If a neighbor solictation or neighbor advertisement isn't from the
[dragonfly.git] / sys / kern / uipc_usrreq.c
blob0ab4409ae0bd4a80320527623b47858005fc7d8b
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94
34 * $FreeBSD: src/sys/kern/uipc_usrreq.c,v 1.54.2.10 2003/03/04 17:28:09 nectar Exp $
35 * $DragonFly: src/sys/kern/uipc_usrreq.c,v 1.42 2008/06/19 00:03:45 aggelos Exp $
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/domain.h>
42 #include <sys/fcntl.h>
43 #include <sys/malloc.h> /* XXX must be before <sys/file.h> */
44 #include <sys/proc.h>
45 #include <sys/file.h>
46 #include <sys/filedesc.h>
47 #include <sys/mbuf.h>
48 #include <sys/nlookup.h>
49 #include <sys/protosw.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/resourcevar.h>
53 #include <sys/stat.h>
54 #include <sys/mount.h>
55 #include <sys/sysctl.h>
56 #include <sys/un.h>
57 #include <sys/unpcb.h>
58 #include <sys/vnode.h>
59 #include <sys/file2.h>
60 #include <sys/spinlock2.h>
62 #include <vm/vm_zone.h>
64 static struct vm_zone *unp_zone;
65 static unp_gen_t unp_gencnt;
66 static u_int unp_count;
68 static struct unp_head unp_shead, unp_dhead;
71 * Unix communications domain.
73 * TODO:
74 * RDM
75 * rethink name space problems
76 * need a proper out-of-band
77 * lock pushdown
79 static struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL };
80 static ino_t unp_ino; /* prototype for fake inode numbers */
82 static int unp_attach (struct socket *, struct pru_attach_info *);
83 static void unp_detach (struct unpcb *);
84 static int unp_bind (struct unpcb *,struct sockaddr *, struct thread *);
85 static int unp_connect (struct socket *,struct sockaddr *,
86 struct thread *);
87 static void unp_disconnect (struct unpcb *);
88 static void unp_shutdown (struct unpcb *);
89 static void unp_drop (struct unpcb *, int);
90 static void unp_gc (void);
91 static int unp_gc_clearmarks(struct file *, void *);
92 static int unp_gc_checkmarks(struct file *, void *);
93 static int unp_gc_checkrefs(struct file *, void *);
94 static void unp_scan (struct mbuf *, void (*)(struct file *, void *),
95 void *data);
96 static void unp_mark (struct file *, void *data);
97 static void unp_discard (struct file *, void *);
98 static int unp_internalize (struct mbuf *, struct thread *);
99 static int unp_listen (struct unpcb *, struct thread *);
101 static int
102 uipc_abort(struct socket *so)
104 struct unpcb *unp = so->so_pcb;
106 if (unp == NULL)
107 return EINVAL;
108 unp_drop(unp, ECONNABORTED);
109 unp_detach(unp);
110 sofree(so);
111 return 0;
114 static int
115 uipc_accept(struct socket *so, struct sockaddr **nam)
117 struct unpcb *unp = so->so_pcb;
119 if (unp == NULL)
120 return EINVAL;
123 * Pass back name of connected socket,
124 * if it was bound and we are still connected
125 * (our peer may have closed already!).
127 if (unp->unp_conn && unp->unp_conn->unp_addr) {
128 *nam = dup_sockaddr((struct sockaddr *)unp->unp_conn->unp_addr);
129 } else {
130 *nam = dup_sockaddr((struct sockaddr *)&sun_noname);
132 return 0;
135 static int
136 uipc_attach(struct socket *so, int proto, struct pru_attach_info *ai)
138 struct unpcb *unp = so->so_pcb;
140 if (unp != NULL)
141 return EISCONN;
142 return unp_attach(so, ai);
145 static int
146 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
148 struct unpcb *unp = so->so_pcb;
150 if (unp == NULL)
151 return EINVAL;
152 return unp_bind(unp, nam, td);
155 static int
156 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
158 struct unpcb *unp = so->so_pcb;
160 if (unp == NULL)
161 return EINVAL;
162 return unp_connect(so, nam, td);
165 static int
166 uipc_connect2(struct socket *so1, struct socket *so2)
168 struct unpcb *unp = so1->so_pcb;
170 if (unp == NULL)
171 return EINVAL;
173 return unp_connect2(so1, so2);
176 /* control is EOPNOTSUPP */
178 static int
179 uipc_detach(struct socket *so)
181 struct unpcb *unp = so->so_pcb;
183 if (unp == NULL)
184 return EINVAL;
186 unp_detach(unp);
187 return 0;
190 static int
191 uipc_disconnect(struct socket *so)
193 struct unpcb *unp = so->so_pcb;
195 if (unp == NULL)
196 return EINVAL;
197 unp_disconnect(unp);
198 return 0;
201 static int
202 uipc_listen(struct socket *so, struct thread *td)
204 struct unpcb *unp = so->so_pcb;
206 if (unp == NULL || unp->unp_vnode == NULL)
207 return EINVAL;
208 return unp_listen(unp, td);
211 static int
212 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
214 struct unpcb *unp = so->so_pcb;
216 if (unp == NULL)
217 return EINVAL;
218 if (unp->unp_conn && unp->unp_conn->unp_addr)
219 *nam = dup_sockaddr((struct sockaddr *)unp->unp_conn->unp_addr);
220 else {
222 * XXX: It seems that this test always fails even when
223 * connection is established. So, this else clause is
224 * added as workaround to return PF_LOCAL sockaddr.
226 *nam = dup_sockaddr((struct sockaddr *)&sun_noname);
228 return 0;
231 static int
232 uipc_rcvd(struct socket *so, int flags)
234 struct unpcb *unp = so->so_pcb;
235 struct socket *so2;
237 if (unp == NULL)
238 return EINVAL;
239 switch (so->so_type) {
240 case SOCK_DGRAM:
241 panic("uipc_rcvd DGRAM?");
242 /*NOTREACHED*/
244 case SOCK_STREAM:
245 case SOCK_SEQPACKET:
246 if (unp->unp_conn == NULL)
247 break;
249 * Because we are transfering mbufs directly to the
250 * peer socket we have to use SSB_STOP on the sender
251 * to prevent it from building up infinite mbufs.
253 so2 = unp->unp_conn->unp_socket;
254 if (so->so_rcv.ssb_cc < so2->so_snd.ssb_hiwat &&
255 so->so_rcv.ssb_mbcnt < so2->so_snd.ssb_mbmax
257 so2->so_snd.ssb_flags &= ~SSB_STOP;
258 sowwakeup(so2);
260 break;
262 default:
263 panic("uipc_rcvd unknown socktype");
265 return 0;
268 /* pru_rcvoob is EOPNOTSUPP */
270 static int
271 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
272 struct mbuf *control, struct thread *td)
274 int error = 0;
275 struct unpcb *unp = so->so_pcb;
276 struct socket *so2;
278 if (unp == NULL) {
279 error = EINVAL;
280 goto release;
282 if (flags & PRUS_OOB) {
283 error = EOPNOTSUPP;
284 goto release;
287 if (control && (error = unp_internalize(control, td)))
288 goto release;
290 switch (so->so_type) {
291 case SOCK_DGRAM:
293 struct sockaddr *from;
295 if (nam) {
296 if (unp->unp_conn) {
297 error = EISCONN;
298 break;
300 error = unp_connect(so, nam, td);
301 if (error)
302 break;
303 } else {
304 if (unp->unp_conn == NULL) {
305 error = ENOTCONN;
306 break;
309 so2 = unp->unp_conn->unp_socket;
310 if (unp->unp_addr)
311 from = (struct sockaddr *)unp->unp_addr;
312 else
313 from = &sun_noname;
314 if (ssb_appendaddr(&so2->so_rcv, from, m, control)) {
315 sorwakeup(so2);
316 m = NULL;
317 control = NULL;
318 } else {
319 error = ENOBUFS;
321 if (nam)
322 unp_disconnect(unp);
323 break;
326 case SOCK_STREAM:
327 case SOCK_SEQPACKET:
328 /* Connect if not connected yet. */
330 * Note: A better implementation would complain
331 * if not equal to the peer's address.
333 if (!(so->so_state & SS_ISCONNECTED)) {
334 if (nam) {
335 error = unp_connect(so, nam, td);
336 if (error)
337 break; /* XXX */
338 } else {
339 error = ENOTCONN;
340 break;
344 if (so->so_state & SS_CANTSENDMORE) {
345 error = EPIPE;
346 break;
348 if (unp->unp_conn == NULL)
349 panic("uipc_send connected but no connection?");
350 so2 = unp->unp_conn->unp_socket;
352 * Send to paired receive port, and then reduce
353 * send buffer hiwater marks to maintain backpressure.
354 * Wake up readers.
356 if (control) {
357 if (ssb_appendcontrol(&so2->so_rcv, m, control)) {
358 control = NULL;
359 m = NULL;
361 } else if (so->so_type == SOCK_SEQPACKET) {
362 sbappendrecord(&so2->so_rcv.sb, m);
363 m = NULL;
364 } else {
365 sbappend(&so2->so_rcv.sb, m);
366 m = NULL;
370 * Because we are transfering mbufs directly to the
371 * peer socket we have to use SSB_STOP on the sender
372 * to prevent it from building up infinite mbufs.
374 if (so2->so_rcv.ssb_cc >= so->so_snd.ssb_hiwat ||
375 so2->so_rcv.ssb_mbcnt >= so->so_snd.ssb_mbmax
377 so->so_snd.ssb_flags |= SSB_STOP;
379 sorwakeup(so2);
380 break;
382 default:
383 panic("uipc_send unknown socktype");
387 * SEND_EOF is equivalent to a SEND followed by a SHUTDOWN.
389 if (flags & PRUS_EOF) {
390 socantsendmore(so);
391 unp_shutdown(unp);
394 if (control && error != 0)
395 unp_dispose(control);
397 release:
398 if (control)
399 m_freem(control);
400 if (m)
401 m_freem(m);
402 return error;
405 static int
406 uipc_sense(struct socket *so, struct stat *sb)
408 struct unpcb *unp = so->so_pcb;
410 if (unp == NULL)
411 return EINVAL;
412 sb->st_blksize = so->so_snd.ssb_hiwat;
413 sb->st_dev = NOUDEV;
414 if (unp->unp_ino == 0) /* make up a non-zero inode number */
415 unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
416 sb->st_ino = unp->unp_ino;
417 return (0);
420 static int
421 uipc_shutdown(struct socket *so)
423 struct unpcb *unp = so->so_pcb;
425 if (unp == NULL)
426 return EINVAL;
427 socantsendmore(so);
428 unp_shutdown(unp);
429 return 0;
432 static int
433 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
435 struct unpcb *unp = so->so_pcb;
437 if (unp == NULL)
438 return EINVAL;
439 if (unp->unp_addr)
440 *nam = dup_sockaddr((struct sockaddr *)unp->unp_addr);
441 return 0;
444 struct pr_usrreqs uipc_usrreqs = {
445 .pru_abort = uipc_abort,
446 .pru_accept = uipc_accept,
447 .pru_attach = uipc_attach,
448 .pru_bind = uipc_bind,
449 .pru_connect = uipc_connect,
450 .pru_connect2 = uipc_connect2,
451 .pru_control = pru_control_notsupp,
452 .pru_detach = uipc_detach,
453 .pru_disconnect = uipc_disconnect,
454 .pru_listen = uipc_listen,
455 .pru_peeraddr = uipc_peeraddr,
456 .pru_rcvd = uipc_rcvd,
457 .pru_rcvoob = pru_rcvoob_notsupp,
458 .pru_send = uipc_send,
459 .pru_sense = uipc_sense,
460 .pru_shutdown = uipc_shutdown,
461 .pru_sockaddr = uipc_sockaddr,
462 .pru_sosend = sosend,
463 .pru_soreceive = soreceive,
464 .pru_sopoll = sopoll
468 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
470 struct unpcb *unp = so->so_pcb;
471 int error = 0;
473 switch (sopt->sopt_dir) {
474 case SOPT_GET:
475 switch (sopt->sopt_name) {
476 case LOCAL_PEERCRED:
477 if (unp->unp_flags & UNP_HAVEPC)
478 soopt_from_kbuf(sopt, &unp->unp_peercred,
479 sizeof(unp->unp_peercred));
480 else {
481 if (so->so_type == SOCK_STREAM)
482 error = ENOTCONN;
483 else if (so->so_type == SOCK_SEQPACKET)
484 error = ENOTCONN;
485 else
486 error = EINVAL;
488 break;
489 default:
490 error = EOPNOTSUPP;
491 break;
493 break;
494 case SOPT_SET:
495 default:
496 error = EOPNOTSUPP;
497 break;
499 return (error);
503 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
504 * for stream sockets, although the total for sender and receiver is
505 * actually only PIPSIZ.
506 * Datagram sockets really use the sendspace as the maximum datagram size,
507 * and don't really want to reserve the sendspace. Their recvspace should
508 * be large enough for at least one max-size datagram plus address.
510 #ifndef PIPSIZ
511 #define PIPSIZ 8192
512 #endif
513 static u_long unpst_sendspace = PIPSIZ;
514 static u_long unpst_recvspace = PIPSIZ;
515 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */
516 static u_long unpdg_recvspace = 4*1024;
518 static int unp_rights; /* file descriptors in flight */
519 static struct spinlock unp_spin = SPINLOCK_INITIALIZER(&unp_spin);
521 SYSCTL_DECL(_net_local_seqpacket);
522 SYSCTL_DECL(_net_local_stream);
523 SYSCTL_INT(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
524 &unpst_sendspace, 0, "");
525 SYSCTL_INT(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
526 &unpst_recvspace, 0, "");
528 SYSCTL_DECL(_net_local_dgram);
529 SYSCTL_INT(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
530 &unpdg_sendspace, 0, "");
531 SYSCTL_INT(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
532 &unpdg_recvspace, 0, "");
534 SYSCTL_DECL(_net_local);
535 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, "");
537 static int
538 unp_attach(struct socket *so, struct pru_attach_info *ai)
540 struct unpcb *unp;
541 int error;
543 if (so->so_snd.ssb_hiwat == 0 || so->so_rcv.ssb_hiwat == 0) {
544 switch (so->so_type) {
546 case SOCK_STREAM:
547 case SOCK_SEQPACKET:
548 error = soreserve(so, unpst_sendspace, unpst_recvspace,
549 ai->sb_rlimit);
550 break;
552 case SOCK_DGRAM:
553 error = soreserve(so, unpdg_sendspace, unpdg_recvspace,
554 ai->sb_rlimit);
555 break;
557 default:
558 panic("unp_attach");
560 if (error)
561 return (error);
563 unp = zalloc(unp_zone);
564 if (unp == NULL)
565 return (ENOBUFS);
566 bzero(unp, sizeof *unp);
567 unp->unp_gencnt = ++unp_gencnt;
568 unp_count++;
569 LIST_INIT(&unp->unp_refs);
570 unp->unp_socket = so;
571 unp->unp_rvnode = ai->fd_rdir; /* jail cruft XXX JH */
572 LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ? &unp_dhead
573 : &unp_shead, unp, unp_link);
574 so->so_pcb = (caddr_t)unp;
575 return (0);
578 static void
579 unp_detach(struct unpcb *unp)
581 LIST_REMOVE(unp, unp_link);
582 unp->unp_gencnt = ++unp_gencnt;
583 --unp_count;
584 if (unp->unp_vnode) {
585 unp->unp_vnode->v_socket = NULL;
586 vrele(unp->unp_vnode);
587 unp->unp_vnode = NULL;
589 if (unp->unp_conn)
590 unp_disconnect(unp);
591 while (!LIST_EMPTY(&unp->unp_refs))
592 unp_drop(LIST_FIRST(&unp->unp_refs), ECONNRESET);
593 soisdisconnected(unp->unp_socket);
594 unp->unp_socket->so_pcb = NULL;
595 if (unp_rights) {
597 * Normally the receive buffer is flushed later,
598 * in sofree, but if our receive buffer holds references
599 * to descriptors that are now garbage, we will dispose
600 * of those descriptor references after the garbage collector
601 * gets them (resulting in a "panic: closef: count < 0").
603 sorflush(unp->unp_socket);
604 unp_gc();
606 if (unp->unp_addr)
607 kfree(unp->unp_addr, M_SONAME);
608 zfree(unp_zone, unp);
611 static int
612 unp_bind(struct unpcb *unp, struct sockaddr *nam, struct thread *td)
614 struct proc *p = td->td_proc;
615 struct sockaddr_un *soun = (struct sockaddr_un *)nam;
616 struct vnode *vp;
617 struct vattr vattr;
618 int error, namelen;
619 struct nlookupdata nd;
620 char buf[SOCK_MAXADDRLEN];
622 if (unp->unp_vnode != NULL)
623 return (EINVAL);
624 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
625 if (namelen <= 0)
626 return (EINVAL);
627 strncpy(buf, soun->sun_path, namelen);
628 buf[namelen] = 0; /* null-terminate the string */
629 error = nlookup_init(&nd, buf, UIO_SYSSPACE,
630 NLC_LOCKVP | NLC_CREATE | NLC_REFDVP);
631 if (error == 0)
632 error = nlookup(&nd);
633 if (error == 0 && nd.nl_nch.ncp->nc_vp != NULL)
634 error = EADDRINUSE;
635 if (error)
636 goto done;
638 VATTR_NULL(&vattr);
639 vattr.va_type = VSOCK;
640 vattr.va_mode = (ACCESSPERMS & ~p->p_fd->fd_cmask);
641 error = VOP_NCREATE(&nd.nl_nch, nd.nl_dvp, &vp, nd.nl_cred, &vattr);
642 if (error == 0) {
643 vp->v_socket = unp->unp_socket;
644 unp->unp_vnode = vp;
645 unp->unp_addr = (struct sockaddr_un *)dup_sockaddr(nam);
646 vn_unlock(vp);
648 done:
649 nlookup_done(&nd);
650 return (error);
653 static int
654 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
656 struct proc *p = td->td_proc;
657 struct sockaddr_un *soun = (struct sockaddr_un *)nam;
658 struct vnode *vp;
659 struct socket *so2, *so3;
660 struct unpcb *unp, *unp2, *unp3;
661 int error, len;
662 struct nlookupdata nd;
663 char buf[SOCK_MAXADDRLEN];
665 KKASSERT(p);
667 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
668 if (len <= 0)
669 return EINVAL;
670 strncpy(buf, soun->sun_path, len);
671 buf[len] = 0;
673 vp = NULL;
674 error = nlookup_init(&nd, buf, UIO_SYSSPACE, NLC_FOLLOW);
675 if (error == 0)
676 error = nlookup(&nd);
677 if (error == 0)
678 error = cache_vget(&nd.nl_nch, nd.nl_cred, LK_EXCLUSIVE, &vp);
679 nlookup_done(&nd);
680 if (error)
681 return (error);
683 if (vp->v_type != VSOCK) {
684 error = ENOTSOCK;
685 goto bad;
687 error = VOP_ACCESS(vp, VWRITE, p->p_ucred);
688 if (error)
689 goto bad;
690 so2 = vp->v_socket;
691 if (so2 == NULL) {
692 error = ECONNREFUSED;
693 goto bad;
695 if (so->so_type != so2->so_type) {
696 error = EPROTOTYPE;
697 goto bad;
699 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
700 if (!(so2->so_options & SO_ACCEPTCONN) ||
701 (so3 = sonewconn(so2, 0)) == NULL) {
702 error = ECONNREFUSED;
703 goto bad;
705 unp = so->so_pcb;
706 unp2 = so2->so_pcb;
707 unp3 = so3->so_pcb;
708 if (unp2->unp_addr)
709 unp3->unp_addr = (struct sockaddr_un *)
710 dup_sockaddr((struct sockaddr *)unp2->unp_addr);
713 * unp_peercred management:
715 * The connecter's (client's) credentials are copied
716 * from its process structure at the time of connect()
717 * (which is now).
719 cru2x(p->p_ucred, &unp3->unp_peercred);
720 unp3->unp_flags |= UNP_HAVEPC;
722 * The receiver's (server's) credentials are copied
723 * from the unp_peercred member of socket on which the
724 * former called listen(); unp_listen() cached that
725 * process's credentials at that time so we can use
726 * them now.
728 KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
729 ("unp_connect: listener without cached peercred"));
730 memcpy(&unp->unp_peercred, &unp2->unp_peercred,
731 sizeof(unp->unp_peercred));
732 unp->unp_flags |= UNP_HAVEPC;
734 so2 = so3;
736 error = unp_connect2(so, so2);
737 bad:
738 vput(vp);
739 return (error);
743 unp_connect2(struct socket *so, struct socket *so2)
745 struct unpcb *unp = so->so_pcb;
746 struct unpcb *unp2;
748 if (so2->so_type != so->so_type)
749 return (EPROTOTYPE);
750 unp2 = so2->so_pcb;
751 unp->unp_conn = unp2;
752 switch (so->so_type) {
754 case SOCK_DGRAM:
755 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
756 soisconnected(so);
757 break;
759 case SOCK_STREAM:
760 case SOCK_SEQPACKET:
761 unp2->unp_conn = unp;
762 soisconnected(so);
763 soisconnected(so2);
764 break;
766 default:
767 panic("unp_connect2");
769 return (0);
772 static void
773 unp_disconnect(struct unpcb *unp)
775 struct unpcb *unp2 = unp->unp_conn;
777 if (unp2 == NULL)
778 return;
780 unp->unp_conn = NULL;
782 switch (unp->unp_socket->so_type) {
783 case SOCK_DGRAM:
784 LIST_REMOVE(unp, unp_reflink);
785 unp->unp_socket->so_state &= ~SS_ISCONNECTED;
786 break;
787 case SOCK_STREAM:
788 case SOCK_SEQPACKET:
789 soisdisconnected(unp->unp_socket);
790 unp2->unp_conn = NULL;
791 soisdisconnected(unp2->unp_socket);
792 break;
796 #ifdef notdef
797 void
798 unp_abort(struct unpcb *unp)
801 unp_detach(unp);
803 #endif
805 static int
806 prison_unpcb(struct thread *td, struct unpcb *unp)
808 struct proc *p;
810 if (td == NULL)
811 return (0);
812 if ((p = td->td_proc) == NULL)
813 return (0);
814 if (!p->p_ucred->cr_prison)
815 return (0);
816 if (p->p_fd->fd_rdir == unp->unp_rvnode)
817 return (0);
818 return (1);
821 static int
822 unp_pcblist(SYSCTL_HANDLER_ARGS)
824 int error, i, n;
825 struct unpcb *unp, **unp_list;
826 unp_gen_t gencnt;
827 struct unp_head *head;
829 head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead);
831 KKASSERT(curproc != NULL);
834 * The process of preparing the PCB list is too time-consuming and
835 * resource-intensive to repeat twice on every request.
837 if (req->oldptr == NULL) {
838 n = unp_count;
839 req->oldidx = (n + n/8) * sizeof(struct xunpcb);
840 return 0;
843 if (req->newptr != NULL)
844 return EPERM;
847 * OK, now we're committed to doing something.
849 gencnt = unp_gencnt;
850 n = unp_count;
852 unp_list = kmalloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
854 for (unp = LIST_FIRST(head), i = 0; unp && i < n;
855 unp = LIST_NEXT(unp, unp_link)) {
856 if (unp->unp_gencnt <= gencnt && !prison_unpcb(req->td, unp))
857 unp_list[i++] = unp;
859 n = i; /* in case we lost some during malloc */
861 error = 0;
862 for (i = 0; i < n; i++) {
863 unp = unp_list[i];
864 if (unp->unp_gencnt <= gencnt) {
865 struct xunpcb xu;
866 xu.xu_len = sizeof xu;
867 xu.xu_unpp = unp;
869 * XXX - need more locking here to protect against
870 * connect/disconnect races for SMP.
872 if (unp->unp_addr)
873 bcopy(unp->unp_addr, &xu.xu_addr,
874 unp->unp_addr->sun_len);
875 if (unp->unp_conn && unp->unp_conn->unp_addr)
876 bcopy(unp->unp_conn->unp_addr,
877 &xu.xu_caddr,
878 unp->unp_conn->unp_addr->sun_len);
879 bcopy(unp, &xu.xu_unp, sizeof *unp);
880 sotoxsocket(unp->unp_socket, &xu.xu_socket);
881 error = SYSCTL_OUT(req, &xu, sizeof xu);
884 kfree(unp_list, M_TEMP);
885 return error;
888 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
889 (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
890 "List of active local datagram sockets");
891 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
892 (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
893 "List of active local stream sockets");
894 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, CTLFLAG_RD,
895 (caddr_t)(long)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
896 "List of active local seqpacket stream sockets");
898 static void
899 unp_shutdown(struct unpcb *unp)
901 struct socket *so;
903 if ((unp->unp_socket->so_type == SOCK_STREAM ||
904 unp->unp_socket->so_type == SOCK_SEQPACKET) &&
905 unp->unp_conn != NULL && (so = unp->unp_conn->unp_socket)) {
906 socantrcvmore(so);
910 static void
911 unp_drop(struct unpcb *unp, int err)
913 struct socket *so = unp->unp_socket;
915 so->so_error = err;
916 unp_disconnect(unp);
919 #ifdef notdef
920 void
921 unp_drain(void)
925 #endif
928 unp_externalize(struct mbuf *rights)
930 struct proc *p = curproc; /* XXX */
931 int i;
932 struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
933 int *fdp;
934 struct file **rp;
935 struct file *fp;
936 int newfds = (cm->cmsg_len - (CMSG_DATA(cm) - (u_char *)cm))
937 / sizeof (struct file *);
938 int f;
941 * if the new FD's will not fit, then we free them all
943 if (!fdavail(p, newfds)) {
944 rp = (struct file **)CMSG_DATA(cm);
945 for (i = 0; i < newfds; i++) {
946 fp = *rp;
948 * zero the pointer before calling unp_discard,
949 * since it may end up in unp_gc()..
951 *rp++ = 0;
952 unp_discard(fp, NULL);
954 return (EMSGSIZE);
957 * now change each pointer to an fd in the global table to
958 * an integer that is the index to the local fd table entry
959 * that we set up to point to the global one we are transferring.
960 * If sizeof (struct file *) is bigger than or equal to sizeof int,
961 * then do it in forward order. In that case, an integer will
962 * always come in the same place or before its corresponding
963 * struct file pointer.
964 * If sizeof (struct file *) is smaller than sizeof int, then
965 * do it in reverse order.
967 if (sizeof (struct file *) >= sizeof (int)) {
968 fdp = (int *)(cm + 1);
969 rp = (struct file **)CMSG_DATA(cm);
970 for (i = 0; i < newfds; i++) {
971 if (fdalloc(p, 0, &f))
972 panic("unp_externalize");
973 fp = *rp++;
974 fsetfd(p, fp, f);
975 fdrop(fp);
976 spin_lock_wr(&unp_spin);
977 fp->f_msgcount--;
978 unp_rights--;
979 spin_unlock_wr(&unp_spin);
980 *fdp++ = f;
982 } else {
983 fdp = (int *)(cm + 1) + newfds - 1;
984 rp = (struct file **)CMSG_DATA(cm) + newfds - 1;
985 for (i = 0; i < newfds; i++) {
986 if (fdalloc(p, 0, &f))
987 panic("unp_externalize");
988 fp = *rp--;
989 fsetfd(p, fp, f);
990 fdrop(fp);
991 spin_lock_wr(&unp_spin);
992 fp->f_msgcount--;
993 unp_rights--;
994 spin_unlock_wr(&unp_spin);
995 *fdp-- = f;
1000 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1001 * differs.
1003 cm->cmsg_len = CMSG_LEN(newfds * sizeof(int));
1004 rights->m_len = cm->cmsg_len;
1005 return (0);
1008 void
1009 unp_init(void)
1011 unp_zone = zinit("unpcb", sizeof(struct unpcb), nmbclusters, 0, 0);
1012 if (unp_zone == NULL)
1013 panic("unp_init");
1014 LIST_INIT(&unp_dhead);
1015 LIST_INIT(&unp_shead);
1016 spin_init(&unp_spin);
1019 static int
1020 unp_internalize(struct mbuf *control, struct thread *td)
1022 struct proc *p = td->td_proc;
1023 struct filedesc *fdescp;
1024 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1025 struct file **rp;
1026 struct file *fp;
1027 int i, fd, *fdp;
1028 struct cmsgcred *cmcred;
1029 int oldfds;
1030 u_int newlen;
1032 KKASSERT(p);
1033 fdescp = p->p_fd;
1034 if ((cm->cmsg_type != SCM_RIGHTS && cm->cmsg_type != SCM_CREDS) ||
1035 cm->cmsg_level != SOL_SOCKET || cm->cmsg_len != control->m_len)
1036 return (EINVAL);
1039 * Fill in credential information.
1041 if (cm->cmsg_type == SCM_CREDS) {
1042 cmcred = (struct cmsgcred *)(cm + 1);
1043 cmcred->cmcred_pid = p->p_pid;
1044 cmcred->cmcred_uid = p->p_ucred->cr_ruid;
1045 cmcred->cmcred_gid = p->p_ucred->cr_rgid;
1046 cmcred->cmcred_euid = p->p_ucred->cr_uid;
1047 cmcred->cmcred_ngroups = MIN(p->p_ucred->cr_ngroups,
1048 CMGROUP_MAX);
1049 for (i = 0; i < cmcred->cmcred_ngroups; i++)
1050 cmcred->cmcred_groups[i] = p->p_ucred->cr_groups[i];
1051 return(0);
1054 oldfds = (cm->cmsg_len - sizeof (*cm)) / sizeof (int);
1056 * check that all the FDs passed in refer to legal OPEN files
1057 * If not, reject the entire operation.
1059 fdp = (int *)(cm + 1);
1060 for (i = 0; i < oldfds; i++) {
1061 fd = *fdp++;
1062 if ((unsigned)fd >= fdescp->fd_nfiles ||
1063 fdescp->fd_files[fd].fp == NULL)
1064 return (EBADF);
1065 if (fdescp->fd_files[fd].fp->f_type == DTYPE_KQUEUE)
1066 return (EOPNOTSUPP);
1069 * Now replace the integer FDs with pointers to
1070 * the associated global file table entry..
1071 * Allocate a bigger buffer as necessary. But if an cluster is not
1072 * enough, return E2BIG.
1074 newlen = CMSG_LEN(oldfds * sizeof(struct file *));
1075 if (newlen > MCLBYTES)
1076 return (E2BIG);
1077 if (newlen - control->m_len > M_TRAILINGSPACE(control)) {
1078 if (control->m_flags & M_EXT)
1079 return (E2BIG);
1080 MCLGET(control, MB_WAIT);
1081 if (!(control->m_flags & M_EXT))
1082 return (ENOBUFS);
1084 /* copy the data to the cluster */
1085 memcpy(mtod(control, char *), cm, cm->cmsg_len);
1086 cm = mtod(control, struct cmsghdr *);
1090 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1091 * differs.
1093 control->m_len = cm->cmsg_len = newlen;
1096 * Transform the file descriptors into struct file pointers.
1097 * If sizeof (struct file *) is bigger than or equal to sizeof int,
1098 * then do it in reverse order so that the int won't get until
1099 * we're done.
1100 * If sizeof (struct file *) is smaller than sizeof int, then
1101 * do it in forward order.
1103 if (sizeof (struct file *) >= sizeof (int)) {
1104 fdp = (int *)(cm + 1) + oldfds - 1;
1105 rp = (struct file **)CMSG_DATA(cm) + oldfds - 1;
1106 for (i = 0; i < oldfds; i++) {
1107 fp = fdescp->fd_files[*fdp--].fp;
1108 *rp-- = fp;
1109 fhold(fp);
1110 spin_lock_wr(&unp_spin);
1111 fp->f_msgcount++;
1112 unp_rights++;
1113 spin_unlock_wr(&unp_spin);
1115 } else {
1116 fdp = (int *)(cm + 1);
1117 rp = (struct file **)CMSG_DATA(cm);
1118 for (i = 0; i < oldfds; i++) {
1119 fp = fdescp->fd_files[*fdp++].fp;
1120 *rp++ = fp;
1121 fhold(fp);
1122 spin_lock_wr(&unp_spin);
1123 fp->f_msgcount++;
1124 unp_rights++;
1125 spin_unlock_wr(&unp_spin);
1128 return (0);
1132 * Garbage collect in-transit file descriptors that get lost due to
1133 * loops (i.e. when a socket is sent to another process over itself,
1134 * and more complex situations).
1136 * NOT MPSAFE - TODO socket flush code and maybe closef. Rest is MPSAFE.
1139 struct unp_gc_info {
1140 struct file **extra_ref;
1141 struct file *locked_fp;
1142 int defer;
1143 int index;
1144 int maxindex;
1147 static void
1148 unp_gc(void)
1150 struct unp_gc_info info;
1151 static boolean_t unp_gcing;
1152 struct file **fpp;
1153 int i;
1155 spin_lock_wr(&unp_spin);
1156 if (unp_gcing) {
1157 spin_unlock_wr(&unp_spin);
1158 return;
1160 unp_gcing = TRUE;
1161 spin_unlock_wr(&unp_spin);
1164 * before going through all this, set all FDs to
1165 * be NOT defered and NOT externally accessible
1167 info.defer = 0;
1168 allfiles_scan_exclusive(unp_gc_clearmarks, NULL);
1169 do {
1170 allfiles_scan_exclusive(unp_gc_checkmarks, &info);
1171 } while (info.defer);
1174 * We grab an extra reference to each of the file table entries
1175 * that are not otherwise accessible and then free the rights
1176 * that are stored in messages on them.
1178 * The bug in the orginal code is a little tricky, so I'll describe
1179 * what's wrong with it here.
1181 * It is incorrect to simply unp_discard each entry for f_msgcount
1182 * times -- consider the case of sockets A and B that contain
1183 * references to each other. On a last close of some other socket,
1184 * we trigger a gc since the number of outstanding rights (unp_rights)
1185 * is non-zero. If during the sweep phase the gc code un_discards,
1186 * we end up doing a (full) closef on the descriptor. A closef on A
1187 * results in the following chain. Closef calls soo_close, which
1188 * calls soclose. Soclose calls first (through the switch
1189 * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply
1190 * returns because the previous instance had set unp_gcing, and
1191 * we return all the way back to soclose, which marks the socket
1192 * with SS_NOFDREF, and then calls sofree. Sofree calls sorflush
1193 * to free up the rights that are queued in messages on the socket A,
1194 * i.e., the reference on B. The sorflush calls via the dom_dispose
1195 * switch unp_dispose, which unp_scans with unp_discard. This second
1196 * instance of unp_discard just calls closef on B.
1198 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1199 * which results in another closef on A. Unfortunately, A is already
1200 * being closed, and the descriptor has already been marked with
1201 * SS_NOFDREF, and soclose panics at this point.
1203 * Here, we first take an extra reference to each inaccessible
1204 * descriptor. Then, we call sorflush ourself, since we know
1205 * it is a Unix domain socket anyhow. After we destroy all the
1206 * rights carried in messages, we do a last closef to get rid
1207 * of our extra reference. This is the last close, and the
1208 * unp_detach etc will shut down the socket.
1210 * 91/09/19, bsy@cs.cmu.edu
1212 info.extra_ref = kmalloc(256 * sizeof(struct file *), M_FILE, M_WAITOK);
1213 info.maxindex = 256;
1215 do {
1217 * Look for matches
1219 info.index = 0;
1220 allfiles_scan_exclusive(unp_gc_checkrefs, &info);
1223 * For each FD on our hit list, do the following two things
1225 for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp) {
1226 struct file *tfp = *fpp;
1227 if (tfp->f_type == DTYPE_SOCKET && tfp->f_data != NULL)
1228 sorflush((struct socket *)(tfp->f_data));
1230 for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp)
1231 closef(*fpp, NULL);
1232 } while (info.index == info.maxindex);
1233 kfree((caddr_t)info.extra_ref, M_FILE);
1234 unp_gcing = FALSE;
1238 * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1240 static int
1241 unp_gc_checkrefs(struct file *fp, void *data)
1243 struct unp_gc_info *info = data;
1245 if (fp->f_count == 0)
1246 return(0);
1247 if (info->index == info->maxindex)
1248 return(-1);
1251 * If all refs are from msgs, and it's not marked accessible
1252 * then it must be referenced from some unreachable cycle
1253 * of (shut-down) FDs, so include it in our
1254 * list of FDs to remove
1256 if (fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1257 info->extra_ref[info->index++] = fp;
1258 fhold(fp);
1260 return(0);
1264 * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1266 static int
1267 unp_gc_clearmarks(struct file *fp, void *data __unused)
1269 fp->f_flag &= ~(FMARK|FDEFER);
1270 return(0);
1274 * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry
1276 static int
1277 unp_gc_checkmarks(struct file *fp, void *data)
1279 struct unp_gc_info *info = data;
1280 struct socket *so;
1283 * If the file is not open, skip it
1285 if (fp->f_count == 0)
1286 return(0);
1288 * If we already marked it as 'defer' in a
1289 * previous pass, then try process it this time
1290 * and un-mark it
1292 if (fp->f_flag & FDEFER) {
1293 fp->f_flag &= ~FDEFER;
1294 --info->defer;
1295 } else {
1297 * if it's not defered, then check if it's
1298 * already marked.. if so skip it
1300 if (fp->f_flag & FMARK)
1301 return(0);
1303 * If all references are from messages
1304 * in transit, then skip it. it's not
1305 * externally accessible.
1307 if (fp->f_count == fp->f_msgcount)
1308 return(0);
1310 * If it got this far then it must be
1311 * externally accessible.
1313 fp->f_flag |= FMARK;
1316 * either it was defered, or it is externally
1317 * accessible and not already marked so.
1318 * Now check if it is possibly one of OUR sockets.
1320 if (fp->f_type != DTYPE_SOCKET ||
1321 (so = (struct socket *)fp->f_data) == NULL)
1322 return(0);
1323 if (so->so_proto->pr_domain != &localdomain ||
1324 !(so->so_proto->pr_flags & PR_RIGHTS))
1325 return(0);
1326 #ifdef notdef
1327 XXX note: exclusive fp->f_spin lock held
1328 if (so->so_rcv.sb_flags & SB_LOCK) {
1330 * This is problematical; it's not clear
1331 * we need to wait for the sockbuf to be
1332 * unlocked (on a uniprocessor, at least),
1333 * and it's also not clear what to do
1334 * if sbwait returns an error due to receipt
1335 * of a signal. If sbwait does return
1336 * an error, we'll go into an infinite
1337 * loop. Delete all of this for now.
1339 sbwait(&so->so_rcv);
1340 goto restart;
1342 #endif
1344 * So, Ok, it's one of our sockets and it IS externally
1345 * accessible (or was defered). Now we look
1346 * to see if we hold any file descriptors in its
1347 * message buffers. Follow those links and mark them
1348 * as accessible too.
1350 info->locked_fp = fp;
1351 /* spin_lock_wr(&so->so_rcv.sb_spin); */
1352 unp_scan(so->so_rcv.ssb_mb, unp_mark, info);
1353 /* spin_unlock_wr(&so->so_rcv.sb_spin);*/
1354 return (0);
1357 void
1358 unp_dispose(struct mbuf *m)
1360 if (m)
1361 unp_scan(m, unp_discard, NULL);
1364 static int
1365 unp_listen(struct unpcb *unp, struct thread *td)
1367 struct proc *p = td->td_proc;
1369 KKASSERT(p);
1370 cru2x(p->p_ucred, &unp->unp_peercred);
1371 unp->unp_flags |= UNP_HAVEPCCACHED;
1372 return (0);
1375 static void
1376 unp_scan(struct mbuf *m0, void (*op)(struct file *, void *), void *data)
1378 struct mbuf *m;
1379 struct file **rp;
1380 struct cmsghdr *cm;
1381 int i;
1382 int qfds;
1384 while (m0) {
1385 for (m = m0; m; m = m->m_next) {
1386 if (m->m_type == MT_CONTROL &&
1387 m->m_len >= sizeof(*cm)) {
1388 cm = mtod(m, struct cmsghdr *);
1389 if (cm->cmsg_level != SOL_SOCKET ||
1390 cm->cmsg_type != SCM_RIGHTS)
1391 continue;
1392 qfds = (cm->cmsg_len -
1393 (CMSG_DATA(cm) - (u_char *)cm))
1394 / sizeof (struct file *);
1395 rp = (struct file **)CMSG_DATA(cm);
1396 for (i = 0; i < qfds; i++)
1397 (*op)(*rp++, data);
1398 break; /* XXX, but saves time */
1401 m0 = m0->m_nextpkt;
1405 static void
1406 unp_mark(struct file *fp, void *data)
1408 struct unp_gc_info *info = data;
1410 if (info->locked_fp != fp)
1411 spin_lock_wr(&fp->f_spin);
1412 if ((fp->f_flag & FMARK) == 0) {
1413 ++info->defer;
1414 fp->f_flag |= (FMARK|FDEFER);
1416 if (info->locked_fp != fp)
1417 spin_unlock_wr(&fp->f_spin);
1420 static void
1421 unp_discard(struct file *fp, void *data __unused)
1423 spin_lock_wr(&unp_spin);
1424 fp->f_msgcount--;
1425 unp_rights--;
1426 spin_unlock_wr(&unp_spin);
1427 closef(fp, NULL);