kernel - Bump wakeup hash size a little
[dragonfly.git] / sys / kern / kern_synch.c
blobdcf2cf17ebe4ae4606b9e3ba638b30526d88cc3f
1 /*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
35 * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
38 #include "opt_ktrace.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/vmmeter.h>
47 #include <sys/sysctl.h>
48 #include <sys/lock.h>
49 #include <sys/uio.h>
50 #include <sys/kcollect.h>
51 #ifdef KTRACE
52 #include <sys/ktrace.h>
53 #endif
54 #include <sys/ktr.h>
55 #include <sys/serialize.h>
57 #include <sys/signal2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <sys/mutex2.h>
62 #include <machine/cpu.h>
63 #include <machine/smp.h>
65 TAILQ_HEAD(tslpque, thread);
67 static void sched_setup (void *dummy);
68 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL);
70 int lbolt;
71 void *lbolt_syncer;
72 int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
73 int ncpus;
74 int ncpus2, ncpus2_shift, ncpus2_mask; /* note: mask not cpumask_t */
75 int ncpus_fit, ncpus_fit_mask; /* note: mask not cpumask_t */
76 int safepri;
77 int tsleep_now_works;
78 int tsleep_crypto_dump = 0;
80 static struct callout loadav_callout;
81 static struct callout schedcpu_callout;
82 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
84 #define __DEALL(ident) __DEQUALIFY(void *, ident)
86 #if !defined(KTR_TSLEEP)
87 #define KTR_TSLEEP KTR_ALL
88 #endif
89 KTR_INFO_MASTER(tsleep);
90 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", const volatile void *ident);
91 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit");
92 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", const volatile void *ident);
93 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit");
94 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail, 4, "interlock failed %p", const volatile void *ident);
96 #define logtsleep1(name) KTR_LOG(tsleep_ ## name)
97 #define logtsleep2(name, val) KTR_LOG(tsleep_ ## name, val)
99 struct loadavg averunnable =
100 { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */
102 * Constants for averages over 1, 5, and 15 minutes
103 * when sampling at 5 second intervals.
105 static fixpt_t cexp[3] = {
106 0.9200444146293232 * FSCALE, /* exp(-1/12) */
107 0.9834714538216174 * FSCALE, /* exp(-1/60) */
108 0.9944598480048967 * FSCALE, /* exp(-1/180) */
111 static void endtsleep (void *);
112 static void loadav (void *arg);
113 static void schedcpu (void *arg);
116 * Adjust the scheduler quantum. The quantum is specified in microseconds.
117 * Note that 'tick' is in microseconds per tick.
119 static int
120 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
122 int error, new_val;
124 new_val = sched_quantum * ustick;
125 error = sysctl_handle_int(oidp, &new_val, 0, req);
126 if (error != 0 || req->newptr == NULL)
127 return (error);
128 if (new_val < ustick)
129 return (EINVAL);
130 sched_quantum = new_val / ustick;
131 return (0);
134 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
135 0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
137 static int pctcpu_decay = 10;
138 SYSCTL_INT(_kern, OID_AUTO, pctcpu_decay, CTLFLAG_RW, &pctcpu_decay, 0, "");
141 * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
143 int fscale __unused = FSCALE; /* exported to systat */
144 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
147 * Recompute process priorities, once a second.
149 * Since the userland schedulers are typically event oriented, if the
150 * estcpu calculation at wakeup() time is not sufficient to make a
151 * process runnable relative to other processes in the system we have
152 * a 1-second recalc to help out.
154 * This code also allows us to store sysclock_t data in the process structure
155 * without fear of an overrun, since sysclock_t are guarenteed to hold
156 * several seconds worth of count.
158 * WARNING! callouts can preempt normal threads. However, they will not
159 * preempt a thread holding a spinlock so we *can* safely use spinlocks.
161 static int schedcpu_stats(struct proc *p, void *data __unused);
162 static int schedcpu_resource(struct proc *p, void *data __unused);
164 static void
165 schedcpu(void *arg)
167 allproc_scan(schedcpu_stats, NULL);
168 allproc_scan(schedcpu_resource, NULL);
169 wakeup((caddr_t)&lbolt);
170 wakeup(lbolt_syncer);
171 callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
175 * General process statistics once a second
177 static int
178 schedcpu_stats(struct proc *p, void *data __unused)
180 struct lwp *lp;
183 * Threads may not be completely set up if process in SIDL state.
185 if (p->p_stat == SIDL)
186 return(0);
188 PHOLD(p);
189 if (lwkt_trytoken(&p->p_token) == FALSE) {
190 PRELE(p);
191 return(0);
194 p->p_swtime++;
195 FOREACH_LWP_IN_PROC(lp, p) {
196 if (lp->lwp_stat == LSSLEEP) {
197 ++lp->lwp_slptime;
198 if (lp->lwp_slptime == 1)
199 p->p_usched->uload_update(lp);
203 * Only recalculate processes that are active or have slept
204 * less then 2 seconds. The schedulers understand this.
205 * Otherwise decay by 50% per second.
207 if (lp->lwp_slptime <= 1) {
208 p->p_usched->recalculate(lp);
209 } else {
210 int decay;
212 decay = pctcpu_decay;
213 cpu_ccfence();
214 if (decay <= 1)
215 decay = 1;
216 if (decay > 100)
217 decay = 100;
218 lp->lwp_pctcpu = (lp->lwp_pctcpu * (decay - 1)) / decay;
221 lwkt_reltoken(&p->p_token);
222 lwkt_yield();
223 PRELE(p);
224 return(0);
228 * Resource checks. XXX break out since ksignal/killproc can block,
229 * limiting us to one process killed per second. There is probably
230 * a better way.
232 static int
233 schedcpu_resource(struct proc *p, void *data __unused)
235 u_int64_t ttime;
236 struct lwp *lp;
238 if (p->p_stat == SIDL)
239 return(0);
241 PHOLD(p);
242 if (lwkt_trytoken(&p->p_token) == FALSE) {
243 PRELE(p);
244 return(0);
247 if (p->p_stat == SZOMB || p->p_limit == NULL) {
248 lwkt_reltoken(&p->p_token);
249 PRELE(p);
250 return(0);
253 ttime = 0;
254 FOREACH_LWP_IN_PROC(lp, p) {
256 * We may have caught an lp in the middle of being
257 * created, lwp_thread can be NULL.
259 if (lp->lwp_thread) {
260 ttime += lp->lwp_thread->td_sticks;
261 ttime += lp->lwp_thread->td_uticks;
265 switch(plimit_testcpulimit(p->p_limit, ttime)) {
266 case PLIMIT_TESTCPU_KILL:
267 killproc(p, "exceeded maximum CPU limit");
268 break;
269 case PLIMIT_TESTCPU_XCPU:
270 if ((p->p_flags & P_XCPU) == 0) {
271 p->p_flags |= P_XCPU;
272 ksignal(p, SIGXCPU);
274 break;
275 default:
276 break;
278 lwkt_reltoken(&p->p_token);
279 lwkt_yield();
280 PRELE(p);
281 return(0);
285 * This is only used by ps. Generate a cpu percentage use over
286 * a period of one second.
288 void
289 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
291 fixpt_t acc;
292 int remticks;
294 acc = (cpticks << FSHIFT) / ttlticks;
295 if (ttlticks >= ESTCPUFREQ) {
296 lp->lwp_pctcpu = acc;
297 } else {
298 remticks = ESTCPUFREQ - ttlticks;
299 lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
300 ESTCPUFREQ;
305 * tsleep/wakeup hash table parameters. Try to find the sweet spot for
306 * like addresses being slept on. The larger the table, the fewer
307 * unnecessary IPIs. However, larger sizes also have diminishing returns
308 * and eat memory.
310 #define TABLESIZE 8191 /* 4001, 8191, or 16369 */
311 #define LOOKUP(x) (((u_int)(uintptr_t)(x)) % TABLESIZE)
313 static cpumask_t slpque_cpumasks[TABLESIZE];
316 * General scheduler initialization. We force a reschedule 25 times
317 * a second by default. Note that cpu0 is initialized in early boot and
318 * cannot make any high level calls.
320 * Each cpu has its own sleep queue.
322 void
323 sleep_gdinit(globaldata_t gd)
325 static struct tslpque slpque_cpu0[TABLESIZE];
326 int i;
328 if (gd->gd_cpuid == 0) {
329 sched_quantum = (hz + 24) / 25;
330 gd->gd_tsleep_hash = slpque_cpu0;
331 } else {
332 gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
333 M_TSLEEP, M_WAITOK | M_ZERO);
335 for (i = 0; i < TABLESIZE; ++i)
336 TAILQ_INIT(&gd->gd_tsleep_hash[i]);
340 * This is a dandy function that allows us to interlock tsleep/wakeup
341 * operations with unspecified upper level locks, such as lockmgr locks,
342 * simply by holding a critical section. The sequence is:
344 * (acquire upper level lock)
345 * tsleep_interlock(blah)
346 * (release upper level lock)
347 * tsleep(blah, ...)
349 * Basically this functions queues us on the tsleep queue without actually
350 * descheduling us. When tsleep() is later called with PINTERLOCK it
351 * assumes the thread was already queued, otherwise it queues it there.
353 * Thus it is possible to receive the wakeup prior to going to sleep and
354 * the race conditions are covered.
356 static __inline void
357 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
359 thread_t td = gd->gd_curthread;
360 int id;
362 crit_enter_quick(td);
363 if (td->td_flags & TDF_TSLEEPQ) {
364 id = LOOKUP(td->td_wchan);
365 TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
366 if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL) {
367 ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[id],
368 gd->gd_cpuid);
370 } else {
371 td->td_flags |= TDF_TSLEEPQ;
373 id = LOOKUP(ident);
374 TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_sleepq);
375 ATOMIC_CPUMASK_ORBIT(slpque_cpumasks[id], gd->gd_cpuid);
376 td->td_wchan = ident;
377 td->td_wdomain = flags & PDOMAIN_MASK;
378 crit_exit_quick(td);
381 void
382 tsleep_interlock(const volatile void *ident, int flags)
384 _tsleep_interlock(mycpu, ident, flags);
388 * Remove thread from sleepq. Must be called with a critical section held.
389 * The thread must not be migrating.
391 static __inline void
392 _tsleep_remove(thread_t td)
394 globaldata_t gd = mycpu;
395 int id;
397 KKASSERT(td->td_gd == gd && IN_CRITICAL_SECT(td));
398 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
399 if (td->td_flags & TDF_TSLEEPQ) {
400 td->td_flags &= ~TDF_TSLEEPQ;
401 id = LOOKUP(td->td_wchan);
402 TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
403 if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL) {
404 ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[id],
405 gd->gd_cpuid);
407 td->td_wchan = NULL;
408 td->td_wdomain = 0;
412 void
413 tsleep_remove(thread_t td)
415 _tsleep_remove(td);
419 * General sleep call. Suspends the current process until a wakeup is
420 * performed on the specified identifier. The process will then be made
421 * runnable with the specified priority. Sleeps at most timo/hz seconds
422 * (0 means no timeout). If flags includes PCATCH flag, signals are checked
423 * before and after sleeping, else signals are not checked. Returns 0 if
424 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
425 * signal needs to be delivered, ERESTART is returned if the current system
426 * call should be restarted if possible, and EINTR is returned if the system
427 * call should be interrupted by the signal (return EINTR).
429 * Note that if we are a process, we release_curproc() before messing with
430 * the LWKT scheduler.
432 * During autoconfiguration or after a panic, a sleep will simply
433 * lower the priority briefly to allow interrupts, then return.
435 * WARNING! This code can't block (short of switching away), or bad things
436 * will happen. No getting tokens, no blocking locks, etc.
439 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
441 struct thread *td = curthread;
442 struct lwp *lp = td->td_lwp;
443 struct proc *p = td->td_proc; /* may be NULL */
444 globaldata_t gd;
445 int sig;
446 int catch;
447 int error;
448 int oldpri;
449 struct callout thandle;
452 * Currently a severe hack. Make sure any delayed wakeups
453 * are flushed before we sleep or we might deadlock on whatever
454 * event we are sleeping on.
456 if (td->td_flags & TDF_DELAYED_WAKEUP)
457 wakeup_end_delayed();
460 * NOTE: removed KTRPOINT, it could cause races due to blocking
461 * even in stable. Just scrap it for now.
463 if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
465 * After a panic, or before we actually have an operational
466 * softclock, just give interrupts a chance, then just return;
468 * don't run any other procs or panic below,
469 * in case this is the idle process and already asleep.
471 splz();
472 oldpri = td->td_pri;
473 lwkt_setpri_self(safepri);
474 lwkt_switch();
475 lwkt_setpri_self(oldpri);
476 return (0);
478 logtsleep2(tsleep_beg, ident);
479 gd = td->td_gd;
480 KKASSERT(td != &gd->gd_idlethread); /* you must be kidding! */
481 td->td_wakefromcpu = -1; /* overwritten by _wakeup */
484 * NOTE: all of this occurs on the current cpu, including any
485 * callout-based wakeups, so a critical section is a sufficient
486 * interlock.
488 * The entire sequence through to where we actually sleep must
489 * run without breaking the critical section.
491 catch = flags & PCATCH;
492 error = 0;
493 sig = 0;
495 crit_enter_quick(td);
497 KASSERT(ident != NULL, ("tsleep: no ident"));
498 KASSERT(lp == NULL ||
499 lp->lwp_stat == LSRUN || /* Obvious */
500 lp->lwp_stat == LSSTOP, /* Set in tstop */
501 ("tsleep %p %s %d",
502 ident, wmesg, lp->lwp_stat));
505 * We interlock the sleep queue if the caller has not already done
506 * it for us. This must be done before we potentially acquire any
507 * tokens or we can loose the wakeup.
509 if ((flags & PINTERLOCKED) == 0) {
510 _tsleep_interlock(gd, ident, flags);
514 * Setup for the current process (if this is a process). We must
515 * interlock with lwp_token to avoid remote wakeup races via
516 * setrunnable()
518 if (lp) {
519 lwkt_gettoken(&lp->lwp_token);
522 * If the umbrella process is in the SCORE state then
523 * make sure that the thread is flagged going into a
524 * normal sleep to allow the core dump to proceed, otherwise
525 * the coredump can end up waiting forever. If the normal
526 * sleep is woken up, the thread will enter a stopped state
527 * upon return to userland.
529 * We do not want to interrupt or cause a thread exist at
530 * this juncture because that will mess-up the state the
531 * coredump is trying to save.
533 if (p->p_stat == SCORE &&
534 (lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
535 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
536 ++p->p_nstopped;
540 * PCATCH requested.
542 if (catch) {
544 * Early termination if PCATCH was set and a
545 * signal is pending, interlocked with the
546 * critical section.
548 * Early termination only occurs when tsleep() is
549 * entered while in a normal LSRUN state.
551 if ((sig = CURSIG(lp)) != 0)
552 goto resume;
555 * Causes ksignal to wake us up if a signal is
556 * received (interlocked with lp->lwp_token).
558 lp->lwp_flags |= LWP_SINTR;
560 } else {
561 KKASSERT(p == NULL);
565 * Make sure the current process has been untangled from
566 * the userland scheduler and initialize slptime to start
567 * counting.
569 * NOTE: td->td_wakefromcpu is pre-set by the release function
570 * for the dfly scheduler, and then adjusted by _wakeup()
572 if (lp) {
573 p->p_usched->release_curproc(lp);
574 lp->lwp_slptime = 0;
578 * If the interlocked flag is set but our cpu bit in the slpqueue
579 * is no longer set, then a wakeup was processed inbetween the
580 * tsleep_interlock() (ours or the callers), and here. This can
581 * occur under numerous circumstances including when we release the
582 * current process.
584 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
585 * to process incoming IPIs, thus draining incoming wakeups.
587 if ((td->td_flags & TDF_TSLEEPQ) == 0) {
588 logtsleep2(ilockfail, ident);
589 goto resume;
593 * scheduling is blocked while in a critical section. Coincide
594 * the descheduled-by-tsleep flag with the descheduling of the
595 * lwkt.
597 * The timer callout is localized on our cpu and interlocked by
598 * our critical section.
600 lwkt_deschedule_self(td);
601 td->td_flags |= TDF_TSLEEP_DESCHEDULED;
602 td->td_wmesg = wmesg;
605 * Setup the timeout, if any. The timeout is only operable while
606 * the thread is flagged descheduled.
608 KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
609 if (timo) {
610 callout_init_mp(&thandle);
611 callout_reset(&thandle, timo, endtsleep, td);
615 * Beddy bye bye.
617 if (lp) {
619 * Ok, we are sleeping. Place us in the SSLEEP state.
621 KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
624 * tstop() sets LSSTOP, so don't fiddle with that.
626 if (lp->lwp_stat != LSSTOP)
627 lp->lwp_stat = LSSLEEP;
628 lp->lwp_ru.ru_nvcsw++;
629 p->p_usched->uload_update(lp);
630 lwkt_switch();
633 * And when we are woken up, put us back in LSRUN. If we
634 * slept for over a second, recalculate our estcpu.
636 lp->lwp_stat = LSRUN;
637 if (lp->lwp_slptime) {
638 p->p_usched->uload_update(lp);
639 p->p_usched->recalculate(lp);
641 lp->lwp_slptime = 0;
642 } else {
643 lwkt_switch();
647 * Make sure we haven't switched cpus while we were asleep. It's
648 * not supposed to happen. Cleanup our temporary flags.
650 KKASSERT(gd == td->td_gd);
653 * Cleanup the timeout. If the timeout has already occured thandle
654 * has already been stopped, otherwise stop thandle. If the timeout
655 * is running (the callout thread must be blocked trying to get
656 * lwp_token) then wait for us to get scheduled.
658 if (timo) {
659 while (td->td_flags & TDF_TIMEOUT_RUNNING) {
660 /* else we won't get rescheduled! */
661 if (lp->lwp_stat != LSSTOP)
662 lp->lwp_stat = LSSLEEP;
663 lwkt_deschedule_self(td);
664 td->td_wmesg = "tsrace";
665 lwkt_switch();
666 kprintf("td %p %s: timeout race\n", td, td->td_comm);
668 if (td->td_flags & TDF_TIMEOUT) {
669 td->td_flags &= ~TDF_TIMEOUT;
670 error = EWOULDBLOCK;
671 } else {
672 /* does not block when on same cpu */
673 callout_stop(&thandle);
676 td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
679 * Make sure we have been removed from the sleepq. In most
680 * cases this will have been done for us already but it is
681 * possible for a scheduling IPI to be in-flight from a
682 * previous tsleep/tsleep_interlock() or due to a straight-out
683 * call to lwkt_schedule() (in the case of an interrupt thread),
684 * causing a spurious wakeup.
686 _tsleep_remove(td);
687 td->td_wmesg = NULL;
690 * Figure out the correct error return. If interrupted by a
691 * signal we want to return EINTR or ERESTART.
693 resume:
694 if (lp) {
695 if (catch && error == 0) {
696 if (sig != 0 || (sig = CURSIG(lp))) {
697 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
698 error = EINTR;
699 else
700 error = ERESTART;
704 lp->lwp_flags &= ~LWP_SINTR;
707 * Unconditionally set us to LSRUN on resume. lwp_stat could
708 * be in a weird state due to the goto resume, particularly
709 * when tsleep() is called from tstop().
711 lp->lwp_stat = LSRUN;
712 lwkt_reltoken(&lp->lwp_token);
714 logtsleep1(tsleep_end);
715 crit_exit_quick(td);
716 return (error);
720 * Interlocked spinlock sleep. An exclusively held spinlock must
721 * be passed to ssleep(). The function will atomically release the
722 * spinlock and tsleep on the ident, then reacquire the spinlock and
723 * return.
725 * This routine is fairly important along the critical path, so optimize it
726 * heavily.
729 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
730 const char *wmesg, int timo)
732 globaldata_t gd = mycpu;
733 int error;
735 _tsleep_interlock(gd, ident, flags);
736 spin_unlock_quick(gd, spin);
737 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
738 _spin_lock_quick(gd, spin, wmesg);
740 return (error);
744 lksleep(const volatile void *ident, struct lock *lock, int flags,
745 const char *wmesg, int timo)
747 globaldata_t gd = mycpu;
748 int error;
750 _tsleep_interlock(gd, ident, flags);
751 lockmgr(lock, LK_RELEASE);
752 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
753 lockmgr(lock, LK_EXCLUSIVE);
755 return (error);
759 * Interlocked mutex sleep. An exclusively held mutex must be passed
760 * to mtxsleep(). The function will atomically release the mutex
761 * and tsleep on the ident, then reacquire the mutex and return.
764 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
765 const char *wmesg, int timo)
767 globaldata_t gd = mycpu;
768 int error;
770 _tsleep_interlock(gd, ident, flags);
771 mtx_unlock(mtx);
772 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
773 mtx_lock_ex_quick(mtx);
775 return (error);
779 * Interlocked serializer sleep. An exclusively held serializer must
780 * be passed to zsleep(). The function will atomically release
781 * the serializer and tsleep on the ident, then reacquire the serializer
782 * and return.
785 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
786 const char *wmesg, int timo)
788 globaldata_t gd = mycpu;
789 int ret;
791 ASSERT_SERIALIZED(slz);
793 _tsleep_interlock(gd, ident, flags);
794 lwkt_serialize_exit(slz);
795 ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
796 lwkt_serialize_enter(slz);
798 return ret;
802 * Directly block on the LWKT thread by descheduling it. This
803 * is much faster then tsleep(), but the only legal way to wake
804 * us up is to directly schedule the thread.
806 * Setting TDF_SINTR will cause new signals to directly schedule us.
808 * This routine must be called while in a critical section.
811 lwkt_sleep(const char *wmesg, int flags)
813 thread_t td = curthread;
814 int sig;
816 if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
817 td->td_flags |= TDF_BLOCKED;
818 td->td_wmesg = wmesg;
819 lwkt_deschedule_self(td);
820 lwkt_switch();
821 td->td_wmesg = NULL;
822 td->td_flags &= ~TDF_BLOCKED;
823 return(0);
825 if ((sig = CURSIG(td->td_lwp)) != 0) {
826 if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
827 return(EINTR);
828 else
829 return(ERESTART);
832 td->td_flags |= TDF_BLOCKED | TDF_SINTR;
833 td->td_wmesg = wmesg;
834 lwkt_deschedule_self(td);
835 lwkt_switch();
836 td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
837 td->td_wmesg = NULL;
838 return(0);
842 * Implement the timeout for tsleep.
844 * This type of callout timeout is scheduled on the same cpu the process
845 * is sleeping on. Also, at the moment, the MP lock is held.
847 static void
848 endtsleep(void *arg)
850 thread_t td = arg;
851 struct lwp *lp;
854 * We are going to have to get the lwp_token, which means we might
855 * block. This can race a tsleep getting woken up by other means
856 * so set TDF_TIMEOUT_RUNNING to force the tsleep to wait for our
857 * processing to complete (sorry tsleep!).
859 * We can safely set td_flags because td MUST be on the same cpu
860 * as we are.
862 KKASSERT(td->td_gd == mycpu);
863 crit_enter();
864 td->td_flags |= TDF_TIMEOUT_RUNNING | TDF_TIMEOUT;
867 * This can block but TDF_TIMEOUT_RUNNING will prevent the thread
868 * from exiting the tsleep on us. The flag is interlocked by virtue
869 * of lp being on the same cpu as we are.
871 if ((lp = td->td_lwp) != NULL)
872 lwkt_gettoken(&lp->lwp_token);
874 KKASSERT(td->td_flags & TDF_TSLEEP_DESCHEDULED);
876 if (lp) {
878 * callout timer should normally never be set in tstop()
879 * because it passes a timeout of 0. However, there is a
880 * case during thread exit (which SSTOP's all the threads)
881 * for which tstop() must break out and can (properly) leave
882 * the thread in LSSTOP.
884 KKASSERT(lp->lwp_stat != LSSTOP ||
885 (lp->lwp_mpflags & LWP_MP_WEXIT));
886 setrunnable(lp);
887 lwkt_reltoken(&lp->lwp_token);
888 } else {
889 _tsleep_remove(td);
890 lwkt_schedule(td);
892 KKASSERT(td->td_gd == mycpu);
893 td->td_flags &= ~TDF_TIMEOUT_RUNNING;
894 crit_exit();
898 * Make all processes sleeping on the specified identifier runnable.
899 * count may be zero or one only.
901 * The domain encodes the sleep/wakeup domain, flags, plus the originating
902 * cpu.
904 * This call may run without the MP lock held. We can only manipulate thread
905 * state on the cpu owning the thread. We CANNOT manipulate process state
906 * at all.
908 * _wakeup() can be passed to an IPI so we can't use (const volatile
909 * void *ident).
911 static void
912 _wakeup(void *ident, int domain)
914 struct tslpque *qp;
915 struct thread *td;
916 struct thread *ntd;
917 globaldata_t gd;
918 cpumask_t mask;
919 int id;
921 crit_enter();
922 logtsleep2(wakeup_beg, ident);
923 gd = mycpu;
924 id = LOOKUP(ident);
925 qp = &gd->gd_tsleep_hash[id];
926 restart:
927 for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
928 ntd = TAILQ_NEXT(td, td_sleepq);
929 if (td->td_wchan == ident &&
930 td->td_wdomain == (domain & PDOMAIN_MASK)
932 KKASSERT(td->td_gd == gd);
933 _tsleep_remove(td);
934 td->td_wakefromcpu = PWAKEUP_DECODE(domain);
935 if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
936 lwkt_schedule(td);
937 if (domain & PWAKEUP_ONE)
938 goto done;
940 goto restart;
945 * We finished checking the current cpu but there still may be
946 * more work to do. Either wakeup_one was requested and no matching
947 * thread was found, or a normal wakeup was requested and we have
948 * to continue checking cpus.
950 * It should be noted that this scheme is actually less expensive then
951 * the old scheme when waking up multiple threads, since we send
952 * only one IPI message per target candidate which may then schedule
953 * multiple threads. Before we could have wound up sending an IPI
954 * message for each thread on the target cpu (!= current cpu) that
955 * needed to be woken up.
957 * NOTE: Wakeups occuring on remote cpus are asynchronous. This
958 * should be ok since we are passing idents in the IPI rather then
959 * thread pointers.
961 if ((domain & PWAKEUP_MYCPU) == 0) {
962 mask = slpque_cpumasks[id];
963 CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
964 if (CPUMASK_TESTNZERO(mask)) {
965 lwkt_send_ipiq2_mask(mask, _wakeup, ident,
966 domain | PWAKEUP_MYCPU);
969 done:
970 logtsleep1(wakeup_end);
971 crit_exit();
975 * Wakeup all threads tsleep()ing on the specified ident, on all cpus
977 void
978 wakeup(const volatile void *ident)
980 globaldata_t gd = mycpu;
981 thread_t td = gd->gd_curthread;
983 if (td && (td->td_flags & TDF_DELAYED_WAKEUP)) {
985 * If we are in a delayed wakeup section, record up to two wakeups in
986 * a per-CPU queue and issue them when we block or exit the delayed
987 * wakeup section.
989 if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[0], NULL, ident))
990 return;
991 if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[1], NULL, ident))
992 return;
994 ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[1]),
995 __DEALL(ident));
996 ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[0]),
997 __DEALL(ident));
1000 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, gd->gd_cpuid));
1004 * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
1006 void
1007 wakeup_one(const volatile void *ident)
1009 /* XXX potentially round-robin the first responding cpu */
1010 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1011 PWAKEUP_ONE);
1015 * Wakeup threads tsleep()ing on the specified ident on the current cpu
1016 * only.
1018 void
1019 wakeup_mycpu(const volatile void *ident)
1021 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1022 PWAKEUP_MYCPU);
1026 * Wakeup one thread tsleep()ing on the specified ident on the current cpu
1027 * only.
1029 void
1030 wakeup_mycpu_one(const volatile void *ident)
1032 /* XXX potentially round-robin the first responding cpu */
1033 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1034 PWAKEUP_MYCPU | PWAKEUP_ONE);
1038 * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
1039 * only.
1041 void
1042 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
1044 globaldata_t mygd = mycpu;
1045 if (gd == mycpu) {
1046 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1047 PWAKEUP_MYCPU);
1048 } else {
1049 lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1050 PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1051 PWAKEUP_MYCPU);
1056 * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1057 * only.
1059 void
1060 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1062 globaldata_t mygd = mycpu;
1063 if (gd == mygd) {
1064 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1065 PWAKEUP_MYCPU | PWAKEUP_ONE);
1066 } else {
1067 lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1068 PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1069 PWAKEUP_MYCPU | PWAKEUP_ONE);
1074 * Wakeup all threads waiting on the specified ident that slept using
1075 * the specified domain, on all cpus.
1077 void
1078 wakeup_domain(const volatile void *ident, int domain)
1080 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1084 * Wakeup one thread waiting on the specified ident that slept using
1085 * the specified domain, on any cpu.
1087 void
1088 wakeup_domain_one(const volatile void *ident, int domain)
1090 /* XXX potentially round-robin the first responding cpu */
1091 _wakeup(__DEALL(ident),
1092 PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1095 void
1096 wakeup_start_delayed(void)
1098 globaldata_t gd = mycpu;
1100 crit_enter();
1101 gd->gd_curthread->td_flags |= TDF_DELAYED_WAKEUP;
1102 crit_exit();
1105 void
1106 wakeup_end_delayed(void)
1108 globaldata_t gd = mycpu;
1110 if (gd->gd_curthread->td_flags & TDF_DELAYED_WAKEUP) {
1111 crit_enter();
1112 gd->gd_curthread->td_flags &= ~TDF_DELAYED_WAKEUP;
1113 if (gd->gd_delayed_wakeup[0] || gd->gd_delayed_wakeup[1]) {
1114 if (gd->gd_delayed_wakeup[0]) {
1115 wakeup(gd->gd_delayed_wakeup[0]);
1116 gd->gd_delayed_wakeup[0] = NULL;
1118 if (gd->gd_delayed_wakeup[1]) {
1119 wakeup(gd->gd_delayed_wakeup[1]);
1120 gd->gd_delayed_wakeup[1] = NULL;
1123 crit_exit();
1128 * setrunnable()
1130 * Make a process runnable. lp->lwp_token must be held on call and this
1131 * function must be called from the cpu owning lp.
1133 * This only has an effect if we are in LSSTOP or LSSLEEP.
1135 void
1136 setrunnable(struct lwp *lp)
1138 thread_t td = lp->lwp_thread;
1140 ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1141 KKASSERT(td->td_gd == mycpu);
1142 crit_enter();
1143 if (lp->lwp_stat == LSSTOP)
1144 lp->lwp_stat = LSSLEEP;
1145 if (lp->lwp_stat == LSSLEEP) {
1146 _tsleep_remove(td);
1147 lwkt_schedule(td);
1148 } else if (td->td_flags & TDF_SINTR) {
1149 lwkt_schedule(td);
1151 crit_exit();
1155 * The process is stopped due to some condition, usually because p_stat is
1156 * set to SSTOP, but also possibly due to being traced.
1158 * Caller must hold p->p_token
1160 * NOTE! If the caller sets SSTOP, the caller must also clear P_WAITED
1161 * because the parent may check the child's status before the child actually
1162 * gets to this routine.
1164 * This routine is called with the current lwp only, typically just
1165 * before returning to userland if the process state is detected as
1166 * possibly being in a stopped state.
1168 void
1169 tstop(void)
1171 struct lwp *lp = curthread->td_lwp;
1172 struct proc *p = lp->lwp_proc;
1173 struct proc *q;
1175 lwkt_gettoken(&lp->lwp_token);
1176 crit_enter();
1179 * If LWP_MP_WSTOP is set, we were sleeping
1180 * while our process was stopped. At this point
1181 * we were already counted as stopped.
1183 if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1185 * If we're the last thread to stop, signal
1186 * our parent.
1188 p->p_nstopped++;
1189 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1190 wakeup(&p->p_nstopped);
1191 if (p->p_nstopped == p->p_nthreads) {
1193 * Token required to interlock kern_wait()
1195 q = p->p_pptr;
1196 PHOLD(q);
1197 lwkt_gettoken(&q->p_token);
1198 p->p_flags &= ~P_WAITED;
1199 wakeup(p->p_pptr);
1200 if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1201 ksignal(q, SIGCHLD);
1202 lwkt_reltoken(&q->p_token);
1203 PRELE(q);
1208 * Wait here while in a stopped state, interlocked with lwp_token.
1209 * We must break-out if the whole process is trying to exit.
1211 while (STOPLWP(p, lp)) {
1212 lp->lwp_stat = LSSTOP;
1213 tsleep(p, 0, "stop", 0);
1215 p->p_nstopped--;
1216 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1217 crit_exit();
1218 lwkt_reltoken(&lp->lwp_token);
1222 * Compute a tenex style load average of a quantity on
1223 * 1, 5 and 15 minute intervals.
1225 static int loadav_count_runnable(struct lwp *p, void *data);
1227 static void
1228 loadav(void *arg)
1230 struct loadavg *avg;
1231 int i, nrun;
1233 nrun = 0;
1234 alllwp_scan(loadav_count_runnable, &nrun);
1235 avg = &averunnable;
1236 for (i = 0; i < 3; i++) {
1237 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1238 (long)nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1242 * Schedule the next update to occur after 5 seconds, but add a
1243 * random variation to avoid synchronisation with processes that
1244 * run at regular intervals.
1246 callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1247 loadav, NULL);
1250 static int
1251 loadav_count_runnable(struct lwp *lp, void *data)
1253 int *nrunp = data;
1254 thread_t td;
1256 switch (lp->lwp_stat) {
1257 case LSRUN:
1258 if ((td = lp->lwp_thread) == NULL)
1259 break;
1260 if (td->td_flags & TDF_BLOCKED)
1261 break;
1262 ++*nrunp;
1263 break;
1264 default:
1265 break;
1267 lwkt_yield();
1268 return(0);
1272 * Regular data collection
1274 static uint64_t
1275 collect_load_callback(int n)
1277 int fscale = averunnable.fscale;
1279 return ((averunnable.ldavg[0] * 100 + (fscale >> 1)) / fscale);
1282 /* ARGSUSED */
1283 static void
1284 sched_setup(void *dummy)
1286 callout_init_mp(&loadav_callout);
1287 callout_init_mp(&schedcpu_callout);
1288 kcollect_register(KCOLLECT_LOAD, "load", collect_load_callback,
1289 KCOLLECT_SCALE(KCOLLECT_LOAD_FORMAT, 0));
1290 /* Kick off timeout driven events by calling first time. */
1291 schedcpu(NULL);
1292 loadav(NULL);