Sync CAM with FreeBSD using lockmgr locks instead of mutexes.
[dragonfly.git] / sys / bus / cam / cam_xpt.c
blobb5d5c735eae8888b53636237166b2f8ed2551b26
1 /*
2 * Implementation of the Common Access Method Transport (XPT) layer.
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30 * $DragonFly: src/sys/bus/cam/cam_xpt.c,v 1.65 2008/05/18 20:30:19 pavalos Exp $
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/time.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 #include <sys/fcntl.h>
41 #include <sys/md5.h>
42 #include <sys/devicestat.h>
43 #include <sys/interrupt.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 #include <sys/bus.h>
47 #include <sys/thread.h>
48 #include <sys/thread2.h>
49 #include <sys/lock.h>
51 #include <machine/clock.h>
52 #include <machine/stdarg.h>
54 #include "cam.h"
55 #include "cam_ccb.h"
56 #include "cam_periph.h"
57 #include "cam_sim.h"
58 #include "cam_xpt.h"
59 #include "cam_xpt_sim.h"
60 #include "cam_xpt_periph.h"
61 #include "cam_debug.h"
63 #include "scsi/scsi_all.h"
64 #include "scsi/scsi_message.h"
65 #include "scsi/scsi_pass.h"
66 #include <sys/kthread.h>
67 #include "opt_cam.h"
69 /* Datastructures internal to the xpt layer */
70 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
72 /* Object for defering XPT actions to a taskqueue */
73 struct xpt_task {
74 struct task task;
75 void *data1;
76 uintptr_t data2;
80 * Definition of an async handler callback block. These are used to add
81 * SIMs and peripherals to the async callback lists.
83 struct async_node {
84 SLIST_ENTRY(async_node) links;
85 u_int32_t event_enable; /* Async Event enables */
86 void (*callback)(void *arg, u_int32_t code,
87 struct cam_path *path, void *args);
88 void *callback_arg;
91 SLIST_HEAD(async_list, async_node);
92 SLIST_HEAD(periph_list, cam_periph);
95 * This is the maximum number of high powered commands (e.g. start unit)
96 * that can be outstanding at a particular time.
98 #ifndef CAM_MAX_HIGHPOWER
99 #define CAM_MAX_HIGHPOWER 4
100 #endif
103 * Structure for queueing a device in a run queue.
104 * There is one run queue for allocating new ccbs,
105 * and another for sending ccbs to the controller.
107 struct cam_ed_qinfo {
108 cam_pinfo pinfo;
109 struct cam_ed *device;
113 * The CAM EDT (Existing Device Table) contains the device information for
114 * all devices for all busses in the system. The table contains a
115 * cam_ed structure for each device on the bus.
117 struct cam_ed {
118 TAILQ_ENTRY(cam_ed) links;
119 struct cam_ed_qinfo alloc_ccb_entry;
120 struct cam_ed_qinfo send_ccb_entry;
121 struct cam_et *target;
122 struct cam_sim *sim;
123 lun_id_t lun_id;
124 struct camq drvq; /*
125 * Queue of type drivers wanting to do
126 * work on this device.
128 struct cam_ccbq ccbq; /* Queue of pending ccbs */
129 struct async_list asyncs; /* Async callback info for this B/T/L */
130 struct periph_list periphs; /* All attached devices */
131 u_int generation; /* Generation number */
132 struct cam_periph *owner; /* Peripheral driver's ownership tag */
133 struct xpt_quirk_entry *quirk; /* Oddities about this device */
134 /* Storage for the inquiry data */
135 cam_proto protocol;
136 u_int protocol_version;
137 cam_xport transport;
138 u_int transport_version;
139 struct scsi_inquiry_data inq_data;
140 u_int8_t inq_flags; /*
141 * Current settings for inquiry flags.
142 * This allows us to override settings
143 * like disconnection and tagged
144 * queuing for a device.
146 u_int8_t queue_flags; /* Queue flags from the control page */
147 u_int8_t serial_num_len;
148 u_int8_t *serial_num;
149 u_int32_t qfrozen_cnt;
150 u_int32_t flags;
151 #define CAM_DEV_UNCONFIGURED 0x01
152 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02
153 #define CAM_DEV_REL_ON_COMPLETE 0x04
154 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08
155 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10
156 #define CAM_DEV_TAG_AFTER_COUNT 0x20
157 #define CAM_DEV_INQUIRY_DATA_VALID 0x40
158 #define CAM_DEV_IN_DV 0x80
159 #define CAM_DEV_DV_HIT_BOTTOM 0x100
160 u_int32_t tag_delay_count;
161 #define CAM_TAG_DELAY_COUNT 5
162 u_int32_t tag_saved_openings;
163 u_int32_t refcount;
164 struct callout callout;
168 * Each target is represented by an ET (Existing Target). These
169 * entries are created when a target is successfully probed with an
170 * identify, and removed when a device fails to respond after a number
171 * of retries, or a bus rescan finds the device missing.
173 struct cam_et {
174 TAILQ_HEAD(, cam_ed) ed_entries;
175 TAILQ_ENTRY(cam_et) links;
176 struct cam_eb *bus;
177 target_id_t target_id;
178 u_int32_t refcount;
179 u_int generation;
180 struct timeval last_reset; /* uptime of last reset */
184 * Each bus is represented by an EB (Existing Bus). These entries
185 * are created by calls to xpt_bus_register and deleted by calls to
186 * xpt_bus_deregister.
188 struct cam_eb {
189 TAILQ_HEAD(, cam_et) et_entries;
190 TAILQ_ENTRY(cam_eb) links;
191 path_id_t path_id;
192 struct cam_sim *sim;
193 struct timeval last_reset; /* uptime of last reset */
194 u_int32_t flags;
195 #define CAM_EB_RUNQ_SCHEDULED 0x01
196 u_int32_t refcount;
197 u_int generation;
200 struct cam_path {
201 struct cam_periph *periph;
202 struct cam_eb *bus;
203 struct cam_et *target;
204 struct cam_ed *device;
207 struct xpt_quirk_entry {
208 struct scsi_inquiry_pattern inq_pat;
209 u_int8_t quirks;
210 #define CAM_QUIRK_NOLUNS 0x01
211 #define CAM_QUIRK_NOSERIAL 0x02
212 #define CAM_QUIRK_HILUNS 0x04
213 #define CAM_QUIRK_NOHILUNS 0x08
214 u_int mintags;
215 u_int maxtags;
218 static int cam_srch_hi = 0;
219 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
220 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
221 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
222 sysctl_cam_search_luns, "I",
223 "allow search above LUN 7 for SCSI3 and greater devices");
225 #define CAM_SCSI2_MAXLUN 8
227 * If we're not quirked to search <= the first 8 luns
228 * and we are either quirked to search above lun 8,
229 * or we're > SCSI-2 and we've enabled hilun searching,
230 * or we're > SCSI-2 and the last lun was a success,
231 * we can look for luns above lun 8.
233 #define CAN_SRCH_HI_SPARSE(dv) \
234 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \
235 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \
236 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
238 #define CAN_SRCH_HI_DENSE(dv) \
239 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \
240 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \
241 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
243 typedef enum {
244 XPT_FLAG_OPEN = 0x01
245 } xpt_flags;
247 struct xpt_softc {
248 xpt_flags flags;
249 u_int32_t xpt_generation;
251 /* number of high powered commands that can go through right now */
252 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
253 int num_highpower;
255 /* queue for handling async rescan requests. */
256 TAILQ_HEAD(, ccb_hdr) ccb_scanq;
258 /* Registered busses */
259 TAILQ_HEAD(,cam_eb) xpt_busses;
260 u_int bus_generation;
262 struct intr_config_hook *xpt_config_hook;
264 struct lock xpt_topo_lock;
265 struct lock xpt_lock;
268 static const char quantum[] = "QUANTUM";
269 static const char sony[] = "SONY";
270 static const char west_digital[] = "WDIGTL";
271 static const char samsung[] = "SAMSUNG";
272 static const char seagate[] = "SEAGATE";
273 static const char microp[] = "MICROP";
275 static struct xpt_quirk_entry xpt_quirk_table[] =
278 /* Reports QUEUE FULL for temporary resource shortages */
279 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
280 /*quirks*/0, /*mintags*/24, /*maxtags*/32
283 /* Reports QUEUE FULL for temporary resource shortages */
284 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
285 /*quirks*/0, /*mintags*/24, /*maxtags*/32
288 /* Reports QUEUE FULL for temporary resource shortages */
289 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
290 /*quirks*/0, /*mintags*/24, /*maxtags*/32
293 /* Broken tagged queuing drive */
294 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
295 /*quirks*/0, /*mintags*/0, /*maxtags*/0
298 /* Broken tagged queuing drive */
299 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
300 /*quirks*/0, /*mintags*/0, /*maxtags*/0
303 /* Broken tagged queuing drive */
304 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
305 /*quirks*/0, /*mintags*/0, /*maxtags*/0
309 * Unfortunately, the Quantum Atlas III has the same
310 * problem as the Atlas II drives above.
311 * Reported by: "Johan Granlund" <johan@granlund.nu>
313 * For future reference, the drive with the problem was:
314 * QUANTUM QM39100TD-SW N1B0
316 * It's possible that Quantum will fix the problem in later
317 * firmware revisions. If that happens, the quirk entry
318 * will need to be made specific to the firmware revisions
319 * with the problem.
322 /* Reports QUEUE FULL for temporary resource shortages */
323 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
324 /*quirks*/0, /*mintags*/24, /*maxtags*/32
328 * 18 Gig Atlas III, same problem as the 9G version.
329 * Reported by: Andre Albsmeier
330 * <andre.albsmeier@mchp.siemens.de>
332 * For future reference, the drive with the problem was:
333 * QUANTUM QM318000TD-S N491
335 /* Reports QUEUE FULL for temporary resource shortages */
336 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
337 /*quirks*/0, /*mintags*/24, /*maxtags*/32
341 * Broken tagged queuing drive
342 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
343 * and: Martin Renters <martin@tdc.on.ca>
345 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
346 /*quirks*/0, /*mintags*/0, /*maxtags*/0
349 * The Seagate Medalist Pro drives have very poor write
350 * performance with anything more than 2 tags.
352 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl>
353 * Drive: <SEAGATE ST36530N 1444>
355 * Reported by: Jeremy Lea <reg@shale.csir.co.za>
356 * Drive: <SEAGATE ST34520W 1281>
358 * No one has actually reported that the 9G version
359 * (ST39140*) of the Medalist Pro has the same problem, but
360 * we're assuming that it does because the 4G and 6.5G
361 * versions of the drive are broken.
364 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
365 /*quirks*/0, /*mintags*/2, /*maxtags*/2
368 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
369 /*quirks*/0, /*mintags*/2, /*maxtags*/2
372 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
373 /*quirks*/0, /*mintags*/2, /*maxtags*/2
377 * Slow when tagged queueing is enabled. Write performance
378 * steadily drops off with more and more concurrent
379 * transactions. Best sequential write performance with
380 * tagged queueing turned off and write caching turned on.
382 * PR: kern/10398
383 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp>
384 * Drive: DCAS-34330 w/ "S65A" firmware.
386 * The drive with the problem had the "S65A" firmware
387 * revision, and has also been reported (by Stephen J.
388 * Roznowski <sjr@home.net>) for a drive with the "S61A"
389 * firmware revision.
391 * Although no one has reported problems with the 2 gig
392 * version of the DCAS drive, the assumption is that it
393 * has the same problems as the 4 gig version. Therefore
394 * this quirk entries disables tagged queueing for all
395 * DCAS drives.
397 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
398 /*quirks*/0, /*mintags*/0, /*maxtags*/0
401 /* Broken tagged queuing drive */
402 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
403 /*quirks*/0, /*mintags*/0, /*maxtags*/0
406 /* Broken tagged queuing drive */
407 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
408 /*quirks*/0, /*mintags*/0, /*maxtags*/0
411 /* This does not support other than LUN 0 */
412 { T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
413 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
417 * Broken tagged queuing drive.
418 * Submitted by:
419 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
420 * in PR kern/9535
422 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
423 /*quirks*/0, /*mintags*/0, /*maxtags*/0
427 * Slow when tagged queueing is enabled. (1.5MB/sec versus
428 * 8MB/sec.)
429 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
430 * Best performance with these drives is achieved with
431 * tagged queueing turned off, and write caching turned on.
433 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
434 /*quirks*/0, /*mintags*/0, /*maxtags*/0
438 * Slow when tagged queueing is enabled. (1.5MB/sec versus
439 * 8MB/sec.)
440 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
441 * Best performance with these drives is achieved with
442 * tagged queueing turned off, and write caching turned on.
444 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
445 /*quirks*/0, /*mintags*/0, /*maxtags*/0
449 * Doesn't handle queue full condition correctly,
450 * so we need to limit maxtags to what the device
451 * can handle instead of determining this automatically.
453 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
454 /*quirks*/0, /*mintags*/2, /*maxtags*/32
457 /* Really only one LUN */
458 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
459 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
462 /* I can't believe we need a quirk for DPT volumes. */
463 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
464 CAM_QUIRK_NOLUNS,
465 /*mintags*/0, /*maxtags*/255
469 * Many Sony CDROM drives don't like multi-LUN probing.
471 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
472 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
476 * This drive doesn't like multiple LUN probing.
477 * Submitted by: Parag Patel <parag@cgt.com>
479 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" },
480 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
483 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
484 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
488 * The 8200 doesn't like multi-lun probing, and probably
489 * don't like serial number requests either.
492 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
493 "EXB-8200*", "*"
495 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
499 * Let's try the same as above, but for a drive that says
500 * it's an IPL-6860 but is actually an EXB 8200.
503 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
504 "IPL-6860*", "*"
506 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
510 * These Hitachi drives don't like multi-lun probing.
511 * The PR submitter has a DK319H, but says that the Linux
512 * kernel has a similar work-around for the DK312 and DK314,
513 * so all DK31* drives are quirked here.
514 * PR: misc/18793
515 * Submitted by: Paul Haddad <paul@pth.com>
517 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
518 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
522 * The Hitachi CJ series with J8A8 firmware apparantly has
523 * problems with tagged commands.
524 * PR: 23536
525 * Reported by: amagai@nue.org
527 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
528 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
532 * These are the large storage arrays.
533 * Submitted by: William Carrel <william.carrel@infospace.com>
535 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
536 CAM_QUIRK_HILUNS, 2, 1024
540 * This old revision of the TDC3600 is also SCSI-1, and
541 * hangs upon serial number probing.
544 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
545 " TDC 3600", "U07:"
547 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
551 * Would repond to all LUNs if asked for.
554 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
555 "CP150", "*"
557 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
561 * Would repond to all LUNs if asked for.
564 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
565 "96X2*", "*"
567 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
570 /* Submitted by: Matthew Dodd <winter@jurai.net> */
571 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
572 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
575 /* Submitted by: Matthew Dodd <winter@jurai.net> */
576 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
577 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
580 /* TeraSolutions special settings for TRC-22 RAID */
581 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
582 /*quirks*/0, /*mintags*/55, /*maxtags*/255
585 /* Veritas Storage Appliance */
586 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
587 CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
591 * Would respond to all LUNs. Device type and removable
592 * flag are jumper-selectable.
594 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
595 "Tahiti 1", "*"
597 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
600 /* EasyRAID E5A aka. areca ARC-6010 */
601 { T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
602 CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
605 { T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
606 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
609 /* Default tagged queuing parameters for all devices */
611 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
612 /*vendor*/"*", /*product*/"*", /*revision*/"*"
614 /*quirks*/0, /*mintags*/2, /*maxtags*/255
618 static const int xpt_quirk_table_size =
619 sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
621 typedef enum {
622 DM_RET_COPY = 0x01,
623 DM_RET_FLAG_MASK = 0x0f,
624 DM_RET_NONE = 0x00,
625 DM_RET_STOP = 0x10,
626 DM_RET_DESCEND = 0x20,
627 DM_RET_ERROR = 0x30,
628 DM_RET_ACTION_MASK = 0xf0
629 } dev_match_ret;
631 typedef enum {
632 XPT_DEPTH_BUS,
633 XPT_DEPTH_TARGET,
634 XPT_DEPTH_DEVICE,
635 XPT_DEPTH_PERIPH
636 } xpt_traverse_depth;
638 struct xpt_traverse_config {
639 xpt_traverse_depth depth;
640 void *tr_func;
641 void *tr_arg;
644 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
645 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
646 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
647 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
648 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
650 /* Transport layer configuration information */
651 static struct xpt_softc xsoftc;
653 /* Queues for our software interrupt handler */
654 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
655 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
656 static cam_simq_t cam_simq;
657 static struct lock cam_simq_lock;
659 struct cam_periph *xpt_periph;
661 static periph_init_t xpt_periph_init;
663 static periph_init_t probe_periph_init;
665 static struct periph_driver xpt_driver =
667 xpt_periph_init, "xpt",
668 TAILQ_HEAD_INITIALIZER(xpt_driver.units)
671 static struct periph_driver probe_driver =
673 probe_periph_init, "probe",
674 TAILQ_HEAD_INITIALIZER(probe_driver.units)
677 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
678 PERIPHDRIVER_DECLARE(probe, probe_driver);
680 #define XPT_CDEV_MAJOR 104
682 static d_open_t xptopen;
683 static d_close_t xptclose;
684 static d_ioctl_t xptioctl;
686 static struct dev_ops xpt_ops = {
687 { "xpt", XPT_CDEV_MAJOR, 0 },
688 .d_open = xptopen,
689 .d_close = xptclose,
690 .d_ioctl = xptioctl
693 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
694 static void dead_sim_poll(struct cam_sim *sim);
696 /* Dummy SIM that is used when the real one has gone. */
697 static struct cam_sim cam_dead_sim = {
698 .sim_action = dead_sim_action,
699 .sim_poll = dead_sim_poll,
700 .sim_name = "dead_sim",
703 #define SIM_DEAD(sim) ((sim) == &cam_dead_sim)
705 /* Storage for debugging datastructures */
706 #ifdef CAMDEBUG
707 struct cam_path *cam_dpath;
708 u_int32_t cam_dflags;
709 u_int32_t cam_debug_delay;
710 #endif
712 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
713 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
714 #endif
717 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
718 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS,
719 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
721 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
722 || defined(CAM_DEBUG_LUN)
723 #ifdef CAMDEBUG
724 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
725 || !defined(CAM_DEBUG_LUN)
726 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
727 and CAM_DEBUG_LUN"
728 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
729 #else /* !CAMDEBUG */
730 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
731 #endif /* CAMDEBUG */
732 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
734 /* Our boot-time initialization hook */
735 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
737 static moduledata_t cam_moduledata = {
738 "cam",
739 cam_module_event_handler,
740 NULL
743 static int xpt_init(void *);
745 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
746 MODULE_VERSION(cam, 1);
749 static cam_status xpt_compile_path(struct cam_path *new_path,
750 struct cam_periph *perph,
751 path_id_t path_id,
752 target_id_t target_id,
753 lun_id_t lun_id);
755 static void xpt_release_path(struct cam_path *path);
757 static void xpt_async_bcast(struct async_list *async_head,
758 u_int32_t async_code,
759 struct cam_path *path,
760 void *async_arg);
761 static void xpt_dev_async(u_int32_t async_code,
762 struct cam_eb *bus,
763 struct cam_et *target,
764 struct cam_ed *device,
765 void *async_arg);
766 static path_id_t xptnextfreepathid(void);
767 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
768 static union ccb *xpt_get_ccb(struct cam_ed *device);
769 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
770 u_int32_t new_priority);
771 static void xpt_run_dev_allocq(struct cam_eb *bus);
772 static void xpt_run_dev_sendq(struct cam_eb *bus);
773 static timeout_t xpt_release_devq_timeout;
774 static void xpt_release_bus(struct cam_eb *bus);
775 static void xpt_release_devq_device(struct cam_ed *dev, u_int count,
776 int run_queue);
777 static struct cam_et*
778 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
779 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target);
780 static struct cam_ed*
781 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
782 lun_id_t lun_id);
783 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target,
784 struct cam_ed *device);
785 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
786 static struct cam_eb*
787 xpt_find_bus(path_id_t path_id);
788 static struct cam_et*
789 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
790 static struct cam_ed*
791 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
792 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
793 static void xpt_scan_lun(struct cam_periph *periph,
794 struct cam_path *path, cam_flags flags,
795 union ccb *ccb);
796 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb);
797 static xpt_busfunc_t xptconfigbuscountfunc;
798 static xpt_busfunc_t xptconfigfunc;
799 static void xpt_config(void *arg);
800 static xpt_devicefunc_t xptpassannouncefunc;
801 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
802 static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
803 static void xptpoll(struct cam_sim *sim);
804 static inthand2_t swi_cambio;
805 static void camisr(void *);
806 static void camisr_runqueue(void *);
807 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
808 u_int num_patterns, struct cam_eb *bus);
809 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
810 u_int num_patterns,
811 struct cam_ed *device);
812 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
813 u_int num_patterns,
814 struct cam_periph *periph);
815 static xpt_busfunc_t xptedtbusfunc;
816 static xpt_targetfunc_t xptedttargetfunc;
817 static xpt_devicefunc_t xptedtdevicefunc;
818 static xpt_periphfunc_t xptedtperiphfunc;
819 static xpt_pdrvfunc_t xptplistpdrvfunc;
820 static xpt_periphfunc_t xptplistperiphfunc;
821 static int xptedtmatch(struct ccb_dev_match *cdm);
822 static int xptperiphlistmatch(struct ccb_dev_match *cdm);
823 static int xptbustraverse(struct cam_eb *start_bus,
824 xpt_busfunc_t *tr_func, void *arg);
825 static int xpttargettraverse(struct cam_eb *bus,
826 struct cam_et *start_target,
827 xpt_targetfunc_t *tr_func, void *arg);
828 static int xptdevicetraverse(struct cam_et *target,
829 struct cam_ed *start_device,
830 xpt_devicefunc_t *tr_func, void *arg);
831 static int xptperiphtraverse(struct cam_ed *device,
832 struct cam_periph *start_periph,
833 xpt_periphfunc_t *tr_func, void *arg);
834 static int xptpdrvtraverse(struct periph_driver **start_pdrv,
835 xpt_pdrvfunc_t *tr_func, void *arg);
836 static int xptpdperiphtraverse(struct periph_driver **pdrv,
837 struct cam_periph *start_periph,
838 xpt_periphfunc_t *tr_func,
839 void *arg);
840 static xpt_busfunc_t xptdefbusfunc;
841 static xpt_targetfunc_t xptdeftargetfunc;
842 static xpt_devicefunc_t xptdefdevicefunc;
843 static xpt_periphfunc_t xptdefperiphfunc;
844 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
845 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func,
846 void *arg);
847 static xpt_devicefunc_t xptsetasyncfunc;
848 static xpt_busfunc_t xptsetasyncbusfunc;
849 static cam_status xptregister(struct cam_periph *periph,
850 void *arg);
851 static cam_status proberegister(struct cam_periph *periph,
852 void *arg);
853 static void probeschedule(struct cam_periph *probe_periph);
854 static void probestart(struct cam_periph *periph, union ccb *start_ccb);
855 static void proberequestdefaultnegotiation(struct cam_periph *periph);
856 static int proberequestbackoff(struct cam_periph *periph,
857 struct cam_ed *device);
858 static void probedone(struct cam_periph *periph, union ccb *done_ccb);
859 static void probecleanup(struct cam_periph *periph);
860 static void xpt_find_quirk(struct cam_ed *device);
861 static void xpt_devise_transport(struct cam_path *path);
862 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts,
863 struct cam_ed *device,
864 int async_update);
865 static void xpt_toggle_tags(struct cam_path *path);
866 static void xpt_start_tags(struct cam_path *path);
867 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
868 struct cam_ed *dev);
869 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
870 struct cam_ed *dev);
871 static __inline int periph_is_queued(struct cam_periph *periph);
872 static __inline int device_is_alloc_queued(struct cam_ed *device);
873 static __inline int device_is_send_queued(struct cam_ed *device);
874 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
876 static __inline int
877 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
879 int retval;
881 if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
882 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
883 cam_ccbq_resize(&dev->ccbq,
884 dev->ccbq.dev_openings
885 + dev->ccbq.dev_active);
886 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
889 * The priority of a device waiting for CCB resources
890 * is that of the the highest priority peripheral driver
891 * enqueued.
893 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
894 &dev->alloc_ccb_entry.pinfo,
895 CAMQ_GET_HEAD(&dev->drvq)->priority);
896 } else {
897 retval = 0;
900 return (retval);
903 static __inline int
904 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
906 int retval;
908 if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
910 * The priority of a device waiting for controller
911 * resources is that of the the highest priority CCB
912 * enqueued.
914 retval =
915 xpt_schedule_dev(&bus->sim->devq->send_queue,
916 &dev->send_ccb_entry.pinfo,
917 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
918 } else {
919 retval = 0;
921 return (retval);
924 static __inline int
925 periph_is_queued(struct cam_periph *periph)
927 return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
930 static __inline int
931 device_is_alloc_queued(struct cam_ed *device)
933 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
936 static __inline int
937 device_is_send_queued(struct cam_ed *device)
939 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
942 static __inline int
943 dev_allocq_is_runnable(struct cam_devq *devq)
946 * Have work to do.
947 * Have space to do more work.
948 * Allowed to do work.
950 return ((devq->alloc_queue.qfrozen_cnt == 0)
951 && (devq->alloc_queue.entries > 0)
952 && (devq->alloc_openings > 0));
955 static void
956 xpt_periph_init(void)
958 dev_ops_add(&xpt_ops, 0, 0);
959 make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
962 static void
963 probe_periph_init(void)
968 static void
969 xptdone(struct cam_periph *periph, union ccb *done_ccb)
971 /* Caller will release the CCB */
972 wakeup(&done_ccb->ccb_h.cbfcnp);
975 static int
976 xptopen(struct dev_open_args *ap)
978 cdev_t dev = ap->a_head.a_dev;
981 * Only allow read-write access.
983 if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
984 return(EPERM);
987 * We don't allow nonblocking access.
989 if ((ap->a_oflags & O_NONBLOCK) != 0) {
990 kprintf("%s: can't do nonblocking access\n", devtoname(dev));
991 return(ENODEV);
994 /* Mark ourselves open */
995 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
996 xsoftc.flags |= XPT_FLAG_OPEN;
997 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
999 return(0);
1002 static int
1003 xptclose(struct dev_close_args *ap)
1006 /* Mark ourselves closed */
1007 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1008 xsoftc.flags &= ~XPT_FLAG_OPEN;
1009 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1011 return(0);
1015 * Don't automatically grab the xpt softc lock here even though this is going
1016 * through the xpt device. The xpt device is really just a back door for
1017 * accessing other devices and SIMs, so the right thing to do is to grab
1018 * the appropriate SIM lock once the bus/SIM is located.
1020 static int
1021 xptioctl(struct dev_ioctl_args *ap)
1023 int error;
1025 error = 0;
1027 switch(ap->a_cmd) {
1029 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1030 * to accept CCB types that don't quite make sense to send through a
1031 * passthrough driver.
1033 case CAMIOCOMMAND: {
1034 union ccb *ccb;
1035 union ccb *inccb;
1036 struct cam_eb *bus;
1038 inccb = (union ccb *)ap->a_data;
1040 bus = xpt_find_bus(inccb->ccb_h.path_id);
1041 if (bus == NULL) {
1042 error = EINVAL;
1043 break;
1046 switch(inccb->ccb_h.func_code) {
1047 case XPT_SCAN_BUS:
1048 case XPT_RESET_BUS:
1049 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1050 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1051 error = EINVAL;
1052 break;
1054 /* FALLTHROUGH */
1055 case XPT_PATH_INQ:
1056 case XPT_ENG_INQ:
1057 case XPT_SCAN_LUN:
1059 ccb = xpt_alloc_ccb();
1061 CAM_SIM_LOCK(bus->sim);
1064 * Create a path using the bus, target, and lun the
1065 * user passed in.
1067 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1068 inccb->ccb_h.path_id,
1069 inccb->ccb_h.target_id,
1070 inccb->ccb_h.target_lun) !=
1071 CAM_REQ_CMP){
1072 error = EINVAL;
1073 CAM_SIM_UNLOCK(bus->sim);
1074 xpt_free_ccb(ccb);
1075 break;
1077 /* Ensure all of our fields are correct */
1078 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1079 inccb->ccb_h.pinfo.priority);
1080 xpt_merge_ccb(ccb, inccb);
1081 ccb->ccb_h.cbfcnp = xptdone;
1082 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1083 bcopy(ccb, inccb, sizeof(union ccb));
1084 xpt_free_path(ccb->ccb_h.path);
1085 xpt_free_ccb(ccb);
1086 CAM_SIM_UNLOCK(bus->sim);
1087 break;
1089 case XPT_DEBUG: {
1090 union ccb ccb;
1093 * This is an immediate CCB, so it's okay to
1094 * allocate it on the stack.
1097 CAM_SIM_LOCK(bus->sim);
1100 * Create a path using the bus, target, and lun the
1101 * user passed in.
1103 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1104 inccb->ccb_h.path_id,
1105 inccb->ccb_h.target_id,
1106 inccb->ccb_h.target_lun) !=
1107 CAM_REQ_CMP){
1108 error = EINVAL;
1109 CAM_SIM_UNLOCK(bus->sim);
1110 break;
1112 /* Ensure all of our fields are correct */
1113 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1114 inccb->ccb_h.pinfo.priority);
1115 xpt_merge_ccb(&ccb, inccb);
1116 ccb.ccb_h.cbfcnp = xptdone;
1117 xpt_action(&ccb);
1118 CAM_SIM_UNLOCK(bus->sim);
1119 bcopy(&ccb, inccb, sizeof(union ccb));
1120 xpt_free_path(ccb.ccb_h.path);
1121 break;
1124 case XPT_DEV_MATCH: {
1125 struct cam_periph_map_info mapinfo;
1126 struct cam_path *old_path;
1129 * We can't deal with physical addresses for this
1130 * type of transaction.
1132 if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1133 error = EINVAL;
1134 break;
1138 * Save this in case the caller had it set to
1139 * something in particular.
1141 old_path = inccb->ccb_h.path;
1144 * We really don't need a path for the matching
1145 * code. The path is needed because of the
1146 * debugging statements in xpt_action(). They
1147 * assume that the CCB has a valid path.
1149 inccb->ccb_h.path = xpt_periph->path;
1151 bzero(&mapinfo, sizeof(mapinfo));
1154 * Map the pattern and match buffers into kernel
1155 * virtual address space.
1157 error = cam_periph_mapmem(inccb, &mapinfo);
1159 if (error) {
1160 inccb->ccb_h.path = old_path;
1161 break;
1165 * This is an immediate CCB, we can send it on directly.
1167 xpt_action(inccb);
1170 * Map the buffers back into user space.
1172 cam_periph_unmapmem(inccb, &mapinfo);
1174 inccb->ccb_h.path = old_path;
1176 error = 0;
1177 break;
1179 default:
1180 error = ENOTSUP;
1181 break;
1183 xpt_release_bus(bus);
1184 break;
1187 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1188 * with the periphal driver name and unit name filled in. The other
1189 * fields don't really matter as input. The passthrough driver name
1190 * ("pass"), and unit number are passed back in the ccb. The current
1191 * device generation number, and the index into the device peripheral
1192 * driver list, and the status are also passed back. Note that
1193 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1194 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
1195 * (or rather should be) impossible for the device peripheral driver
1196 * list to change since we look at the whole thing in one pass, and
1197 * we do it with lock protection.
1200 case CAMGETPASSTHRU: {
1201 union ccb *ccb;
1202 struct cam_periph *periph;
1203 struct periph_driver **p_drv;
1204 char *name;
1205 u_int unit;
1206 u_int cur_generation;
1207 int base_periph_found;
1208 int splbreaknum;
1210 ccb = (union ccb *)ap->a_data;
1211 unit = ccb->cgdl.unit_number;
1212 name = ccb->cgdl.periph_name;
1214 * Every 100 devices, we want to drop our lock protection to
1215 * give the software interrupt handler a chance to run.
1216 * Most systems won't run into this check, but this should
1217 * avoid starvation in the software interrupt handler in
1218 * large systems.
1220 splbreaknum = 100;
1222 ccb = (union ccb *)ap->a_data;
1224 base_periph_found = 0;
1227 * Sanity check -- make sure we don't get a null peripheral
1228 * driver name.
1230 if (*ccb->cgdl.periph_name == '\0') {
1231 error = EINVAL;
1232 break;
1235 /* Keep the list from changing while we traverse it */
1236 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1237 ptstartover:
1238 cur_generation = xsoftc.xpt_generation;
1240 /* first find our driver in the list of drivers */
1241 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1242 if (strcmp((*p_drv)->driver_name, name) == 0)
1243 break;
1246 if (*p_drv == NULL) {
1247 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1248 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1249 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1250 *ccb->cgdl.periph_name = '\0';
1251 ccb->cgdl.unit_number = 0;
1252 error = ENOENT;
1253 break;
1257 * Run through every peripheral instance of this driver
1258 * and check to see whether it matches the unit passed
1259 * in by the user. If it does, get out of the loops and
1260 * find the passthrough driver associated with that
1261 * peripheral driver.
1263 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1265 if (periph->unit_number == unit) {
1266 break;
1267 } else if (--splbreaknum == 0) {
1268 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1269 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1270 splbreaknum = 100;
1271 if (cur_generation != xsoftc.xpt_generation)
1272 goto ptstartover;
1276 * If we found the peripheral driver that the user passed
1277 * in, go through all of the peripheral drivers for that
1278 * particular device and look for a passthrough driver.
1280 if (periph != NULL) {
1281 struct cam_ed *device;
1282 int i;
1284 base_periph_found = 1;
1285 device = periph->path->device;
1286 for (i = 0, periph = SLIST_FIRST(&device->periphs);
1287 periph != NULL;
1288 periph = SLIST_NEXT(periph, periph_links), i++) {
1290 * Check to see whether we have a
1291 * passthrough device or not.
1293 if (strcmp(periph->periph_name, "pass") == 0) {
1295 * Fill in the getdevlist fields.
1297 strcpy(ccb->cgdl.periph_name,
1298 periph->periph_name);
1299 ccb->cgdl.unit_number =
1300 periph->unit_number;
1301 if (SLIST_NEXT(periph, periph_links))
1302 ccb->cgdl.status =
1303 CAM_GDEVLIST_MORE_DEVS;
1304 else
1305 ccb->cgdl.status =
1306 CAM_GDEVLIST_LAST_DEVICE;
1307 ccb->cgdl.generation =
1308 device->generation;
1309 ccb->cgdl.index = i;
1311 * Fill in some CCB header fields
1312 * that the user may want.
1314 ccb->ccb_h.path_id =
1315 periph->path->bus->path_id;
1316 ccb->ccb_h.target_id =
1317 periph->path->target->target_id;
1318 ccb->ccb_h.target_lun =
1319 periph->path->device->lun_id;
1320 ccb->ccb_h.status = CAM_REQ_CMP;
1321 break;
1327 * If the periph is null here, one of two things has
1328 * happened. The first possibility is that we couldn't
1329 * find the unit number of the particular peripheral driver
1330 * that the user is asking about. e.g. the user asks for
1331 * the passthrough driver for "da11". We find the list of
1332 * "da" peripherals all right, but there is no unit 11.
1333 * The other possibility is that we went through the list
1334 * of peripheral drivers attached to the device structure,
1335 * but didn't find one with the name "pass". Either way,
1336 * we return ENOENT, since we couldn't find something.
1338 if (periph == NULL) {
1339 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1340 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1341 *ccb->cgdl.periph_name = '\0';
1342 ccb->cgdl.unit_number = 0;
1343 error = ENOENT;
1345 * It is unfortunate that this is even necessary,
1346 * but there are many, many clueless users out there.
1347 * If this is true, the user is looking for the
1348 * passthrough driver, but doesn't have one in his
1349 * kernel.
1351 if (base_periph_found == 1) {
1352 kprintf("xptioctl: pass driver is not in the "
1353 "kernel\n");
1354 kprintf("xptioctl: put \"device pass\" in "
1355 "your kernel config file\n");
1358 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1359 break;
1361 default:
1362 error = ENOTTY;
1363 break;
1366 return(error);
1369 static int
1370 cam_module_event_handler(module_t mod, int what, void *arg)
1372 int error;
1374 switch (what) {
1375 case MOD_LOAD:
1376 if ((error = xpt_init(NULL)) != 0)
1377 return (error);
1378 break;
1379 case MOD_UNLOAD:
1380 return EBUSY;
1381 default:
1382 return EOPNOTSUPP;
1385 return 0;
1388 /* thread to handle bus rescans */
1389 static void
1390 xpt_scanner_thread(void *dummy)
1392 cam_isrq_t queue;
1393 union ccb *ccb;
1394 struct cam_sim *sim;
1396 for (;;) {
1398 * Wait for a rescan request to come in. When it does, splice
1399 * it onto a queue from local storage so that the xpt lock
1400 * doesn't need to be held while the requests are being
1401 * processed.
1403 crit_enter();
1404 tsleep_interlock(&xsoftc.ccb_scanq);
1405 xpt_unlock_buses();
1406 tsleep(&xsoftc.ccb_scanq, 0, "ccb_scanq", 0);
1407 xpt_lock_buses();
1408 crit_exit();
1409 TAILQ_INIT(&queue);
1410 TAILQ_CONCAT(&queue, &xsoftc.ccb_scanq, sim_links.tqe);
1411 xpt_unlock_buses();
1413 while ((ccb = (union ccb *)TAILQ_FIRST(&queue)) != NULL) {
1414 TAILQ_REMOVE(&queue, &ccb->ccb_h, sim_links.tqe);
1416 sim = ccb->ccb_h.path->bus->sim;
1417 CAM_SIM_LOCK(sim);
1419 ccb->ccb_h.func_code = XPT_SCAN_BUS;
1420 ccb->ccb_h.cbfcnp = xptdone;
1421 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 5);
1422 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1423 xpt_free_path(ccb->ccb_h.path);
1424 xpt_free_ccb(ccb);
1425 CAM_SIM_UNLOCK(sim);
1430 void
1431 xpt_rescan(union ccb *ccb)
1433 struct ccb_hdr *hdr;
1436 * Don't make duplicate entries for the same paths.
1438 xpt_lock_buses();
1439 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
1440 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
1441 xpt_unlock_buses();
1442 xpt_print(ccb->ccb_h.path, "rescan already queued\n");
1443 xpt_free_path(ccb->ccb_h.path);
1444 xpt_free_ccb(ccb);
1445 return;
1448 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1449 wakeup(&xsoftc.ccb_scanq);
1450 xpt_unlock_buses();
1454 /* Functions accessed by the peripheral drivers */
1455 static int
1456 xpt_init(void *dummy)
1458 struct cam_sim *xpt_sim;
1459 struct cam_path *path;
1460 struct cam_devq *devq;
1461 cam_status status;
1463 TAILQ_INIT(&xsoftc.xpt_busses);
1464 TAILQ_INIT(&cam_simq);
1465 TAILQ_INIT(&xsoftc.ccb_scanq);
1466 STAILQ_INIT(&xsoftc.highpowerq);
1467 xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1469 lockinit(&cam_simq_lock, "CAM SIMQ lock", 0, LK_CANRECURSE);
1470 lockinit(&xsoftc.xpt_lock, "XPT lock", 0, LK_CANRECURSE);
1471 lockinit(&xsoftc.xpt_topo_lock, "XPT topology lock", 0, LK_CANRECURSE);
1474 * The xpt layer is, itself, the equivelent of a SIM.
1475 * Allow 16 ccbs in the ccb pool for it. This should
1476 * give decent parallelism when we probe busses and
1477 * perform other XPT functions.
1479 devq = cam_simq_alloc(16);
1480 xpt_sim = cam_sim_alloc(xptaction,
1481 xptpoll,
1482 "xpt",
1483 /*softc*/NULL,
1484 /*unit*/0,
1485 /*lock*/&xsoftc.xpt_lock,
1486 /*max_dev_transactions*/0,
1487 /*max_tagged_dev_transactions*/0,
1488 devq);
1489 cam_simq_release(devq);
1490 if (xpt_sim == NULL)
1491 return (ENOMEM);
1493 xpt_sim->max_ccbs = 16;
1495 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1496 if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) {
1497 kprintf("xpt_init: xpt_bus_register failed with status %#x,"
1498 " failing attach\n", status);
1499 return (EINVAL);
1503 * Looking at the XPT from the SIM layer, the XPT is
1504 * the equivelent of a peripheral driver. Allocate
1505 * a peripheral driver entry for us.
1507 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1508 CAM_TARGET_WILDCARD,
1509 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1510 kprintf("xpt_init: xpt_create_path failed with status %#x,"
1511 " failing attach\n", status);
1512 return (EINVAL);
1515 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1516 path, NULL, 0, xpt_sim);
1517 xpt_free_path(path);
1519 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1522 * Register a callback for when interrupts are enabled.
1524 xsoftc.xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1525 M_CAMXPT, M_INTWAIT | M_ZERO);
1526 xsoftc.xpt_config_hook->ich_func = xpt_config;
1527 xsoftc.xpt_config_hook->ich_desc = "xpt";
1528 xsoftc.xpt_config_hook->ich_order = 1000;
1529 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1530 kfree (xsoftc.xpt_config_hook, M_CAMXPT);
1531 kprintf("xpt_init: config_intrhook_establish failed "
1532 "- failing attach\n");
1535 /* fire up rescan thread */
1536 if (kthread_create(xpt_scanner_thread, NULL, NULL, "xpt_thrd")) {
1537 kprintf("xpt_init: failed to create rescan thread\n");
1539 /* Install our software interrupt handlers */
1540 register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL);
1542 return (0);
1545 static cam_status
1546 xptregister(struct cam_periph *periph, void *arg)
1548 struct cam_sim *xpt_sim;
1550 if (periph == NULL) {
1551 kprintf("xptregister: periph was NULL!!\n");
1552 return(CAM_REQ_CMP_ERR);
1555 xpt_sim = (struct cam_sim *)arg;
1556 xpt_sim->softc = periph;
1557 xpt_periph = periph;
1558 periph->softc = NULL;
1560 return(CAM_REQ_CMP);
1563 int32_t
1564 xpt_add_periph(struct cam_periph *periph)
1566 struct cam_ed *device;
1567 int32_t status;
1568 struct periph_list *periph_head;
1570 sim_lock_assert_owned(periph->sim->lock);
1572 device = periph->path->device;
1574 periph_head = &device->periphs;
1576 status = CAM_REQ_CMP;
1578 if (device != NULL) {
1580 * Make room for this peripheral
1581 * so it will fit in the queue
1582 * when it's scheduled to run
1584 status = camq_resize(&device->drvq,
1585 device->drvq.array_size + 1);
1587 device->generation++;
1589 SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1592 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1593 xsoftc.xpt_generation++;
1594 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1596 return (status);
1599 void
1600 xpt_remove_periph(struct cam_periph *periph)
1602 struct cam_ed *device;
1604 sim_lock_assert_owned(periph->sim->lock);
1606 device = periph->path->device;
1608 if (device != NULL) {
1609 struct periph_list *periph_head;
1611 periph_head = &device->periphs;
1613 /* Release the slot for this peripheral */
1614 camq_resize(&device->drvq, device->drvq.array_size - 1);
1616 device->generation++;
1618 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1621 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1622 xsoftc.xpt_generation++;
1623 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1626 void
1627 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1629 struct ccb_pathinq cpi;
1630 struct ccb_trans_settings cts;
1631 struct cam_path *path;
1632 u_int speed;
1633 u_int freq;
1634 u_int mb;
1636 sim_lock_assert_owned(periph->sim->lock);
1638 path = periph->path;
1640 * To ensure that this is printed in one piece,
1641 * mask out CAM interrupts.
1643 kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1644 periph->periph_name, periph->unit_number,
1645 path->bus->sim->sim_name,
1646 path->bus->sim->unit_number,
1647 path->bus->sim->bus_id,
1648 path->target->target_id,
1649 path->device->lun_id);
1650 kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1651 scsi_print_inquiry(&path->device->inq_data);
1652 if (bootverbose && path->device->serial_num_len > 0) {
1653 /* Don't wrap the screen - print only the first 60 chars */
1654 kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1655 periph->unit_number, path->device->serial_num);
1657 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1658 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1659 cts.type = CTS_TYPE_CURRENT_SETTINGS;
1660 xpt_action((union ccb*)&cts);
1661 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1662 return;
1665 /* Ask the SIM for its base transfer speed */
1666 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1667 cpi.ccb_h.func_code = XPT_PATH_INQ;
1668 xpt_action((union ccb *)&cpi);
1670 speed = cpi.base_transfer_speed;
1671 freq = 0;
1672 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1673 struct ccb_trans_settings_spi *spi;
1675 spi = &cts.xport_specific.spi;
1676 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1677 && spi->sync_offset != 0) {
1678 freq = scsi_calc_syncsrate(spi->sync_period);
1679 speed = freq;
1682 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1683 speed *= (0x01 << spi->bus_width);
1685 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1686 struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1687 if (fc->valid & CTS_FC_VALID_SPEED) {
1688 speed = fc->bitrate;
1692 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1693 struct ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1694 if (sas->valid & CTS_SAS_VALID_SPEED) {
1695 speed = sas->bitrate;
1699 mb = speed / 1000;
1700 if (mb > 0)
1701 kprintf("%s%d: %d.%03dMB/s transfers",
1702 periph->periph_name, periph->unit_number,
1703 mb, speed % 1000);
1704 else
1705 kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1706 periph->unit_number, speed);
1707 /* Report additional information about SPI connections */
1708 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1709 struct ccb_trans_settings_spi *spi;
1711 spi = &cts.xport_specific.spi;
1712 if (freq != 0) {
1713 kprintf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1714 freq % 1000,
1715 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1716 ? " DT" : "",
1717 spi->sync_offset);
1719 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1720 && spi->bus_width > 0) {
1721 if (freq != 0) {
1722 kprintf(", ");
1723 } else {
1724 kprintf(" (");
1726 kprintf("%dbit)", 8 * (0x01 << spi->bus_width));
1727 } else if (freq != 0) {
1728 kprintf(")");
1731 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1732 struct ccb_trans_settings_fc *fc;
1734 fc = &cts.xport_specific.fc;
1735 if (fc->valid & CTS_FC_VALID_WWNN)
1736 kprintf(" WWNN 0x%llx", (long long) fc->wwnn);
1737 if (fc->valid & CTS_FC_VALID_WWPN)
1738 kprintf(" WWPN 0x%llx", (long long) fc->wwpn);
1739 if (fc->valid & CTS_FC_VALID_PORT)
1740 kprintf(" PortID 0x%x", fc->port);
1743 if (path->device->inq_flags & SID_CmdQue
1744 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1745 kprintf("\n%s%d: Command Queueing Enabled",
1746 periph->periph_name, periph->unit_number);
1748 kprintf("\n");
1751 * We only want to print the caller's announce string if they've
1752 * passed one in..
1754 if (announce_string != NULL)
1755 kprintf("%s%d: %s\n", periph->periph_name,
1756 periph->unit_number, announce_string);
1759 static dev_match_ret
1760 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1761 struct cam_eb *bus)
1763 dev_match_ret retval;
1764 int i;
1766 retval = DM_RET_NONE;
1769 * If we aren't given something to match against, that's an error.
1771 if (bus == NULL)
1772 return(DM_RET_ERROR);
1775 * If there are no match entries, then this bus matches no
1776 * matter what.
1778 if ((patterns == NULL) || (num_patterns == 0))
1779 return(DM_RET_DESCEND | DM_RET_COPY);
1781 for (i = 0; i < num_patterns; i++) {
1782 struct bus_match_pattern *cur_pattern;
1785 * If the pattern in question isn't for a bus node, we
1786 * aren't interested. However, we do indicate to the
1787 * calling routine that we should continue descending the
1788 * tree, since the user wants to match against lower-level
1789 * EDT elements.
1791 if (patterns[i].type != DEV_MATCH_BUS) {
1792 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1793 retval |= DM_RET_DESCEND;
1794 continue;
1797 cur_pattern = &patterns[i].pattern.bus_pattern;
1800 * If they want to match any bus node, we give them any
1801 * device node.
1803 if (cur_pattern->flags == BUS_MATCH_ANY) {
1804 /* set the copy flag */
1805 retval |= DM_RET_COPY;
1808 * If we've already decided on an action, go ahead
1809 * and return.
1811 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1812 return(retval);
1816 * Not sure why someone would do this...
1818 if (cur_pattern->flags == BUS_MATCH_NONE)
1819 continue;
1821 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1822 && (cur_pattern->path_id != bus->path_id))
1823 continue;
1825 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1826 && (cur_pattern->bus_id != bus->sim->bus_id))
1827 continue;
1829 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1830 && (cur_pattern->unit_number != bus->sim->unit_number))
1831 continue;
1833 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1834 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1835 DEV_IDLEN) != 0))
1836 continue;
1839 * If we get to this point, the user definitely wants
1840 * information on this bus. So tell the caller to copy the
1841 * data out.
1843 retval |= DM_RET_COPY;
1846 * If the return action has been set to descend, then we
1847 * know that we've already seen a non-bus matching
1848 * expression, therefore we need to further descend the tree.
1849 * This won't change by continuing around the loop, so we
1850 * go ahead and return. If we haven't seen a non-bus
1851 * matching expression, we keep going around the loop until
1852 * we exhaust the matching expressions. We'll set the stop
1853 * flag once we fall out of the loop.
1855 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1856 return(retval);
1860 * If the return action hasn't been set to descend yet, that means
1861 * we haven't seen anything other than bus matching patterns. So
1862 * tell the caller to stop descending the tree -- the user doesn't
1863 * want to match against lower level tree elements.
1865 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1866 retval |= DM_RET_STOP;
1868 return(retval);
1871 static dev_match_ret
1872 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1873 struct cam_ed *device)
1875 dev_match_ret retval;
1876 int i;
1878 retval = DM_RET_NONE;
1881 * If we aren't given something to match against, that's an error.
1883 if (device == NULL)
1884 return(DM_RET_ERROR);
1887 * If there are no match entries, then this device matches no
1888 * matter what.
1890 if ((patterns == NULL) || (num_patterns == 0))
1891 return(DM_RET_DESCEND | DM_RET_COPY);
1893 for (i = 0; i < num_patterns; i++) {
1894 struct device_match_pattern *cur_pattern;
1897 * If the pattern in question isn't for a device node, we
1898 * aren't interested.
1900 if (patterns[i].type != DEV_MATCH_DEVICE) {
1901 if ((patterns[i].type == DEV_MATCH_PERIPH)
1902 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1903 retval |= DM_RET_DESCEND;
1904 continue;
1907 cur_pattern = &patterns[i].pattern.device_pattern;
1910 * If they want to match any device node, we give them any
1911 * device node.
1913 if (cur_pattern->flags == DEV_MATCH_ANY) {
1914 /* set the copy flag */
1915 retval |= DM_RET_COPY;
1919 * If we've already decided on an action, go ahead
1920 * and return.
1922 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1923 return(retval);
1927 * Not sure why someone would do this...
1929 if (cur_pattern->flags == DEV_MATCH_NONE)
1930 continue;
1932 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1933 && (cur_pattern->path_id != device->target->bus->path_id))
1934 continue;
1936 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1937 && (cur_pattern->target_id != device->target->target_id))
1938 continue;
1940 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1941 && (cur_pattern->target_lun != device->lun_id))
1942 continue;
1944 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1945 && (cam_quirkmatch((caddr_t)&device->inq_data,
1946 (caddr_t)&cur_pattern->inq_pat,
1947 1, sizeof(cur_pattern->inq_pat),
1948 scsi_static_inquiry_match) == NULL))
1949 continue;
1952 * If we get to this point, the user definitely wants
1953 * information on this device. So tell the caller to copy
1954 * the data out.
1956 retval |= DM_RET_COPY;
1959 * If the return action has been set to descend, then we
1960 * know that we've already seen a peripheral matching
1961 * expression, therefore we need to further descend the tree.
1962 * This won't change by continuing around the loop, so we
1963 * go ahead and return. If we haven't seen a peripheral
1964 * matching expression, we keep going around the loop until
1965 * we exhaust the matching expressions. We'll set the stop
1966 * flag once we fall out of the loop.
1968 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1969 return(retval);
1973 * If the return action hasn't been set to descend yet, that means
1974 * we haven't seen any peripheral matching patterns. So tell the
1975 * caller to stop descending the tree -- the user doesn't want to
1976 * match against lower level tree elements.
1978 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1979 retval |= DM_RET_STOP;
1981 return(retval);
1985 * Match a single peripheral against any number of match patterns.
1987 static dev_match_ret
1988 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1989 struct cam_periph *periph)
1991 dev_match_ret retval;
1992 int i;
1995 * If we aren't given something to match against, that's an error.
1997 if (periph == NULL)
1998 return(DM_RET_ERROR);
2001 * If there are no match entries, then this peripheral matches no
2002 * matter what.
2004 if ((patterns == NULL) || (num_patterns == 0))
2005 return(DM_RET_STOP | DM_RET_COPY);
2008 * There aren't any nodes below a peripheral node, so there's no
2009 * reason to descend the tree any further.
2011 retval = DM_RET_STOP;
2013 for (i = 0; i < num_patterns; i++) {
2014 struct periph_match_pattern *cur_pattern;
2017 * If the pattern in question isn't for a peripheral, we
2018 * aren't interested.
2020 if (patterns[i].type != DEV_MATCH_PERIPH)
2021 continue;
2023 cur_pattern = &patterns[i].pattern.periph_pattern;
2026 * If they want to match on anything, then we will do so.
2028 if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2029 /* set the copy flag */
2030 retval |= DM_RET_COPY;
2033 * We've already set the return action to stop,
2034 * since there are no nodes below peripherals in
2035 * the tree.
2037 return(retval);
2041 * Not sure why someone would do this...
2043 if (cur_pattern->flags == PERIPH_MATCH_NONE)
2044 continue;
2046 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2047 && (cur_pattern->path_id != periph->path->bus->path_id))
2048 continue;
2051 * For the target and lun id's, we have to make sure the
2052 * target and lun pointers aren't NULL. The xpt peripheral
2053 * has a wildcard target and device.
2055 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2056 && ((periph->path->target == NULL)
2057 ||(cur_pattern->target_id != periph->path->target->target_id)))
2058 continue;
2060 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2061 && ((periph->path->device == NULL)
2062 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2063 continue;
2065 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2066 && (cur_pattern->unit_number != periph->unit_number))
2067 continue;
2069 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2070 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2071 DEV_IDLEN) != 0))
2072 continue;
2075 * If we get to this point, the user definitely wants
2076 * information on this peripheral. So tell the caller to
2077 * copy the data out.
2079 retval |= DM_RET_COPY;
2082 * The return action has already been set to stop, since
2083 * peripherals don't have any nodes below them in the EDT.
2085 return(retval);
2089 * If we get to this point, the peripheral that was passed in
2090 * doesn't match any of the patterns.
2092 return(retval);
2095 static int
2096 xptedtbusfunc(struct cam_eb *bus, void *arg)
2098 struct ccb_dev_match *cdm;
2099 dev_match_ret retval;
2101 cdm = (struct ccb_dev_match *)arg;
2104 * If our position is for something deeper in the tree, that means
2105 * that we've already seen this node. So, we keep going down.
2107 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2108 && (cdm->pos.cookie.bus == bus)
2109 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2110 && (cdm->pos.cookie.target != NULL))
2111 retval = DM_RET_DESCEND;
2112 else
2113 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2116 * If we got an error, bail out of the search.
2118 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2119 cdm->status = CAM_DEV_MATCH_ERROR;
2120 return(0);
2124 * If the copy flag is set, copy this bus out.
2126 if (retval & DM_RET_COPY) {
2127 int spaceleft, j;
2129 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2130 sizeof(struct dev_match_result));
2133 * If we don't have enough space to put in another
2134 * match result, save our position and tell the
2135 * user there are more devices to check.
2137 if (spaceleft < sizeof(struct dev_match_result)) {
2138 bzero(&cdm->pos, sizeof(cdm->pos));
2139 cdm->pos.position_type =
2140 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2142 cdm->pos.cookie.bus = bus;
2143 cdm->pos.generations[CAM_BUS_GENERATION]=
2144 xsoftc.bus_generation;
2145 cdm->status = CAM_DEV_MATCH_MORE;
2146 return(0);
2148 j = cdm->num_matches;
2149 cdm->num_matches++;
2150 cdm->matches[j].type = DEV_MATCH_BUS;
2151 cdm->matches[j].result.bus_result.path_id = bus->path_id;
2152 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2153 cdm->matches[j].result.bus_result.unit_number =
2154 bus->sim->unit_number;
2155 strncpy(cdm->matches[j].result.bus_result.dev_name,
2156 bus->sim->sim_name, DEV_IDLEN);
2160 * If the user is only interested in busses, there's no
2161 * reason to descend to the next level in the tree.
2163 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2164 return(1);
2167 * If there is a target generation recorded, check it to
2168 * make sure the target list hasn't changed.
2170 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2171 && (bus == cdm->pos.cookie.bus)
2172 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2173 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2174 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2175 bus->generation)) {
2176 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2177 return(0);
2180 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2181 && (cdm->pos.cookie.bus == bus)
2182 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2183 && (cdm->pos.cookie.target != NULL))
2184 return(xpttargettraverse(bus,
2185 (struct cam_et *)cdm->pos.cookie.target,
2186 xptedttargetfunc, arg));
2187 else
2188 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2191 static int
2192 xptedttargetfunc(struct cam_et *target, void *arg)
2194 struct ccb_dev_match *cdm;
2196 cdm = (struct ccb_dev_match *)arg;
2199 * If there is a device list generation recorded, check it to
2200 * make sure the device list hasn't changed.
2202 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2203 && (cdm->pos.cookie.bus == target->bus)
2204 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2205 && (cdm->pos.cookie.target == target)
2206 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2207 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2208 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2209 target->generation)) {
2210 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2211 return(0);
2214 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2215 && (cdm->pos.cookie.bus == target->bus)
2216 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2217 && (cdm->pos.cookie.target == target)
2218 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2219 && (cdm->pos.cookie.device != NULL))
2220 return(xptdevicetraverse(target,
2221 (struct cam_ed *)cdm->pos.cookie.device,
2222 xptedtdevicefunc, arg));
2223 else
2224 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2227 static int
2228 xptedtdevicefunc(struct cam_ed *device, void *arg)
2231 struct ccb_dev_match *cdm;
2232 dev_match_ret retval;
2234 cdm = (struct ccb_dev_match *)arg;
2237 * If our position is for something deeper in the tree, that means
2238 * that we've already seen this node. So, we keep going down.
2240 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2241 && (cdm->pos.cookie.device == device)
2242 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2243 && (cdm->pos.cookie.periph != NULL))
2244 retval = DM_RET_DESCEND;
2245 else
2246 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2247 device);
2249 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2250 cdm->status = CAM_DEV_MATCH_ERROR;
2251 return(0);
2255 * If the copy flag is set, copy this device out.
2257 if (retval & DM_RET_COPY) {
2258 int spaceleft, j;
2260 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2261 sizeof(struct dev_match_result));
2264 * If we don't have enough space to put in another
2265 * match result, save our position and tell the
2266 * user there are more devices to check.
2268 if (spaceleft < sizeof(struct dev_match_result)) {
2269 bzero(&cdm->pos, sizeof(cdm->pos));
2270 cdm->pos.position_type =
2271 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2272 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2274 cdm->pos.cookie.bus = device->target->bus;
2275 cdm->pos.generations[CAM_BUS_GENERATION]=
2276 xsoftc.bus_generation;
2277 cdm->pos.cookie.target = device->target;
2278 cdm->pos.generations[CAM_TARGET_GENERATION] =
2279 device->target->bus->generation;
2280 cdm->pos.cookie.device = device;
2281 cdm->pos.generations[CAM_DEV_GENERATION] =
2282 device->target->generation;
2283 cdm->status = CAM_DEV_MATCH_MORE;
2284 return(0);
2286 j = cdm->num_matches;
2287 cdm->num_matches++;
2288 cdm->matches[j].type = DEV_MATCH_DEVICE;
2289 cdm->matches[j].result.device_result.path_id =
2290 device->target->bus->path_id;
2291 cdm->matches[j].result.device_result.target_id =
2292 device->target->target_id;
2293 cdm->matches[j].result.device_result.target_lun =
2294 device->lun_id;
2295 bcopy(&device->inq_data,
2296 &cdm->matches[j].result.device_result.inq_data,
2297 sizeof(struct scsi_inquiry_data));
2299 /* Let the user know whether this device is unconfigured */
2300 if (device->flags & CAM_DEV_UNCONFIGURED)
2301 cdm->matches[j].result.device_result.flags =
2302 DEV_RESULT_UNCONFIGURED;
2303 else
2304 cdm->matches[j].result.device_result.flags =
2305 DEV_RESULT_NOFLAG;
2309 * If the user isn't interested in peripherals, don't descend
2310 * the tree any further.
2312 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2313 return(1);
2316 * If there is a peripheral list generation recorded, make sure
2317 * it hasn't changed.
2319 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2320 && (device->target->bus == cdm->pos.cookie.bus)
2321 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2322 && (device->target == cdm->pos.cookie.target)
2323 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2324 && (device == cdm->pos.cookie.device)
2325 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2326 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2327 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2328 device->generation)){
2329 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2330 return(0);
2333 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2334 && (cdm->pos.cookie.bus == device->target->bus)
2335 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2336 && (cdm->pos.cookie.target == device->target)
2337 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2338 && (cdm->pos.cookie.device == device)
2339 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2340 && (cdm->pos.cookie.periph != NULL))
2341 return(xptperiphtraverse(device,
2342 (struct cam_periph *)cdm->pos.cookie.periph,
2343 xptedtperiphfunc, arg));
2344 else
2345 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2348 static int
2349 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2351 struct ccb_dev_match *cdm;
2352 dev_match_ret retval;
2354 cdm = (struct ccb_dev_match *)arg;
2356 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2358 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2359 cdm->status = CAM_DEV_MATCH_ERROR;
2360 return(0);
2364 * If the copy flag is set, copy this peripheral out.
2366 if (retval & DM_RET_COPY) {
2367 int spaceleft, j;
2369 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2370 sizeof(struct dev_match_result));
2373 * If we don't have enough space to put in another
2374 * match result, save our position and tell the
2375 * user there are more devices to check.
2377 if (spaceleft < sizeof(struct dev_match_result)) {
2378 bzero(&cdm->pos, sizeof(cdm->pos));
2379 cdm->pos.position_type =
2380 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2381 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2382 CAM_DEV_POS_PERIPH;
2384 cdm->pos.cookie.bus = periph->path->bus;
2385 cdm->pos.generations[CAM_BUS_GENERATION]=
2386 xsoftc.bus_generation;
2387 cdm->pos.cookie.target = periph->path->target;
2388 cdm->pos.generations[CAM_TARGET_GENERATION] =
2389 periph->path->bus->generation;
2390 cdm->pos.cookie.device = periph->path->device;
2391 cdm->pos.generations[CAM_DEV_GENERATION] =
2392 periph->path->target->generation;
2393 cdm->pos.cookie.periph = periph;
2394 cdm->pos.generations[CAM_PERIPH_GENERATION] =
2395 periph->path->device->generation;
2396 cdm->status = CAM_DEV_MATCH_MORE;
2397 return(0);
2400 j = cdm->num_matches;
2401 cdm->num_matches++;
2402 cdm->matches[j].type = DEV_MATCH_PERIPH;
2403 cdm->matches[j].result.periph_result.path_id =
2404 periph->path->bus->path_id;
2405 cdm->matches[j].result.periph_result.target_id =
2406 periph->path->target->target_id;
2407 cdm->matches[j].result.periph_result.target_lun =
2408 periph->path->device->lun_id;
2409 cdm->matches[j].result.periph_result.unit_number =
2410 periph->unit_number;
2411 strncpy(cdm->matches[j].result.periph_result.periph_name,
2412 periph->periph_name, DEV_IDLEN);
2415 return(1);
2418 static int
2419 xptedtmatch(struct ccb_dev_match *cdm)
2421 int ret;
2423 cdm->num_matches = 0;
2426 * Check the bus list generation. If it has changed, the user
2427 * needs to reset everything and start over.
2429 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2430 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2431 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2432 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2433 return(0);
2436 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2437 && (cdm->pos.cookie.bus != NULL))
2438 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2439 xptedtbusfunc, cdm);
2440 else
2441 ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2444 * If we get back 0, that means that we had to stop before fully
2445 * traversing the EDT. It also means that one of the subroutines
2446 * has set the status field to the proper value. If we get back 1,
2447 * we've fully traversed the EDT and copied out any matching entries.
2449 if (ret == 1)
2450 cdm->status = CAM_DEV_MATCH_LAST;
2452 return(ret);
2455 static int
2456 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2458 struct ccb_dev_match *cdm;
2460 cdm = (struct ccb_dev_match *)arg;
2462 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2463 && (cdm->pos.cookie.pdrv == pdrv)
2464 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2465 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2466 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2467 (*pdrv)->generation)) {
2468 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2469 return(0);
2472 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2473 && (cdm->pos.cookie.pdrv == pdrv)
2474 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2475 && (cdm->pos.cookie.periph != NULL))
2476 return(xptpdperiphtraverse(pdrv,
2477 (struct cam_periph *)cdm->pos.cookie.periph,
2478 xptplistperiphfunc, arg));
2479 else
2480 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2483 static int
2484 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2486 struct ccb_dev_match *cdm;
2487 dev_match_ret retval;
2489 cdm = (struct ccb_dev_match *)arg;
2491 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2493 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2494 cdm->status = CAM_DEV_MATCH_ERROR;
2495 return(0);
2499 * If the copy flag is set, copy this peripheral out.
2501 if (retval & DM_RET_COPY) {
2502 int spaceleft, j;
2504 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2505 sizeof(struct dev_match_result));
2508 * If we don't have enough space to put in another
2509 * match result, save our position and tell the
2510 * user there are more devices to check.
2512 if (spaceleft < sizeof(struct dev_match_result)) {
2513 struct periph_driver **pdrv;
2515 pdrv = NULL;
2516 bzero(&cdm->pos, sizeof(cdm->pos));
2517 cdm->pos.position_type =
2518 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2519 CAM_DEV_POS_PERIPH;
2522 * This may look a bit non-sensical, but it is
2523 * actually quite logical. There are very few
2524 * peripheral drivers, and bloating every peripheral
2525 * structure with a pointer back to its parent
2526 * peripheral driver linker set entry would cost
2527 * more in the long run than doing this quick lookup.
2529 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2530 if (strcmp((*pdrv)->driver_name,
2531 periph->periph_name) == 0)
2532 break;
2535 if (*pdrv == NULL) {
2536 cdm->status = CAM_DEV_MATCH_ERROR;
2537 return(0);
2540 cdm->pos.cookie.pdrv = pdrv;
2542 * The periph generation slot does double duty, as
2543 * does the periph pointer slot. They are used for
2544 * both edt and pdrv lookups and positioning.
2546 cdm->pos.cookie.periph = periph;
2547 cdm->pos.generations[CAM_PERIPH_GENERATION] =
2548 (*pdrv)->generation;
2549 cdm->status = CAM_DEV_MATCH_MORE;
2550 return(0);
2553 j = cdm->num_matches;
2554 cdm->num_matches++;
2555 cdm->matches[j].type = DEV_MATCH_PERIPH;
2556 cdm->matches[j].result.periph_result.path_id =
2557 periph->path->bus->path_id;
2560 * The transport layer peripheral doesn't have a target or
2561 * lun.
2563 if (periph->path->target)
2564 cdm->matches[j].result.periph_result.target_id =
2565 periph->path->target->target_id;
2566 else
2567 cdm->matches[j].result.periph_result.target_id = -1;
2569 if (periph->path->device)
2570 cdm->matches[j].result.periph_result.target_lun =
2571 periph->path->device->lun_id;
2572 else
2573 cdm->matches[j].result.periph_result.target_lun = -1;
2575 cdm->matches[j].result.periph_result.unit_number =
2576 periph->unit_number;
2577 strncpy(cdm->matches[j].result.periph_result.periph_name,
2578 periph->periph_name, DEV_IDLEN);
2581 return(1);
2584 static int
2585 xptperiphlistmatch(struct ccb_dev_match *cdm)
2587 int ret;
2589 cdm->num_matches = 0;
2592 * At this point in the edt traversal function, we check the bus
2593 * list generation to make sure that no busses have been added or
2594 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2595 * For the peripheral driver list traversal function, however, we
2596 * don't have to worry about new peripheral driver types coming or
2597 * going; they're in a linker set, and therefore can't change
2598 * without a recompile.
2601 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2602 && (cdm->pos.cookie.pdrv != NULL))
2603 ret = xptpdrvtraverse(
2604 (struct periph_driver **)cdm->pos.cookie.pdrv,
2605 xptplistpdrvfunc, cdm);
2606 else
2607 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2610 * If we get back 0, that means that we had to stop before fully
2611 * traversing the peripheral driver tree. It also means that one of
2612 * the subroutines has set the status field to the proper value. If
2613 * we get back 1, we've fully traversed the EDT and copied out any
2614 * matching entries.
2616 if (ret == 1)
2617 cdm->status = CAM_DEV_MATCH_LAST;
2619 return(ret);
2622 static int
2623 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2625 struct cam_eb *bus, *next_bus;
2626 int retval;
2628 retval = 1;
2630 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2631 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2632 bus != NULL;
2633 bus = next_bus) {
2634 next_bus = TAILQ_NEXT(bus, links);
2636 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2637 CAM_SIM_LOCK(bus->sim);
2638 retval = tr_func(bus, arg);
2639 CAM_SIM_UNLOCK(bus->sim);
2640 if (retval == 0)
2641 return(retval);
2642 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2644 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2646 return(retval);
2649 static int
2650 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2651 xpt_targetfunc_t *tr_func, void *arg)
2653 struct cam_et *target, *next_target;
2654 int retval;
2656 retval = 1;
2657 for (target = (start_target ? start_target :
2658 TAILQ_FIRST(&bus->et_entries));
2659 target != NULL; target = next_target) {
2661 next_target = TAILQ_NEXT(target, links);
2663 retval = tr_func(target, arg);
2665 if (retval == 0)
2666 return(retval);
2669 return(retval);
2672 static int
2673 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2674 xpt_devicefunc_t *tr_func, void *arg)
2676 struct cam_ed *device, *next_device;
2677 int retval;
2679 retval = 1;
2680 for (device = (start_device ? start_device :
2681 TAILQ_FIRST(&target->ed_entries));
2682 device != NULL;
2683 device = next_device) {
2685 next_device = TAILQ_NEXT(device, links);
2687 retval = tr_func(device, arg);
2689 if (retval == 0)
2690 return(retval);
2693 return(retval);
2696 static int
2697 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2698 xpt_periphfunc_t *tr_func, void *arg)
2700 struct cam_periph *periph, *next_periph;
2701 int retval;
2703 retval = 1;
2705 for (periph = (start_periph ? start_periph :
2706 SLIST_FIRST(&device->periphs));
2707 periph != NULL;
2708 periph = next_periph) {
2710 next_periph = SLIST_NEXT(periph, periph_links);
2712 retval = tr_func(periph, arg);
2713 if (retval == 0)
2714 return(retval);
2717 return(retval);
2720 static int
2721 xptpdrvtraverse(struct periph_driver **start_pdrv,
2722 xpt_pdrvfunc_t *tr_func, void *arg)
2724 struct periph_driver **pdrv;
2725 int retval;
2727 retval = 1;
2730 * We don't traverse the peripheral driver list like we do the
2731 * other lists, because it is a linker set, and therefore cannot be
2732 * changed during runtime. If the peripheral driver list is ever
2733 * re-done to be something other than a linker set (i.e. it can
2734 * change while the system is running), the list traversal should
2735 * be modified to work like the other traversal functions.
2737 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2738 *pdrv != NULL; pdrv++) {
2739 retval = tr_func(pdrv, arg);
2741 if (retval == 0)
2742 return(retval);
2745 return(retval);
2748 static int
2749 xptpdperiphtraverse(struct periph_driver **pdrv,
2750 struct cam_periph *start_periph,
2751 xpt_periphfunc_t *tr_func, void *arg)
2753 struct cam_periph *periph, *next_periph;
2754 int retval;
2756 retval = 1;
2758 for (periph = (start_periph ? start_periph :
2759 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2760 periph = next_periph) {
2762 next_periph = TAILQ_NEXT(periph, unit_links);
2764 retval = tr_func(periph, arg);
2765 if (retval == 0)
2766 return(retval);
2768 return(retval);
2771 static int
2772 xptdefbusfunc(struct cam_eb *bus, void *arg)
2774 struct xpt_traverse_config *tr_config;
2776 tr_config = (struct xpt_traverse_config *)arg;
2778 if (tr_config->depth == XPT_DEPTH_BUS) {
2779 xpt_busfunc_t *tr_func;
2781 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2783 return(tr_func(bus, tr_config->tr_arg));
2784 } else
2785 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2788 static int
2789 xptdeftargetfunc(struct cam_et *target, void *arg)
2791 struct xpt_traverse_config *tr_config;
2793 tr_config = (struct xpt_traverse_config *)arg;
2795 if (tr_config->depth == XPT_DEPTH_TARGET) {
2796 xpt_targetfunc_t *tr_func;
2798 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2800 return(tr_func(target, tr_config->tr_arg));
2801 } else
2802 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2805 static int
2806 xptdefdevicefunc(struct cam_ed *device, void *arg)
2808 struct xpt_traverse_config *tr_config;
2810 tr_config = (struct xpt_traverse_config *)arg;
2812 if (tr_config->depth == XPT_DEPTH_DEVICE) {
2813 xpt_devicefunc_t *tr_func;
2815 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2817 return(tr_func(device, tr_config->tr_arg));
2818 } else
2819 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2822 static int
2823 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2825 struct xpt_traverse_config *tr_config;
2826 xpt_periphfunc_t *tr_func;
2828 tr_config = (struct xpt_traverse_config *)arg;
2830 tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2833 * Unlike the other default functions, we don't check for depth
2834 * here. The peripheral driver level is the last level in the EDT,
2835 * so if we're here, we should execute the function in question.
2837 return(tr_func(periph, tr_config->tr_arg));
2841 * Execute the given function for every bus in the EDT.
2843 static int
2844 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2846 struct xpt_traverse_config tr_config;
2848 tr_config.depth = XPT_DEPTH_BUS;
2849 tr_config.tr_func = tr_func;
2850 tr_config.tr_arg = arg;
2852 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2856 * Execute the given function for every device in the EDT.
2858 static int
2859 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2861 struct xpt_traverse_config tr_config;
2863 tr_config.depth = XPT_DEPTH_DEVICE;
2864 tr_config.tr_func = tr_func;
2865 tr_config.tr_arg = arg;
2867 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2870 static int
2871 xptsetasyncfunc(struct cam_ed *device, void *arg)
2873 struct cam_path path;
2874 struct ccb_getdev cgd;
2875 struct async_node *cur_entry;
2877 cur_entry = (struct async_node *)arg;
2880 * Don't report unconfigured devices (Wildcard devs,
2881 * devices only for target mode, device instances
2882 * that have been invalidated but are waiting for
2883 * their last reference count to be released).
2885 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2886 return (1);
2888 xpt_compile_path(&path,
2889 NULL,
2890 device->target->bus->path_id,
2891 device->target->target_id,
2892 device->lun_id);
2893 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2894 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2895 xpt_action((union ccb *)&cgd);
2896 cur_entry->callback(cur_entry->callback_arg,
2897 AC_FOUND_DEVICE,
2898 &path, &cgd);
2899 xpt_release_path(&path);
2901 return(1);
2904 static int
2905 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2907 struct cam_path path;
2908 struct ccb_pathinq cpi;
2909 struct async_node *cur_entry;
2911 cur_entry = (struct async_node *)arg;
2913 xpt_compile_path(&path, /*periph*/NULL,
2914 bus->sim->path_id,
2915 CAM_TARGET_WILDCARD,
2916 CAM_LUN_WILDCARD);
2917 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2918 cpi.ccb_h.func_code = XPT_PATH_INQ;
2919 xpt_action((union ccb *)&cpi);
2920 cur_entry->callback(cur_entry->callback_arg,
2921 AC_PATH_REGISTERED,
2922 &path, &cpi);
2923 xpt_release_path(&path);
2925 return(1);
2928 static void
2929 xpt_action_sasync_cb(void *context, int pending)
2931 struct async_node *cur_entry;
2932 struct xpt_task *task;
2933 uint32_t added;
2935 task = (struct xpt_task *)context;
2936 cur_entry = (struct async_node *)task->data1;
2937 added = task->data2;
2939 if ((added & AC_FOUND_DEVICE) != 0) {
2941 * Get this peripheral up to date with all
2942 * the currently existing devices.
2944 xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2946 if ((added & AC_PATH_REGISTERED) != 0) {
2948 * Get this peripheral up to date with all
2949 * the currently existing busses.
2951 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2954 kfree(task, M_CAMXPT);
2957 void
2958 xpt_action(union ccb *start_ccb)
2960 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2962 start_ccb->ccb_h.status = CAM_REQ_INPROG;
2964 switch (start_ccb->ccb_h.func_code) {
2965 case XPT_SCSI_IO:
2967 struct cam_ed *device;
2968 #ifdef CAMDEBUG
2969 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2970 struct cam_path *path;
2972 path = start_ccb->ccb_h.path;
2973 #endif
2976 * For the sake of compatibility with SCSI-1
2977 * devices that may not understand the identify
2978 * message, we include lun information in the
2979 * second byte of all commands. SCSI-1 specifies
2980 * that luns are a 3 bit value and reserves only 3
2981 * bits for lun information in the CDB. Later
2982 * revisions of the SCSI spec allow for more than 8
2983 * luns, but have deprecated lun information in the
2984 * CDB. So, if the lun won't fit, we must omit.
2986 * Also be aware that during initial probing for devices,
2987 * the inquiry information is unknown but initialized to 0.
2988 * This means that this code will be exercised while probing
2989 * devices with an ANSI revision greater than 2.
2991 device = start_ccb->ccb_h.path->device;
2992 if (device->protocol_version <= SCSI_REV_2
2993 && start_ccb->ccb_h.target_lun < 8
2994 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2996 start_ccb->csio.cdb_io.cdb_bytes[1] |=
2997 start_ccb->ccb_h.target_lun << 5;
2999 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
3000 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3001 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3002 &path->device->inq_data),
3003 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3004 cdb_str, sizeof(cdb_str))));
3005 /* FALLTHROUGH */
3007 case XPT_TARGET_IO:
3008 case XPT_CONT_TARGET_IO:
3009 start_ccb->csio.sense_resid = 0;
3010 start_ccb->csio.resid = 0;
3011 /* FALLTHROUGH */
3012 case XPT_RESET_DEV:
3013 case XPT_ENG_EXEC:
3015 struct cam_path *path;
3016 struct cam_sim *sim;
3017 int runq;
3019 path = start_ccb->ccb_h.path;
3021 sim = path->bus->sim;
3022 if (SIM_DEAD(sim)) {
3023 /* The SIM has gone; just execute the CCB directly. */
3024 cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3025 (*(sim->sim_action))(sim, start_ccb);
3026 break;
3029 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3030 if (path->device->qfrozen_cnt == 0)
3031 runq = xpt_schedule_dev_sendq(path->bus, path->device);
3032 else
3033 runq = 0;
3034 if (runq != 0)
3035 xpt_run_dev_sendq(path->bus);
3036 break;
3038 case XPT_SET_TRAN_SETTINGS:
3040 xpt_set_transfer_settings(&start_ccb->cts,
3041 start_ccb->ccb_h.path->device,
3042 /*async_update*/FALSE);
3043 break;
3045 case XPT_CALC_GEOMETRY:
3047 struct cam_sim *sim;
3049 /* Filter out garbage */
3050 if (start_ccb->ccg.block_size == 0
3051 || start_ccb->ccg.volume_size == 0) {
3052 start_ccb->ccg.cylinders = 0;
3053 start_ccb->ccg.heads = 0;
3054 start_ccb->ccg.secs_per_track = 0;
3055 start_ccb->ccb_h.status = CAM_REQ_CMP;
3056 break;
3058 sim = start_ccb->ccb_h.path->bus->sim;
3059 (*(sim->sim_action))(sim, start_ccb);
3060 break;
3062 case XPT_ABORT:
3064 union ccb* abort_ccb;
3066 abort_ccb = start_ccb->cab.abort_ccb;
3067 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3069 if (abort_ccb->ccb_h.pinfo.index >= 0) {
3070 struct cam_ccbq *ccbq;
3072 ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3073 cam_ccbq_remove_ccb(ccbq, abort_ccb);
3074 abort_ccb->ccb_h.status =
3075 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3076 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3077 xpt_done(abort_ccb);
3078 start_ccb->ccb_h.status = CAM_REQ_CMP;
3079 break;
3081 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3082 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3084 * We've caught this ccb en route to
3085 * the SIM. Flag it for abort and the
3086 * SIM will do so just before starting
3087 * real work on the CCB.
3089 abort_ccb->ccb_h.status =
3090 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3091 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3092 start_ccb->ccb_h.status = CAM_REQ_CMP;
3093 break;
3096 if (XPT_FC_IS_QUEUED(abort_ccb)
3097 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3099 * It's already completed but waiting
3100 * for our SWI to get to it.
3102 start_ccb->ccb_h.status = CAM_UA_ABORT;
3103 break;
3106 * If we weren't able to take care of the abort request
3107 * in the XPT, pass the request down to the SIM for processing.
3109 /* FALLTHROUGH */
3111 case XPT_ACCEPT_TARGET_IO:
3112 case XPT_EN_LUN:
3113 case XPT_IMMED_NOTIFY:
3114 case XPT_NOTIFY_ACK:
3115 case XPT_GET_TRAN_SETTINGS:
3116 case XPT_RESET_BUS:
3118 struct cam_sim *sim;
3120 sim = start_ccb->ccb_h.path->bus->sim;
3121 (*(sim->sim_action))(sim, start_ccb);
3122 break;
3124 case XPT_PATH_INQ:
3126 struct cam_sim *sim;
3128 sim = start_ccb->ccb_h.path->bus->sim;
3129 (*(sim->sim_action))(sim, start_ccb);
3130 break;
3132 case XPT_PATH_STATS:
3133 start_ccb->cpis.last_reset =
3134 start_ccb->ccb_h.path->bus->last_reset;
3135 start_ccb->ccb_h.status = CAM_REQ_CMP;
3136 break;
3137 case XPT_GDEV_TYPE:
3139 struct cam_ed *dev;
3141 dev = start_ccb->ccb_h.path->device;
3142 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3143 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3144 } else {
3145 struct ccb_getdev *cgd;
3146 struct cam_eb *bus;
3147 struct cam_et *tar;
3149 cgd = &start_ccb->cgd;
3150 bus = cgd->ccb_h.path->bus;
3151 tar = cgd->ccb_h.path->target;
3152 cgd->inq_data = dev->inq_data;
3153 cgd->ccb_h.status = CAM_REQ_CMP;
3154 cgd->serial_num_len = dev->serial_num_len;
3155 if ((dev->serial_num_len > 0)
3156 && (dev->serial_num != NULL))
3157 bcopy(dev->serial_num, cgd->serial_num,
3158 dev->serial_num_len);
3160 break;
3162 case XPT_GDEV_STATS:
3164 struct cam_ed *dev;
3166 dev = start_ccb->ccb_h.path->device;
3167 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3168 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3169 } else {
3170 struct ccb_getdevstats *cgds;
3171 struct cam_eb *bus;
3172 struct cam_et *tar;
3174 cgds = &start_ccb->cgds;
3175 bus = cgds->ccb_h.path->bus;
3176 tar = cgds->ccb_h.path->target;
3177 cgds->dev_openings = dev->ccbq.dev_openings;
3178 cgds->dev_active = dev->ccbq.dev_active;
3179 cgds->devq_openings = dev->ccbq.devq_openings;
3180 cgds->devq_queued = dev->ccbq.queue.entries;
3181 cgds->held = dev->ccbq.held;
3182 cgds->last_reset = tar->last_reset;
3183 cgds->maxtags = dev->quirk->maxtags;
3184 cgds->mintags = dev->quirk->mintags;
3185 if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3186 cgds->last_reset = bus->last_reset;
3187 cgds->ccb_h.status = CAM_REQ_CMP;
3189 break;
3191 case XPT_GDEVLIST:
3193 struct cam_periph *nperiph;
3194 struct periph_list *periph_head;
3195 struct ccb_getdevlist *cgdl;
3196 u_int i;
3197 struct cam_ed *device;
3198 int found;
3201 found = 0;
3204 * Don't want anyone mucking with our data.
3206 device = start_ccb->ccb_h.path->device;
3207 periph_head = &device->periphs;
3208 cgdl = &start_ccb->cgdl;
3211 * Check and see if the list has changed since the user
3212 * last requested a list member. If so, tell them that the
3213 * list has changed, and therefore they need to start over
3214 * from the beginning.
3216 if ((cgdl->index != 0) &&
3217 (cgdl->generation != device->generation)) {
3218 cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3219 break;
3223 * Traverse the list of peripherals and attempt to find
3224 * the requested peripheral.
3226 for (nperiph = SLIST_FIRST(periph_head), i = 0;
3227 (nperiph != NULL) && (i <= cgdl->index);
3228 nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3229 if (i == cgdl->index) {
3230 strncpy(cgdl->periph_name,
3231 nperiph->periph_name,
3232 DEV_IDLEN);
3233 cgdl->unit_number = nperiph->unit_number;
3234 found = 1;
3237 if (found == 0) {
3238 cgdl->status = CAM_GDEVLIST_ERROR;
3239 break;
3242 if (nperiph == NULL)
3243 cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3244 else
3245 cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3247 cgdl->index++;
3248 cgdl->generation = device->generation;
3250 cgdl->ccb_h.status = CAM_REQ_CMP;
3251 break;
3253 case XPT_DEV_MATCH:
3255 dev_pos_type position_type;
3256 struct ccb_dev_match *cdm;
3257 int ret;
3259 cdm = &start_ccb->cdm;
3262 * There are two ways of getting at information in the EDT.
3263 * The first way is via the primary EDT tree. It starts
3264 * with a list of busses, then a list of targets on a bus,
3265 * then devices/luns on a target, and then peripherals on a
3266 * device/lun. The "other" way is by the peripheral driver
3267 * lists. The peripheral driver lists are organized by
3268 * peripheral driver. (obviously) So it makes sense to
3269 * use the peripheral driver list if the user is looking
3270 * for something like "da1", or all "da" devices. If the
3271 * user is looking for something on a particular bus/target
3272 * or lun, it's generally better to go through the EDT tree.
3275 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3276 position_type = cdm->pos.position_type;
3277 else {
3278 u_int i;
3280 position_type = CAM_DEV_POS_NONE;
3282 for (i = 0; i < cdm->num_patterns; i++) {
3283 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3284 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3285 position_type = CAM_DEV_POS_EDT;
3286 break;
3290 if (cdm->num_patterns == 0)
3291 position_type = CAM_DEV_POS_EDT;
3292 else if (position_type == CAM_DEV_POS_NONE)
3293 position_type = CAM_DEV_POS_PDRV;
3296 switch(position_type & CAM_DEV_POS_TYPEMASK) {
3297 case CAM_DEV_POS_EDT:
3298 ret = xptedtmatch(cdm);
3299 break;
3300 case CAM_DEV_POS_PDRV:
3301 ret = xptperiphlistmatch(cdm);
3302 break;
3303 default:
3304 cdm->status = CAM_DEV_MATCH_ERROR;
3305 break;
3308 if (cdm->status == CAM_DEV_MATCH_ERROR)
3309 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3310 else
3311 start_ccb->ccb_h.status = CAM_REQ_CMP;
3313 break;
3315 case XPT_SASYNC_CB:
3317 struct ccb_setasync *csa;
3318 struct async_node *cur_entry;
3319 struct async_list *async_head;
3320 u_int32_t added;
3322 csa = &start_ccb->csa;
3323 added = csa->event_enable;
3324 async_head = &csa->ccb_h.path->device->asyncs;
3327 * If there is already an entry for us, simply
3328 * update it.
3330 cur_entry = SLIST_FIRST(async_head);
3331 while (cur_entry != NULL) {
3332 if ((cur_entry->callback_arg == csa->callback_arg)
3333 && (cur_entry->callback == csa->callback))
3334 break;
3335 cur_entry = SLIST_NEXT(cur_entry, links);
3338 if (cur_entry != NULL) {
3340 * If the request has no flags set,
3341 * remove the entry.
3343 added &= ~cur_entry->event_enable;
3344 if (csa->event_enable == 0) {
3345 SLIST_REMOVE(async_head, cur_entry,
3346 async_node, links);
3347 csa->ccb_h.path->device->refcount--;
3348 kfree(cur_entry, M_CAMXPT);
3349 } else {
3350 cur_entry->event_enable = csa->event_enable;
3352 } else {
3353 cur_entry = kmalloc(sizeof(*cur_entry), M_CAMXPT,
3354 M_INTWAIT);
3355 cur_entry->event_enable = csa->event_enable;
3356 cur_entry->callback_arg = csa->callback_arg;
3357 cur_entry->callback = csa->callback;
3358 SLIST_INSERT_HEAD(async_head, cur_entry, links);
3359 csa->ccb_h.path->device->refcount++;
3363 * Need to decouple this operation via a taskqueue so that
3364 * the locking doesn't become a mess.
3366 if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3367 struct xpt_task *task;
3369 task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
3370 M_INTWAIT);
3372 TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3373 task->data1 = cur_entry;
3374 task->data2 = added;
3375 taskqueue_enqueue(taskqueue_thread[mycpuid],
3376 &task->task);
3379 start_ccb->ccb_h.status = CAM_REQ_CMP;
3380 break;
3382 case XPT_REL_SIMQ:
3384 struct ccb_relsim *crs;
3385 struct cam_ed *dev;
3387 crs = &start_ccb->crs;
3388 dev = crs->ccb_h.path->device;
3389 if (dev == NULL) {
3391 crs->ccb_h.status = CAM_DEV_NOT_THERE;
3392 break;
3395 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3397 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3398 /* Don't ever go below one opening */
3399 if (crs->openings > 0) {
3400 xpt_dev_ccbq_resize(crs->ccb_h.path,
3401 crs->openings);
3403 if (bootverbose) {
3404 xpt_print(crs->ccb_h.path,
3405 "tagged openings now %d\n",
3406 crs->openings);
3412 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3414 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3417 * Just extend the old timeout and decrement
3418 * the freeze count so that a single timeout
3419 * is sufficient for releasing the queue.
3421 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3422 callout_stop(&dev->callout);
3423 } else {
3425 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3428 callout_reset(&dev->callout,
3429 (crs->release_timeout * hz) / 1000,
3430 xpt_release_devq_timeout, dev);
3432 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3436 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3438 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3440 * Decrement the freeze count so that a single
3441 * completion is still sufficient to unfreeze
3442 * the queue.
3444 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3445 } else {
3447 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3448 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3452 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3454 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3455 || (dev->ccbq.dev_active == 0)) {
3457 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3458 } else {
3460 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3461 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3465 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3467 xpt_release_devq(crs->ccb_h.path, /*count*/1,
3468 /*run_queue*/TRUE);
3470 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3471 start_ccb->ccb_h.status = CAM_REQ_CMP;
3472 break;
3474 case XPT_SCAN_BUS:
3475 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3476 break;
3477 case XPT_SCAN_LUN:
3478 xpt_scan_lun(start_ccb->ccb_h.path->periph,
3479 start_ccb->ccb_h.path, start_ccb->crcn.flags,
3480 start_ccb);
3481 break;
3482 case XPT_DEBUG: {
3483 #ifdef CAMDEBUG
3484 #ifdef CAM_DEBUG_DELAY
3485 cam_debug_delay = CAM_DEBUG_DELAY;
3486 #endif
3487 cam_dflags = start_ccb->cdbg.flags;
3488 if (cam_dpath != NULL) {
3489 xpt_free_path(cam_dpath);
3490 cam_dpath = NULL;
3493 if (cam_dflags != CAM_DEBUG_NONE) {
3494 if (xpt_create_path(&cam_dpath, xpt_periph,
3495 start_ccb->ccb_h.path_id,
3496 start_ccb->ccb_h.target_id,
3497 start_ccb->ccb_h.target_lun) !=
3498 CAM_REQ_CMP) {
3499 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3500 cam_dflags = CAM_DEBUG_NONE;
3501 } else {
3502 start_ccb->ccb_h.status = CAM_REQ_CMP;
3503 xpt_print(cam_dpath, "debugging flags now %x\n",
3504 cam_dflags);
3506 } else {
3507 cam_dpath = NULL;
3508 start_ccb->ccb_h.status = CAM_REQ_CMP;
3510 #else /* !CAMDEBUG */
3511 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3512 #endif /* CAMDEBUG */
3513 break;
3515 case XPT_NOOP:
3516 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3517 xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3518 start_ccb->ccb_h.status = CAM_REQ_CMP;
3519 break;
3520 default:
3521 case XPT_SDEV_TYPE:
3522 case XPT_TERM_IO:
3523 case XPT_ENG_INQ:
3524 /* XXX Implement */
3525 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3526 break;
3530 void
3531 xpt_polled_action(union ccb *start_ccb)
3533 u_int32_t timeout;
3534 struct cam_sim *sim;
3535 struct cam_devq *devq;
3536 struct cam_ed *dev;
3538 timeout = start_ccb->ccb_h.timeout;
3539 sim = start_ccb->ccb_h.path->bus->sim;
3540 devq = sim->devq;
3541 dev = start_ccb->ccb_h.path->device;
3543 sim_lock_assert_owned(sim->lock);
3546 * Steal an opening so that no other queued requests
3547 * can get it before us while we simulate interrupts.
3549 dev->ccbq.devq_openings--;
3550 dev->ccbq.dev_openings--;
3552 while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3553 && (--timeout > 0)) {
3554 DELAY(1000);
3555 (*(sim->sim_poll))(sim);
3556 camisr_runqueue(&sim->sim_doneq);
3559 dev->ccbq.devq_openings++;
3560 dev->ccbq.dev_openings++;
3562 if (timeout != 0) {
3563 xpt_action(start_ccb);
3564 while(--timeout > 0) {
3565 (*(sim->sim_poll))(sim);
3566 camisr_runqueue(&sim->sim_doneq);
3567 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3568 != CAM_REQ_INPROG)
3569 break;
3570 DELAY(1000);
3572 if (timeout == 0) {
3574 * XXX Is it worth adding a sim_timeout entry
3575 * point so we can attempt recovery? If
3576 * this is only used for dumps, I don't think
3577 * it is.
3579 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3581 } else {
3582 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3587 * Schedule a peripheral driver to receive a ccb when it's
3588 * target device has space for more transactions.
3590 void
3591 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3593 struct cam_ed *device;
3594 union ccb *work_ccb;
3595 int runq;
3597 sim_lock_assert_owned(perph->sim->lock);
3599 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3600 device = perph->path->device;
3601 if (periph_is_queued(perph)) {
3602 /* Simply reorder based on new priority */
3603 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3604 (" change priority to %d\n", new_priority));
3605 if (new_priority < perph->pinfo.priority) {
3606 camq_change_priority(&device->drvq,
3607 perph->pinfo.index,
3608 new_priority);
3610 runq = 0;
3611 } else if (SIM_DEAD(perph->path->bus->sim)) {
3612 /* The SIM is gone so just call periph_start directly. */
3613 work_ccb = xpt_get_ccb(perph->path->device);
3614 if (work_ccb == NULL)
3615 return; /* XXX */
3616 xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3617 perph->pinfo.priority = new_priority;
3618 perph->periph_start(perph, work_ccb);
3619 return;
3620 } else {
3621 /* New entry on the queue */
3622 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3623 (" added periph to queue\n"));
3624 perph->pinfo.priority = new_priority;
3625 perph->pinfo.generation = ++device->drvq.generation;
3626 camq_insert(&device->drvq, &perph->pinfo);
3627 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3629 if (runq != 0) {
3630 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3631 (" calling xpt_run_devq\n"));
3632 xpt_run_dev_allocq(perph->path->bus);
3638 * Schedule a device to run on a given queue.
3639 * If the device was inserted as a new entry on the queue,
3640 * return 1 meaning the device queue should be run. If we
3641 * were already queued, implying someone else has already
3642 * started the queue, return 0 so the caller doesn't attempt
3643 * to run the queue.
3645 static int
3646 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3647 u_int32_t new_priority)
3649 int retval;
3650 u_int32_t old_priority;
3652 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3654 old_priority = pinfo->priority;
3657 * Are we already queued?
3659 if (pinfo->index != CAM_UNQUEUED_INDEX) {
3660 /* Simply reorder based on new priority */
3661 if (new_priority < old_priority) {
3662 camq_change_priority(queue, pinfo->index,
3663 new_priority);
3664 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3665 ("changed priority to %d\n",
3666 new_priority));
3668 retval = 0;
3669 } else {
3670 /* New entry on the queue */
3671 if (new_priority < old_priority)
3672 pinfo->priority = new_priority;
3674 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3675 ("Inserting onto queue\n"));
3676 pinfo->generation = ++queue->generation;
3677 camq_insert(queue, pinfo);
3678 retval = 1;
3680 return (retval);
3683 static void
3684 xpt_run_dev_allocq(struct cam_eb *bus)
3686 struct cam_devq *devq;
3688 if ((devq = bus->sim->devq) == NULL) {
3689 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3690 return;
3692 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3694 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3695 (" qfrozen_cnt == 0x%x, entries == %d, "
3696 "openings == %d, active == %d\n",
3697 devq->alloc_queue.qfrozen_cnt,
3698 devq->alloc_queue.entries,
3699 devq->alloc_openings,
3700 devq->alloc_active));
3702 devq->alloc_queue.qfrozen_cnt++;
3703 while ((devq->alloc_queue.entries > 0)
3704 && (devq->alloc_openings > 0)
3705 && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3706 struct cam_ed_qinfo *qinfo;
3707 struct cam_ed *device;
3708 union ccb *work_ccb;
3709 struct cam_periph *drv;
3710 struct camq *drvq;
3712 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3713 CAMQ_HEAD);
3714 device = qinfo->device;
3716 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3717 ("running device %p\n", device));
3719 drvq = &device->drvq;
3721 #ifdef CAMDEBUG
3722 if (drvq->entries <= 0) {
3723 panic("xpt_run_dev_allocq: "
3724 "Device on queue without any work to do");
3726 #endif
3727 if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3728 devq->alloc_openings--;
3729 devq->alloc_active++;
3730 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3731 xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3732 drv->pinfo.priority);
3733 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3734 ("calling periph start\n"));
3735 drv->periph_start(drv, work_ccb);
3736 } else {
3738 * Malloc failure in alloc_ccb
3741 * XXX add us to a list to be run from free_ccb
3742 * if we don't have any ccbs active on this
3743 * device queue otherwise we may never get run
3744 * again.
3746 break;
3749 if (drvq->entries > 0) {
3750 /* We have more work. Attempt to reschedule */
3751 xpt_schedule_dev_allocq(bus, device);
3754 devq->alloc_queue.qfrozen_cnt--;
3757 static void
3758 xpt_run_dev_sendq(struct cam_eb *bus)
3760 struct cam_devq *devq;
3762 if ((devq = bus->sim->devq) == NULL) {
3763 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3764 return;
3766 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3768 devq->send_queue.qfrozen_cnt++;
3769 while ((devq->send_queue.entries > 0)
3770 && (devq->send_openings > 0)) {
3771 struct cam_ed_qinfo *qinfo;
3772 struct cam_ed *device;
3773 union ccb *work_ccb;
3774 struct cam_sim *sim;
3776 if (devq->send_queue.qfrozen_cnt > 1) {
3777 break;
3780 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3781 CAMQ_HEAD);
3782 device = qinfo->device;
3785 * If the device has been "frozen", don't attempt
3786 * to run it.
3788 if (device->qfrozen_cnt > 0) {
3789 continue;
3792 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3793 ("running device %p\n", device));
3795 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3796 if (work_ccb == NULL) {
3797 kprintf("device on run queue with no ccbs???\n");
3798 continue;
3801 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3803 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
3804 if (xsoftc.num_highpower <= 0) {
3806 * We got a high power command, but we
3807 * don't have any available slots. Freeze
3808 * the device queue until we have a slot
3809 * available.
3811 device->qfrozen_cnt++;
3812 STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3813 &work_ccb->ccb_h,
3814 xpt_links.stqe);
3816 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3817 continue;
3818 } else {
3820 * Consume a high power slot while
3821 * this ccb runs.
3823 xsoftc.num_highpower--;
3825 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3827 devq->active_dev = device;
3828 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3830 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3832 devq->send_openings--;
3833 devq->send_active++;
3835 if (device->ccbq.queue.entries > 0)
3836 xpt_schedule_dev_sendq(bus, device);
3838 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3840 * The client wants to freeze the queue
3841 * after this CCB is sent.
3843 device->qfrozen_cnt++;
3846 /* In Target mode, the peripheral driver knows best... */
3847 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3848 if ((device->inq_flags & SID_CmdQue) != 0
3849 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3850 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3851 else
3853 * Clear this in case of a retried CCB that
3854 * failed due to a rejected tag.
3856 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3860 * Device queues can be shared among multiple sim instances
3861 * that reside on different busses. Use the SIM in the queue
3862 * CCB's path, rather than the one in the bus that was passed
3863 * into this function.
3865 sim = work_ccb->ccb_h.path->bus->sim;
3866 (*(sim->sim_action))(sim, work_ccb);
3868 devq->active_dev = NULL;
3870 devq->send_queue.qfrozen_cnt--;
3874 * This function merges stuff from the slave ccb into the master ccb, while
3875 * keeping important fields in the master ccb constant.
3877 void
3878 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3881 * Pull fields that are valid for peripheral drivers to set
3882 * into the master CCB along with the CCB "payload".
3884 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3885 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3886 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3887 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3888 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3889 sizeof(union ccb) - sizeof(struct ccb_hdr));
3892 void
3893 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3895 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3896 callout_init(&ccb_h->timeout_ch);
3897 ccb_h->pinfo.priority = priority;
3898 ccb_h->path = path;
3899 ccb_h->path_id = path->bus->path_id;
3900 if (path->target)
3901 ccb_h->target_id = path->target->target_id;
3902 else
3903 ccb_h->target_id = CAM_TARGET_WILDCARD;
3904 if (path->device) {
3905 ccb_h->target_lun = path->device->lun_id;
3906 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3907 } else {
3908 ccb_h->target_lun = CAM_TARGET_WILDCARD;
3910 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3911 ccb_h->flags = 0;
3914 /* Path manipulation functions */
3915 cam_status
3916 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3917 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3919 struct cam_path *path;
3920 cam_status status;
3922 path = kmalloc(sizeof(*path), M_CAMXPT, M_INTWAIT);
3923 status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3924 if (status != CAM_REQ_CMP) {
3925 kfree(path, M_CAMXPT);
3926 path = NULL;
3928 *new_path_ptr = path;
3929 return (status);
3932 cam_status
3933 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3934 struct cam_periph *periph, path_id_t path_id,
3935 target_id_t target_id, lun_id_t lun_id)
3937 struct cam_path *path;
3938 struct cam_eb *bus = NULL;
3939 cam_status status;
3940 int need_unlock = 0;
3942 path = (struct cam_path *)kmalloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3944 if (path_id != CAM_BUS_WILDCARD) {
3945 bus = xpt_find_bus(path_id);
3946 if (bus != NULL) {
3947 need_unlock = 1;
3948 CAM_SIM_LOCK(bus->sim);
3951 status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3952 if (need_unlock)
3953 CAM_SIM_UNLOCK(bus->sim);
3954 if (status != CAM_REQ_CMP) {
3955 kfree(path, M_CAMXPT);
3956 path = NULL;
3958 *new_path_ptr = path;
3959 return (status);
3962 static cam_status
3963 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3964 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3966 struct cam_eb *bus;
3967 struct cam_et *target;
3968 struct cam_ed *device;
3969 cam_status status;
3971 status = CAM_REQ_CMP; /* Completed without error */
3972 target = NULL; /* Wildcarded */
3973 device = NULL; /* Wildcarded */
3976 * We will potentially modify the EDT, so block interrupts
3977 * that may attempt to create cam paths.
3979 bus = xpt_find_bus(path_id);
3980 if (bus == NULL) {
3981 status = CAM_PATH_INVALID;
3982 } else {
3983 target = xpt_find_target(bus, target_id);
3984 if (target == NULL) {
3985 /* Create one */
3986 struct cam_et *new_target;
3988 new_target = xpt_alloc_target(bus, target_id);
3989 if (new_target == NULL) {
3990 status = CAM_RESRC_UNAVAIL;
3991 } else {
3992 target = new_target;
3995 if (target != NULL) {
3996 device = xpt_find_device(target, lun_id);
3997 if (device == NULL) {
3998 /* Create one */
3999 struct cam_ed *new_device;
4001 new_device = xpt_alloc_device(bus,
4002 target,
4003 lun_id);
4004 if (new_device == NULL) {
4005 status = CAM_RESRC_UNAVAIL;
4006 } else {
4007 device = new_device;
4014 * Only touch the user's data if we are successful.
4016 if (status == CAM_REQ_CMP) {
4017 new_path->periph = perph;
4018 new_path->bus = bus;
4019 new_path->target = target;
4020 new_path->device = device;
4021 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4022 } else {
4023 if (device != NULL)
4024 xpt_release_device(bus, target, device);
4025 if (target != NULL)
4026 xpt_release_target(bus, target);
4027 if (bus != NULL)
4028 xpt_release_bus(bus);
4030 return (status);
4033 static void
4034 xpt_release_path(struct cam_path *path)
4036 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4037 if (path->device != NULL) {
4038 xpt_release_device(path->bus, path->target, path->device);
4039 path->device = NULL;
4041 if (path->target != NULL) {
4042 xpt_release_target(path->bus, path->target);
4043 path->target = NULL;
4045 if (path->bus != NULL) {
4046 xpt_release_bus(path->bus);
4047 path->bus = NULL;
4051 void
4052 xpt_free_path(struct cam_path *path)
4054 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4055 xpt_release_path(path);
4056 kfree(path, M_CAMXPT);
4061 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4062 * in path1, 2 for match with wildcards in path2.
4065 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4067 int retval = 0;
4069 if (path1->bus != path2->bus) {
4070 if (path1->bus->path_id == CAM_BUS_WILDCARD)
4071 retval = 1;
4072 else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4073 retval = 2;
4074 else
4075 return (-1);
4077 if (path1->target != path2->target) {
4078 if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4079 if (retval == 0)
4080 retval = 1;
4081 } else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4082 retval = 2;
4083 else
4084 return (-1);
4086 if (path1->device != path2->device) {
4087 if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4088 if (retval == 0)
4089 retval = 1;
4090 } else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4091 retval = 2;
4092 else
4093 return (-1);
4095 return (retval);
4098 void
4099 xpt_print_path(struct cam_path *path)
4102 if (path == NULL)
4103 kprintf("(nopath): ");
4104 else {
4105 if (path->periph != NULL)
4106 kprintf("(%s%d:", path->periph->periph_name,
4107 path->periph->unit_number);
4108 else
4109 kprintf("(noperiph:");
4111 if (path->bus != NULL)
4112 kprintf("%s%d:%d:", path->bus->sim->sim_name,
4113 path->bus->sim->unit_number,
4114 path->bus->sim->bus_id);
4115 else
4116 kprintf("nobus:");
4118 if (path->target != NULL)
4119 kprintf("%d:", path->target->target_id);
4120 else
4121 kprintf("X:");
4123 if (path->device != NULL)
4124 kprintf("%d): ", path->device->lun_id);
4125 else
4126 kprintf("X): ");
4130 void
4131 xpt_print(struct cam_path *path, const char *fmt, ...)
4133 __va_list ap;
4134 xpt_print_path(path);
4135 __va_start(ap, fmt);
4136 kvprintf(fmt, ap);
4137 __va_end(ap);
4141 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4143 struct sbuf sb;
4145 sim_lock_assert_owned(path->bus->sim->lock);
4147 sbuf_new(&sb, str, str_len, 0);
4149 if (path == NULL)
4150 sbuf_printf(&sb, "(nopath): ");
4151 else {
4152 if (path->periph != NULL)
4153 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4154 path->periph->unit_number);
4155 else
4156 sbuf_printf(&sb, "(noperiph:");
4158 if (path->bus != NULL)
4159 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4160 path->bus->sim->unit_number,
4161 path->bus->sim->bus_id);
4162 else
4163 sbuf_printf(&sb, "nobus:");
4165 if (path->target != NULL)
4166 sbuf_printf(&sb, "%d:", path->target->target_id);
4167 else
4168 sbuf_printf(&sb, "X:");
4170 if (path->device != NULL)
4171 sbuf_printf(&sb, "%d): ", path->device->lun_id);
4172 else
4173 sbuf_printf(&sb, "X): ");
4175 sbuf_finish(&sb);
4177 return(sbuf_len(&sb));
4180 path_id_t
4181 xpt_path_path_id(struct cam_path *path)
4183 sim_lock_assert_owned(path->bus->sim->lock);
4185 return(path->bus->path_id);
4188 target_id_t
4189 xpt_path_target_id(struct cam_path *path)
4191 sim_lock_assert_owned(path->bus->sim->lock);
4193 if (path->target != NULL)
4194 return (path->target->target_id);
4195 else
4196 return (CAM_TARGET_WILDCARD);
4199 lun_id_t
4200 xpt_path_lun_id(struct cam_path *path)
4202 sim_lock_assert_owned(path->bus->sim->lock);
4204 if (path->device != NULL)
4205 return (path->device->lun_id);
4206 else
4207 return (CAM_LUN_WILDCARD);
4210 struct cam_sim *
4211 xpt_path_sim(struct cam_path *path)
4213 return (path->bus->sim);
4216 struct cam_periph*
4217 xpt_path_periph(struct cam_path *path)
4219 sim_lock_assert_owned(path->bus->sim->lock);
4221 return (path->periph);
4225 * Release a CAM control block for the caller. Remit the cost of the structure
4226 * to the device referenced by the path. If the this device had no 'credits'
4227 * and peripheral drivers have registered async callbacks for this notification
4228 * call them now.
4230 void
4231 xpt_release_ccb(union ccb *free_ccb)
4233 struct cam_path *path;
4234 struct cam_ed *device;
4235 struct cam_eb *bus;
4236 struct cam_sim *sim;
4238 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4239 path = free_ccb->ccb_h.path;
4240 device = path->device;
4241 bus = path->bus;
4242 sim = bus->sim;
4244 sim_lock_assert_owned(sim->lock);
4246 cam_ccbq_release_opening(&device->ccbq);
4247 if (sim->ccb_count > sim->max_ccbs) {
4248 xpt_free_ccb(free_ccb);
4249 sim->ccb_count--;
4250 } else {
4251 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
4252 xpt_links.sle);
4254 if (sim->devq == NULL) {
4255 return;
4257 sim->devq->alloc_openings++;
4258 sim->devq->alloc_active--;
4259 /* XXX Turn this into an inline function - xpt_run_device?? */
4260 if ((device_is_alloc_queued(device) == 0)
4261 && (device->drvq.entries > 0)) {
4262 xpt_schedule_dev_allocq(bus, device);
4264 if (dev_allocq_is_runnable(sim->devq))
4265 xpt_run_dev_allocq(bus);
4268 /* Functions accessed by SIM drivers */
4271 * A sim structure, listing the SIM entry points and instance
4272 * identification info is passed to xpt_bus_register to hook the SIM
4273 * into the CAM framework. xpt_bus_register creates a cam_eb entry
4274 * for this new bus and places it in the array of busses and assigns
4275 * it a path_id. The path_id may be influenced by "hard wiring"
4276 * information specified by the user. Once interrupt services are
4277 * availible, the bus will be probed.
4279 int32_t
4280 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4282 struct cam_eb *new_bus;
4283 struct cam_eb *old_bus;
4284 struct ccb_pathinq cpi;
4286 sim_lock_assert_owned(sim->lock);
4288 sim->bus_id = bus;
4289 new_bus = kmalloc(sizeof(*new_bus), M_CAMXPT, M_INTWAIT);
4291 if (strcmp(sim->sim_name, "xpt") != 0) {
4292 sim->path_id =
4293 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4296 TAILQ_INIT(&new_bus->et_entries);
4297 new_bus->path_id = sim->path_id;
4298 new_bus->sim = sim;
4299 ++sim->refcount;
4300 timevalclear(&new_bus->last_reset);
4301 new_bus->flags = 0;
4302 new_bus->refcount = 1; /* Held until a bus_deregister event */
4303 new_bus->generation = 0;
4304 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4305 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4306 while (old_bus != NULL
4307 && old_bus->path_id < new_bus->path_id)
4308 old_bus = TAILQ_NEXT(old_bus, links);
4309 if (old_bus != NULL)
4310 TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4311 else
4312 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4313 xsoftc.bus_generation++;
4314 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4316 /* Notify interested parties */
4317 if (sim->path_id != CAM_XPT_PATH_ID) {
4318 struct cam_path path;
4320 xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4321 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4322 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4323 cpi.ccb_h.func_code = XPT_PATH_INQ;
4324 xpt_action((union ccb *)&cpi);
4325 xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4326 xpt_release_path(&path);
4328 return (CAM_SUCCESS);
4332 * Deregister a bus. We must clean out all transactions pending on the bus.
4333 * This routine is typically called prior to cam_sim_free() (e.g. see
4334 * dev/usbmisc/umass/umass.c)
4336 int32_t
4337 xpt_bus_deregister(path_id_t pathid)
4339 struct cam_path bus_path;
4340 struct cam_ed *device;
4341 struct cam_ed_qinfo *qinfo;
4342 struct cam_devq *devq;
4343 struct cam_periph *periph;
4344 struct cam_sim *ccbsim;
4345 union ccb *work_ccb;
4346 cam_status status;
4348 status = xpt_compile_path(&bus_path, NULL, pathid,
4349 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4350 if (status != CAM_REQ_CMP)
4351 return (status);
4354 * This should clear out all pending requests and timeouts, but
4355 * the ccb's may be queued to a software interrupt.
4357 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4358 * and it really ought to.
4360 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4361 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4363 /* The SIM may be gone, so use a dummy SIM for any stray operations. */
4364 devq = bus_path.bus->sim->devq;
4365 ccbsim = bus_path.bus->sim;
4366 bus_path.bus->sim = &cam_dead_sim;
4368 /* Execute any pending operations now. */
4369 while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
4370 CAMQ_HEAD)) != NULL ||
4371 (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
4372 CAMQ_HEAD)) != NULL) {
4373 do {
4374 device = qinfo->device;
4375 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
4376 if (work_ccb != NULL) {
4377 devq->active_dev = device;
4378 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
4379 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
4380 (*(ccbsim->sim_action))(ccbsim, work_ccb);
4383 periph = (struct cam_periph *)camq_remove(&device->drvq,
4384 CAMQ_HEAD);
4385 if (periph != NULL)
4386 xpt_schedule(periph, periph->pinfo.priority);
4387 } while (work_ccb != NULL || periph != NULL);
4390 /* Make sure all completed CCBs are processed. */
4391 while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) {
4392 camisr_runqueue(&ccbsim->sim_doneq);
4394 /* Repeat the async's for the benefit of any new devices. */
4395 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4396 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4399 /* Release the reference count held while registered. */
4400 xpt_release_bus(bus_path.bus);
4401 xpt_release_path(&bus_path);
4403 return (CAM_REQ_CMP);
4406 static path_id_t
4407 xptnextfreepathid(void)
4409 struct cam_eb *bus;
4410 path_id_t pathid;
4411 char *strval;
4413 pathid = 0;
4414 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4415 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4416 retry:
4417 /* Find an unoccupied pathid */
4418 while (bus != NULL && bus->path_id <= pathid) {
4419 if (bus->path_id == pathid)
4420 pathid++;
4421 bus = TAILQ_NEXT(bus, links);
4423 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4426 * Ensure that this pathid is not reserved for
4427 * a bus that may be registered in the future.
4429 if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4430 ++pathid;
4431 /* Start the search over */
4432 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4433 goto retry;
4435 return (pathid);
4438 static path_id_t
4439 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4441 path_id_t pathid;
4442 int i, dunit, val;
4443 char buf[32];
4445 pathid = CAM_XPT_PATH_ID;
4446 ksnprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4447 i = -1;
4448 while ((i = resource_query_string(i, "at", buf)) != -1) {
4449 if (strcmp(resource_query_name(i), "scbus")) {
4450 /* Avoid a bit of foot shooting. */
4451 continue;
4453 dunit = resource_query_unit(i);
4454 if (dunit < 0) /* unwired?! */
4455 continue;
4456 if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4457 if (sim_bus == val) {
4458 pathid = dunit;
4459 break;
4461 } else if (sim_bus == 0) {
4462 /* Unspecified matches bus 0 */
4463 pathid = dunit;
4464 break;
4465 } else {
4466 kprintf("Ambiguous scbus configuration for %s%d "
4467 "bus %d, cannot wire down. The kernel "
4468 "config entry for scbus%d should "
4469 "specify a controller bus.\n"
4470 "Scbus will be assigned dynamically.\n",
4471 sim_name, sim_unit, sim_bus, dunit);
4472 break;
4476 if (pathid == CAM_XPT_PATH_ID)
4477 pathid = xptnextfreepathid();
4478 return (pathid);
4481 void
4482 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4484 struct cam_eb *bus;
4485 struct cam_et *target, *next_target;
4486 struct cam_ed *device, *next_device;
4488 sim_lock_assert_owned(path->bus->sim->lock);
4490 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4493 * Most async events come from a CAM interrupt context. In
4494 * a few cases, the error recovery code at the peripheral layer,
4495 * which may run from our SWI or a process context, may signal
4496 * deferred events with a call to xpt_async.
4499 bus = path->bus;
4501 if (async_code == AC_BUS_RESET) {
4502 /* Update our notion of when the last reset occurred */
4503 microuptime(&bus->last_reset);
4506 for (target = TAILQ_FIRST(&bus->et_entries);
4507 target != NULL;
4508 target = next_target) {
4510 next_target = TAILQ_NEXT(target, links);
4512 if (path->target != target
4513 && path->target->target_id != CAM_TARGET_WILDCARD
4514 && target->target_id != CAM_TARGET_WILDCARD)
4515 continue;
4517 if (async_code == AC_SENT_BDR) {
4518 /* Update our notion of when the last reset occurred */
4519 microuptime(&path->target->last_reset);
4522 for (device = TAILQ_FIRST(&target->ed_entries);
4523 device != NULL;
4524 device = next_device) {
4526 next_device = TAILQ_NEXT(device, links);
4528 if (path->device != device
4529 && path->device->lun_id != CAM_LUN_WILDCARD
4530 && device->lun_id != CAM_LUN_WILDCARD)
4531 continue;
4533 xpt_dev_async(async_code, bus, target,
4534 device, async_arg);
4536 xpt_async_bcast(&device->asyncs, async_code,
4537 path, async_arg);
4542 * If this wasn't a fully wildcarded async, tell all
4543 * clients that want all async events.
4545 if (bus != xpt_periph->path->bus)
4546 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4547 path, async_arg);
4550 static void
4551 xpt_async_bcast(struct async_list *async_head,
4552 u_int32_t async_code,
4553 struct cam_path *path, void *async_arg)
4555 struct async_node *cur_entry;
4557 cur_entry = SLIST_FIRST(async_head);
4558 while (cur_entry != NULL) {
4559 struct async_node *next_entry;
4561 * Grab the next list entry before we call the current
4562 * entry's callback. This is because the callback function
4563 * can delete its async callback entry.
4565 next_entry = SLIST_NEXT(cur_entry, links);
4566 if ((cur_entry->event_enable & async_code) != 0)
4567 cur_entry->callback(cur_entry->callback_arg,
4568 async_code, path,
4569 async_arg);
4570 cur_entry = next_entry;
4575 * Handle any per-device event notifications that require action by the XPT.
4577 static void
4578 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4579 struct cam_ed *device, void *async_arg)
4581 cam_status status;
4582 struct cam_path newpath;
4585 * We only need to handle events for real devices.
4587 if (target->target_id == CAM_TARGET_WILDCARD
4588 || device->lun_id == CAM_LUN_WILDCARD)
4589 return;
4592 * We need our own path with wildcards expanded to
4593 * handle certain types of events.
4595 if ((async_code == AC_SENT_BDR)
4596 || (async_code == AC_BUS_RESET)
4597 || (async_code == AC_INQ_CHANGED))
4598 status = xpt_compile_path(&newpath, NULL,
4599 bus->path_id,
4600 target->target_id,
4601 device->lun_id);
4602 else
4603 status = CAM_REQ_CMP_ERR;
4605 if (status == CAM_REQ_CMP) {
4608 * Allow transfer negotiation to occur in a
4609 * tag free environment.
4611 if (async_code == AC_SENT_BDR
4612 || async_code == AC_BUS_RESET)
4613 xpt_toggle_tags(&newpath);
4615 if (async_code == AC_INQ_CHANGED) {
4617 * We've sent a start unit command, or
4618 * something similar to a device that
4619 * may have caused its inquiry data to
4620 * change. So we re-scan the device to
4621 * refresh the inquiry data for it.
4623 xpt_scan_lun(newpath.periph, &newpath,
4624 CAM_EXPECT_INQ_CHANGE, NULL);
4626 xpt_release_path(&newpath);
4627 } else if (async_code == AC_LOST_DEVICE) {
4629 * When we lose a device the device may be about to detach
4630 * the sim, we have to clear out all pending timeouts and
4631 * requests before that happens. XXX it would be nice if
4632 * we could abort the requests pertaining to the device.
4634 xpt_release_devq_timeout(device);
4635 if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
4636 device->flags |= CAM_DEV_UNCONFIGURED;
4637 xpt_release_device(bus, target, device);
4639 } else if (async_code == AC_TRANSFER_NEG) {
4640 struct ccb_trans_settings *settings;
4642 settings = (struct ccb_trans_settings *)async_arg;
4643 xpt_set_transfer_settings(settings, device,
4644 /*async_update*/TRUE);
4648 u_int32_t
4649 xpt_freeze_devq(struct cam_path *path, u_int count)
4651 struct ccb_hdr *ccbh;
4653 sim_lock_assert_owned(path->bus->sim->lock);
4655 path->device->qfrozen_cnt += count;
4658 * Mark the last CCB in the queue as needing
4659 * to be requeued if the driver hasn't
4660 * changed it's state yet. This fixes a race
4661 * where a ccb is just about to be queued to
4662 * a controller driver when it's interrupt routine
4663 * freezes the queue. To completly close the
4664 * hole, controller drives must check to see
4665 * if a ccb's status is still CAM_REQ_INPROG
4666 * just before they queue
4667 * the CCB. See ahc_action/ahc_freeze_devq for
4668 * an example.
4670 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4671 if (ccbh && ccbh->status == CAM_REQ_INPROG)
4672 ccbh->status = CAM_REQUEUE_REQ;
4673 return (path->device->qfrozen_cnt);
4676 u_int32_t
4677 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4679 sim_lock_assert_owned(sim->lock);
4681 if (sim->devq == NULL)
4682 return(count);
4683 sim->devq->send_queue.qfrozen_cnt += count;
4684 if (sim->devq->active_dev != NULL) {
4685 struct ccb_hdr *ccbh;
4687 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4688 ccb_hdr_tailq);
4689 if (ccbh && ccbh->status == CAM_REQ_INPROG)
4690 ccbh->status = CAM_REQUEUE_REQ;
4692 return (sim->devq->send_queue.qfrozen_cnt);
4696 * WARNING: most devices, especially USB/UMASS, may detach their sim early.
4697 * We ref-count the sim (and the bus only NULLs it out when the bus has been
4698 * freed, which is not the case here), but the device queue is also freed XXX
4699 * and we have to check that here.
4701 * XXX fixme: could we simply not null-out the device queue via
4702 * cam_sim_free()?
4704 static void
4705 xpt_release_devq_timeout(void *arg)
4707 struct cam_ed *device;
4709 device = (struct cam_ed *)arg;
4711 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4714 void
4715 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4717 sim_lock_assert_owned(path->bus->sim->lock);
4719 xpt_release_devq_device(path->device, count, run_queue);
4722 static void
4723 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4725 int rundevq;
4727 rundevq = 0;
4729 if (dev->qfrozen_cnt > 0) {
4731 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4732 dev->qfrozen_cnt -= count;
4733 if (dev->qfrozen_cnt == 0) {
4736 * No longer need to wait for a successful
4737 * command completion.
4739 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4742 * Remove any timeouts that might be scheduled
4743 * to release this queue.
4745 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4746 callout_stop(&dev->callout);
4747 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4751 * Now that we are unfrozen schedule the
4752 * device so any pending transactions are
4753 * run.
4755 if ((dev->ccbq.queue.entries > 0)
4756 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4757 && (run_queue != 0)) {
4758 rundevq = 1;
4762 if (rundevq != 0)
4763 xpt_run_dev_sendq(dev->target->bus);
4766 void
4767 xpt_release_simq(struct cam_sim *sim, int run_queue)
4769 struct camq *sendq;
4771 sim_lock_assert_owned(sim->lock);
4773 if (sim->devq == NULL)
4774 return;
4776 sendq = &(sim->devq->send_queue);
4777 if (sendq->qfrozen_cnt > 0) {
4778 sendq->qfrozen_cnt--;
4779 if (sendq->qfrozen_cnt == 0) {
4780 struct cam_eb *bus;
4783 * If there is a timeout scheduled to release this
4784 * sim queue, remove it. The queue frozen count is
4785 * already at 0.
4787 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4788 callout_stop(&sim->callout);
4789 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4791 bus = xpt_find_bus(sim->path_id);
4793 if (run_queue) {
4795 * Now that we are unfrozen run the send queue.
4797 xpt_run_dev_sendq(bus);
4799 xpt_release_bus(bus);
4804 void
4805 xpt_done(union ccb *done_ccb)
4807 struct cam_sim *sim;
4809 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4810 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4812 * Queue up the request for handling by our SWI handler
4813 * any of the "non-immediate" type of ccbs.
4815 sim = done_ccb->ccb_h.path->bus->sim;
4816 switch (done_ccb->ccb_h.path->periph->type) {
4817 case CAM_PERIPH_BIO:
4818 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4819 sim_links.tqe);
4820 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4821 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4822 lockmgr(&cam_simq_lock, LK_EXCLUSIVE);
4823 TAILQ_INSERT_TAIL(&cam_simq, sim,
4824 links);
4825 sim->flags |= CAM_SIM_ON_DONEQ;
4826 lockmgr(&cam_simq_lock, LK_RELEASE);
4828 if ((done_ccb->ccb_h.path->periph->flags &
4829 CAM_PERIPH_POLLED) == 0)
4830 setsoftcambio();
4831 break;
4832 default:
4833 panic("unknown periph type %d",
4834 done_ccb->ccb_h.path->periph->type);
4839 union ccb *
4840 xpt_alloc_ccb(void)
4842 union ccb *new_ccb;
4844 new_ccb = kmalloc(sizeof(*new_ccb), M_CAMXPT, M_INTWAIT | M_ZERO);
4845 return (new_ccb);
4848 void
4849 xpt_free_ccb(union ccb *free_ccb)
4851 kfree(free_ccb, M_CAMXPT);
4856 /* Private XPT functions */
4859 * Get a CAM control block for the caller. Charge the structure to the device
4860 * referenced by the path. If the this device has no 'credits' then the
4861 * device already has the maximum number of outstanding operations under way
4862 * and we return NULL. If we don't have sufficient resources to allocate more
4863 * ccbs, we also return NULL.
4865 static union ccb *
4866 xpt_get_ccb(struct cam_ed *device)
4868 union ccb *new_ccb;
4869 struct cam_sim *sim;
4871 sim = device->sim;
4872 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4873 new_ccb = xpt_alloc_ccb();
4874 if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4875 callout_init(&new_ccb->ccb_h.timeout_ch);
4876 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4877 xpt_links.sle);
4878 sim->ccb_count++;
4880 cam_ccbq_take_opening(&device->ccbq);
4881 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4882 return (new_ccb);
4885 static void
4886 xpt_release_bus(struct cam_eb *bus)
4889 if ((--bus->refcount == 0)
4890 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4891 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4892 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4893 xsoftc.bus_generation++;
4894 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4895 kfree(bus, M_CAMXPT);
4899 static struct cam_et *
4900 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4902 struct cam_et *target;
4903 struct cam_et *cur_target;
4905 target = kmalloc(sizeof(*target), M_CAMXPT, M_INTWAIT);
4907 TAILQ_INIT(&target->ed_entries);
4908 target->bus = bus;
4909 target->target_id = target_id;
4910 target->refcount = 1;
4911 target->generation = 0;
4912 timevalclear(&target->last_reset);
4914 * Hold a reference to our parent bus so it
4915 * will not go away before we do.
4917 bus->refcount++;
4919 /* Insertion sort into our bus's target list */
4920 cur_target = TAILQ_FIRST(&bus->et_entries);
4921 while (cur_target != NULL && cur_target->target_id < target_id)
4922 cur_target = TAILQ_NEXT(cur_target, links);
4924 if (cur_target != NULL) {
4925 TAILQ_INSERT_BEFORE(cur_target, target, links);
4926 } else {
4927 TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4929 bus->generation++;
4930 return (target);
4933 static void
4934 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4936 if (target->refcount == 1) {
4937 KKASSERT(TAILQ_FIRST(&target->ed_entries) == NULL);
4938 TAILQ_REMOVE(&bus->et_entries, target, links);
4939 bus->generation++;
4940 xpt_release_bus(bus);
4941 KKASSERT(target->refcount == 1);
4942 kfree(target, M_CAMXPT);
4943 } else {
4944 --target->refcount;
4948 static struct cam_ed *
4949 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4951 struct cam_path path;
4952 struct cam_ed *device;
4953 struct cam_devq *devq;
4954 cam_status status;
4956 if (SIM_DEAD(bus->sim))
4957 return (NULL);
4959 /* Make space for us in the device queue on our bus */
4960 if (bus->sim->devq == NULL)
4961 return(NULL);
4962 devq = bus->sim->devq;
4963 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4965 if (status != CAM_REQ_CMP) {
4966 device = NULL;
4967 } else {
4968 device = kmalloc(sizeof(*device), M_CAMXPT, M_INTWAIT);
4971 if (device != NULL) {
4972 struct cam_ed *cur_device;
4974 cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4975 device->alloc_ccb_entry.device = device;
4976 cam_init_pinfo(&device->send_ccb_entry.pinfo);
4977 device->send_ccb_entry.device = device;
4978 device->target = target;
4979 device->lun_id = lun_id;
4980 device->sim = bus->sim;
4981 /* Initialize our queues */
4982 if (camq_init(&device->drvq, 0) != 0) {
4983 kfree(device, M_CAMXPT);
4984 return (NULL);
4986 if (cam_ccbq_init(&device->ccbq,
4987 bus->sim->max_dev_openings) != 0) {
4988 camq_fini(&device->drvq);
4989 kfree(device, M_CAMXPT);
4990 return (NULL);
4992 SLIST_INIT(&device->asyncs);
4993 SLIST_INIT(&device->periphs);
4994 device->generation = 0;
4995 device->owner = NULL;
4997 * Take the default quirk entry until we have inquiry
4998 * data and can determine a better quirk to use.
5000 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
5001 bzero(&device->inq_data, sizeof(device->inq_data));
5002 device->inq_flags = 0;
5003 device->queue_flags = 0;
5004 device->serial_num = NULL;
5005 device->serial_num_len = 0;
5006 device->qfrozen_cnt = 0;
5007 device->flags = CAM_DEV_UNCONFIGURED;
5008 device->tag_delay_count = 0;
5009 device->tag_saved_openings = 0;
5010 device->refcount = 1;
5011 callout_init(&device->callout);
5014 * Hold a reference to our parent target so it
5015 * will not go away before we do.
5017 target->refcount++;
5020 * XXX should be limited by number of CCBs this bus can
5021 * do.
5023 bus->sim->max_ccbs += device->ccbq.devq_openings;
5024 /* Insertion sort into our target's device list */
5025 cur_device = TAILQ_FIRST(&target->ed_entries);
5026 while (cur_device != NULL && cur_device->lun_id < lun_id)
5027 cur_device = TAILQ_NEXT(cur_device, links);
5028 if (cur_device != NULL) {
5029 TAILQ_INSERT_BEFORE(cur_device, device, links);
5030 } else {
5031 TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
5033 target->generation++;
5034 if (lun_id != CAM_LUN_WILDCARD) {
5035 xpt_compile_path(&path,
5036 NULL,
5037 bus->path_id,
5038 target->target_id,
5039 lun_id);
5040 xpt_devise_transport(&path);
5041 xpt_release_path(&path);
5044 return (device);
5047 static void
5048 xpt_reference_device(struct cam_ed *device)
5050 ++device->refcount;
5053 static void
5054 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
5055 struct cam_ed *device)
5057 struct cam_devq *devq;
5059 if (device->refcount == 1) {
5060 KKASSERT(device->flags & CAM_DEV_UNCONFIGURED);
5062 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
5063 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
5064 panic("Removing device while still queued for ccbs");
5066 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
5067 device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
5068 callout_stop(&device->callout);
5071 TAILQ_REMOVE(&target->ed_entries, device,links);
5072 target->generation++;
5073 bus->sim->max_ccbs -= device->ccbq.devq_openings;
5074 if (!SIM_DEAD(bus->sim)) {
5075 /* Release our slot in the devq */
5076 devq = bus->sim->devq;
5077 cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
5079 camq_fini(&device->drvq);
5080 camq_fini(&device->ccbq.queue);
5081 xpt_release_target(bus, target);
5082 KKASSERT(device->refcount == 1);
5083 kfree(device, M_CAMXPT);
5084 } else {
5085 --device->refcount;
5089 static u_int32_t
5090 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5092 int diff;
5093 int result;
5094 struct cam_ed *dev;
5096 dev = path->device;
5098 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5099 result = cam_ccbq_resize(&dev->ccbq, newopenings);
5100 if (result == CAM_REQ_CMP && (diff < 0)) {
5101 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5103 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5104 || (dev->inq_flags & SID_CmdQue) != 0)
5105 dev->tag_saved_openings = newopenings;
5106 /* Adjust the global limit */
5107 dev->sim->max_ccbs += diff;
5108 return (result);
5111 static struct cam_eb *
5112 xpt_find_bus(path_id_t path_id)
5114 struct cam_eb *bus;
5116 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5117 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
5118 if (bus->path_id == path_id) {
5119 bus->refcount++;
5120 break;
5123 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5124 return (bus);
5127 static struct cam_et *
5128 xpt_find_target(struct cam_eb *bus, target_id_t target_id)
5130 struct cam_et *target;
5132 TAILQ_FOREACH(target, &bus->et_entries, links) {
5133 if (target->target_id == target_id) {
5134 target->refcount++;
5135 break;
5138 return (target);
5141 static struct cam_ed *
5142 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5144 struct cam_ed *device;
5146 TAILQ_FOREACH(device, &target->ed_entries, links) {
5147 if (device->lun_id == lun_id) {
5148 device->refcount++;
5149 break;
5152 return (device);
5155 typedef struct {
5156 union ccb *request_ccb;
5157 struct ccb_pathinq *cpi;
5158 int counter;
5159 } xpt_scan_bus_info;
5162 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5163 * As the scan progresses, xpt_scan_bus is used as the
5164 * callback on completion function.
5166 static void
5167 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5169 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5170 ("xpt_scan_bus\n"));
5171 switch (request_ccb->ccb_h.func_code) {
5172 case XPT_SCAN_BUS:
5174 xpt_scan_bus_info *scan_info;
5175 union ccb *work_ccb;
5176 struct cam_path *path;
5177 u_int i;
5178 u_int max_target;
5179 u_int initiator_id;
5181 /* Find out the characteristics of the bus */
5182 work_ccb = xpt_alloc_ccb();
5183 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5184 request_ccb->ccb_h.pinfo.priority);
5185 work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5186 xpt_action(work_ccb);
5187 if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5188 request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5189 xpt_free_ccb(work_ccb);
5190 xpt_done(request_ccb);
5191 return;
5194 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5196 * Can't scan the bus on an adapter that
5197 * cannot perform the initiator role.
5199 request_ccb->ccb_h.status = CAM_REQ_CMP;
5200 xpt_free_ccb(work_ccb);
5201 xpt_done(request_ccb);
5202 return;
5205 /* Save some state for use while we probe for devices */
5206 scan_info = (xpt_scan_bus_info *)
5207 kmalloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_INTWAIT);
5208 scan_info->request_ccb = request_ccb;
5209 scan_info->cpi = &work_ccb->cpi;
5211 /* Cache on our stack so we can work asynchronously */
5212 max_target = scan_info->cpi->max_target;
5213 initiator_id = scan_info->cpi->initiator_id;
5217 * We can scan all targets in parallel, or do it sequentially.
5219 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5220 max_target = 0;
5221 scan_info->counter = 0;
5222 } else {
5223 scan_info->counter = scan_info->cpi->max_target + 1;
5224 if (scan_info->cpi->initiator_id < scan_info->counter) {
5225 scan_info->counter--;
5229 for (i = 0; i <= max_target; i++) {
5230 cam_status status;
5231 if (i == initiator_id)
5232 continue;
5234 status = xpt_create_path(&path, xpt_periph,
5235 request_ccb->ccb_h.path_id,
5236 i, 0);
5237 if (status != CAM_REQ_CMP) {
5238 kprintf("xpt_scan_bus: xpt_create_path failed"
5239 " with status %#x, bus scan halted\n",
5240 status);
5241 kfree(scan_info, M_CAMXPT);
5242 request_ccb->ccb_h.status = status;
5243 xpt_free_ccb(work_ccb);
5244 xpt_done(request_ccb);
5245 break;
5247 work_ccb = xpt_alloc_ccb();
5248 xpt_setup_ccb(&work_ccb->ccb_h, path,
5249 request_ccb->ccb_h.pinfo.priority);
5250 work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5251 work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5252 work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5253 work_ccb->crcn.flags = request_ccb->crcn.flags;
5254 xpt_action(work_ccb);
5256 break;
5258 case XPT_SCAN_LUN:
5260 cam_status status;
5261 struct cam_path *path;
5262 xpt_scan_bus_info *scan_info;
5263 path_id_t path_id;
5264 target_id_t target_id;
5265 lun_id_t lun_id;
5267 /* Reuse the same CCB to query if a device was really found */
5268 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5269 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5270 request_ccb->ccb_h.pinfo.priority);
5271 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5273 path_id = request_ccb->ccb_h.path_id;
5274 target_id = request_ccb->ccb_h.target_id;
5275 lun_id = request_ccb->ccb_h.target_lun;
5276 xpt_action(request_ccb);
5278 if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5279 struct cam_ed *device;
5280 struct cam_et *target;
5281 int phl;
5284 * If we already probed lun 0 successfully, or
5285 * we have additional configured luns on this
5286 * target that might have "gone away", go onto
5287 * the next lun.
5289 target = request_ccb->ccb_h.path->target;
5291 * We may touch devices that we don't
5292 * hold references too, so ensure they
5293 * don't disappear out from under us.
5294 * The target above is referenced by the
5295 * path in the request ccb.
5297 phl = 0;
5298 device = TAILQ_FIRST(&target->ed_entries);
5299 if (device != NULL) {
5300 phl = CAN_SRCH_HI_SPARSE(device);
5301 if (device->lun_id == 0)
5302 device = TAILQ_NEXT(device, links);
5304 if ((lun_id != 0) || (device != NULL)) {
5305 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5306 lun_id++;
5308 } else {
5309 struct cam_ed *device;
5311 device = request_ccb->ccb_h.path->device;
5313 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5314 /* Try the next lun */
5315 if (lun_id < (CAM_SCSI2_MAXLUN-1)
5316 || CAN_SRCH_HI_DENSE(device))
5317 lun_id++;
5322 * Free the current request path- we're done with it.
5324 xpt_free_path(request_ccb->ccb_h.path);
5327 * Check to see if we scan any further luns.
5329 if (lun_id == request_ccb->ccb_h.target_lun
5330 || lun_id > scan_info->cpi->max_lun) {
5331 int done;
5333 hop_again:
5334 done = 0;
5335 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5336 scan_info->counter++;
5337 if (scan_info->counter ==
5338 scan_info->cpi->initiator_id) {
5339 scan_info->counter++;
5341 if (scan_info->counter >=
5342 scan_info->cpi->max_target+1) {
5343 done = 1;
5345 } else {
5346 scan_info->counter--;
5347 if (scan_info->counter == 0) {
5348 done = 1;
5351 if (done) {
5352 xpt_free_ccb(request_ccb);
5353 xpt_free_ccb((union ccb *)scan_info->cpi);
5354 request_ccb = scan_info->request_ccb;
5355 kfree(scan_info, M_CAMXPT);
5356 request_ccb->ccb_h.status = CAM_REQ_CMP;
5357 xpt_done(request_ccb);
5358 break;
5361 if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) {
5362 break;
5364 status = xpt_create_path(&path, xpt_periph,
5365 scan_info->request_ccb->ccb_h.path_id,
5366 scan_info->counter, 0);
5367 if (status != CAM_REQ_CMP) {
5368 kprintf("xpt_scan_bus: xpt_create_path failed"
5369 " with status %#x, bus scan halted\n",
5370 status);
5371 xpt_free_ccb(request_ccb);
5372 xpt_free_ccb((union ccb *)scan_info->cpi);
5373 request_ccb = scan_info->request_ccb;
5374 kfree(scan_info, M_CAMXPT);
5375 request_ccb->ccb_h.status = status;
5376 xpt_done(request_ccb);
5377 break;
5379 xpt_setup_ccb(&request_ccb->ccb_h, path,
5380 request_ccb->ccb_h.pinfo.priority);
5381 request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5382 request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5383 request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5384 request_ccb->crcn.flags =
5385 scan_info->request_ccb->crcn.flags;
5386 } else {
5387 status = xpt_create_path(&path, xpt_periph,
5388 path_id, target_id, lun_id);
5389 if (status != CAM_REQ_CMP) {
5390 kprintf("xpt_scan_bus: xpt_create_path failed "
5391 "with status %#x, halting LUN scan\n",
5392 status);
5393 goto hop_again;
5395 xpt_setup_ccb(&request_ccb->ccb_h, path,
5396 request_ccb->ccb_h.pinfo.priority);
5397 request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5398 request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5399 request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5400 request_ccb->crcn.flags =
5401 scan_info->request_ccb->crcn.flags;
5403 xpt_action(request_ccb);
5404 break;
5406 default:
5407 break;
5411 typedef enum {
5412 PROBE_TUR,
5413 PROBE_INQUIRY, /* this counts as DV0 for Basic Domain Validation */
5414 PROBE_FULL_INQUIRY,
5415 PROBE_MODE_SENSE,
5416 PROBE_SERIAL_NUM_0,
5417 PROBE_SERIAL_NUM_1,
5418 PROBE_TUR_FOR_NEGOTIATION,
5419 PROBE_INQUIRY_BASIC_DV1,
5420 PROBE_INQUIRY_BASIC_DV2,
5421 PROBE_DV_EXIT
5422 } probe_action;
5424 typedef enum {
5425 PROBE_INQUIRY_CKSUM = 0x01,
5426 PROBE_SERIAL_CKSUM = 0x02,
5427 PROBE_NO_ANNOUNCE = 0x04
5428 } probe_flags;
5430 typedef struct {
5431 TAILQ_HEAD(, ccb_hdr) request_ccbs;
5432 probe_action action;
5433 union ccb saved_ccb;
5434 probe_flags flags;
5435 MD5_CTX context;
5436 u_int8_t digest[16];
5437 } probe_softc;
5439 static void
5440 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5441 cam_flags flags, union ccb *request_ccb)
5443 struct ccb_pathinq cpi;
5444 cam_status status;
5445 struct cam_path *new_path;
5446 struct cam_periph *old_periph;
5448 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5449 ("xpt_scan_lun\n"));
5451 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5452 cpi.ccb_h.func_code = XPT_PATH_INQ;
5453 xpt_action((union ccb *)&cpi);
5455 if (cpi.ccb_h.status != CAM_REQ_CMP) {
5456 if (request_ccb != NULL) {
5457 request_ccb->ccb_h.status = cpi.ccb_h.status;
5458 xpt_done(request_ccb);
5460 return;
5463 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5465 * Can't scan the bus on an adapter that
5466 * cannot perform the initiator role.
5468 if (request_ccb != NULL) {
5469 request_ccb->ccb_h.status = CAM_REQ_CMP;
5470 xpt_done(request_ccb);
5472 return;
5475 if (request_ccb == NULL) {
5476 request_ccb = kmalloc(sizeof(union ccb), M_CAMXPT, M_INTWAIT);
5477 new_path = kmalloc(sizeof(*new_path), M_CAMXPT, M_INTWAIT);
5478 status = xpt_compile_path(new_path, xpt_periph,
5479 path->bus->path_id,
5480 path->target->target_id,
5481 path->device->lun_id);
5483 if (status != CAM_REQ_CMP) {
5484 xpt_print(path, "xpt_scan_lun: can't compile path, "
5485 "can't continue\n");
5486 kfree(request_ccb, M_CAMXPT);
5487 kfree(new_path, M_CAMXPT);
5488 return;
5490 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5491 request_ccb->ccb_h.cbfcnp = xptscandone;
5492 request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5493 request_ccb->crcn.flags = flags;
5496 if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5497 probe_softc *softc;
5499 softc = (probe_softc *)old_periph->softc;
5500 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5501 periph_links.tqe);
5502 } else {
5503 status = cam_periph_alloc(proberegister, NULL, probecleanup,
5504 probestart, "probe",
5505 CAM_PERIPH_BIO,
5506 request_ccb->ccb_h.path, NULL, 0,
5507 request_ccb);
5509 if (status != CAM_REQ_CMP) {
5510 xpt_print(path, "xpt_scan_lun: cam_alloc_periph "
5511 "returned an error, can't continue probe\n");
5512 request_ccb->ccb_h.status = status;
5513 xpt_done(request_ccb);
5518 static void
5519 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5521 xpt_release_path(done_ccb->ccb_h.path);
5522 kfree(done_ccb->ccb_h.path, M_CAMXPT);
5523 kfree(done_ccb, M_CAMXPT);
5526 static cam_status
5527 proberegister(struct cam_periph *periph, void *arg)
5529 union ccb *request_ccb; /* CCB representing the probe request */
5530 cam_status status;
5531 probe_softc *softc;
5533 request_ccb = (union ccb *)arg;
5534 if (periph == NULL) {
5535 kprintf("proberegister: periph was NULL!!\n");
5536 return(CAM_REQ_CMP_ERR);
5539 if (request_ccb == NULL) {
5540 kprintf("proberegister: no probe CCB, "
5541 "can't register device\n");
5542 return(CAM_REQ_CMP_ERR);
5545 softc = kmalloc(sizeof(*softc), M_CAMXPT, M_INTWAIT | M_ZERO);
5546 TAILQ_INIT(&softc->request_ccbs);
5547 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5548 periph_links.tqe);
5549 softc->flags = 0;
5550 periph->softc = softc;
5551 status = cam_periph_acquire(periph);
5552 if (status != CAM_REQ_CMP) {
5553 return (status);
5558 * Ensure we've waited at least a bus settle
5559 * delay before attempting to probe the device.
5560 * For HBAs that don't do bus resets, this won't make a difference.
5562 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5563 scsi_delay);
5564 probeschedule(periph);
5565 return(CAM_REQ_CMP);
5568 static void
5569 probeschedule(struct cam_periph *periph)
5571 struct ccb_pathinq cpi;
5572 union ccb *ccb;
5573 probe_softc *softc;
5575 softc = (probe_softc *)periph->softc;
5576 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5578 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5579 cpi.ccb_h.func_code = XPT_PATH_INQ;
5580 xpt_action((union ccb *)&cpi);
5583 * If a device has gone away and another device, or the same one,
5584 * is back in the same place, it should have a unit attention
5585 * condition pending. It will not report the unit attention in
5586 * response to an inquiry, which may leave invalid transfer
5587 * negotiations in effect. The TUR will reveal the unit attention
5588 * condition. Only send the TUR for lun 0, since some devices
5589 * will get confused by commands other than inquiry to non-existent
5590 * luns. If you think a device has gone away start your scan from
5591 * lun 0. This will insure that any bogus transfer settings are
5592 * invalidated.
5594 * If we haven't seen the device before and the controller supports
5595 * some kind of transfer negotiation, negotiate with the first
5596 * sent command if no bus reset was performed at startup. This
5597 * ensures that the device is not confused by transfer negotiation
5598 * settings left over by loader or BIOS action.
5600 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5601 && (ccb->ccb_h.target_lun == 0)) {
5602 softc->action = PROBE_TUR;
5603 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5604 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5605 proberequestdefaultnegotiation(periph);
5606 softc->action = PROBE_INQUIRY;
5607 } else {
5608 softc->action = PROBE_INQUIRY;
5611 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5612 softc->flags |= PROBE_NO_ANNOUNCE;
5613 else
5614 softc->flags &= ~PROBE_NO_ANNOUNCE;
5616 xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5619 static void
5620 probestart(struct cam_periph *periph, union ccb *start_ccb)
5622 /* Probe the device that our peripheral driver points to */
5623 struct ccb_scsiio *csio;
5624 probe_softc *softc;
5626 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5628 softc = (probe_softc *)periph->softc;
5629 csio = &start_ccb->csio;
5631 switch (softc->action) {
5632 case PROBE_TUR:
5633 case PROBE_TUR_FOR_NEGOTIATION:
5634 case PROBE_DV_EXIT:
5636 scsi_test_unit_ready(csio,
5637 /*retries*/4,
5638 probedone,
5639 MSG_SIMPLE_Q_TAG,
5640 SSD_FULL_SIZE,
5641 /*timeout*/60000);
5642 break;
5644 case PROBE_INQUIRY:
5645 case PROBE_FULL_INQUIRY:
5646 case PROBE_INQUIRY_BASIC_DV1:
5647 case PROBE_INQUIRY_BASIC_DV2:
5649 u_int inquiry_len;
5650 struct scsi_inquiry_data *inq_buf;
5652 inq_buf = &periph->path->device->inq_data;
5655 * If the device is currently configured, we calculate an
5656 * MD5 checksum of the inquiry data, and if the serial number
5657 * length is greater than 0, add the serial number data
5658 * into the checksum as well. Once the inquiry and the
5659 * serial number check finish, we attempt to figure out
5660 * whether we still have the same device.
5662 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5664 MD5Init(&softc->context);
5665 MD5Update(&softc->context, (unsigned char *)inq_buf,
5666 sizeof(struct scsi_inquiry_data));
5667 softc->flags |= PROBE_INQUIRY_CKSUM;
5668 if (periph->path->device->serial_num_len > 0) {
5669 MD5Update(&softc->context,
5670 periph->path->device->serial_num,
5671 periph->path->device->serial_num_len);
5672 softc->flags |= PROBE_SERIAL_CKSUM;
5674 MD5Final(softc->digest, &softc->context);
5677 if (softc->action == PROBE_INQUIRY)
5678 inquiry_len = SHORT_INQUIRY_LENGTH;
5679 else
5680 inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf);
5683 * Some parallel SCSI devices fail to send an
5684 * ignore wide residue message when dealing with
5685 * odd length inquiry requests. Round up to be
5686 * safe.
5688 inquiry_len = roundup2(inquiry_len, 2);
5690 if (softc->action == PROBE_INQUIRY_BASIC_DV1
5691 || softc->action == PROBE_INQUIRY_BASIC_DV2) {
5692 inq_buf = kmalloc(inquiry_len, M_CAMXPT, M_INTWAIT);
5694 scsi_inquiry(csio,
5695 /*retries*/4,
5696 probedone,
5697 MSG_SIMPLE_Q_TAG,
5698 (u_int8_t *)inq_buf,
5699 inquiry_len,
5700 /*evpd*/FALSE,
5701 /*page_code*/0,
5702 SSD_MIN_SIZE,
5703 /*timeout*/60 * 1000);
5704 break;
5706 case PROBE_MODE_SENSE:
5708 void *mode_buf;
5709 int mode_buf_len;
5711 mode_buf_len = sizeof(struct scsi_mode_header_6)
5712 + sizeof(struct scsi_mode_blk_desc)
5713 + sizeof(struct scsi_control_page);
5714 mode_buf = kmalloc(mode_buf_len, M_CAMXPT, M_INTWAIT);
5715 scsi_mode_sense(csio,
5716 /*retries*/4,
5717 probedone,
5718 MSG_SIMPLE_Q_TAG,
5719 /*dbd*/FALSE,
5720 SMS_PAGE_CTRL_CURRENT,
5721 SMS_CONTROL_MODE_PAGE,
5722 mode_buf,
5723 mode_buf_len,
5724 SSD_FULL_SIZE,
5725 /*timeout*/60000);
5726 break;
5728 case PROBE_SERIAL_NUM_0:
5730 struct scsi_vpd_supported_page_list *vpd_list = NULL;
5731 struct cam_ed *device;
5733 device = periph->path->device;
5734 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5735 vpd_list = kmalloc(sizeof(*vpd_list), M_CAMXPT,
5736 M_INTWAIT | M_ZERO);
5739 if (vpd_list != NULL) {
5740 scsi_inquiry(csio,
5741 /*retries*/4,
5742 probedone,
5743 MSG_SIMPLE_Q_TAG,
5744 (u_int8_t *)vpd_list,
5745 sizeof(*vpd_list),
5746 /*evpd*/TRUE,
5747 SVPD_SUPPORTED_PAGE_LIST,
5748 SSD_MIN_SIZE,
5749 /*timeout*/60 * 1000);
5750 break;
5753 * We'll have to do without, let our probedone
5754 * routine finish up for us.
5756 start_ccb->csio.data_ptr = NULL;
5757 probedone(periph, start_ccb);
5758 return;
5760 case PROBE_SERIAL_NUM_1:
5762 struct scsi_vpd_unit_serial_number *serial_buf;
5763 struct cam_ed* device;
5765 serial_buf = NULL;
5766 device = periph->path->device;
5767 device->serial_num = NULL;
5768 device->serial_num_len = 0;
5770 serial_buf = (struct scsi_vpd_unit_serial_number *)
5771 kmalloc(sizeof(*serial_buf), M_CAMXPT,
5772 M_INTWAIT | M_ZERO);
5773 scsi_inquiry(csio,
5774 /*retries*/4,
5775 probedone,
5776 MSG_SIMPLE_Q_TAG,
5777 (u_int8_t *)serial_buf,
5778 sizeof(*serial_buf),
5779 /*evpd*/TRUE,
5780 SVPD_UNIT_SERIAL_NUMBER,
5781 SSD_MIN_SIZE,
5782 /*timeout*/60 * 1000);
5783 break;
5786 xpt_action(start_ccb);
5789 static void
5790 proberequestdefaultnegotiation(struct cam_periph *periph)
5792 struct ccb_trans_settings cts;
5794 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5795 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5796 cts.type = CTS_TYPE_USER_SETTINGS;
5797 xpt_action((union ccb *)&cts);
5798 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5799 return;
5801 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5802 cts.type = CTS_TYPE_CURRENT_SETTINGS;
5803 xpt_action((union ccb *)&cts);
5807 * Backoff Negotiation Code- only pertinent for SPI devices.
5809 static int
5810 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device)
5812 struct ccb_trans_settings cts;
5813 struct ccb_trans_settings_spi *spi;
5815 memset(&cts, 0, sizeof (cts));
5816 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5817 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5818 cts.type = CTS_TYPE_CURRENT_SETTINGS;
5819 xpt_action((union ccb *)&cts);
5820 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5821 if (bootverbose) {
5822 xpt_print(periph->path,
5823 "failed to get current device settings\n");
5825 return (0);
5827 if (cts.transport != XPORT_SPI) {
5828 if (bootverbose) {
5829 xpt_print(periph->path, "not SPI transport\n");
5831 return (0);
5833 spi = &cts.xport_specific.spi;
5836 * We cannot renegotiate sync rate if we don't have one.
5838 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
5839 if (bootverbose) {
5840 xpt_print(periph->path, "no sync rate known\n");
5842 return (0);
5846 * We'll assert that we don't have to touch PPR options- the
5847 * SIM will see what we do with period and offset and adjust
5848 * the PPR options as appropriate.
5852 * A sync rate with unknown or zero offset is nonsensical.
5853 * A sync period of zero means Async.
5855 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0
5856 || spi->sync_offset == 0 || spi->sync_period == 0) {
5857 if (bootverbose) {
5858 xpt_print(periph->path, "no sync rate available\n");
5860 return (0);
5863 if (device->flags & CAM_DEV_DV_HIT_BOTTOM) {
5864 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5865 ("hit async: giving up on DV\n"));
5866 return (0);
5871 * Jump sync_period up by one, but stop at 5MHz and fall back to Async.
5872 * We don't try to remember 'last' settings to see if the SIM actually
5873 * gets into the speed we want to set. We check on the SIM telling
5874 * us that a requested speed is bad, but otherwise don't try and
5875 * check the speed due to the asynchronous and handshake nature
5876 * of speed setting.
5878 spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET;
5879 for (;;) {
5880 spi->sync_period++;
5881 if (spi->sync_period >= 0xf) {
5882 spi->sync_period = 0;
5883 spi->sync_offset = 0;
5884 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5885 ("setting to async for DV\n"));
5887 * Once we hit async, we don't want to try
5888 * any more settings.
5890 device->flags |= CAM_DEV_DV_HIT_BOTTOM;
5891 } else if (bootverbose) {
5892 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5893 ("DV: period 0x%x\n", spi->sync_period));
5894 kprintf("setting period to 0x%x\n", spi->sync_period);
5896 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5897 cts.type = CTS_TYPE_CURRENT_SETTINGS;
5898 xpt_action((union ccb *)&cts);
5899 if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5900 break;
5902 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5903 ("DV: failed to set period 0x%x\n", spi->sync_period));
5904 if (spi->sync_period == 0) {
5905 return (0);
5908 return (1);
5911 static void
5912 probedone(struct cam_periph *periph, union ccb *done_ccb)
5914 probe_softc *softc;
5915 struct cam_path *path;
5916 u_int32_t priority;
5918 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5920 softc = (probe_softc *)periph->softc;
5921 path = done_ccb->ccb_h.path;
5922 priority = done_ccb->ccb_h.pinfo.priority;
5924 switch (softc->action) {
5925 case PROBE_TUR:
5927 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5929 if (cam_periph_error(done_ccb, 0,
5930 SF_NO_PRINT, NULL) == ERESTART)
5931 return;
5932 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
5933 /* Don't wedge the queue */
5934 xpt_release_devq(done_ccb->ccb_h.path,
5935 /*count*/1,
5936 /*run_queue*/TRUE);
5938 softc->action = PROBE_INQUIRY;
5939 xpt_release_ccb(done_ccb);
5940 xpt_schedule(periph, priority);
5941 return;
5943 case PROBE_INQUIRY:
5944 case PROBE_FULL_INQUIRY:
5946 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5947 struct scsi_inquiry_data *inq_buf;
5948 u_int8_t periph_qual;
5950 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
5951 inq_buf = &path->device->inq_data;
5953 periph_qual = SID_QUAL(inq_buf);
5955 switch(periph_qual) {
5956 case SID_QUAL_LU_CONNECTED:
5958 u_int8_t len;
5961 * We conservatively request only
5962 * SHORT_INQUIRY_LEN bytes of inquiry
5963 * information during our first try
5964 * at sending an INQUIRY. If the device
5965 * has more information to give,
5966 * perform a second request specifying
5967 * the amount of information the device
5968 * is willing to give.
5970 len = inq_buf->additional_length
5971 + offsetof(struct scsi_inquiry_data,
5972 additional_length) + 1;
5973 if (softc->action == PROBE_INQUIRY
5974 && len > SHORT_INQUIRY_LENGTH) {
5975 softc->action = PROBE_FULL_INQUIRY;
5976 xpt_release_ccb(done_ccb);
5977 xpt_schedule(periph, priority);
5978 return;
5981 xpt_find_quirk(path->device);
5983 xpt_devise_transport(path);
5984 if (INQ_DATA_TQ_ENABLED(inq_buf))
5985 softc->action = PROBE_MODE_SENSE;
5986 else
5987 softc->action = PROBE_SERIAL_NUM_0;
5989 path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5990 xpt_reference_device(path->device);
5992 xpt_release_ccb(done_ccb);
5993 xpt_schedule(periph, priority);
5994 return;
5996 default:
5997 break;
5999 } else if (cam_periph_error(done_ccb, 0,
6000 done_ccb->ccb_h.target_lun > 0
6001 ? SF_RETRY_UA|SF_QUIET_IR
6002 : SF_RETRY_UA,
6003 &softc->saved_ccb) == ERESTART) {
6004 return;
6005 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6006 /* Don't wedge the queue */
6007 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6008 /*run_queue*/TRUE);
6011 * If we get to this point, we got an error status back
6012 * from the inquiry and the error status doesn't require
6013 * automatically retrying the command. Therefore, the
6014 * inquiry failed. If we had inquiry information before
6015 * for this device, but this latest inquiry command failed,
6016 * the device has probably gone away. If this device isn't
6017 * already marked unconfigured, notify the peripheral
6018 * drivers that this device is no more.
6020 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
6021 /* Send the async notification. */
6022 xpt_async(AC_LOST_DEVICE, path, NULL);
6025 xpt_release_ccb(done_ccb);
6026 break;
6028 case PROBE_MODE_SENSE:
6030 struct ccb_scsiio *csio;
6031 struct scsi_mode_header_6 *mode_hdr;
6033 csio = &done_ccb->csio;
6034 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
6035 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6036 struct scsi_control_page *page;
6037 u_int8_t *offset;
6039 offset = ((u_int8_t *)&mode_hdr[1])
6040 + mode_hdr->blk_desc_len;
6041 page = (struct scsi_control_page *)offset;
6042 path->device->queue_flags = page->queue_flags;
6043 } else if (cam_periph_error(done_ccb, 0,
6044 SF_RETRY_UA|SF_NO_PRINT,
6045 &softc->saved_ccb) == ERESTART) {
6046 return;
6047 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6048 /* Don't wedge the queue */
6049 xpt_release_devq(done_ccb->ccb_h.path,
6050 /*count*/1, /*run_queue*/TRUE);
6052 xpt_release_ccb(done_ccb);
6053 kfree(mode_hdr, M_CAMXPT);
6054 softc->action = PROBE_SERIAL_NUM_0;
6055 xpt_schedule(periph, priority);
6056 return;
6058 case PROBE_SERIAL_NUM_0:
6060 struct ccb_scsiio *csio;
6061 struct scsi_vpd_supported_page_list *page_list;
6062 int length, serialnum_supported, i;
6064 serialnum_supported = 0;
6065 csio = &done_ccb->csio;
6066 page_list =
6067 (struct scsi_vpd_supported_page_list *)csio->data_ptr;
6069 if (page_list == NULL) {
6071 * Don't process the command as it was never sent
6073 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6074 && (page_list->length > 0)) {
6075 length = min(page_list->length,
6076 SVPD_SUPPORTED_PAGES_SIZE);
6077 for (i = 0; i < length; i++) {
6078 if (page_list->list[i] ==
6079 SVPD_UNIT_SERIAL_NUMBER) {
6080 serialnum_supported = 1;
6081 break;
6084 } else if (cam_periph_error(done_ccb, 0,
6085 SF_RETRY_UA|SF_NO_PRINT,
6086 &softc->saved_ccb) == ERESTART) {
6087 return;
6088 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6089 /* Don't wedge the queue */
6090 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6091 /*run_queue*/TRUE);
6094 if (page_list != NULL)
6095 kfree(page_list, M_DEVBUF);
6097 if (serialnum_supported) {
6098 xpt_release_ccb(done_ccb);
6099 softc->action = PROBE_SERIAL_NUM_1;
6100 xpt_schedule(periph, priority);
6101 return;
6103 xpt_release_ccb(done_ccb);
6104 softc->action = PROBE_TUR_FOR_NEGOTIATION;
6105 xpt_schedule(periph, done_ccb->ccb_h.pinfo.priority);
6106 return;
6109 case PROBE_SERIAL_NUM_1:
6111 struct ccb_scsiio *csio;
6112 struct scsi_vpd_unit_serial_number *serial_buf;
6113 u_int32_t priority;
6114 int changed;
6115 int have_serialnum;
6117 changed = 1;
6118 have_serialnum = 0;
6119 csio = &done_ccb->csio;
6120 priority = done_ccb->ccb_h.pinfo.priority;
6121 serial_buf =
6122 (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
6124 /* Clean up from previous instance of this device */
6125 if (path->device->serial_num != NULL) {
6126 kfree(path->device->serial_num, M_CAMXPT);
6127 path->device->serial_num = NULL;
6128 path->device->serial_num_len = 0;
6131 if (serial_buf == NULL) {
6133 * Don't process the command as it was never sent
6135 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6136 && (serial_buf->length > 0)) {
6138 have_serialnum = 1;
6139 path->device->serial_num =
6140 kmalloc((serial_buf->length + 1),
6141 M_CAMXPT, M_INTWAIT);
6142 bcopy(serial_buf->serial_num,
6143 path->device->serial_num,
6144 serial_buf->length);
6145 path->device->serial_num_len = serial_buf->length;
6146 path->device->serial_num[serial_buf->length] = '\0';
6147 } else if (cam_periph_error(done_ccb, 0,
6148 SF_RETRY_UA|SF_NO_PRINT,
6149 &softc->saved_ccb) == ERESTART) {
6150 return;
6151 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6152 /* Don't wedge the queue */
6153 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6154 /*run_queue*/TRUE);
6158 * Let's see if we have seen this device before.
6160 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
6161 MD5_CTX context;
6162 u_int8_t digest[16];
6164 MD5Init(&context);
6166 MD5Update(&context,
6167 (unsigned char *)&path->device->inq_data,
6168 sizeof(struct scsi_inquiry_data));
6170 if (have_serialnum)
6171 MD5Update(&context, serial_buf->serial_num,
6172 serial_buf->length);
6174 MD5Final(digest, &context);
6175 if (bcmp(softc->digest, digest, 16) == 0)
6176 changed = 0;
6179 * XXX Do we need to do a TUR in order to ensure
6180 * that the device really hasn't changed???
6182 if ((changed != 0)
6183 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
6184 xpt_async(AC_LOST_DEVICE, path, NULL);
6186 if (serial_buf != NULL)
6187 kfree(serial_buf, M_CAMXPT);
6189 if (changed != 0) {
6191 * Now that we have all the necessary
6192 * information to safely perform transfer
6193 * negotiations... Controllers don't perform
6194 * any negotiation or tagged queuing until
6195 * after the first XPT_SET_TRAN_SETTINGS ccb is
6196 * received. So, on a new device, just retrieve
6197 * the user settings, and set them as the current
6198 * settings to set the device up.
6200 proberequestdefaultnegotiation(periph);
6201 xpt_release_ccb(done_ccb);
6204 * Perform a TUR to allow the controller to
6205 * perform any necessary transfer negotiation.
6207 softc->action = PROBE_TUR_FOR_NEGOTIATION;
6208 xpt_schedule(periph, priority);
6209 return;
6211 xpt_release_ccb(done_ccb);
6212 break;
6214 case PROBE_TUR_FOR_NEGOTIATION:
6215 case PROBE_DV_EXIT:
6216 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6217 /* Don't wedge the queue */
6218 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6219 /*run_queue*/TRUE);
6222 xpt_reference_device(path->device);
6224 * Do Domain Validation for lun 0 on devices that claim
6225 * to support Synchronous Transfer modes.
6227 if (softc->action == PROBE_TUR_FOR_NEGOTIATION
6228 && done_ccb->ccb_h.target_lun == 0
6229 && (path->device->inq_data.flags & SID_Sync) != 0
6230 && (path->device->flags & CAM_DEV_IN_DV) == 0) {
6231 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6232 ("Begin Domain Validation\n"));
6233 path->device->flags |= CAM_DEV_IN_DV;
6234 xpt_release_ccb(done_ccb);
6235 softc->action = PROBE_INQUIRY_BASIC_DV1;
6236 xpt_schedule(periph, priority);
6237 return;
6239 if (softc->action == PROBE_DV_EXIT) {
6240 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6241 ("Leave Domain Validation\n"));
6243 path->device->flags &=
6244 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6245 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6246 /* Inform the XPT that a new device has been found */
6247 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6248 xpt_action(done_ccb);
6249 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6250 done_ccb);
6252 xpt_release_ccb(done_ccb);
6253 break;
6254 case PROBE_INQUIRY_BASIC_DV1:
6255 case PROBE_INQUIRY_BASIC_DV2:
6257 struct scsi_inquiry_data *nbuf;
6258 struct ccb_scsiio *csio;
6260 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6261 /* Don't wedge the queue */
6262 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6263 /*run_queue*/TRUE);
6265 csio = &done_ccb->csio;
6266 nbuf = (struct scsi_inquiry_data *)csio->data_ptr;
6267 if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) {
6268 xpt_print(path,
6269 "inquiry data fails comparison at DV%d step\n",
6270 softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2);
6271 if (proberequestbackoff(periph, path->device)) {
6272 path->device->flags &= ~CAM_DEV_IN_DV;
6273 softc->action = PROBE_TUR_FOR_NEGOTIATION;
6274 } else {
6275 /* give up */
6276 softc->action = PROBE_DV_EXIT;
6278 kfree(nbuf, M_CAMXPT);
6279 xpt_release_ccb(done_ccb);
6280 xpt_schedule(periph, priority);
6281 return;
6283 kfree(nbuf, M_CAMXPT);
6284 if (softc->action == PROBE_INQUIRY_BASIC_DV1) {
6285 softc->action = PROBE_INQUIRY_BASIC_DV2;
6286 xpt_release_ccb(done_ccb);
6287 xpt_schedule(periph, priority);
6288 return;
6290 if (softc->action == PROBE_DV_EXIT) {
6291 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6292 ("Leave Domain Validation Successfully\n"));
6294 path->device->flags &=
6295 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6296 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6297 /* Inform the XPT that a new device has been found */
6298 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6299 xpt_action(done_ccb);
6300 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6301 done_ccb);
6303 xpt_release_ccb(done_ccb);
6304 break;
6307 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
6308 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
6309 done_ccb->ccb_h.status = CAM_REQ_CMP;
6310 xpt_done(done_ccb);
6311 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
6312 cam_periph_invalidate(periph);
6313 cam_periph_release(periph);
6314 } else {
6315 probeschedule(periph);
6319 static void
6320 probecleanup(struct cam_periph *periph)
6322 kfree(periph->softc, M_CAMXPT);
6325 static void
6326 xpt_find_quirk(struct cam_ed *device)
6328 caddr_t match;
6330 match = cam_quirkmatch((caddr_t)&device->inq_data,
6331 (caddr_t)xpt_quirk_table,
6332 sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
6333 sizeof(*xpt_quirk_table), scsi_inquiry_match);
6335 if (match == NULL)
6336 panic("xpt_find_quirk: device didn't match wildcard entry!!");
6338 device->quirk = (struct xpt_quirk_entry *)match;
6341 static int
6342 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)
6344 int error, bool;
6346 bool = cam_srch_hi;
6347 error = sysctl_handle_int(oidp, &bool, 0, req);
6348 if (error != 0 || req->newptr == NULL)
6349 return (error);
6350 if (bool == 0 || bool == 1) {
6351 cam_srch_hi = bool;
6352 return (0);
6353 } else {
6354 return (EINVAL);
6358 static void
6359 xpt_devise_transport(struct cam_path *path)
6361 struct ccb_pathinq cpi;
6362 struct ccb_trans_settings cts;
6363 struct scsi_inquiry_data *inq_buf;
6365 /* Get transport information from the SIM */
6366 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
6367 cpi.ccb_h.func_code = XPT_PATH_INQ;
6368 xpt_action((union ccb *)&cpi);
6370 inq_buf = NULL;
6371 if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
6372 inq_buf = &path->device->inq_data;
6373 path->device->protocol = PROTO_SCSI;
6374 path->device->protocol_version =
6375 inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
6376 path->device->transport = cpi.transport;
6377 path->device->transport_version = cpi.transport_version;
6380 * Any device not using SPI3 features should
6381 * be considered SPI2 or lower.
6383 if (inq_buf != NULL) {
6384 if (path->device->transport == XPORT_SPI
6385 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6386 && path->device->transport_version > 2)
6387 path->device->transport_version = 2;
6388 } else {
6389 struct cam_ed* otherdev;
6391 for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6392 otherdev != NULL;
6393 otherdev = TAILQ_NEXT(otherdev, links)) {
6394 if (otherdev != path->device)
6395 break;
6398 if (otherdev != NULL) {
6400 * Initially assume the same versioning as
6401 * prior luns for this target.
6403 path->device->protocol_version =
6404 otherdev->protocol_version;
6405 path->device->transport_version =
6406 otherdev->transport_version;
6407 } else {
6408 /* Until we know better, opt for safty */
6409 path->device->protocol_version = 2;
6410 if (path->device->transport == XPORT_SPI)
6411 path->device->transport_version = 2;
6412 else
6413 path->device->transport_version = 0;
6418 * XXX
6419 * For a device compliant with SPC-2 we should be able
6420 * to determine the transport version supported by
6421 * scrutinizing the version descriptors in the
6422 * inquiry buffer.
6425 /* Tell the controller what we think */
6426 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
6427 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6428 cts.type = CTS_TYPE_CURRENT_SETTINGS;
6429 cts.transport = path->device->transport;
6430 cts.transport_version = path->device->transport_version;
6431 cts.protocol = path->device->protocol;
6432 cts.protocol_version = path->device->protocol_version;
6433 cts.proto_specific.valid = 0;
6434 cts.xport_specific.valid = 0;
6435 xpt_action((union ccb *)&cts);
6438 static void
6439 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6440 int async_update)
6442 struct ccb_pathinq cpi;
6443 struct ccb_trans_settings cur_cts;
6444 struct ccb_trans_settings_scsi *scsi;
6445 struct ccb_trans_settings_scsi *cur_scsi;
6446 struct cam_sim *sim;
6447 struct scsi_inquiry_data *inq_data;
6449 if (device == NULL) {
6450 cts->ccb_h.status = CAM_PATH_INVALID;
6451 xpt_done((union ccb *)cts);
6452 return;
6455 if (cts->protocol == PROTO_UNKNOWN
6456 || cts->protocol == PROTO_UNSPECIFIED) {
6457 cts->protocol = device->protocol;
6458 cts->protocol_version = device->protocol_version;
6461 if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6462 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6463 cts->protocol_version = device->protocol_version;
6465 if (cts->protocol != device->protocol) {
6466 xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n",
6467 cts->protocol, device->protocol);
6468 cts->protocol = device->protocol;
6471 if (cts->protocol_version > device->protocol_version) {
6472 if (bootverbose) {
6473 xpt_print(cts->ccb_h.path, "Down reving Protocol "
6474 "Version from %d to %d?\n", cts->protocol_version,
6475 device->protocol_version);
6477 cts->protocol_version = device->protocol_version;
6480 if (cts->transport == XPORT_UNKNOWN
6481 || cts->transport == XPORT_UNSPECIFIED) {
6482 cts->transport = device->transport;
6483 cts->transport_version = device->transport_version;
6486 if (cts->transport_version == XPORT_VERSION_UNKNOWN
6487 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6488 cts->transport_version = device->transport_version;
6490 if (cts->transport != device->transport) {
6491 xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n",
6492 cts->transport, device->transport);
6493 cts->transport = device->transport;
6496 if (cts->transport_version > device->transport_version) {
6497 if (bootverbose) {
6498 xpt_print(cts->ccb_h.path, "Down reving Transport "
6499 "Version from %d to %d?\n", cts->transport_version,
6500 device->transport_version);
6502 cts->transport_version = device->transport_version;
6505 sim = cts->ccb_h.path->bus->sim;
6508 * Nothing more of interest to do unless
6509 * this is a device connected via the
6510 * SCSI protocol.
6512 if (cts->protocol != PROTO_SCSI) {
6513 if (async_update == FALSE)
6514 (*(sim->sim_action))(sim, (union ccb *)cts);
6515 return;
6518 inq_data = &device->inq_data;
6519 scsi = &cts->proto_specific.scsi;
6520 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6521 cpi.ccb_h.func_code = XPT_PATH_INQ;
6522 xpt_action((union ccb *)&cpi);
6524 /* SCSI specific sanity checking */
6525 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6526 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0
6527 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6528 || (device->quirk->mintags == 0)) {
6530 * Can't tag on hardware that doesn't support tags,
6531 * doesn't have it enabled, or has broken tag support.
6533 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6536 if (async_update == FALSE) {
6538 * Perform sanity checking against what the
6539 * controller and device can do.
6541 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6542 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6543 cur_cts.type = cts->type;
6544 xpt_action((union ccb *)&cur_cts);
6545 if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6546 return;
6548 cur_scsi = &cur_cts.proto_specific.scsi;
6549 if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6550 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6551 scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6553 if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6554 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6557 /* SPI specific sanity checking */
6558 if (cts->transport == XPORT_SPI && async_update == FALSE) {
6559 u_int spi3caps;
6560 struct ccb_trans_settings_spi *spi;
6561 struct ccb_trans_settings_spi *cur_spi;
6563 spi = &cts->xport_specific.spi;
6565 cur_spi = &cur_cts.xport_specific.spi;
6567 /* Fill in any gaps in what the user gave us */
6568 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6569 spi->sync_period = cur_spi->sync_period;
6570 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6571 spi->sync_period = 0;
6572 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6573 spi->sync_offset = cur_spi->sync_offset;
6574 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6575 spi->sync_offset = 0;
6576 if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6577 spi->ppr_options = cur_spi->ppr_options;
6578 if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6579 spi->ppr_options = 0;
6580 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6581 spi->bus_width = cur_spi->bus_width;
6582 if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6583 spi->bus_width = 0;
6584 if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6585 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6586 spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6588 if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6589 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6590 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6591 && (inq_data->flags & SID_Sync) == 0
6592 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6593 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6594 || (spi->sync_offset == 0)
6595 || (spi->sync_period == 0)) {
6596 /* Force async */
6597 spi->sync_period = 0;
6598 spi->sync_offset = 0;
6601 switch (spi->bus_width) {
6602 case MSG_EXT_WDTR_BUS_32_BIT:
6603 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6604 || (inq_data->flags & SID_WBus32) != 0
6605 || cts->type == CTS_TYPE_USER_SETTINGS)
6606 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6607 break;
6608 /* Fall Through to 16-bit */
6609 case MSG_EXT_WDTR_BUS_16_BIT:
6610 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6611 || (inq_data->flags & SID_WBus16) != 0
6612 || cts->type == CTS_TYPE_USER_SETTINGS)
6613 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6614 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6615 break;
6617 /* Fall Through to 8-bit */
6618 default: /* New bus width?? */
6619 case MSG_EXT_WDTR_BUS_8_BIT:
6620 /* All targets can do this */
6621 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6622 break;
6625 spi3caps = cpi.xport_specific.spi.ppr_options;
6626 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6627 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6628 spi3caps &= inq_data->spi3data;
6630 if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6631 spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6633 if ((spi3caps & SID_SPI_IUS) == 0)
6634 spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6636 if ((spi3caps & SID_SPI_QAS) == 0)
6637 spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6639 /* No SPI Transfer settings are allowed unless we are wide */
6640 if (spi->bus_width == 0)
6641 spi->ppr_options = 0;
6643 if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) {
6645 * Can't tag queue without disconnection.
6647 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6648 scsi->valid |= CTS_SCSI_VALID_TQ;
6652 * If we are currently performing tagged transactions to
6653 * this device and want to change its negotiation parameters,
6654 * go non-tagged for a bit to give the controller a chance to
6655 * negotiate unhampered by tag messages.
6657 if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6658 && (device->inq_flags & SID_CmdQue) != 0
6659 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6660 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6661 CTS_SPI_VALID_SYNC_OFFSET|
6662 CTS_SPI_VALID_BUS_WIDTH)) != 0)
6663 xpt_toggle_tags(cts->ccb_h.path);
6666 if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6667 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6668 int device_tagenb;
6671 * If we are transitioning from tags to no-tags or
6672 * vice-versa, we need to carefully freeze and restart
6673 * the queue so that we don't overlap tagged and non-tagged
6674 * commands. We also temporarily stop tags if there is
6675 * a change in transfer negotiation settings to allow
6676 * "tag-less" negotiation.
6678 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6679 || (device->inq_flags & SID_CmdQue) != 0)
6680 device_tagenb = TRUE;
6681 else
6682 device_tagenb = FALSE;
6684 if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6685 && device_tagenb == FALSE)
6686 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6687 && device_tagenb == TRUE)) {
6689 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6691 * Delay change to use tags until after a
6692 * few commands have gone to this device so
6693 * the controller has time to perform transfer
6694 * negotiations without tagged messages getting
6695 * in the way.
6697 device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6698 device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6699 } else {
6700 struct ccb_relsim crs;
6702 xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6703 device->inq_flags &= ~SID_CmdQue;
6704 xpt_dev_ccbq_resize(cts->ccb_h.path,
6705 sim->max_dev_openings);
6706 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6707 device->tag_delay_count = 0;
6709 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6710 /*priority*/1);
6711 crs.ccb_h.func_code = XPT_REL_SIMQ;
6712 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6713 crs.openings
6714 = crs.release_timeout
6715 = crs.qfrozen_cnt
6716 = 0;
6717 xpt_action((union ccb *)&crs);
6721 if (async_update == FALSE)
6722 (*(sim->sim_action))(sim, (union ccb *)cts);
6725 static void
6726 xpt_toggle_tags(struct cam_path *path)
6728 struct cam_ed *dev;
6731 * Give controllers a chance to renegotiate
6732 * before starting tag operations. We
6733 * "toggle" tagged queuing off then on
6734 * which causes the tag enable command delay
6735 * counter to come into effect.
6737 dev = path->device;
6738 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6739 || ((dev->inq_flags & SID_CmdQue) != 0
6740 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6741 struct ccb_trans_settings cts;
6743 xpt_setup_ccb(&cts.ccb_h, path, 1);
6744 cts.protocol = PROTO_SCSI;
6745 cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6746 cts.transport = XPORT_UNSPECIFIED;
6747 cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6748 cts.proto_specific.scsi.flags = 0;
6749 cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6750 xpt_set_transfer_settings(&cts, path->device,
6751 /*async_update*/TRUE);
6752 cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6753 xpt_set_transfer_settings(&cts, path->device,
6754 /*async_update*/TRUE);
6758 static void
6759 xpt_start_tags(struct cam_path *path)
6761 struct ccb_relsim crs;
6762 struct cam_ed *device;
6763 struct cam_sim *sim;
6764 int newopenings;
6766 device = path->device;
6767 sim = path->bus->sim;
6768 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6769 xpt_freeze_devq(path, /*count*/1);
6770 device->inq_flags |= SID_CmdQue;
6771 if (device->tag_saved_openings != 0)
6772 newopenings = device->tag_saved_openings;
6773 else
6774 newopenings = min(device->quirk->maxtags,
6775 sim->max_tagged_dev_openings);
6776 xpt_dev_ccbq_resize(path, newopenings);
6777 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6778 crs.ccb_h.func_code = XPT_REL_SIMQ;
6779 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6780 crs.openings
6781 = crs.release_timeout
6782 = crs.qfrozen_cnt
6783 = 0;
6784 xpt_action((union ccb *)&crs);
6787 static int busses_to_config;
6788 static int busses_to_reset;
6790 static int
6791 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6794 sim_lock_assert_owned(bus->sim->lock);
6796 if (bus->path_id != CAM_XPT_PATH_ID) {
6797 struct cam_path path;
6798 struct ccb_pathinq cpi;
6799 int can_negotiate;
6801 busses_to_config++;
6802 xpt_compile_path(&path, NULL, bus->path_id,
6803 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6804 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6805 cpi.ccb_h.func_code = XPT_PATH_INQ;
6806 xpt_action((union ccb *)&cpi);
6807 can_negotiate = cpi.hba_inquiry;
6808 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6809 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
6810 && can_negotiate)
6811 busses_to_reset++;
6812 xpt_release_path(&path);
6815 return(1);
6818 static int
6819 xptconfigfunc(struct cam_eb *bus, void *arg)
6821 struct cam_path *path;
6822 union ccb *work_ccb;
6824 sim_lock_assert_owned(bus->sim->lock);
6826 if (bus->path_id != CAM_XPT_PATH_ID) {
6827 cam_status status;
6828 int can_negotiate;
6830 work_ccb = xpt_alloc_ccb();
6831 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6832 CAM_TARGET_WILDCARD,
6833 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6834 kprintf("xptconfigfunc: xpt_create_path failed with "
6835 "status %#x for bus %d\n", status, bus->path_id);
6836 kprintf("xptconfigfunc: halting bus configuration\n");
6837 xpt_free_ccb(work_ccb);
6838 busses_to_config--;
6839 xpt_finishconfig(xpt_periph, NULL);
6840 return(0);
6842 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6843 work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6844 xpt_action(work_ccb);
6845 if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6846 kprintf("xptconfigfunc: CPI failed on bus %d "
6847 "with status %d\n", bus->path_id,
6848 work_ccb->ccb_h.status);
6849 xpt_finishconfig(xpt_periph, work_ccb);
6850 return(1);
6853 can_negotiate = work_ccb->cpi.hba_inquiry;
6854 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6855 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6856 && (can_negotiate != 0)) {
6857 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6858 work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6859 work_ccb->ccb_h.cbfcnp = NULL;
6860 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6861 ("Resetting Bus\n"));
6862 xpt_action(work_ccb);
6863 xpt_finishconfig(xpt_periph, work_ccb);
6864 } else {
6865 /* Act as though we performed a successful BUS RESET */
6866 work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6867 xpt_finishconfig(xpt_periph, work_ccb);
6871 return(1);
6874 static void
6875 xpt_config(void *arg)
6878 * Now that interrupts are enabled, go find our devices
6881 #ifdef CAMDEBUG
6882 /* Setup debugging flags and path */
6883 #ifdef CAM_DEBUG_FLAGS
6884 cam_dflags = CAM_DEBUG_FLAGS;
6885 #else /* !CAM_DEBUG_FLAGS */
6886 cam_dflags = CAM_DEBUG_NONE;
6887 #endif /* CAM_DEBUG_FLAGS */
6888 #ifdef CAM_DEBUG_BUS
6889 if (cam_dflags != CAM_DEBUG_NONE) {
6891 * Locking is specifically omitted here. No SIMs have
6892 * registered yet, so xpt_create_path will only be searching
6893 * empty lists of targets and devices.
6895 if (xpt_create_path(&cam_dpath, xpt_periph,
6896 CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6897 CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6898 kprintf("xpt_config: xpt_create_path() failed for debug"
6899 " target %d:%d:%d, debugging disabled\n",
6900 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6901 cam_dflags = CAM_DEBUG_NONE;
6903 } else
6904 cam_dpath = NULL;
6905 #else /* !CAM_DEBUG_BUS */
6906 cam_dpath = NULL;
6907 #endif /* CAM_DEBUG_BUS */
6908 #endif /* CAMDEBUG */
6911 * Scan all installed busses.
6913 xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6915 if (busses_to_config == 0) {
6916 /* Call manually because we don't have any busses */
6917 xpt_finishconfig(xpt_periph, NULL);
6918 } else {
6919 if (busses_to_reset > 0 && scsi_delay >= 2000) {
6920 kprintf("Waiting %d seconds for SCSI "
6921 "devices to settle\n", scsi_delay/1000);
6923 xpt_for_all_busses(xptconfigfunc, NULL);
6928 * If the given device only has one peripheral attached to it, and if that
6929 * peripheral is the passthrough driver, announce it. This insures that the
6930 * user sees some sort of announcement for every peripheral in their system.
6932 static int
6933 xptpassannouncefunc(struct cam_ed *device, void *arg)
6935 struct cam_periph *periph;
6936 int i;
6938 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
6939 periph = SLIST_NEXT(periph, periph_links), i++);
6941 periph = SLIST_FIRST(&device->periphs);
6942 if ((i == 1)
6943 && (strncmp(periph->periph_name, "pass", 4) == 0))
6944 xpt_announce_periph(periph, NULL);
6946 return(1);
6949 static void
6950 xpt_finishconfig_task(void *context, int pending)
6952 struct periph_driver **p_drv;
6953 int i;
6955 if (busses_to_config == 0) {
6956 /* Register all the peripheral drivers */
6957 /* XXX This will have to change when we have loadable modules */
6958 p_drv = periph_drivers;
6959 for (i = 0; p_drv[i] != NULL; i++) {
6960 (*p_drv[i]->init)();
6964 * Check for devices with no "standard" peripheral driver
6965 * attached. For any devices like that, announce the
6966 * passthrough driver so the user will see something.
6968 xpt_for_all_devices(xptpassannouncefunc, NULL);
6970 /* Release our hook so that the boot can continue. */
6971 config_intrhook_disestablish(xsoftc.xpt_config_hook);
6972 kfree(xsoftc.xpt_config_hook, M_CAMXPT);
6973 xsoftc.xpt_config_hook = NULL;
6976 kfree(context, M_CAMXPT);
6979 static void
6980 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
6982 struct xpt_task *task;
6984 if (done_ccb != NULL) {
6985 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
6986 ("xpt_finishconfig\n"));
6987 switch(done_ccb->ccb_h.func_code) {
6988 case XPT_RESET_BUS:
6989 if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
6990 done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
6991 done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
6992 done_ccb->crcn.flags = 0;
6993 xpt_action(done_ccb);
6994 return;
6996 /* FALLTHROUGH */
6997 case XPT_SCAN_BUS:
6998 default:
6999 xpt_free_path(done_ccb->ccb_h.path);
7000 busses_to_config--;
7001 break;
7005 if (busses_to_config == 0) {
7006 task = kmalloc(sizeof(struct xpt_task), M_CAMXPT, M_INTWAIT);
7007 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
7008 taskqueue_enqueue(taskqueue_thread[mycpuid], &task->task);
7011 if (done_ccb != NULL)
7012 xpt_free_ccb(done_ccb);
7015 cam_status
7016 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
7017 struct cam_path *path)
7019 struct ccb_setasync csa;
7020 cam_status status;
7021 int xptpath = 0;
7023 if (path == NULL) {
7024 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7025 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
7026 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
7027 if (status != CAM_REQ_CMP) {
7028 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7029 return (status);
7031 xptpath = 1;
7034 xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
7035 csa.ccb_h.func_code = XPT_SASYNC_CB;
7036 csa.event_enable = event;
7037 csa.callback = cbfunc;
7038 csa.callback_arg = cbarg;
7039 xpt_action((union ccb *)&csa);
7040 status = csa.ccb_h.status;
7041 if (xptpath) {
7042 xpt_free_path(path);
7043 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7045 return (status);
7048 static void
7049 xptaction(struct cam_sim *sim, union ccb *work_ccb)
7051 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
7053 switch (work_ccb->ccb_h.func_code) {
7054 /* Common cases first */
7055 case XPT_PATH_INQ: /* Path routing inquiry */
7057 struct ccb_pathinq *cpi;
7059 cpi = &work_ccb->cpi;
7060 cpi->version_num = 1; /* XXX??? */
7061 cpi->hba_inquiry = 0;
7062 cpi->target_sprt = 0;
7063 cpi->hba_misc = 0;
7064 cpi->hba_eng_cnt = 0;
7065 cpi->max_target = 0;
7066 cpi->max_lun = 0;
7067 cpi->initiator_id = 0;
7068 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
7069 strncpy(cpi->hba_vid, "", HBA_IDLEN);
7070 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
7071 cpi->unit_number = sim->unit_number;
7072 cpi->bus_id = sim->bus_id;
7073 cpi->base_transfer_speed = 0;
7074 cpi->protocol = PROTO_UNSPECIFIED;
7075 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
7076 cpi->transport = XPORT_UNSPECIFIED;
7077 cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
7078 cpi->ccb_h.status = CAM_REQ_CMP;
7079 xpt_done(work_ccb);
7080 break;
7082 default:
7083 work_ccb->ccb_h.status = CAM_REQ_INVALID;
7084 xpt_done(work_ccb);
7085 break;
7090 * The xpt as a "controller" has no interrupt sources, so polling
7091 * is a no-op.
7093 static void
7094 xptpoll(struct cam_sim *sim)
7098 void
7099 xpt_lock_buses(void)
7101 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
7104 void
7105 xpt_unlock_buses(void)
7107 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
7112 * Should only be called by the machine interrupt dispatch routines,
7113 * so put these prototypes here instead of in the header.
7116 static void
7117 swi_cambio(void *arg, void *frame)
7119 camisr(NULL);
7122 static void
7123 camisr(void *dummy)
7125 cam_simq_t queue;
7126 struct cam_sim *sim;
7128 lockmgr(&cam_simq_lock, LK_EXCLUSIVE);
7129 TAILQ_INIT(&queue);
7130 TAILQ_CONCAT(&queue, &cam_simq, links);
7131 lockmgr(&cam_simq_lock, LK_RELEASE);
7133 while ((sim = TAILQ_FIRST(&queue)) != NULL) {
7134 TAILQ_REMOVE(&queue, sim, links);
7135 CAM_SIM_LOCK(sim);
7136 sim->flags &= ~CAM_SIM_ON_DONEQ;
7137 camisr_runqueue(&sim->sim_doneq);
7138 CAM_SIM_UNLOCK(sim);
7142 static void
7143 camisr_runqueue(void *V_queue)
7145 cam_isrq_t *queue = V_queue;
7146 struct ccb_hdr *ccb_h;
7148 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
7149 int runq;
7151 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
7152 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
7154 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
7155 ("camisr\n"));
7157 runq = FALSE;
7159 if (ccb_h->flags & CAM_HIGH_POWER) {
7160 struct highpowerlist *hphead;
7161 struct cam_ed *device;
7162 union ccb *send_ccb;
7164 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7165 hphead = &xsoftc.highpowerq;
7167 send_ccb = (union ccb *)STAILQ_FIRST(hphead);
7170 * Increment the count since this command is done.
7172 xsoftc.num_highpower++;
7175 * Any high powered commands queued up?
7177 if (send_ccb != NULL) {
7178 device = send_ccb->ccb_h.path->device;
7180 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
7181 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7183 xpt_release_devq(send_ccb->ccb_h.path,
7184 /*count*/1, /*runqueue*/TRUE);
7185 } else
7186 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7189 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
7190 struct cam_ed *dev;
7192 dev = ccb_h->path->device;
7194 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
7196 if (!SIM_DEAD(ccb_h->path->bus->sim)) {
7197 ccb_h->path->bus->sim->devq->send_active--;
7198 ccb_h->path->bus->sim->devq->send_openings++;
7201 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
7202 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
7203 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
7204 && (dev->ccbq.dev_active == 0))) {
7206 xpt_release_devq(ccb_h->path, /*count*/1,
7207 /*run_queue*/TRUE);
7210 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
7211 && (--dev->tag_delay_count == 0))
7212 xpt_start_tags(ccb_h->path);
7214 if ((dev->ccbq.queue.entries > 0)
7215 && (dev->qfrozen_cnt == 0)
7216 && (device_is_send_queued(dev) == 0)) {
7217 runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
7218 dev);
7222 if (ccb_h->status & CAM_RELEASE_SIMQ) {
7223 xpt_release_simq(ccb_h->path->bus->sim,
7224 /*run_queue*/TRUE);
7225 ccb_h->status &= ~CAM_RELEASE_SIMQ;
7226 runq = FALSE;
7229 if ((ccb_h->flags & CAM_DEV_QFRZDIS)
7230 && (ccb_h->status & CAM_DEV_QFRZN)) {
7231 xpt_release_devq(ccb_h->path, /*count*/1,
7232 /*run_queue*/TRUE);
7233 ccb_h->status &= ~CAM_DEV_QFRZN;
7234 } else if (runq) {
7235 xpt_run_dev_sendq(ccb_h->path->bus);
7238 /* Call the peripheral driver's callback */
7239 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
7243 static void
7244 dead_sim_action(struct cam_sim *sim, union ccb *ccb)
7247 ccb->ccb_h.status = CAM_DEV_NOT_THERE;
7248 xpt_done(ccb);
7251 static void
7252 dead_sim_poll(struct cam_sim *sim)