1 /****************************************************************
3 The author of this software is David M. Gay.
5 Copyright (C) 1998-2000 by Lucent Technologies
8 Permission to use, copy, modify, and distribute this software and
9 its documentation for any purpose and without fee is hereby
10 granted, provided that the above copyright notice appear in all
11 copies and that both that the copyright notice and this
12 permission notice and warranty disclaimer appear in supporting
13 documentation, and that the name of Lucent or any of its entities
14 not be used in advertising or publicity pertaining to
15 distribution of the software without specific, written prior
18 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
27 ****************************************************************/
29 /* This is a variation on dtoa.c that converts arbitary binary
30 floating-point formats to and from decimal notation. It uses
31 double-precision arithmetic internally, so there are still
32 various #ifdefs that adapt the calculations to the native
33 double-precision arithmetic (any of IEEE, VAX D_floating,
34 or IBM mainframe arithmetic).
36 Please send bug reports to David M. Gay (dmg at acm dot org,
37 with " at " changed at "@" and " dot " changed to ".").
40 /* On a machine with IEEE extended-precision registers, it is
41 * necessary to specify double-precision (53-bit) rounding precision
42 * before invoking strtod or dtoa. If the machine uses (the equivalent
43 * of) Intel 80x87 arithmetic, the call
44 * _control87(PC_53, MCW_PC);
45 * does this with many compilers. Whether this or another call is
46 * appropriate depends on the compiler; for this to work, it may be
47 * necessary to #include "float.h" or another system-dependent header
51 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
53 * This strtod returns a nearest machine number to the input decimal
54 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
55 * broken by the IEEE round-even rule. Otherwise ties are broken by
56 * biased rounding (add half and chop).
58 * Inspired loosely by William D. Clinger's paper "How to Read Floating
59 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
63 * 1. We only require IEEE, IBM, or VAX double-precision
64 * arithmetic (not IEEE double-extended).
65 * 2. We get by with floating-point arithmetic in a case that
66 * Clinger missed -- when we're computing d * 10^n
67 * for a small integer d and the integer n is not too
68 * much larger than 22 (the maximum integer k for which
69 * we can represent 10^k exactly), we may be able to
70 * compute (d*10^k) * 10^(e-k) with just one roundoff.
71 * 3. Rather than a bit-at-a-time adjustment of the binary
72 * result in the hard case, we use floating-point
73 * arithmetic to determine the adjustment to within
74 * one bit; only in really hard cases do we need to
75 * compute a second residual.
76 * 4. Because of 3., we don't need a large table of powers of 10
77 * for ten-to-e (just some small tables, e.g. of 10^k
82 * #define IEEE_8087 for IEEE-arithmetic machines where the least
83 * significant byte has the lowest address.
84 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
85 * significant byte has the lowest address.
86 * #define Long int on machines with 32-bit ints and 64-bit longs.
87 * #define Sudden_Underflow for IEEE-format machines without gradual
88 * underflow (i.e., that flush to zero on underflow).
89 * #define IBM for IBM mainframe-style floating-point arithmetic.
90 * #define VAX for VAX-style floating-point arithmetic (D_floating).
91 * #define No_leftright to omit left-right logic in fast floating-point
92 * computation of dtoa.
93 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
94 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
95 * that use extended-precision instructions to compute rounded
96 * products and quotients) with IBM.
97 * #define ROUND_BIASED for IEEE-format with biased rounding.
98 * #define Inaccurate_Divide for IEEE-format with correctly rounded
99 * products but inaccurate quotients, e.g., for Intel i860.
100 * #define NO_LONG_LONG on machines that do not have a "long long"
101 * integer type (of >= 64 bits). On such machines, you can
102 * #define Just_16 to store 16 bits per 32-bit Long when doing
103 * high-precision integer arithmetic. Whether this speeds things
104 * up or slows things down depends on the machine and the number
105 * being converted. If long long is available and the name is
106 * something other than "long long", #define Llong to be the name,
107 * and if "unsigned Llong" does not work as an unsigned version of
108 * Llong, #define #ULLong to be the corresponding unsigned type.
109 * #define KR_headers for old-style C function headers.
110 * #define Bad_float_h if your system lacks a float.h or if it does not
111 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
112 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
113 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
114 * if memory is available and otherwise does something you deem
115 * appropriate. If MALLOC is undefined, malloc will be invoked
116 * directly -- and assumed always to succeed.
117 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
118 * memory allocations from a private pool of memory when possible.
119 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
120 * unless #defined to be a different length. This default length
121 * suffices to get rid of MALLOC calls except for unusual cases,
122 * such as decimal-to-binary conversion of a very long string of
123 * digits. When converting IEEE double precision values, the
124 * longest string gdtoa can return is about 751 bytes long. For
125 * conversions by strtod of strings of 800 digits and all gdtoa
126 * conversions of IEEE doubles in single-threaded executions with
127 * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
128 * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
129 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
130 * #defined automatically on IEEE systems. On such systems,
131 * when INFNAN_CHECK is #defined, strtod checks
132 * for Infinity and NaN (case insensitively).
133 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
134 * strtodg also accepts (case insensitively) strings of the form
135 * NaN(x), where x is a string of hexadecimal digits (optionally
136 * preceded by 0x or 0X) and spaces; if there is only one string
137 * of hexadecimal digits, it is taken for the fraction bits of the
138 * resulting NaN; if there are two or more strings of hexadecimal
139 * digits, each string is assigned to the next available sequence
140 * of 32-bit words of fractions bits (starting with the most
141 * significant), right-aligned in each sequence.
142 * Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)"
143 * is consumed even when ... has the wrong form (in which case the
144 * "(...)" is consumed but ignored).
145 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
146 * multiple threads. In this case, you must provide (or suitably
147 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
148 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
149 * in pow5mult, ensures lazy evaluation of only one copy of high
150 * powers of 5; omitting this lock would introduce a small
151 * probability of wasting memory, but would otherwise be harmless.)
152 * You must also invoke freedtoa(s) to free the value s returned by
153 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
154 * #define IMPRECISE_INEXACT if you do not care about the setting of
155 * the STRTOG_Inexact bits in the special case of doing IEEE double
156 * precision conversions (which could also be done by the strtod in
158 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
159 * floating-point constants.
160 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
162 * #define NO_STRING_H to use private versions of memcpy.
163 * On some K&R systems, it may also be necessary to
164 * #define DECLARE_SIZE_T in this case.
165 * #define YES_ALIAS to permit aliasing certain double values with
166 * arrays of ULongs. This leads to slightly better code with
167 * some compilers and was always used prior to 19990916, but it
168 * is not strictly legal and can cause trouble with aggressively
169 * optimizing compilers (e.g., gcc 2.95.1 under -O2).
170 * #define USE_LOCALE to use the current locale's decimal_point value.
173 #ifndef GDTOAIMP_H_INCLUDED
174 #define GDTOAIMP_H_INCLUDED
179 #define Honor_FLT_ROUNDS
183 #ifdef Honor_FLT_ROUNDS
189 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
195 #include "libc_private.h"
197 #include "namespace.h"
199 #include "un-namespace.h"
208 extern Char
*MALLOC
ANSI((size_t));
210 #define MALLOC malloc
214 #undef Avoid_Underflow
227 #define DBL_MAX_10_EXP 308
228 #define DBL_MAX_EXP 1024
230 #define DBL_MAX 1.7976931348623157e+308
235 #define DBL_MAX_10_EXP 75
236 #define DBL_MAX_EXP 63
238 #define DBL_MAX 7.2370055773322621e+75
243 #define DBL_MAX_10_EXP 38
244 #define DBL_MAX_EXP 127
246 #define DBL_MAX 1.7014118346046923e+38
251 #define LONG_MAX 2147483647
254 #else /* ifndef Bad_float_h */
256 #endif /* Bad_float_h */
259 #define Scale_Bit 0x10
279 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
280 Exactly one of IEEE_8087
, IEEE_MC68k
, VAX
, or IBM should be defined
.
283 typedef union { double d
; ULong L
[2]; } U
;
288 #define word0(x) ((ULong *)&x)[1]
289 #define word1(x) ((ULong *)&x)[0]
291 #define word0(x) ((ULong *)&x)[0]
292 #define word1(x) ((ULong *)&x)[1]
294 #else /* !YES_ALIAS */
296 #define word0(x) ((U*)&x)->L[1]
297 #define word1(x) ((U*)&x)->L[0]
299 #define word0(x) ((U*)&x)->L[0]
300 #define word1(x) ((U*)&x)->L[1]
302 #define dval(x) ((U*)&x)->d
303 #endif /* YES_ALIAS */
305 /* The following definition of Storeinc is appropriate for MIPS processors.
306 * An alternative that might be better on some machines is
307 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
309 #if defined(IEEE_8087) + defined(VAX)
310 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
311 ((unsigned short *)a)[0] = (unsigned short)c, a++)
313 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
314 ((unsigned short *)a)[1] = (unsigned short)c, a++)
317 /* #define P DBL_MANT_DIG */
318 /* Ten_pmax = floor(P*log(2)/log(5)) */
319 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
320 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
321 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
325 #define Exp_shift1 20
326 #define Exp_msk1 0x100000
327 #define Exp_msk11 0x100000
328 #define Exp_mask 0x7ff00000
332 #define Exp_1 0x3ff00000
333 #define Exp_11 0x3ff00000
335 #define Frac_mask 0xfffff
336 #define Frac_mask1 0xfffff
339 #define Bndry_mask 0xfffff
340 #define Bndry_mask1 0xfffff
342 #define Sign_bit 0x80000000
351 #define Flt_Rounds FLT_ROUNDS
355 #endif /*Flt_Rounds*/
357 #else /* ifndef IEEE_Arith */
358 #undef Sudden_Underflow
359 #define Sudden_Underflow
364 #define Exp_shift1 24
365 #define Exp_msk1 0x1000000
366 #define Exp_msk11 0x1000000
367 #define Exp_mask 0x7f000000
370 #define Exp_1 0x41000000
371 #define Exp_11 0x41000000
372 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
373 #define Frac_mask 0xffffff
374 #define Frac_mask1 0xffffff
377 #define Bndry_mask 0xefffff
378 #define Bndry_mask1 0xffffff
380 #define Sign_bit 0x80000000
382 #define Tiny0 0x100000
391 #define Exp_msk1 0x80
392 #define Exp_msk11 0x800000
393 #define Exp_mask 0x7f80
396 #define Exp_1 0x40800000
397 #define Exp_11 0x4080
399 #define Frac_mask 0x7fffff
400 #define Frac_mask1 0xffff007f
403 #define Bndry_mask 0xffff007f
404 #define Bndry_mask1 0xffff007f
406 #define Sign_bit 0x8000
412 #endif /* IBM, VAX */
413 #endif /* IEEE_Arith */
420 #define rounded_product(a,b) a = rnd_prod(a, b)
421 #define rounded_quotient(a,b) a = rnd_quot(a, b)
423 extern double rnd_prod(), rnd_quot();
425 extern double rnd_prod(double, double), rnd_quot(double, double);
428 #define rounded_product(a,b) a *= b
429 #define rounded_quotient(a,b) a /= b
432 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
433 #define Big1 0xffffffff
445 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
446 * This makes some inner loops simpler and sometimes saves work
447 * during multiplications, but it often seems to make things slightly
448 * slower. Hence the default is now to store 32 bits per Long.
451 #else /* long long available */
453 #define Llong long long
456 #define ULLong unsigned Llong
458 #endif /* NO_LONG_LONG */
464 #define ALL_ON 0xffffffff
469 #define ALL_ON 0xffff
472 #define MULTIPLE_THREADS
473 extern pthread_mutex_t __gdtoa_locks
[2];
474 #define ACQUIRE_DTOA_LOCK(n) do { \
476 _pthread_mutex_lock(&__gdtoa_locks[n]); \
478 #define FREE_DTOA_LOCK(n) do { \
480 _pthread_mutex_unlock(&__gdtoa_locks[n]); \
483 #define Kmax (sizeof(size_t) << 3)
488 int k
, maxwds
, sign
, wds
;
492 typedef struct Bigint Bigint
;
495 #ifdef DECLARE_SIZE_T
496 typedef unsigned int size_t;
498 extern void memcpy_D2A
ANSI((void*, const void*, size_t));
499 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
500 #else /* !NO_STRING_H */
501 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
502 #endif /* NO_STRING_H */
505 * Paranoia: Protect exported symbols, including ones in files we don't
506 * compile right now. The standard strtof and strtod survive.
509 #define gdtoa __gdtoa
510 #define freedtoa __freedtoa
511 #define strtodg __strtodg
512 #define g_ddfmt __g_ddfmt
513 #define g_dfmt __g_dfmt
514 #define g_ffmt __g_ffmt
515 #define g_Qfmt __g_Qfmt
516 #define g_xfmt __g_xfmt
517 #define g_xLfmt __g_xLfmt
518 #define strtoId __strtoId
519 #define strtoIdd __strtoIdd
520 #define strtoIf __strtoIf
521 #define strtoIQ __strtoIQ
522 #define strtoIx __strtoIx
523 #define strtoIxL __strtoIxL
524 #define strtord __strtord
525 #define strtordd __strtordd
526 #define strtorf __strtorf
527 #define strtorQ __strtorQ
528 #define strtorx __strtorx
529 #define strtorxL __strtorxL
530 #define strtodI __strtodI
531 #define strtopd __strtopd
532 #define strtopdd __strtopdd
533 #define strtopf __strtopf
534 #define strtopQ __strtopQ
535 #define strtopx __strtopx
536 #define strtopxL __strtopxL
538 /* Protect gdtoa-internal symbols */
539 #define Balloc __Balloc_D2A
540 #define Bfree __Bfree_D2A
541 #define ULtoQ __ULtoQ_D2A
542 #define ULtof __ULtof_D2A
543 #define ULtod __ULtod_D2A
544 #define ULtodd __ULtodd_D2A
545 #define ULtox __ULtox_D2A
546 #define ULtoxL __ULtoxL_D2A
547 #define any_on __any_on_D2A
548 #define b2d __b2d_D2A
549 #define bigtens __bigtens_D2A
550 #define cmp __cmp_D2A
551 #define copybits __copybits_D2A
552 #define d2b __d2b_D2A
553 #define decrement __decrement_D2A
554 #define diff __diff_D2A
555 #define dtoa_result __dtoa_result_D2A
556 #define g__fmt __g__fmt_D2A
557 #define gethex __gethex_D2A
558 #define hexdig __hexdig_D2A
559 #define hexdig_init_D2A __hexdig_init_D2A
560 #define hexnan __hexnan_D2A
561 #define hi0bits(x) __hi0bits_D2A((ULong)(x))
562 #define hi0bits_D2A __hi0bits_D2A
563 #define i2b __i2b_D2A
564 #define increment __increment_D2A
565 #define lo0bits __lo0bits_D2A
566 #define lshift __lshift_D2A
567 #define match __match_D2A
568 #define mult __mult_D2A
569 #define multadd __multadd_D2A
570 #define nrv_alloc __nrv_alloc_D2A
571 #define pow5mult __pow5mult_D2A
572 #define quorem __quorem_D2A
573 #define ratio __ratio_D2A
574 #define rshift __rshift_D2A
575 #define rv_alloc __rv_alloc_D2A
576 #define s2b __s2b_D2A
577 #define set_ones __set_ones_D2A
578 #define strcp __strcp_D2A
579 #define strcp_D2A __strcp_D2A
580 #define strtoIg __strtoIg_D2A
581 #define sum __sum_D2A
582 #define tens __tens_D2A
583 #define tinytens __tinytens_D2A
584 #define tinytens __tinytens_D2A
585 #define trailz __trailz_D2A
586 #define ulp __ulp_D2A
588 extern char *dtoa_result
;
589 extern CONST
double bigtens
[], tens
[], tinytens
[];
590 extern unsigned char hexdig
[];
592 extern Bigint
*Balloc
ANSI((int));
593 extern void Bfree
ANSI((Bigint
*));
594 extern void ULtof
ANSI((ULong
*, ULong
*, Long
, int));
595 extern void ULtod
ANSI((ULong
*, ULong
*, Long
, int));
596 extern void ULtodd
ANSI((ULong
*, ULong
*, Long
, int));
597 extern void ULtoQ
ANSI((ULong
*, ULong
*, Long
, int));
598 extern void ULtox
ANSI((UShort
*, ULong
*, Long
, int));
599 extern void ULtoxL
ANSI((ULong
*, ULong
*, Long
, int));
600 extern ULong any_on
ANSI((Bigint
*, int));
601 extern double b2d
ANSI((Bigint
*, int*));
602 extern int cmp
ANSI((Bigint
*, Bigint
*));
603 extern void copybits
ANSI((ULong
*, int, Bigint
*));
604 extern Bigint
*d2b
ANSI((double, int*, int*));
605 extern void decrement
ANSI((Bigint
*));
606 extern Bigint
*diff
ANSI((Bigint
*, Bigint
*));
607 extern char *dtoa
ANSI((double d
, int mode
, int ndigits
,
608 int *decpt
, int *sign
, char **rve
));
609 extern void freedtoa
ANSI((char*));
610 extern char *g__fmt
ANSI((char*, char*, char*, int, ULong
, size_t));
611 extern char *gdtoa
ANSI((FPI
*fpi
, int be
, ULong
*bits
, int *kindp
,
612 int mode
, int ndigits
, int *decpt
, char **rve
));
613 extern int gethex
ANSI((CONST
char**, FPI
*, Long
*, Bigint
**, int));
614 extern void hexdig_init_D2A(Void
);
615 extern int hexnan
ANSI((CONST
char**, FPI
*, ULong
*));
616 extern int hi0bits_D2A
ANSI((ULong
));
617 extern Bigint
*i2b
ANSI((int));
618 extern Bigint
*increment
ANSI((Bigint
*));
619 extern int lo0bits
ANSI((ULong
*));
620 extern Bigint
*lshift
ANSI((Bigint
*, int));
621 extern int match
ANSI((CONST
char**, char*));
622 extern Bigint
*mult
ANSI((Bigint
*, Bigint
*));
623 extern Bigint
*multadd
ANSI((Bigint
*, int, int));
624 extern char *nrv_alloc
ANSI((char*, char **, int));
625 extern Bigint
*pow5mult
ANSI((Bigint
*, int));
626 extern int quorem
ANSI((Bigint
*, Bigint
*));
627 extern double ratio
ANSI((Bigint
*, Bigint
*));
628 extern void rshift
ANSI((Bigint
*, int));
629 extern char *rv_alloc
ANSI((int));
630 extern Bigint
*s2b
ANSI((CONST
char*, int, int, ULong
, int));
631 extern Bigint
*set_ones
ANSI((Bigint
*, int));
632 extern char *strcp
ANSI((char*, const char*));
633 extern int strtodg
ANSI((CONST
char*, char**, FPI
*, Long
*, ULong
*));
635 extern int strtoId
ANSI((CONST
char *, char **, double *, double *));
636 extern int strtoIdd
ANSI((CONST
char *, char **, double *, double *));
637 extern int strtoIf
ANSI((CONST
char *, char **, float *, float *));
638 extern int strtoIg
ANSI((CONST
char*, char**, FPI
*, Long
*, Bigint
**, int*));
639 extern int strtoIQ
ANSI((CONST
char *, char **, void *, void *));
640 extern int strtoIx
ANSI((CONST
char *, char **, void *, void *));
641 extern int strtoIxL
ANSI((CONST
char *, char **, void *, void *));
642 extern double strtod
ANSI((const char *s00
, char **se
));
643 extern int strtopQ
ANSI((CONST
char *, char **, Void
*));
644 extern int strtopf
ANSI((CONST
char *, char **, float *));
645 extern int strtopd
ANSI((CONST
char *, char **, double *));
646 extern int strtopdd
ANSI((CONST
char *, char **, double *));
647 extern int strtopx
ANSI((CONST
char *, char **, Void
*));
648 extern int strtopxL
ANSI((CONST
char *, char **, Void
*));
649 extern int strtord
ANSI((CONST
char *, char **, int, double *));
650 extern int strtordd
ANSI((CONST
char *, char **, int, double *));
651 extern int strtorf
ANSI((CONST
char *, char **, int, float *));
652 extern int strtorQ
ANSI((CONST
char *, char **, int, void *));
653 extern int strtorx
ANSI((CONST
char *, char **, int, void *));
654 extern int strtorxL
ANSI((CONST
char *, char **, int, void *));
655 extern Bigint
*sum
ANSI((Bigint
*, Bigint
*));
656 extern int trailz
ANSI((Bigint
*));
657 extern double ulp
ANSI((double));
663 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to
664 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
665 * respectively), but now are determined by compiling and running
666 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
667 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
668 * and -DNAN_WORD1=... values if necessary. This should still work.
669 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
672 #ifndef NO_INFNAN_CHECK
680 #define NAN_WORD0 d_QNAN0
683 #define NAN_WORD1 d_QNAN1
689 #define NAN_WORD0 d_QNAN1
692 #define NAN_WORD1 d_QNAN0
700 #ifdef Sudden_Underflow
706 #endif /* GDTOAIMP_H_INCLUDED */