1 .\" Automatically generated by Pod::Man 2.12 (Pod::Simple 3.05)
4 .\" ========================================================================
5 .de Sh \" Subsection heading
13 .de Sp \" Vertical space (when we can't use .PP)
17 .de Vb \" Begin verbatim text
22 .de Ve \" End verbatim text
26 .\" Set up some character translations and predefined strings. \*(-- will
27 .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
28 .\" double quote, and \*(R" will give a right double quote. \*(C+ will
29 .\" give a nicer C++. Capital omega is used to do unbreakable dashes and
30 .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
31 .\" nothing in troff, for use with C<>.
33 .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
37 . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
38 . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
51 .\" If the F register is turned on, we'll generate index entries on stderr for
52 .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
53 .\" entries marked with X<> in POD. Of course, you'll have to process the
54 .\" output yourself in some meaningful fashion.
57 . tm Index:\\$1\t\\n%\t"\\$2"
63 .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
64 .\" Fear. Run. Save yourself. No user-serviceable parts.
65 . \" fudge factors for nroff and troff
74 . ds #H ((1u-(\\\\n(.fu%2u))*.13m)
80 . \" simple accents for nroff and troff
90 . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
91 . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
92 . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
93 . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
94 . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
95 . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
97 . \" troff and (daisy-wheel) nroff accents
98 .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
99 .ds 8 \h'\*(#H'\(*b\h'-\*(#H'
100 .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
101 .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
102 .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
103 .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
104 .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
105 .ds ae a\h'-(\w'a'u*4/10)'e
106 .ds Ae A\h'-(\w'A'u*4/10)'E
107 . \" corrections for vroff
108 .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
109 .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
110 . \" for low resolution devices (crt and lpr)
111 .if \n(.H>23 .if \n(.V>19 \
124 .\" ========================================================================
127 .TH des 3 "2007-10-24" "0.9.8g" "OpenSSL"
128 .\" For nroff, turn off justification. Always turn off hyphenation; it makes
129 .\" way too many mistakes in technical documents.
133 DES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked,
134 DES_set_key_unchecked, DES_set_odd_parity, DES_is_weak_key,
135 DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt, DES_ncbc_encrypt,
136 DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt,
137 DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt,
138 DES_ede2_cfb64_encrypt, DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt,
139 DES_ede3_cbcm_encrypt, DES_ede3_cfb64_encrypt, DES_ede3_ofb64_encrypt,
140 DES_cbc_cksum, DES_quad_cksum, DES_string_to_key, DES_string_to_2keys,
141 DES_fcrypt, DES_crypt, DES_enc_read, DES_enc_write \- DES encryption
143 .IX Header "SYNOPSIS"
145 \& #include <openssl/des.h>
147 \& void DES_random_key(DES_cblock *ret);
149 \& int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule);
150 \& int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule);
151 \& int DES_set_key_checked(const_DES_cblock *key,
152 \& DES_key_schedule *schedule);
153 \& void DES_set_key_unchecked(const_DES_cblock *key,
154 \& DES_key_schedule *schedule);
156 \& void DES_set_odd_parity(DES_cblock *key);
157 \& int DES_is_weak_key(const_DES_cblock *key);
159 \& void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output,
160 \& DES_key_schedule *ks, int enc);
161 \& void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output,
162 \& DES_key_schedule *ks1, DES_key_schedule *ks2, int enc);
163 \& void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output,
164 \& DES_key_schedule *ks1, DES_key_schedule *ks2,
165 \& DES_key_schedule *ks3, int enc);
167 \& void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output,
168 \& long length, DES_key_schedule *schedule, DES_cblock *ivec,
170 \& void DES_cfb_encrypt(const unsigned char *in, unsigned char *out,
171 \& int numbits, long length, DES_key_schedule *schedule,
172 \& DES_cblock *ivec, int enc);
173 \& void DES_ofb_encrypt(const unsigned char *in, unsigned char *out,
174 \& int numbits, long length, DES_key_schedule *schedule,
175 \& DES_cblock *ivec);
176 \& void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output,
177 \& long length, DES_key_schedule *schedule, DES_cblock *ivec,
179 \& void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,
180 \& long length, DES_key_schedule *schedule, DES_cblock *ivec,
181 \& int *num, int enc);
182 \& void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out,
183 \& long length, DES_key_schedule *schedule, DES_cblock *ivec,
186 \& void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output,
187 \& long length, DES_key_schedule *schedule, DES_cblock *ivec,
188 \& const_DES_cblock *inw, const_DES_cblock *outw, int enc);
190 \& void DES_ede2_cbc_encrypt(const unsigned char *input,
191 \& unsigned char *output, long length, DES_key_schedule *ks1,
192 \& DES_key_schedule *ks2, DES_cblock *ivec, int enc);
193 \& void DES_ede2_cfb64_encrypt(const unsigned char *in,
194 \& unsigned char *out, long length, DES_key_schedule *ks1,
195 \& DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc);
196 \& void DES_ede2_ofb64_encrypt(const unsigned char *in,
197 \& unsigned char *out, long length, DES_key_schedule *ks1,
198 \& DES_key_schedule *ks2, DES_cblock *ivec, int *num);
200 \& void DES_ede3_cbc_encrypt(const unsigned char *input,
201 \& unsigned char *output, long length, DES_key_schedule *ks1,
202 \& DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec,
204 \& void DES_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
205 \& long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
206 \& DES_key_schedule *ks3, DES_cblock *ivec1, DES_cblock *ivec2,
208 \& void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
209 \& long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
210 \& DES_key_schedule *ks3, DES_cblock *ivec, int *num, int enc);
211 \& void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
212 \& long length, DES_key_schedule *ks1,
213 \& DES_key_schedule *ks2, DES_key_schedule *ks3,
214 \& DES_cblock *ivec, int *num);
216 \& DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output,
217 \& long length, DES_key_schedule *schedule,
218 \& const_DES_cblock *ivec);
219 \& DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[],
220 \& long length, int out_count, DES_cblock *seed);
221 \& void DES_string_to_key(const char *str, DES_cblock *key);
222 \& void DES_string_to_2keys(const char *str, DES_cblock *key1,
223 \& DES_cblock *key2);
225 \& char *DES_fcrypt(const char *buf, const char *salt, char *ret);
226 \& char *DES_crypt(const char *buf, const char *salt);
228 \& int DES_enc_read(int fd, void *buf, int len, DES_key_schedule *sched,
230 \& int DES_enc_write(int fd, const void *buf, int len,
231 \& DES_key_schedule *sched, DES_cblock *iv);
234 .IX Header "DESCRIPTION"
235 This library contains a fast implementation of the \s-1DES\s0 encryption
238 There are two phases to the use of \s-1DES\s0 encryption. The first is the
239 generation of a \fIDES_key_schedule\fR from a key, the second is the
240 actual encryption. A \s-1DES\s0 key is of type \fIDES_cblock\fR. This type is
241 consists of 8 bytes with odd parity. The least significant bit in
242 each byte is the parity bit. The key schedule is an expanded form of
243 the key; it is used to speed the encryption process.
245 \&\fIDES_random_key()\fR generates a random key. The \s-1PRNG\s0 must be seeded
246 prior to using this function (see \fIrand\fR\|(3)). If the \s-1PRNG\s0
247 could not generate a secure key, 0 is returned.
249 Before a \s-1DES\s0 key can be used, it must be converted into the
250 architecture dependent \fIDES_key_schedule\fR via the
251 \&\fIDES_set_key_checked()\fR or \fIDES_set_key_unchecked()\fR function.
253 \&\fIDES_set_key_checked()\fR will check that the key passed is of odd parity
254 and is not a week or semi-weak key. If the parity is wrong, then \-1
255 is returned. If the key is a weak key, then \-2 is returned. If an
256 error is returned, the key schedule is not generated.
258 \&\fIDES_set_key()\fR works like
259 \&\fIDES_set_key_checked()\fR if the \fIDES_check_key\fR flag is non-zero,
260 otherwise like \fIDES_set_key_unchecked()\fR. These functions are available
261 for compatibility; it is recommended to use a function that does not
262 depend on a global variable.
264 \&\fIDES_set_odd_parity()\fR sets the parity of the passed \fIkey\fR to odd.
266 \&\fIDES_is_weak_key()\fR returns 1 is the passed key is a weak key, 0 if it
267 is ok. The probability that a randomly generated key is weak is
268 1/2^52, so it is not really worth checking for them.
270 The following routines mostly operate on an input and output stream of
273 \&\fIDES_ecb_encrypt()\fR is the basic \s-1DES\s0 encryption routine that encrypts or
274 decrypts a single 8\-byte \fIDES_cblock\fR in \fIelectronic code book\fR
275 (\s-1ECB\s0) mode. It always transforms the input data, pointed to by
276 \&\fIinput\fR, into the output data, pointed to by the \fIoutput\fR argument.
277 If the \fIencrypt\fR argument is non-zero (\s-1DES_ENCRYPT\s0), the \fIinput\fR
278 (cleartext) is encrypted in to the \fIoutput\fR (ciphertext) using the
279 key_schedule specified by the \fIschedule\fR argument, previously set via
280 \&\fIDES_set_key\fR. If \fIencrypt\fR is zero (\s-1DES_DECRYPT\s0), the \fIinput\fR (now
281 ciphertext) is decrypted into the \fIoutput\fR (now cleartext). Input
282 and output may overlap. \fIDES_ecb_encrypt()\fR does not return a value.
284 \&\fIDES_ecb3_encrypt()\fR encrypts/decrypts the \fIinput\fR block by using
285 three-key Triple-DES encryption in \s-1ECB\s0 mode. This involves encrypting
286 the input with \fIks1\fR, decrypting with the key schedule \fIks2\fR, and
287 then encrypting with \fIks3\fR. This routine greatly reduces the chances
288 of brute force breaking of \s-1DES\s0 and has the advantage of if \fIks1\fR,
289 \&\fIks2\fR and \fIks3\fR are the same, it is equivalent to just encryption
290 using \s-1ECB\s0 mode and \fIks1\fR as the key.
292 The macro \fIDES_ecb2_encrypt()\fR is provided to perform two-key Triple-DES
293 encryption by using \fIks1\fR for the final encryption.
295 \&\fIDES_ncbc_encrypt()\fR encrypts/decrypts using the \fIcipher-block-chaining\fR
296 (\s-1CBC\s0) mode of \s-1DES\s0. If the \fIencrypt\fR argument is non-zero, the
297 routine cipher-block-chain encrypts the cleartext data pointed to by
298 the \fIinput\fR argument into the ciphertext pointed to by the \fIoutput\fR
299 argument, using the key schedule provided by the \fIschedule\fR argument,
300 and initialization vector provided by the \fIivec\fR argument. If the
301 \&\fIlength\fR argument is not an integral multiple of eight bytes, the
302 last block is copied to a temporary area and zero filled. The output
303 is always an integral multiple of eight bytes.
305 \&\fIDES_xcbc_encrypt()\fR is \s-1RSA\s0's \s-1DESX\s0 mode of \s-1DES\s0. It uses \fIinw\fR and
306 \&\fIoutw\fR to 'whiten' the encryption. \fIinw\fR and \fIoutw\fR are secret
307 (unlike the iv) and are as such, part of the key. So the key is sort
308 of 24 bytes. This is much better than \s-1CBC\s0 \s-1DES\s0.
310 \&\fIDES_ede3_cbc_encrypt()\fR implements outer triple \s-1CBC\s0 \s-1DES\s0 encryption with
311 three keys. This means that each \s-1DES\s0 operation inside the \s-1CBC\s0 mode is
312 really an \f(CW\*(C`C=E(ks3,D(ks2,E(ks1,M)))\*(C'\fR. This mode is used by \s-1SSL\s0.
314 The \fIDES_ede2_cbc_encrypt()\fR macro implements two-key Triple-DES by
315 reusing \fIks1\fR for the final encryption. \f(CW\*(C`C=E(ks1,D(ks2,E(ks1,M)))\*(C'\fR.
316 This form of Triple-DES is used by the \s-1RSAREF\s0 library.
318 \&\fIDES_pcbc_encrypt()\fR encrypt/decrypts using the propagating cipher block
319 chaining mode used by Kerberos v4. Its parameters are the same as
320 \&\fIDES_ncbc_encrypt()\fR.
322 \&\fIDES_cfb_encrypt()\fR encrypt/decrypts using cipher feedback mode. This
323 method takes an array of characters as input and outputs and array of
324 characters. It does not require any padding to 8 character groups.
325 Note: the \fIivec\fR variable is changed and the new changed value needs to
326 be passed to the next call to this function. Since this function runs
327 a complete \s-1DES\s0 \s-1ECB\s0 encryption per \fInumbits\fR, this function is only
328 suggested for use when sending small numbers of characters.
330 \&\fIDES_cfb64_encrypt()\fR
331 implements \s-1CFB\s0 mode of \s-1DES\s0 with 64bit feedback. Why is this
332 useful you ask? Because this routine will allow you to encrypt an
333 arbitrary number of bytes, no 8 byte padding. Each call to this
334 routine will encrypt the input bytes to output and then update ivec
335 and num. num contains 'how far' we are though ivec. If this does
336 not make much sense, read more about cfb mode of \s-1DES\s0 :\-).
338 \&\fIDES_ede3_cfb64_encrypt()\fR and \fIDES_ede2_cfb64_encrypt()\fR is the same as
339 \&\fIDES_cfb64_encrypt()\fR except that Triple-DES is used.
341 \&\fIDES_ofb_encrypt()\fR encrypts using output feedback mode. This method
342 takes an array of characters as input and outputs and array of
343 characters. It does not require any padding to 8 character groups.
344 Note: the \fIivec\fR variable is changed and the new changed value needs to
345 be passed to the next call to this function. Since this function runs
346 a complete \s-1DES\s0 \s-1ECB\s0 encryption per numbits, this function is only
347 suggested for use when sending small numbers of characters.
349 \&\fIDES_ofb64_encrypt()\fR is the same as \fIDES_cfb64_encrypt()\fR using Output
352 \&\fIDES_ede3_ofb64_encrypt()\fR and \fIDES_ede2_ofb64_encrypt()\fR is the same as
353 \&\fIDES_ofb64_encrypt()\fR, using Triple-DES.
355 The following functions are included in the \s-1DES\s0 library for
356 compatibility with the \s-1MIT\s0 Kerberos library.
358 \&\fIDES_cbc_cksum()\fR produces an 8 byte checksum based on the input stream
359 (via \s-1CBC\s0 encryption). The last 4 bytes of the checksum are returned
360 and the complete 8 bytes are placed in \fIoutput\fR. This function is
361 used by Kerberos v4. Other applications should use
362 \&\fIEVP_DigestInit\fR\|(3) etc. instead.
364 \&\fIDES_quad_cksum()\fR is a Kerberos v4 function. It returns a 4 byte
365 checksum from the input bytes. The algorithm can be iterated over the
366 input, depending on \fIout_count\fR, 1, 2, 3 or 4 times. If \fIoutput\fR is
367 non-NULL, the 8 bytes generated by each pass are written into
370 The following are DES-based transformations:
372 \&\fIDES_fcrypt()\fR is a fast version of the Unix \fIcrypt\fR\|(3) function. This
373 version takes only a small amount of space relative to other fast
374 \&\fIcrypt()\fR implementations. This is different to the normal crypt in
375 that the third parameter is the buffer that the return value is
376 written into. It needs to be at least 14 bytes long. This function
377 is thread safe, unlike the normal crypt.
379 \&\fIDES_crypt()\fR is a faster replacement for the normal system \fIcrypt()\fR.
380 This function calls \fIDES_fcrypt()\fR with a static array passed as the
381 third parameter. This emulates the normal non-thread safe semantics
384 \&\fIDES_enc_write()\fR writes \fIlen\fR bytes to file descriptor \fIfd\fR from
385 buffer \fIbuf\fR. The data is encrypted via \fIpcbc_encrypt\fR (default)
386 using \fIsched\fR for the key and \fIiv\fR as a starting vector. The actual
387 data send down \fIfd\fR consists of 4 bytes (in network byte order)
388 containing the length of the following encrypted data. The encrypted
389 data then follows, padded with random data out to a multiple of 8
392 \&\fIDES_enc_read()\fR is used to read \fIlen\fR bytes from file descriptor
393 \&\fIfd\fR into buffer \fIbuf\fR. The data being read from \fIfd\fR is assumed to
394 have come from \fIDES_enc_write()\fR and is decrypted using \fIsched\fR for
395 the key schedule and \fIiv\fR for the initial vector.
397 \&\fBWarning:\fR The data format used by \fIDES_enc_write()\fR and \fIDES_enc_read()\fR
398 has a cryptographic weakness: When asked to write more than \s-1MAXWRITE\s0
399 bytes, \fIDES_enc_write()\fR will split the data into several chunks that
400 are all encrypted using the same \s-1IV\s0. So don't use these functions
401 unless you are sure you know what you do (in which case you might not
402 want to use them anyway). They cannot handle non-blocking sockets.
403 \&\fIDES_enc_read()\fR uses an internal state and thus cannot be used on
406 \&\fIDES_rw_mode\fR is used to specify the encryption mode to use with
407 \&\fIDES_enc_read()\fR and \fIDES_end_write()\fR. If set to \fI\s-1DES_PCBC_MODE\s0\fR (the
408 default), DES_pcbc_encrypt is used. If set to \fI\s-1DES_CBC_MODE\s0\fR
409 DES_cbc_encrypt is used.
412 Single-key \s-1DES\s0 is insecure due to its short key size. \s-1ECB\s0 mode is
413 not suitable for most applications; see \fIdes_modes\fR\|(7).
415 The \fIevp\fR\|(3) library provides higher-level encryption functions.
418 \&\fIDES_3cbc_encrypt()\fR is flawed and must not be used in applications.
420 \&\fIDES_cbc_encrypt()\fR does not modify \fBivec\fR; use \fIDES_ncbc_encrypt()\fR
423 \&\fIDES_cfb_encrypt()\fR and \fIDES_ofb_encrypt()\fR operates on input of 8 bits.
424 What this means is that if you set numbits to 12, and length to 2, the
425 first 12 bits will come from the 1st input byte and the low half of
426 the second input byte. The second 12 bits will have the low 8 bits
427 taken from the 3rd input byte and the top 4 bits taken from the 4th
428 input byte. The same holds for output. This function has been
429 implemented this way because most people will be using a multiple of 8
430 and because once you get into pulling bytes input bytes apart things
433 \&\fIDES_string_to_key()\fR is available for backward compatibility with the
434 \&\s-1MIT\s0 library. New applications should use a cryptographic hash function.
435 The same applies for \fIDES_string_to_2key()\fR.
437 .IX Header "CONFORMING TO"
440 The \fBdes\fR library was written to be source code compatible with
441 the \s-1MIT\s0 Kerberos library.
443 .IX Header "SEE ALSO"
444 \&\fIcrypt\fR\|(3), \fIdes_modes\fR\|(7), \fIevp\fR\|(3), \fIrand\fR\|(3)
447 In OpenSSL 0.9.7, all des_ functions were renamed to \s-1DES_\s0 to avoid
448 clashes with older versions of libdes. Compatibility des_ functions
449 are provided for a short while, as well as \fIcrypt()\fR.
450 Declarations for these are in <openssl/des_old.h>. There is no \s-1DES_\s0
451 variant for \fIdes_random_seed()\fR.
452 This will happen to other functions
453 as well if they are deemed redundant (\fIdes_random_seed()\fR just calls
454 \&\fIRAND_seed()\fR and is present for backward compatibility only), buggy or
455 already scheduled for removal.
457 \&\fIdes_cbc_cksum()\fR, \fIdes_cbc_encrypt()\fR, \fIdes_ecb_encrypt()\fR,
458 \&\fIdes_is_weak_key()\fR, \fIdes_key_sched()\fR, \fIdes_pcbc_encrypt()\fR,
459 \&\fIdes_quad_cksum()\fR, \fIdes_random_key()\fR and \fIdes_string_to_key()\fR
460 are available in the \s-1MIT\s0 Kerberos library;
461 \&\fIdes_check_key_parity()\fR, \fIdes_fixup_key_parity()\fR and \fIdes_is_weak_key()\fR
462 are available in newer versions of that library.
464 \&\fIdes_set_key_checked()\fR and \fIdes_set_key_unchecked()\fR were added in
467 \&\fIdes_generate_random_block()\fR, \fIdes_init_random_number_generator()\fR,
468 \&\fIdes_new_random_key()\fR, \fIdes_set_random_generator_seed()\fR and
469 \&\fIdes_set_sequence_number()\fR and \fIdes_rand_data()\fR are used in newer
470 versions of Kerberos but are not implemented here.
472 \&\fIdes_random_key()\fR generated cryptographically weak random data in
473 SSLeay and in OpenSSL prior version 0.9.5, as well as in the original
474 \&\s-1MIT\s0 library.
477 Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project
478 (http://www.openssl.org).