ccb_h;
10007 if (ccbh->func_code == XPT_CONT_TARGET_IO
10008 && !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
10009 kprintf("CTIO pending\n");
10010 ccb->ccb_h.status = CAM_REQ_INVALID;
10011 return;
10015 if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
10016 kprintf("ATIOs pending\n");
10017 ccb->ccb_h.status = CAM_REQ_INVALID;
10020 if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
10021 kprintf("INOTs pending\n");
10022 ccb->ccb_h.status = CAM_REQ_INVALID;
10025 if (ccb->ccb_h.status != CAM_REQ_CMP) {
10026 return;
10029 xpt_print_path(ccb->ccb_h.path);
10030 kprintf("Target mode disabled\n");
10031 xpt_free_path(lstate->path);
10032 kfree(lstate, M_DEVBUF);
10034 ahd_pause(ahd);
10035 /* Can we clean up the target too? */
10036 if (target != CAM_TARGET_WILDCARD) {
10037 tstate->enabled_luns[lun] = NULL;
10038 ahd->enabled_luns--;
10039 for (empty = 1, i = 0; i < 8; i++)
10040 if (tstate->enabled_luns[i] != NULL) {
10041 empty = 0;
10042 break;
10045 if (empty) {
10046 ahd_free_tstate(ahd, target, channel,
10047 /*force*/FALSE);
10048 if (ahd->features & AHD_MULTI_TID) {
10049 u_int targid_mask;
10051 targid_mask = ahd_inw(ahd, TARGID);
10052 targid_mask &= ~target_mask;
10053 ahd_outw(ahd, TARGID, targid_mask);
10054 ahd_update_scsiid(ahd, targid_mask);
10057 } else {
10059 ahd->black_hole = NULL;
10062 * We can't allow selections without
10063 * our black hole device.
10065 empty = TRUE;
10067 if (ahd->enabled_luns == 0) {
10068 /* Disallow select-in */
10069 u_int scsiseq1;
10071 scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10072 scsiseq1 &= ~ENSELI;
10073 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10074 scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10075 scsiseq1 &= ~ENSELI;
10076 ahd_outb(ahd, SCSISEQ1, scsiseq1);
10078 if ((ahd->features & AHD_MULTIROLE) == 0) {
10079 kprintf("Configuring Initiator Mode\n");
10080 ahd->flags &= ~AHD_TARGETROLE;
10081 ahd->flags |= AHD_INITIATORROLE;
10082 ahd_pause(ahd);
10083 ahd_loadseq(ahd);
10084 ahd_restart(ahd);
10086 * Unpaused. The extra unpause
10087 * that follows is harmless.
10091 ahd_unpause(ahd);
10093 #endif
10096 static void
10097 ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask)
10099 #if NOT_YET
10100 u_int scsiid_mask;
10101 u_int scsiid;
10103 if ((ahd->features & AHD_MULTI_TID) == 0)
10104 panic("ahd_update_scsiid called on non-multitid unit\n");
10107 * Since we will rely on the TARGID mask
10108 * for selection enables, ensure that OID
10109 * in SCSIID is not set to some other ID
10110 * that we don't want to allow selections on.
10112 if ((ahd->features & AHD_ULTRA2) != 0)
10113 scsiid = ahd_inb(ahd, SCSIID_ULTRA2);
10114 else
10115 scsiid = ahd_inb(ahd, SCSIID);
10116 scsiid_mask = 0x1 << (scsiid & OID);
10117 if ((targid_mask & scsiid_mask) == 0) {
10118 u_int our_id;
10120 /* ffs counts from 1 */
10121 our_id = ffs(targid_mask);
10122 if (our_id == 0)
10123 our_id = ahd->our_id;
10124 else
10125 our_id--;
10126 scsiid &= TID;
10127 scsiid |= our_id;
10129 if ((ahd->features & AHD_ULTRA2) != 0)
10130 ahd_outb(ahd, SCSIID_ULTRA2, scsiid);
10131 else
10132 ahd_outb(ahd, SCSIID, scsiid);
10133 #endif
10136 void
10137 ahd_run_tqinfifo(struct ahd_softc *ahd, int paused)
10139 struct target_cmd *cmd;
10141 ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD);
10142 while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) {
10145 * Only advance through the queue if we
10146 * have the resources to process the command.
10148 if (ahd_handle_target_cmd(ahd, cmd) != 0)
10149 break;
10151 cmd->cmd_valid = 0;
10152 ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
10153 ahd->shared_data_dmamap,
10154 ahd_targetcmd_offset(ahd, ahd->tqinfifonext),
10155 sizeof(struct target_cmd),
10156 BUS_DMASYNC_PREREAD);
10157 ahd->tqinfifonext++;
10160 * Lazily update our position in the target mode incoming
10161 * command queue as seen by the sequencer.
10163 if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
10164 u_int hs_mailbox;
10166 hs_mailbox = ahd_inb(ahd, HS_MAILBOX);
10167 hs_mailbox &= ~HOST_TQINPOS;
10168 hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS;
10169 ahd_outb(ahd, HS_MAILBOX, hs_mailbox);
10174 static int
10175 ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd)
10177 struct ahd_tmode_tstate *tstate;
10178 struct ahd_tmode_lstate *lstate;
10179 struct ccb_accept_tio *atio;
10180 uint8_t *byte;
10181 int initiator;
10182 int target;
10183 int lun;
10185 initiator = SCSIID_TARGET(ahd, cmd->scsiid);
10186 target = SCSIID_OUR_ID(cmd->scsiid);
10187 lun = (cmd->identify & MSG_IDENTIFY_LUNMASK);
10189 byte = cmd->bytes;
10190 tstate = ahd->enabled_targets[target];
10191 lstate = NULL;
10192 if (tstate != NULL)
10193 lstate = tstate->enabled_luns[lun];
10196 * Commands for disabled luns go to the black hole driver.
10198 if (lstate == NULL)
10199 lstate = ahd->black_hole;
10201 atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
10202 if (atio == NULL) {
10203 ahd->flags |= AHD_TQINFIFO_BLOCKED;
10205 * Wait for more ATIOs from the peripheral driver for this lun.
10207 return (1);
10208 } else
10209 ahd->flags &= ~AHD_TQINFIFO_BLOCKED;
10210 #ifdef AHD_DEBUG
10211 if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10212 kprintf("Incoming command from %d for %d:%d%s\n",
10213 initiator, target, lun,
10214 lstate == ahd->black_hole ? "(Black Holed)" : "");
10215 #endif
10216 SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
10218 if (lstate == ahd->black_hole) {
10219 /* Fill in the wildcards */
10220 atio->ccb_h.target_id = target;
10221 atio->ccb_h.target_lun = lun;
10225 * Package it up and send it off to
10226 * whomever has this lun enabled.
10228 atio->sense_len = 0;
10229 atio->init_id = initiator;
10230 if (byte[0] != 0xFF) {
10231 /* Tag was included */
10232 atio->tag_action = *byte++;
10233 atio->tag_id = *byte++;
10234 atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
10235 } else {
10236 atio->ccb_h.flags = 0;
10238 byte++;
10240 /* Okay. Now determine the cdb size based on the command code */
10241 switch (*byte >> CMD_GROUP_CODE_SHIFT) {
10242 case 0:
10243 atio->cdb_len = 6;
10244 break;
10245 case 1:
10246 case 2:
10247 atio->cdb_len = 10;
10248 break;
10249 case 4:
10250 atio->cdb_len = 16;
10251 break;
10252 case 5:
10253 atio->cdb_len = 12;
10254 break;
10255 case 3:
10256 default:
10257 /* Only copy the opcode. */
10258 atio->cdb_len = 1;
10259 kprintf("Reserved or VU command code type encountered\n");
10260 break;
10263 memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
10265 atio->ccb_h.status |= CAM_CDB_RECVD;
10267 if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
10269 * We weren't allowed to disconnect.
10270 * We're hanging on the bus until a
10271 * continue target I/O comes in response
10272 * to this accept tio.
10274 #ifdef AHD_DEBUG
10275 if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10276 kprintf("Received Immediate Command %d:%d:%d - %p\n",
10277 initiator, target, lun, ahd->pending_device);
10278 #endif
10279 ahd->pending_device = lstate;
10280 ahd_freeze_ccb((union ccb *)atio);
10281 atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
10283 xpt_done((union ccb*)atio);
10284 return (0);
10287 #endif