2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software posted to USENET.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * @(#) Copyright (c) 1989, 1993 The Regents of the University of California. All rights reserved.
32 * @(#)pom.c 8.1 (Berkeley) 5/31/93
33 * $FreeBSD: src/games/pom/pom.c,v 1.9 1999/11/30 03:49:09 billf Exp $
37 * Phase of the Moon. Calculates the current phase of the moon.
38 * Based on routines from `Practical Astronomy with Your Calculator',
39 * by Duffett-Smith. Comments give the section from the book that
40 * particular piece of code was adapted from.
42 * -- Keith E. Brandt VIII 1984
51 #define EPSILONg 279.611371 /* solar ecliptic long at EPOCH */
52 #define RHOg 282.680403 /* solar ecliptic long of perigee at EPOCH */
53 #define ECCEN 0.01671542 /* solar orbit eccentricity */
54 #define lzero 18.251907 /* lunar mean long at EPOCH */
55 #define Pzero 192.917585 /* lunar mean long of perigee at EPOCH */
56 #define Nzero 55.204723 /* lunar mean long of node at EPOCH */
57 #define isleap(y) ((((y) % 4) == 0 && ((y) % 100) != 0) || ((y) % 400) == 0)
59 static void adj360 (double *);
60 static double dtor (double);
61 static double potm (double);
68 double days
, today
, tomorrow
;
73 days
= (GMT
->tm_yday
+ 1) + ((GMT
->tm_hour
+
74 (GMT
->tm_min
/ 60.0) + (GMT
->tm_sec
/ 3600.0)) / 24.0);
75 for (cnt
= EPOCH
; cnt
< GMT
->tm_year
; ++cnt
)
76 days
+= isleap(1900 + cnt
) ? 366 : 365;
77 today
= potm(days
) + .5;
78 printf("The Moon is ");
79 if ((int)today
== 100)
84 tomorrow
= potm(days
+ 1);
86 printf("%s\n", tomorrow
> today
?
87 "at the First Quarter" : "at the Last Quarter");
89 printf("%s ", tomorrow
> today
?
92 printf("Gibbous (%1.0f%% of Full)\n", today
);
94 printf("Crescent (%1.0f%% of Full)\n", today
);
103 * return phase of the moon
108 double N
, Msol
, Ec
, LambdaSol
, l
, Mm
, Ev
, Ac
, A3
, Mmprime
;
109 double A4
, lprime
, V
, ldprime
, D
, Nm
;
111 N
= 360 * days
/ 365.2422; /* sec 42 #3 */
113 Msol
= N
+ EPSILONg
- RHOg
; /* sec 42 #4 */
115 Ec
= 360 / M_PI
* ECCEN
* sin(dtor(Msol
)); /* sec 42 #5 */
116 LambdaSol
= N
+ Ec
+ EPSILONg
; /* sec 42 #6 */
118 l
= 13.1763966 * days
+ lzero
; /* sec 61 #4 */
120 Mm
= l
- (0.1114041 * days
) - Pzero
; /* sec 61 #5 */
122 Nm
= Nzero
- (0.0529539 * days
); /* sec 61 #6 */
124 Ev
= 1.2739 * sin(dtor(2*(l
- LambdaSol
) - Mm
)); /* sec 61 #7 */
125 Ac
= 0.1858 * sin(dtor(Msol
)); /* sec 61 #8 */
126 A3
= 0.37 * sin(dtor(Msol
));
127 Mmprime
= Mm
+ Ev
- Ac
- A3
; /* sec 61 #9 */
128 Ec
= 6.2886 * sin(dtor(Mmprime
)); /* sec 61 #10 */
129 A4
= 0.214 * sin(dtor(2 * Mmprime
)); /* sec 61 #11 */
130 lprime
= l
+ Ev
+ Ec
- Ac
+ A4
; /* sec 61 #12 */
131 V
= 0.6583 * sin(dtor(2 * (lprime
- LambdaSol
))); /* sec 61 #13 */
132 ldprime
= lprime
+ V
; /* sec 61 #14 */
133 D
= ldprime
- LambdaSol
; /* sec 63 #2 */
134 return(50 * (1 - cos(dtor(D
)))); /* sec 63 #3 */
139 * convert degrees to radians
144 return(deg
* M_PI
/ 180);
149 * adjust value so 0 <= deg <= 360