Parallelize in_ifaddrhead operation
[dragonfly.git] / contrib / gcc-4.1 / gcc / emit-rtl.c
blob81c8ae150a448cbbccf70b82b2651feb40d8697e
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58 #include "tree-pass.h"
60 /* Commonly used modes. */
62 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
63 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
64 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
65 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
68 /* This is *not* reset after each function. It gives each CODE_LABEL
69 in the entire compilation a unique label number. */
71 static GTY(()) int label_num = 1;
73 /* Nonzero means do not generate NOTEs for source line numbers. */
75 static int no_line_numbers;
77 /* Commonly used rtx's, so that we only need space for one copy.
78 These are initialized once for the entire compilation.
79 All of these are unique; no other rtx-object will be equal to any
80 of these. */
82 rtx global_rtl[GR_MAX];
84 /* Commonly used RTL for hard registers. These objects are not necessarily
85 unique, so we allocate them separately from global_rtl. They are
86 initialized once per compilation unit, then copied into regno_reg_rtx
87 at the beginning of each function. */
88 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
90 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
91 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
92 record a copy of const[012]_rtx. */
94 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
96 rtx const_true_rtx;
98 REAL_VALUE_TYPE dconst0;
99 REAL_VALUE_TYPE dconst1;
100 REAL_VALUE_TYPE dconst2;
101 REAL_VALUE_TYPE dconst3;
102 REAL_VALUE_TYPE dconst10;
103 REAL_VALUE_TYPE dconstm1;
104 REAL_VALUE_TYPE dconstm2;
105 REAL_VALUE_TYPE dconsthalf;
106 REAL_VALUE_TYPE dconstthird;
107 REAL_VALUE_TYPE dconstpi;
108 REAL_VALUE_TYPE dconste;
110 /* All references to the following fixed hard registers go through
111 these unique rtl objects. On machines where the frame-pointer and
112 arg-pointer are the same register, they use the same unique object.
114 After register allocation, other rtl objects which used to be pseudo-regs
115 may be clobbered to refer to the frame-pointer register.
116 But references that were originally to the frame-pointer can be
117 distinguished from the others because they contain frame_pointer_rtx.
119 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
120 tricky: until register elimination has taken place hard_frame_pointer_rtx
121 should be used if it is being set, and frame_pointer_rtx otherwise. After
122 register elimination hard_frame_pointer_rtx should always be used.
123 On machines where the two registers are same (most) then these are the
124 same.
126 In an inline procedure, the stack and frame pointer rtxs may not be
127 used for anything else. */
128 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
129 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
130 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
132 /* This is used to implement __builtin_return_address for some machines.
133 See for instance the MIPS port. */
134 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
136 /* We make one copy of (const_int C) where C is in
137 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
138 to save space during the compilation and simplify comparisons of
139 integers. */
141 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
143 /* A hash table storing CONST_INTs whose absolute value is greater
144 than MAX_SAVED_CONST_INT. */
146 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
147 htab_t const_int_htab;
149 /* A hash table storing memory attribute structures. */
150 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
151 htab_t mem_attrs_htab;
153 /* A hash table storing register attribute structures. */
154 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
155 htab_t reg_attrs_htab;
157 /* A hash table storing all CONST_DOUBLEs. */
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159 htab_t const_double_htab;
161 #define first_insn (cfun->emit->x_first_insn)
162 #define last_insn (cfun->emit->x_last_insn)
163 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
164 #define last_location (cfun->emit->x_last_location)
165 #define first_label_num (cfun->emit->x_first_label_num)
167 static rtx make_jump_insn_raw (rtx);
168 static rtx make_call_insn_raw (rtx);
169 static rtx find_line_note (rtx);
170 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
171 static void unshare_all_decls (tree);
172 static void reset_used_decls (tree);
173 static void mark_label_nuses (rtx);
174 static hashval_t const_int_htab_hash (const void *);
175 static int const_int_htab_eq (const void *, const void *);
176 static hashval_t const_double_htab_hash (const void *);
177 static int const_double_htab_eq (const void *, const void *);
178 static rtx lookup_const_double (rtx);
179 static hashval_t mem_attrs_htab_hash (const void *);
180 static int mem_attrs_htab_eq (const void *, const void *);
181 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
182 enum machine_mode);
183 static hashval_t reg_attrs_htab_hash (const void *);
184 static int reg_attrs_htab_eq (const void *, const void *);
185 static reg_attrs *get_reg_attrs (tree, int);
186 static tree component_ref_for_mem_expr (tree);
187 static rtx gen_const_vector (enum machine_mode, int);
188 static void copy_rtx_if_shared_1 (rtx *orig);
190 /* Probability of the conditional branch currently proceeded by try_split.
191 Set to -1 otherwise. */
192 int split_branch_probability = -1;
194 /* Returns a hash code for X (which is a really a CONST_INT). */
196 static hashval_t
197 const_int_htab_hash (const void *x)
199 return (hashval_t) INTVAL ((rtx) x);
202 /* Returns nonzero if the value represented by X (which is really a
203 CONST_INT) is the same as that given by Y (which is really a
204 HOST_WIDE_INT *). */
206 static int
207 const_int_htab_eq (const void *x, const void *y)
209 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
212 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
213 static hashval_t
214 const_double_htab_hash (const void *x)
216 rtx value = (rtx) x;
217 hashval_t h;
219 if (GET_MODE (value) == VOIDmode)
220 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
221 else
223 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
224 /* MODE is used in the comparison, so it should be in the hash. */
225 h ^= GET_MODE (value);
227 return h;
230 /* Returns nonzero if the value represented by X (really a ...)
231 is the same as that represented by Y (really a ...) */
232 static int
233 const_double_htab_eq (const void *x, const void *y)
235 rtx a = (rtx)x, b = (rtx)y;
237 if (GET_MODE (a) != GET_MODE (b))
238 return 0;
239 if (GET_MODE (a) == VOIDmode)
240 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
241 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
242 else
243 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
244 CONST_DOUBLE_REAL_VALUE (b));
247 /* Returns a hash code for X (which is a really a mem_attrs *). */
249 static hashval_t
250 mem_attrs_htab_hash (const void *x)
252 mem_attrs *p = (mem_attrs *) x;
254 return (p->alias ^ (p->align * 1000)
255 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
256 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
257 ^ (size_t) iterative_hash_expr (p->expr, 0));
260 /* Returns nonzero if the value represented by X (which is really a
261 mem_attrs *) is the same as that given by Y (which is also really a
262 mem_attrs *). */
264 static int
265 mem_attrs_htab_eq (const void *x, const void *y)
267 mem_attrs *p = (mem_attrs *) x;
268 mem_attrs *q = (mem_attrs *) y;
270 return (p->alias == q->alias && p->offset == q->offset
271 && p->size == q->size && p->align == q->align
272 && (p->expr == q->expr
273 || (p->expr != NULL_TREE && q->expr != NULL_TREE
274 && operand_equal_p (p->expr, q->expr, 0))));
277 /* Allocate a new mem_attrs structure and insert it into the hash table if
278 one identical to it is not already in the table. We are doing this for
279 MEM of mode MODE. */
281 static mem_attrs *
282 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
283 unsigned int align, enum machine_mode mode)
285 mem_attrs attrs;
286 void **slot;
288 /* If everything is the default, we can just return zero.
289 This must match what the corresponding MEM_* macros return when the
290 field is not present. */
291 if (alias == 0 && expr == 0 && offset == 0
292 && (size == 0
293 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
294 && (STRICT_ALIGNMENT && mode != BLKmode
295 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
296 return 0;
298 attrs.alias = alias;
299 attrs.expr = expr;
300 attrs.offset = offset;
301 attrs.size = size;
302 attrs.align = align;
304 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
305 if (*slot == 0)
307 *slot = ggc_alloc (sizeof (mem_attrs));
308 memcpy (*slot, &attrs, sizeof (mem_attrs));
311 return *slot;
314 /* Returns a hash code for X (which is a really a reg_attrs *). */
316 static hashval_t
317 reg_attrs_htab_hash (const void *x)
319 reg_attrs *p = (reg_attrs *) x;
321 return ((p->offset * 1000) ^ (long) p->decl);
324 /* Returns nonzero if the value represented by X (which is really a
325 reg_attrs *) is the same as that given by Y (which is also really a
326 reg_attrs *). */
328 static int
329 reg_attrs_htab_eq (const void *x, const void *y)
331 reg_attrs *p = (reg_attrs *) x;
332 reg_attrs *q = (reg_attrs *) y;
334 return (p->decl == q->decl && p->offset == q->offset);
336 /* Allocate a new reg_attrs structure and insert it into the hash table if
337 one identical to it is not already in the table. We are doing this for
338 MEM of mode MODE. */
340 static reg_attrs *
341 get_reg_attrs (tree decl, int offset)
343 reg_attrs attrs;
344 void **slot;
346 /* If everything is the default, we can just return zero. */
347 if (decl == 0 && offset == 0)
348 return 0;
350 attrs.decl = decl;
351 attrs.offset = offset;
353 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
354 if (*slot == 0)
356 *slot = ggc_alloc (sizeof (reg_attrs));
357 memcpy (*slot, &attrs, sizeof (reg_attrs));
360 return *slot;
363 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
364 don't attempt to share with the various global pieces of rtl (such as
365 frame_pointer_rtx). */
368 gen_raw_REG (enum machine_mode mode, int regno)
370 rtx x = gen_rtx_raw_REG (mode, regno);
371 ORIGINAL_REGNO (x) = regno;
372 return x;
375 /* There are some RTL codes that require special attention; the generation
376 functions do the raw handling. If you add to this list, modify
377 special_rtx in gengenrtl.c as well. */
380 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
382 void **slot;
384 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
385 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
387 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
388 if (const_true_rtx && arg == STORE_FLAG_VALUE)
389 return const_true_rtx;
390 #endif
392 /* Look up the CONST_INT in the hash table. */
393 slot = htab_find_slot_with_hash (const_int_htab, &arg,
394 (hashval_t) arg, INSERT);
395 if (*slot == 0)
396 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
398 return (rtx) *slot;
402 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
404 return GEN_INT (trunc_int_for_mode (c, mode));
407 /* CONST_DOUBLEs might be created from pairs of integers, or from
408 REAL_VALUE_TYPEs. Also, their length is known only at run time,
409 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
411 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
412 hash table. If so, return its counterpart; otherwise add it
413 to the hash table and return it. */
414 static rtx
415 lookup_const_double (rtx real)
417 void **slot = htab_find_slot (const_double_htab, real, INSERT);
418 if (*slot == 0)
419 *slot = real;
421 return (rtx) *slot;
424 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
425 VALUE in mode MODE. */
427 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
429 rtx real = rtx_alloc (CONST_DOUBLE);
430 PUT_MODE (real, mode);
432 real->u.rv = value;
434 return lookup_const_double (real);
437 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
438 of ints: I0 is the low-order word and I1 is the high-order word.
439 Do not use this routine for non-integer modes; convert to
440 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
443 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
445 rtx value;
446 unsigned int i;
448 if (mode != VOIDmode)
450 int width;
452 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
453 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
454 /* We can get a 0 for an error mark. */
455 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
456 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
458 /* We clear out all bits that don't belong in MODE, unless they and
459 our sign bit are all one. So we get either a reasonable negative
460 value or a reasonable unsigned value for this mode. */
461 width = GET_MODE_BITSIZE (mode);
462 if (width < HOST_BITS_PER_WIDE_INT
463 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
464 != ((HOST_WIDE_INT) (-1) << (width - 1))))
465 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
466 else if (width == HOST_BITS_PER_WIDE_INT
467 && ! (i1 == ~0 && i0 < 0))
468 i1 = 0;
469 else
470 /* We should be able to represent this value as a constant. */
471 gcc_assert (width <= 2 * HOST_BITS_PER_WIDE_INT);
473 /* If this would be an entire word for the target, but is not for
474 the host, then sign-extend on the host so that the number will
475 look the same way on the host that it would on the target.
477 For example, when building a 64 bit alpha hosted 32 bit sparc
478 targeted compiler, then we want the 32 bit unsigned value -1 to be
479 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
480 The latter confuses the sparc backend. */
482 if (width < HOST_BITS_PER_WIDE_INT
483 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
484 i0 |= ((HOST_WIDE_INT) (-1) << width);
486 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
487 CONST_INT.
489 ??? Strictly speaking, this is wrong if we create a CONST_INT for
490 a large unsigned constant with the size of MODE being
491 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
492 in a wider mode. In that case we will mis-interpret it as a
493 negative number.
495 Unfortunately, the only alternative is to make a CONST_DOUBLE for
496 any constant in any mode if it is an unsigned constant larger
497 than the maximum signed integer in an int on the host. However,
498 doing this will break everyone that always expects to see a
499 CONST_INT for SImode and smaller.
501 We have always been making CONST_INTs in this case, so nothing
502 new is being broken. */
504 if (width <= HOST_BITS_PER_WIDE_INT)
505 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
508 /* If this integer fits in one word, return a CONST_INT. */
509 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
510 return GEN_INT (i0);
512 /* We use VOIDmode for integers. */
513 value = rtx_alloc (CONST_DOUBLE);
514 PUT_MODE (value, VOIDmode);
516 CONST_DOUBLE_LOW (value) = i0;
517 CONST_DOUBLE_HIGH (value) = i1;
519 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
520 XWINT (value, i) = 0;
522 return lookup_const_double (value);
526 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
528 /* In case the MD file explicitly references the frame pointer, have
529 all such references point to the same frame pointer. This is
530 used during frame pointer elimination to distinguish the explicit
531 references to these registers from pseudos that happened to be
532 assigned to them.
534 If we have eliminated the frame pointer or arg pointer, we will
535 be using it as a normal register, for example as a spill
536 register. In such cases, we might be accessing it in a mode that
537 is not Pmode and therefore cannot use the pre-allocated rtx.
539 Also don't do this when we are making new REGs in reload, since
540 we don't want to get confused with the real pointers. */
542 if (mode == Pmode && !reload_in_progress)
544 if (regno == FRAME_POINTER_REGNUM
545 && (!reload_completed || frame_pointer_needed))
546 return frame_pointer_rtx;
547 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
548 if (regno == HARD_FRAME_POINTER_REGNUM
549 && (!reload_completed || frame_pointer_needed))
550 return hard_frame_pointer_rtx;
551 #endif
552 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
553 if (regno == ARG_POINTER_REGNUM)
554 return arg_pointer_rtx;
555 #endif
556 #ifdef RETURN_ADDRESS_POINTER_REGNUM
557 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
558 return return_address_pointer_rtx;
559 #endif
560 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
561 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
562 return pic_offset_table_rtx;
563 if (regno == STACK_POINTER_REGNUM)
564 return stack_pointer_rtx;
567 #if 0
568 /* If the per-function register table has been set up, try to re-use
569 an existing entry in that table to avoid useless generation of RTL.
571 This code is disabled for now until we can fix the various backends
572 which depend on having non-shared hard registers in some cases. Long
573 term we want to re-enable this code as it can significantly cut down
574 on the amount of useless RTL that gets generated.
576 We'll also need to fix some code that runs after reload that wants to
577 set ORIGINAL_REGNO. */
579 if (cfun
580 && cfun->emit
581 && regno_reg_rtx
582 && regno < FIRST_PSEUDO_REGISTER
583 && reg_raw_mode[regno] == mode)
584 return regno_reg_rtx[regno];
585 #endif
587 return gen_raw_REG (mode, regno);
591 gen_rtx_MEM (enum machine_mode mode, rtx addr)
593 rtx rt = gen_rtx_raw_MEM (mode, addr);
595 /* This field is not cleared by the mere allocation of the rtx, so
596 we clear it here. */
597 MEM_ATTRS (rt) = 0;
599 return rt;
602 /* Generate a memory referring to non-trapping constant memory. */
605 gen_const_mem (enum machine_mode mode, rtx addr)
607 rtx mem = gen_rtx_MEM (mode, addr);
608 MEM_READONLY_P (mem) = 1;
609 MEM_NOTRAP_P (mem) = 1;
610 return mem;
613 /* Generate a MEM referring to fixed portions of the frame, e.g., register
614 save areas. */
617 gen_frame_mem (enum machine_mode mode, rtx addr)
619 rtx mem = gen_rtx_MEM (mode, addr);
620 MEM_NOTRAP_P (mem) = 1;
621 set_mem_alias_set (mem, get_frame_alias_set ());
622 return mem;
625 /* Generate a MEM referring to a temporary use of the stack, not part
626 of the fixed stack frame. For example, something which is pushed
627 by a target splitter. */
629 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
631 rtx mem = gen_rtx_MEM (mode, addr);
632 MEM_NOTRAP_P (mem) = 1;
633 if (!current_function_calls_alloca)
634 set_mem_alias_set (mem, get_frame_alias_set ());
635 return mem;
638 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
639 this construct would be valid, and false otherwise. */
641 bool
642 validate_subreg (enum machine_mode omode, enum machine_mode imode,
643 rtx reg, unsigned int offset)
645 unsigned int isize = GET_MODE_SIZE (imode);
646 unsigned int osize = GET_MODE_SIZE (omode);
648 /* All subregs must be aligned. */
649 if (offset % osize != 0)
650 return false;
652 /* The subreg offset cannot be outside the inner object. */
653 if (offset >= isize)
654 return false;
656 /* ??? This should not be here. Temporarily continue to allow word_mode
657 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
658 Generally, backends are doing something sketchy but it'll take time to
659 fix them all. */
660 if (omode == word_mode)
662 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
663 is the culprit here, and not the backends. */
664 else if (osize >= UNITS_PER_WORD && isize >= osize)
666 /* Allow component subregs of complex and vector. Though given the below
667 extraction rules, it's not always clear what that means. */
668 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
669 && GET_MODE_INNER (imode) == omode)
671 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
672 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
673 represent this. It's questionable if this ought to be represented at
674 all -- why can't this all be hidden in post-reload splitters that make
675 arbitrarily mode changes to the registers themselves. */
676 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
678 /* Subregs involving floating point modes are not allowed to
679 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
680 (subreg:SI (reg:DF) 0) isn't. */
681 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
683 if (isize != osize)
684 return false;
687 /* Paradoxical subregs must have offset zero. */
688 if (osize > isize)
689 return offset == 0;
691 /* This is a normal subreg. Verify that the offset is representable. */
693 /* For hard registers, we already have most of these rules collected in
694 subreg_offset_representable_p. */
695 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
697 unsigned int regno = REGNO (reg);
699 #ifdef CANNOT_CHANGE_MODE_CLASS
700 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
701 && GET_MODE_INNER (imode) == omode)
703 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
704 return false;
705 #endif
707 return subreg_offset_representable_p (regno, imode, offset, omode);
710 /* For pseudo registers, we want most of the same checks. Namely:
711 If the register no larger than a word, the subreg must be lowpart.
712 If the register is larger than a word, the subreg must be the lowpart
713 of a subword. A subreg does *not* perform arbitrary bit extraction.
714 Given that we've already checked mode/offset alignment, we only have
715 to check subword subregs here. */
716 if (osize < UNITS_PER_WORD)
718 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
719 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
720 if (offset % UNITS_PER_WORD != low_off)
721 return false;
723 return true;
727 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
729 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
730 return gen_rtx_raw_SUBREG (mode, reg, offset);
733 /* Generate a SUBREG representing the least-significant part of REG if MODE
734 is smaller than mode of REG, otherwise paradoxical SUBREG. */
737 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
739 enum machine_mode inmode;
741 inmode = GET_MODE (reg);
742 if (inmode == VOIDmode)
743 inmode = mode;
744 return gen_rtx_SUBREG (mode, reg,
745 subreg_lowpart_offset (mode, inmode));
748 /* gen_rtvec (n, [rt1, ..., rtn])
750 ** This routine creates an rtvec and stores within it the
751 ** pointers to rtx's which are its arguments.
754 /*VARARGS1*/
755 rtvec
756 gen_rtvec (int n, ...)
758 int i, save_n;
759 rtx *vector;
760 va_list p;
762 va_start (p, n);
764 if (n == 0)
765 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
767 vector = alloca (n * sizeof (rtx));
769 for (i = 0; i < n; i++)
770 vector[i] = va_arg (p, rtx);
772 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
773 save_n = n;
774 va_end (p);
776 return gen_rtvec_v (save_n, vector);
779 rtvec
780 gen_rtvec_v (int n, rtx *argp)
782 int i;
783 rtvec rt_val;
785 if (n == 0)
786 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
788 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
790 for (i = 0; i < n; i++)
791 rt_val->elem[i] = *argp++;
793 return rt_val;
796 /* Generate a REG rtx for a new pseudo register of mode MODE.
797 This pseudo is assigned the next sequential register number. */
800 gen_reg_rtx (enum machine_mode mode)
802 struct function *f = cfun;
803 rtx val;
805 /* Don't let anything called after initial flow analysis create new
806 registers. */
807 gcc_assert (!no_new_pseudos);
809 if (generating_concat_p
810 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
811 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
813 /* For complex modes, don't make a single pseudo.
814 Instead, make a CONCAT of two pseudos.
815 This allows noncontiguous allocation of the real and imaginary parts,
816 which makes much better code. Besides, allocating DCmode
817 pseudos overstrains reload on some machines like the 386. */
818 rtx realpart, imagpart;
819 enum machine_mode partmode = GET_MODE_INNER (mode);
821 realpart = gen_reg_rtx (partmode);
822 imagpart = gen_reg_rtx (partmode);
823 return gen_rtx_CONCAT (mode, realpart, imagpart);
826 /* Make sure regno_pointer_align, and regno_reg_rtx are large
827 enough to have an element for this pseudo reg number. */
829 if (reg_rtx_no == f->emit->regno_pointer_align_length)
831 int old_size = f->emit->regno_pointer_align_length;
832 char *new;
833 rtx *new1;
835 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
836 memset (new + old_size, 0, old_size);
837 f->emit->regno_pointer_align = (unsigned char *) new;
839 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
840 old_size * 2 * sizeof (rtx));
841 memset (new1 + old_size, 0, old_size * sizeof (rtx));
842 regno_reg_rtx = new1;
844 f->emit->regno_pointer_align_length = old_size * 2;
847 val = gen_raw_REG (mode, reg_rtx_no);
848 regno_reg_rtx[reg_rtx_no++] = val;
849 return val;
852 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
853 Do the big endian correction if needed. */
856 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
858 rtx new = gen_rtx_REG (mode, regno);
859 tree decl;
860 HOST_WIDE_INT var_size;
862 /* PR middle-end/14084
863 The problem appears when a variable is stored in a larger register
864 and later it is used in the original mode or some mode in between
865 or some part of variable is accessed.
867 On little endian machines there is no problem because
868 the REG_OFFSET of the start of the variable is the same when
869 accessed in any mode (it is 0).
871 However, this is not true on big endian machines.
872 The offset of the start of the variable is different when accessed
873 in different modes.
874 When we are taking a part of the REG we have to change the OFFSET
875 from offset WRT size of mode of REG to offset WRT size of variable.
877 If we would not do the big endian correction the resulting REG_OFFSET
878 would be larger than the size of the DECL.
880 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
882 REG.mode MODE DECL size old offset new offset description
883 DI SI 4 4 0 int32 in SImode
884 DI SI 1 4 0 char in SImode
885 DI QI 1 7 0 char in QImode
886 DI QI 4 5 1 1st element in QImode
887 of char[4]
888 DI HI 4 6 2 1st element in HImode
889 of int16[2]
891 If the size of DECL is equal or greater than the size of REG
892 we can't do this correction because the register holds the
893 whole variable or a part of the variable and thus the REG_OFFSET
894 is already correct. */
896 decl = REG_EXPR (reg);
897 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
898 && decl != NULL
899 && offset > 0
900 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
901 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
902 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
904 int offset_le;
906 /* Convert machine endian to little endian WRT size of mode of REG. */
907 if (WORDS_BIG_ENDIAN)
908 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
909 / UNITS_PER_WORD) * UNITS_PER_WORD;
910 else
911 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
913 if (BYTES_BIG_ENDIAN)
914 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
915 % UNITS_PER_WORD);
916 else
917 offset_le += offset % UNITS_PER_WORD;
919 if (offset_le >= var_size)
921 /* MODE is wider than the variable so the new reg will cover
922 the whole variable so the resulting OFFSET should be 0. */
923 offset = 0;
925 else
927 /* Convert little endian to machine endian WRT size of variable. */
928 if (WORDS_BIG_ENDIAN)
929 offset = ((var_size - 1 - offset_le)
930 / UNITS_PER_WORD) * UNITS_PER_WORD;
931 else
932 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
934 if (BYTES_BIG_ENDIAN)
935 offset += ((var_size - 1 - offset_le)
936 % UNITS_PER_WORD);
937 else
938 offset += offset_le % UNITS_PER_WORD;
942 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
943 REG_OFFSET (reg) + offset);
944 return new;
947 /* Set the decl for MEM to DECL. */
949 void
950 set_reg_attrs_from_mem (rtx reg, rtx mem)
952 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
953 REG_ATTRS (reg)
954 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
957 /* Set the register attributes for registers contained in PARM_RTX.
958 Use needed values from memory attributes of MEM. */
960 void
961 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
963 if (REG_P (parm_rtx))
964 set_reg_attrs_from_mem (parm_rtx, mem);
965 else if (GET_CODE (parm_rtx) == PARALLEL)
967 /* Check for a NULL entry in the first slot, used to indicate that the
968 parameter goes both on the stack and in registers. */
969 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
970 for (; i < XVECLEN (parm_rtx, 0); i++)
972 rtx x = XVECEXP (parm_rtx, 0, i);
973 if (REG_P (XEXP (x, 0)))
974 REG_ATTRS (XEXP (x, 0))
975 = get_reg_attrs (MEM_EXPR (mem),
976 INTVAL (XEXP (x, 1)));
981 /* Assign the RTX X to declaration T. */
982 void
983 set_decl_rtl (tree t, rtx x)
985 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
987 if (!x)
988 return;
989 /* For register, we maintain the reverse information too. */
990 if (REG_P (x))
991 REG_ATTRS (x) = get_reg_attrs (t, 0);
992 else if (GET_CODE (x) == SUBREG)
993 REG_ATTRS (SUBREG_REG (x))
994 = get_reg_attrs (t, -SUBREG_BYTE (x));
995 if (GET_CODE (x) == CONCAT)
997 if (REG_P (XEXP (x, 0)))
998 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
999 if (REG_P (XEXP (x, 1)))
1000 REG_ATTRS (XEXP (x, 1))
1001 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1003 if (GET_CODE (x) == PARALLEL)
1005 int i;
1006 for (i = 0; i < XVECLEN (x, 0); i++)
1008 rtx y = XVECEXP (x, 0, i);
1009 if (REG_P (XEXP (y, 0)))
1010 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1015 /* Assign the RTX X to parameter declaration T. */
1016 void
1017 set_decl_incoming_rtl (tree t, rtx x)
1019 DECL_INCOMING_RTL (t) = x;
1021 if (!x)
1022 return;
1023 /* For register, we maintain the reverse information too. */
1024 if (REG_P (x))
1025 REG_ATTRS (x) = get_reg_attrs (t, 0);
1026 else if (GET_CODE (x) == SUBREG)
1027 REG_ATTRS (SUBREG_REG (x))
1028 = get_reg_attrs (t, -SUBREG_BYTE (x));
1029 if (GET_CODE (x) == CONCAT)
1031 if (REG_P (XEXP (x, 0)))
1032 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1033 if (REG_P (XEXP (x, 1)))
1034 REG_ATTRS (XEXP (x, 1))
1035 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1037 if (GET_CODE (x) == PARALLEL)
1039 int i, start;
1041 /* Check for a NULL entry, used to indicate that the parameter goes
1042 both on the stack and in registers. */
1043 if (XEXP (XVECEXP (x, 0, 0), 0))
1044 start = 0;
1045 else
1046 start = 1;
1048 for (i = start; i < XVECLEN (x, 0); i++)
1050 rtx y = XVECEXP (x, 0, i);
1051 if (REG_P (XEXP (y, 0)))
1052 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1057 /* Identify REG (which may be a CONCAT) as a user register. */
1059 void
1060 mark_user_reg (rtx reg)
1062 if (GET_CODE (reg) == CONCAT)
1064 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1065 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1067 else
1069 gcc_assert (REG_P (reg));
1070 REG_USERVAR_P (reg) = 1;
1074 /* Identify REG as a probable pointer register and show its alignment
1075 as ALIGN, if nonzero. */
1077 void
1078 mark_reg_pointer (rtx reg, int align)
1080 if (! REG_POINTER (reg))
1082 REG_POINTER (reg) = 1;
1084 if (align)
1085 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1087 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1088 /* We can no-longer be sure just how aligned this pointer is. */
1089 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1092 /* Return 1 plus largest pseudo reg number used in the current function. */
1095 max_reg_num (void)
1097 return reg_rtx_no;
1100 /* Return 1 + the largest label number used so far in the current function. */
1103 max_label_num (void)
1105 return label_num;
1108 /* Return first label number used in this function (if any were used). */
1111 get_first_label_num (void)
1113 return first_label_num;
1116 /* If the rtx for label was created during the expansion of a nested
1117 function, then first_label_num won't include this label number.
1118 Fix this now so that array indicies work later. */
1120 void
1121 maybe_set_first_label_num (rtx x)
1123 if (CODE_LABEL_NUMBER (x) < first_label_num)
1124 first_label_num = CODE_LABEL_NUMBER (x);
1127 /* Return a value representing some low-order bits of X, where the number
1128 of low-order bits is given by MODE. Note that no conversion is done
1129 between floating-point and fixed-point values, rather, the bit
1130 representation is returned.
1132 This function handles the cases in common between gen_lowpart, below,
1133 and two variants in cse.c and combine.c. These are the cases that can
1134 be safely handled at all points in the compilation.
1136 If this is not a case we can handle, return 0. */
1139 gen_lowpart_common (enum machine_mode mode, rtx x)
1141 int msize = GET_MODE_SIZE (mode);
1142 int xsize;
1143 int offset = 0;
1144 enum machine_mode innermode;
1146 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1147 so we have to make one up. Yuk. */
1148 innermode = GET_MODE (x);
1149 if (GET_CODE (x) == CONST_INT
1150 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1151 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1152 else if (innermode == VOIDmode)
1153 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1155 xsize = GET_MODE_SIZE (innermode);
1157 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1159 if (innermode == mode)
1160 return x;
1162 /* MODE must occupy no more words than the mode of X. */
1163 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1164 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1165 return 0;
1167 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1168 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1169 return 0;
1171 offset = subreg_lowpart_offset (mode, innermode);
1173 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1174 && (GET_MODE_CLASS (mode) == MODE_INT
1175 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1177 /* If we are getting the low-order part of something that has been
1178 sign- or zero-extended, we can either just use the object being
1179 extended or make a narrower extension. If we want an even smaller
1180 piece than the size of the object being extended, call ourselves
1181 recursively.
1183 This case is used mostly by combine and cse. */
1185 if (GET_MODE (XEXP (x, 0)) == mode)
1186 return XEXP (x, 0);
1187 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1188 return gen_lowpart_common (mode, XEXP (x, 0));
1189 else if (msize < xsize)
1190 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1192 else if (GET_CODE (x) == SUBREG || REG_P (x)
1193 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1194 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1195 return simplify_gen_subreg (mode, x, innermode, offset);
1197 /* Otherwise, we can't do this. */
1198 return 0;
1202 gen_highpart (enum machine_mode mode, rtx x)
1204 unsigned int msize = GET_MODE_SIZE (mode);
1205 rtx result;
1207 /* This case loses if X is a subreg. To catch bugs early,
1208 complain if an invalid MODE is used even in other cases. */
1209 gcc_assert (msize <= UNITS_PER_WORD
1210 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1212 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1213 subreg_highpart_offset (mode, GET_MODE (x)));
1214 gcc_assert (result);
1216 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1217 the target if we have a MEM. gen_highpart must return a valid operand,
1218 emitting code if necessary to do so. */
1219 if (MEM_P (result))
1221 result = validize_mem (result);
1222 gcc_assert (result);
1225 return result;
1228 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1229 be VOIDmode constant. */
1231 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1233 if (GET_MODE (exp) != VOIDmode)
1235 gcc_assert (GET_MODE (exp) == innermode);
1236 return gen_highpart (outermode, exp);
1238 return simplify_gen_subreg (outermode, exp, innermode,
1239 subreg_highpart_offset (outermode, innermode));
1242 /* Return offset in bytes to get OUTERMODE low part
1243 of the value in mode INNERMODE stored in memory in target format. */
1245 unsigned int
1246 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1248 unsigned int offset = 0;
1249 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1251 if (difference > 0)
1253 if (WORDS_BIG_ENDIAN)
1254 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1255 if (BYTES_BIG_ENDIAN)
1256 offset += difference % UNITS_PER_WORD;
1259 return offset;
1262 /* Return offset in bytes to get OUTERMODE high part
1263 of the value in mode INNERMODE stored in memory in target format. */
1264 unsigned int
1265 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1267 unsigned int offset = 0;
1268 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1270 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1272 if (difference > 0)
1274 if (! WORDS_BIG_ENDIAN)
1275 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1276 if (! BYTES_BIG_ENDIAN)
1277 offset += difference % UNITS_PER_WORD;
1280 return offset;
1283 /* Return 1 iff X, assumed to be a SUBREG,
1284 refers to the least significant part of its containing reg.
1285 If X is not a SUBREG, always return 1 (it is its own low part!). */
1288 subreg_lowpart_p (rtx x)
1290 if (GET_CODE (x) != SUBREG)
1291 return 1;
1292 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1293 return 0;
1295 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1296 == SUBREG_BYTE (x));
1299 /* Return subword OFFSET of operand OP.
1300 The word number, OFFSET, is interpreted as the word number starting
1301 at the low-order address. OFFSET 0 is the low-order word if not
1302 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1304 If we cannot extract the required word, we return zero. Otherwise,
1305 an rtx corresponding to the requested word will be returned.
1307 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1308 reload has completed, a valid address will always be returned. After
1309 reload, if a valid address cannot be returned, we return zero.
1311 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1312 it is the responsibility of the caller.
1314 MODE is the mode of OP in case it is a CONST_INT.
1316 ??? This is still rather broken for some cases. The problem for the
1317 moment is that all callers of this thing provide no 'goal mode' to
1318 tell us to work with. This exists because all callers were written
1319 in a word based SUBREG world.
1320 Now use of this function can be deprecated by simplify_subreg in most
1321 cases.
1325 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1327 if (mode == VOIDmode)
1328 mode = GET_MODE (op);
1330 gcc_assert (mode != VOIDmode);
1332 /* If OP is narrower than a word, fail. */
1333 if (mode != BLKmode
1334 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1335 return 0;
1337 /* If we want a word outside OP, return zero. */
1338 if (mode != BLKmode
1339 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1340 return const0_rtx;
1342 /* Form a new MEM at the requested address. */
1343 if (MEM_P (op))
1345 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1347 if (! validate_address)
1348 return new;
1350 else if (reload_completed)
1352 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1353 return 0;
1355 else
1356 return replace_equiv_address (new, XEXP (new, 0));
1359 /* Rest can be handled by simplify_subreg. */
1360 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1363 /* Similar to `operand_subword', but never return 0. If we can't
1364 extract the required subword, put OP into a register and try again.
1365 The second attempt must succeed. We always validate the address in
1366 this case.
1368 MODE is the mode of OP, in case it is CONST_INT. */
1371 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1373 rtx result = operand_subword (op, offset, 1, mode);
1375 if (result)
1376 return result;
1378 if (mode != BLKmode && mode != VOIDmode)
1380 /* If this is a register which can not be accessed by words, copy it
1381 to a pseudo register. */
1382 if (REG_P (op))
1383 op = copy_to_reg (op);
1384 else
1385 op = force_reg (mode, op);
1388 result = operand_subword (op, offset, 1, mode);
1389 gcc_assert (result);
1391 return result;
1394 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1395 or (2) a component ref of something variable. Represent the later with
1396 a NULL expression. */
1398 static tree
1399 component_ref_for_mem_expr (tree ref)
1401 tree inner = TREE_OPERAND (ref, 0);
1403 if (TREE_CODE (inner) == COMPONENT_REF)
1404 inner = component_ref_for_mem_expr (inner);
1405 else
1407 /* Now remove any conversions: they don't change what the underlying
1408 object is. Likewise for SAVE_EXPR. */
1409 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1410 || TREE_CODE (inner) == NON_LVALUE_EXPR
1411 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1412 || TREE_CODE (inner) == SAVE_EXPR)
1413 inner = TREE_OPERAND (inner, 0);
1415 if (! DECL_P (inner))
1416 inner = NULL_TREE;
1419 if (inner == TREE_OPERAND (ref, 0))
1420 return ref;
1421 else
1422 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1423 TREE_OPERAND (ref, 1), NULL_TREE);
1426 /* Returns 1 if both MEM_EXPR can be considered equal
1427 and 0 otherwise. */
1430 mem_expr_equal_p (tree expr1, tree expr2)
1432 if (expr1 == expr2)
1433 return 1;
1435 if (! expr1 || ! expr2)
1436 return 0;
1438 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1439 return 0;
1441 if (TREE_CODE (expr1) == COMPONENT_REF)
1442 return
1443 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1444 TREE_OPERAND (expr2, 0))
1445 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1446 TREE_OPERAND (expr2, 1));
1448 if (INDIRECT_REF_P (expr1))
1449 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1450 TREE_OPERAND (expr2, 0));
1452 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1453 have been resolved here. */
1454 gcc_assert (DECL_P (expr1));
1456 /* Decls with different pointers can't be equal. */
1457 return 0;
1460 /* Given REF, a MEM, and T, either the type of X or the expression
1461 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1462 if we are making a new object of this type. BITPOS is nonzero if
1463 there is an offset outstanding on T that will be applied later. */
1465 void
1466 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1467 HOST_WIDE_INT bitpos)
1469 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1470 tree expr = MEM_EXPR (ref);
1471 rtx offset = MEM_OFFSET (ref);
1472 rtx size = MEM_SIZE (ref);
1473 unsigned int align = MEM_ALIGN (ref);
1474 HOST_WIDE_INT apply_bitpos = 0;
1475 tree type;
1477 /* It can happen that type_for_mode was given a mode for which there
1478 is no language-level type. In which case it returns NULL, which
1479 we can see here. */
1480 if (t == NULL_TREE)
1481 return;
1483 type = TYPE_P (t) ? t : TREE_TYPE (t);
1484 if (type == error_mark_node)
1485 return;
1487 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1488 wrong answer, as it assumes that DECL_RTL already has the right alias
1489 info. Callers should not set DECL_RTL until after the call to
1490 set_mem_attributes. */
1491 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1493 /* Get the alias set from the expression or type (perhaps using a
1494 front-end routine) and use it. */
1495 alias = get_alias_set (t);
1497 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1498 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1499 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1501 /* If we are making an object of this type, or if this is a DECL, we know
1502 that it is a scalar if the type is not an aggregate. */
1503 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1504 MEM_SCALAR_P (ref) = 1;
1506 /* We can set the alignment from the type if we are making an object,
1507 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1508 if (objectp || TREE_CODE (t) == INDIRECT_REF
1509 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1510 || TYPE_ALIGN_OK (type))
1511 align = MAX (align, TYPE_ALIGN (type));
1512 else
1513 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1515 if (integer_zerop (TREE_OPERAND (t, 1)))
1516 /* We don't know anything about the alignment. */
1517 align = BITS_PER_UNIT;
1518 else
1519 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1522 /* If the size is known, we can set that. */
1523 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1524 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1526 /* If T is not a type, we may be able to deduce some more information about
1527 the expression. */
1528 if (! TYPE_P (t))
1530 tree base;
1532 if (TREE_THIS_VOLATILE (t))
1533 MEM_VOLATILE_P (ref) = 1;
1535 /* Now remove any conversions: they don't change what the underlying
1536 object is. Likewise for SAVE_EXPR. */
1537 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1538 || TREE_CODE (t) == NON_LVALUE_EXPR
1539 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1540 || TREE_CODE (t) == SAVE_EXPR)
1541 t = TREE_OPERAND (t, 0);
1543 /* We may look through structure-like accesses for the purposes of
1544 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1545 base = t;
1546 while (TREE_CODE (base) == COMPONENT_REF
1547 || TREE_CODE (base) == REALPART_EXPR
1548 || TREE_CODE (base) == IMAGPART_EXPR
1549 || TREE_CODE (base) == BIT_FIELD_REF)
1550 base = TREE_OPERAND (base, 0);
1552 if (DECL_P (base))
1554 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1555 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1556 else
1557 MEM_NOTRAP_P (ref) = 1;
1559 else
1560 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1562 base = get_base_address (base);
1563 if (base && DECL_P (base)
1564 && TREE_READONLY (base)
1565 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1567 tree base_type = TREE_TYPE (base);
1568 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1569 || DECL_ARTIFICIAL (base));
1570 MEM_READONLY_P (ref) = 1;
1573 /* If this expression uses it's parent's alias set, mark it such
1574 that we won't change it. */
1575 if (component_uses_parent_alias_set (t))
1576 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1578 /* If this is a decl, set the attributes of the MEM from it. */
1579 if (DECL_P (t))
1581 expr = t;
1582 offset = const0_rtx;
1583 apply_bitpos = bitpos;
1584 size = (DECL_SIZE_UNIT (t)
1585 && host_integerp (DECL_SIZE_UNIT (t), 1)
1586 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1587 align = DECL_ALIGN (t);
1590 /* If this is a constant, we know the alignment. */
1591 else if (CONSTANT_CLASS_P (t))
1593 align = TYPE_ALIGN (type);
1594 #ifdef CONSTANT_ALIGNMENT
1595 align = CONSTANT_ALIGNMENT (t, align);
1596 #endif
1599 /* If this is a field reference and not a bit-field, record it. */
1600 /* ??? There is some information that can be gleened from bit-fields,
1601 such as the word offset in the structure that might be modified.
1602 But skip it for now. */
1603 else if (TREE_CODE (t) == COMPONENT_REF
1604 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1606 expr = component_ref_for_mem_expr (t);
1607 offset = const0_rtx;
1608 apply_bitpos = bitpos;
1609 /* ??? Any reason the field size would be different than
1610 the size we got from the type? */
1613 /* If this is an array reference, look for an outer field reference. */
1614 else if (TREE_CODE (t) == ARRAY_REF)
1616 tree off_tree = size_zero_node;
1617 /* We can't modify t, because we use it at the end of the
1618 function. */
1619 tree t2 = t;
1623 tree index = TREE_OPERAND (t2, 1);
1624 tree low_bound = array_ref_low_bound (t2);
1625 tree unit_size = array_ref_element_size (t2);
1627 /* We assume all arrays have sizes that are a multiple of a byte.
1628 First subtract the lower bound, if any, in the type of the
1629 index, then convert to sizetype and multiply by the size of
1630 the array element. */
1631 if (! integer_zerop (low_bound))
1632 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1633 index, low_bound);
1635 off_tree = size_binop (PLUS_EXPR,
1636 size_binop (MULT_EXPR, convert (sizetype,
1637 index),
1638 unit_size),
1639 off_tree);
1640 t2 = TREE_OPERAND (t2, 0);
1642 while (TREE_CODE (t2) == ARRAY_REF);
1644 if (DECL_P (t2))
1646 expr = t2;
1647 offset = NULL;
1648 if (host_integerp (off_tree, 1))
1650 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1651 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1652 align = DECL_ALIGN (t2);
1653 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1654 align = aoff;
1655 offset = GEN_INT (ioff);
1656 apply_bitpos = bitpos;
1659 else if (TREE_CODE (t2) == COMPONENT_REF)
1661 expr = component_ref_for_mem_expr (t2);
1662 if (host_integerp (off_tree, 1))
1664 offset = GEN_INT (tree_low_cst (off_tree, 1));
1665 apply_bitpos = bitpos;
1667 /* ??? Any reason the field size would be different than
1668 the size we got from the type? */
1670 else if (flag_argument_noalias > 1
1671 && (INDIRECT_REF_P (t2))
1672 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1674 expr = t2;
1675 offset = NULL;
1679 /* If this is a Fortran indirect argument reference, record the
1680 parameter decl. */
1681 else if (flag_argument_noalias > 1
1682 && (INDIRECT_REF_P (t))
1683 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1685 expr = t;
1686 offset = NULL;
1690 /* If we modified OFFSET based on T, then subtract the outstanding
1691 bit position offset. Similarly, increase the size of the accessed
1692 object to contain the negative offset. */
1693 if (apply_bitpos)
1695 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1696 if (size)
1697 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1700 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1702 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1703 we're overlapping. */
1704 offset = NULL;
1705 expr = NULL;
1708 /* Now set the attributes we computed above. */
1709 MEM_ATTRS (ref)
1710 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1712 /* If this is already known to be a scalar or aggregate, we are done. */
1713 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1714 return;
1716 /* If it is a reference into an aggregate, this is part of an aggregate.
1717 Otherwise we don't know. */
1718 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1719 || TREE_CODE (t) == ARRAY_RANGE_REF
1720 || TREE_CODE (t) == BIT_FIELD_REF)
1721 MEM_IN_STRUCT_P (ref) = 1;
1724 void
1725 set_mem_attributes (rtx ref, tree t, int objectp)
1727 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1730 /* Set the decl for MEM to DECL. */
1732 void
1733 set_mem_attrs_from_reg (rtx mem, rtx reg)
1735 MEM_ATTRS (mem)
1736 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1737 GEN_INT (REG_OFFSET (reg)),
1738 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1741 /* Set the alias set of MEM to SET. */
1743 void
1744 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1746 #ifdef ENABLE_CHECKING
1747 /* If the new and old alias sets don't conflict, something is wrong. */
1748 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1749 #endif
1751 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1752 MEM_SIZE (mem), MEM_ALIGN (mem),
1753 GET_MODE (mem));
1756 /* Set the alignment of MEM to ALIGN bits. */
1758 void
1759 set_mem_align (rtx mem, unsigned int align)
1761 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1762 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1763 GET_MODE (mem));
1766 /* Set the expr for MEM to EXPR. */
1768 void
1769 set_mem_expr (rtx mem, tree expr)
1771 MEM_ATTRS (mem)
1772 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1773 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1776 /* Set the offset of MEM to OFFSET. */
1778 void
1779 set_mem_offset (rtx mem, rtx offset)
1781 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1782 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1783 GET_MODE (mem));
1786 /* Set the size of MEM to SIZE. */
1788 void
1789 set_mem_size (rtx mem, rtx size)
1791 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1792 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1793 GET_MODE (mem));
1796 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1797 and its address changed to ADDR. (VOIDmode means don't change the mode.
1798 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1799 returned memory location is required to be valid. The memory
1800 attributes are not changed. */
1802 static rtx
1803 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1805 rtx new;
1807 gcc_assert (MEM_P (memref));
1808 if (mode == VOIDmode)
1809 mode = GET_MODE (memref);
1810 if (addr == 0)
1811 addr = XEXP (memref, 0);
1812 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1813 && (!validate || memory_address_p (mode, addr)))
1814 return memref;
1816 if (validate)
1818 if (reload_in_progress || reload_completed)
1819 gcc_assert (memory_address_p (mode, addr));
1820 else
1821 addr = memory_address (mode, addr);
1824 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1825 return memref;
1827 new = gen_rtx_MEM (mode, addr);
1828 MEM_COPY_ATTRIBUTES (new, memref);
1829 return new;
1832 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1833 way we are changing MEMREF, so we only preserve the alias set. */
1836 change_address (rtx memref, enum machine_mode mode, rtx addr)
1838 rtx new = change_address_1 (memref, mode, addr, 1), size;
1839 enum machine_mode mmode = GET_MODE (new);
1840 unsigned int align;
1842 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1843 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1845 /* If there are no changes, just return the original memory reference. */
1846 if (new == memref)
1848 if (MEM_ATTRS (memref) == 0
1849 || (MEM_EXPR (memref) == NULL
1850 && MEM_OFFSET (memref) == NULL
1851 && MEM_SIZE (memref) == size
1852 && MEM_ALIGN (memref) == align))
1853 return new;
1855 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1856 MEM_COPY_ATTRIBUTES (new, memref);
1859 MEM_ATTRS (new)
1860 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1862 return new;
1865 /* Return a memory reference like MEMREF, but with its mode changed
1866 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1867 nonzero, the memory address is forced to be valid.
1868 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1869 and caller is responsible for adjusting MEMREF base register. */
1872 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1873 int validate, int adjust)
1875 rtx addr = XEXP (memref, 0);
1876 rtx new;
1877 rtx memoffset = MEM_OFFSET (memref);
1878 rtx size = 0;
1879 unsigned int memalign = MEM_ALIGN (memref);
1881 /* If there are no changes, just return the original memory reference. */
1882 if (mode == GET_MODE (memref) && !offset
1883 && (!validate || memory_address_p (mode, addr)))
1884 return memref;
1886 /* ??? Prefer to create garbage instead of creating shared rtl.
1887 This may happen even if offset is nonzero -- consider
1888 (plus (plus reg reg) const_int) -- so do this always. */
1889 addr = copy_rtx (addr);
1891 if (adjust)
1893 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1894 object, we can merge it into the LO_SUM. */
1895 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1896 && offset >= 0
1897 && (unsigned HOST_WIDE_INT) offset
1898 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1899 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1900 plus_constant (XEXP (addr, 1), offset));
1901 else
1902 addr = plus_constant (addr, offset);
1905 new = change_address_1 (memref, mode, addr, validate);
1907 /* Compute the new values of the memory attributes due to this adjustment.
1908 We add the offsets and update the alignment. */
1909 if (memoffset)
1910 memoffset = GEN_INT (offset + INTVAL (memoffset));
1912 /* Compute the new alignment by taking the MIN of the alignment and the
1913 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1914 if zero. */
1915 if (offset != 0)
1916 memalign
1917 = MIN (memalign,
1918 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1920 /* We can compute the size in a number of ways. */
1921 if (GET_MODE (new) != BLKmode)
1922 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1923 else if (MEM_SIZE (memref))
1924 size = plus_constant (MEM_SIZE (memref), -offset);
1926 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1927 memoffset, size, memalign, GET_MODE (new));
1929 /* At some point, we should validate that this offset is within the object,
1930 if all the appropriate values are known. */
1931 return new;
1934 /* Return a memory reference like MEMREF, but with its mode changed
1935 to MODE and its address changed to ADDR, which is assumed to be
1936 MEMREF offseted by OFFSET bytes. If VALIDATE is
1937 nonzero, the memory address is forced to be valid. */
1940 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1941 HOST_WIDE_INT offset, int validate)
1943 memref = change_address_1 (memref, VOIDmode, addr, validate);
1944 return adjust_address_1 (memref, mode, offset, validate, 0);
1947 /* Return a memory reference like MEMREF, but whose address is changed by
1948 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1949 known to be in OFFSET (possibly 1). */
1952 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1954 rtx new, addr = XEXP (memref, 0);
1956 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1958 /* At this point we don't know _why_ the address is invalid. It
1959 could have secondary memory references, multiplies or anything.
1961 However, if we did go and rearrange things, we can wind up not
1962 being able to recognize the magic around pic_offset_table_rtx.
1963 This stuff is fragile, and is yet another example of why it is
1964 bad to expose PIC machinery too early. */
1965 if (! memory_address_p (GET_MODE (memref), new)
1966 && GET_CODE (addr) == PLUS
1967 && XEXP (addr, 0) == pic_offset_table_rtx)
1969 addr = force_reg (GET_MODE (addr), addr);
1970 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1973 update_temp_slot_address (XEXP (memref, 0), new);
1974 new = change_address_1 (memref, VOIDmode, new, 1);
1976 /* If there are no changes, just return the original memory reference. */
1977 if (new == memref)
1978 return new;
1980 /* Update the alignment to reflect the offset. Reset the offset, which
1981 we don't know. */
1982 MEM_ATTRS (new)
1983 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1984 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1985 GET_MODE (new));
1986 return new;
1989 /* Return a memory reference like MEMREF, but with its address changed to
1990 ADDR. The caller is asserting that the actual piece of memory pointed
1991 to is the same, just the form of the address is being changed, such as
1992 by putting something into a register. */
1995 replace_equiv_address (rtx memref, rtx addr)
1997 /* change_address_1 copies the memory attribute structure without change
1998 and that's exactly what we want here. */
1999 update_temp_slot_address (XEXP (memref, 0), addr);
2000 return change_address_1 (memref, VOIDmode, addr, 1);
2003 /* Likewise, but the reference is not required to be valid. */
2006 replace_equiv_address_nv (rtx memref, rtx addr)
2008 return change_address_1 (memref, VOIDmode, addr, 0);
2011 /* Return a memory reference like MEMREF, but with its mode widened to
2012 MODE and offset by OFFSET. This would be used by targets that e.g.
2013 cannot issue QImode memory operations and have to use SImode memory
2014 operations plus masking logic. */
2017 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2019 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2020 tree expr = MEM_EXPR (new);
2021 rtx memoffset = MEM_OFFSET (new);
2022 unsigned int size = GET_MODE_SIZE (mode);
2024 /* If there are no changes, just return the original memory reference. */
2025 if (new == memref)
2026 return new;
2028 /* If we don't know what offset we were at within the expression, then
2029 we can't know if we've overstepped the bounds. */
2030 if (! memoffset)
2031 expr = NULL_TREE;
2033 while (expr)
2035 if (TREE_CODE (expr) == COMPONENT_REF)
2037 tree field = TREE_OPERAND (expr, 1);
2038 tree offset = component_ref_field_offset (expr);
2040 if (! DECL_SIZE_UNIT (field))
2042 expr = NULL_TREE;
2043 break;
2046 /* Is the field at least as large as the access? If so, ok,
2047 otherwise strip back to the containing structure. */
2048 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2049 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2050 && INTVAL (memoffset) >= 0)
2051 break;
2053 if (! host_integerp (offset, 1))
2055 expr = NULL_TREE;
2056 break;
2059 expr = TREE_OPERAND (expr, 0);
2060 memoffset
2061 = (GEN_INT (INTVAL (memoffset)
2062 + tree_low_cst (offset, 1)
2063 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2064 / BITS_PER_UNIT)));
2066 /* Similarly for the decl. */
2067 else if (DECL_P (expr)
2068 && DECL_SIZE_UNIT (expr)
2069 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2070 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2071 && (! memoffset || INTVAL (memoffset) >= 0))
2072 break;
2073 else
2075 /* The widened memory access overflows the expression, which means
2076 that it could alias another expression. Zap it. */
2077 expr = NULL_TREE;
2078 break;
2082 if (! expr)
2083 memoffset = NULL_RTX;
2085 /* The widened memory may alias other stuff, so zap the alias set. */
2086 /* ??? Maybe use get_alias_set on any remaining expression. */
2088 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2089 MEM_ALIGN (new), mode);
2091 return new;
2094 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2097 gen_label_rtx (void)
2099 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2100 NULL, label_num++, NULL);
2103 /* For procedure integration. */
2105 /* Install new pointers to the first and last insns in the chain.
2106 Also, set cur_insn_uid to one higher than the last in use.
2107 Used for an inline-procedure after copying the insn chain. */
2109 void
2110 set_new_first_and_last_insn (rtx first, rtx last)
2112 rtx insn;
2114 first_insn = first;
2115 last_insn = last;
2116 cur_insn_uid = 0;
2118 for (insn = first; insn; insn = NEXT_INSN (insn))
2119 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2121 cur_insn_uid++;
2124 /* Go through all the RTL insn bodies and copy any invalid shared
2125 structure. This routine should only be called once. */
2127 static void
2128 unshare_all_rtl_1 (tree fndecl, rtx insn)
2130 tree decl;
2132 /* Make sure that virtual parameters are not shared. */
2133 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2134 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2136 /* Make sure that virtual stack slots are not shared. */
2137 unshare_all_decls (DECL_INITIAL (fndecl));
2139 /* Unshare just about everything else. */
2140 unshare_all_rtl_in_chain (insn);
2142 /* Make sure the addresses of stack slots found outside the insn chain
2143 (such as, in DECL_RTL of a variable) are not shared
2144 with the insn chain.
2146 This special care is necessary when the stack slot MEM does not
2147 actually appear in the insn chain. If it does appear, its address
2148 is unshared from all else at that point. */
2149 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2152 /* Go through all the RTL insn bodies and copy any invalid shared
2153 structure, again. This is a fairly expensive thing to do so it
2154 should be done sparingly. */
2156 void
2157 unshare_all_rtl_again (rtx insn)
2159 rtx p;
2160 tree decl;
2162 for (p = insn; p; p = NEXT_INSN (p))
2163 if (INSN_P (p))
2165 reset_used_flags (PATTERN (p));
2166 reset_used_flags (REG_NOTES (p));
2167 reset_used_flags (LOG_LINKS (p));
2170 /* Make sure that virtual stack slots are not shared. */
2171 reset_used_decls (DECL_INITIAL (cfun->decl));
2173 /* Make sure that virtual parameters are not shared. */
2174 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2175 reset_used_flags (DECL_RTL (decl));
2177 reset_used_flags (stack_slot_list);
2179 unshare_all_rtl_1 (cfun->decl, insn);
2182 void
2183 unshare_all_rtl (void)
2185 unshare_all_rtl_1 (current_function_decl, get_insns ());
2188 struct tree_opt_pass pass_unshare_all_rtl =
2190 "unshare", /* name */
2191 NULL, /* gate */
2192 unshare_all_rtl, /* execute */
2193 NULL, /* sub */
2194 NULL, /* next */
2195 0, /* static_pass_number */
2196 0, /* tv_id */
2197 0, /* properties_required */
2198 0, /* properties_provided */
2199 0, /* properties_destroyed */
2200 0, /* todo_flags_start */
2201 TODO_dump_func, /* todo_flags_finish */
2202 0 /* letter */
2206 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2207 Recursively does the same for subexpressions. */
2209 static void
2210 verify_rtx_sharing (rtx orig, rtx insn)
2212 rtx x = orig;
2213 int i;
2214 enum rtx_code code;
2215 const char *format_ptr;
2217 if (x == 0)
2218 return;
2220 code = GET_CODE (x);
2222 /* These types may be freely shared. */
2224 switch (code)
2226 case REG:
2227 case CONST_INT:
2228 case CONST_DOUBLE:
2229 case CONST_VECTOR:
2230 case SYMBOL_REF:
2231 case LABEL_REF:
2232 case CODE_LABEL:
2233 case PC:
2234 case CC0:
2235 case SCRATCH:
2236 return;
2237 /* SCRATCH must be shared because they represent distinct values. */
2238 case CLOBBER:
2239 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2240 return;
2241 break;
2243 case CONST:
2244 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2245 a LABEL_REF, it isn't sharable. */
2246 if (GET_CODE (XEXP (x, 0)) == PLUS
2247 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2248 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2249 return;
2250 break;
2252 case MEM:
2253 /* A MEM is allowed to be shared if its address is constant. */
2254 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2255 || reload_completed || reload_in_progress)
2256 return;
2258 break;
2260 default:
2261 break;
2264 /* This rtx may not be shared. If it has already been seen,
2265 replace it with a copy of itself. */
2266 #ifdef ENABLE_CHECKING
2267 if (RTX_FLAG (x, used))
2269 error ("invalid rtl sharing found in the insn");
2270 debug_rtx (insn);
2271 error ("shared rtx");
2272 debug_rtx (x);
2273 internal_error ("internal consistency failure");
2275 #endif
2276 gcc_assert (!RTX_FLAG (x, used));
2278 RTX_FLAG (x, used) = 1;
2280 /* Now scan the subexpressions recursively. */
2282 format_ptr = GET_RTX_FORMAT (code);
2284 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2286 switch (*format_ptr++)
2288 case 'e':
2289 verify_rtx_sharing (XEXP (x, i), insn);
2290 break;
2292 case 'E':
2293 if (XVEC (x, i) != NULL)
2295 int j;
2296 int len = XVECLEN (x, i);
2298 for (j = 0; j < len; j++)
2300 /* We allow sharing of ASM_OPERANDS inside single
2301 instruction. */
2302 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2303 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2304 == ASM_OPERANDS))
2305 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2306 else
2307 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2310 break;
2313 return;
2316 /* Go through all the RTL insn bodies and check that there is no unexpected
2317 sharing in between the subexpressions. */
2319 void
2320 verify_rtl_sharing (void)
2322 rtx p;
2324 for (p = get_insns (); p; p = NEXT_INSN (p))
2325 if (INSN_P (p))
2327 reset_used_flags (PATTERN (p));
2328 reset_used_flags (REG_NOTES (p));
2329 reset_used_flags (LOG_LINKS (p));
2332 for (p = get_insns (); p; p = NEXT_INSN (p))
2333 if (INSN_P (p))
2335 verify_rtx_sharing (PATTERN (p), p);
2336 verify_rtx_sharing (REG_NOTES (p), p);
2337 verify_rtx_sharing (LOG_LINKS (p), p);
2341 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2342 Assumes the mark bits are cleared at entry. */
2344 void
2345 unshare_all_rtl_in_chain (rtx insn)
2347 for (; insn; insn = NEXT_INSN (insn))
2348 if (INSN_P (insn))
2350 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2351 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2352 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2356 /* Go through all virtual stack slots of a function and copy any
2357 shared structure. */
2358 static void
2359 unshare_all_decls (tree blk)
2361 tree t;
2363 /* Copy shared decls. */
2364 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2365 if (DECL_RTL_SET_P (t))
2366 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2368 /* Now process sub-blocks. */
2369 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2370 unshare_all_decls (t);
2373 /* Go through all virtual stack slots of a function and mark them as
2374 not shared. */
2375 static void
2376 reset_used_decls (tree blk)
2378 tree t;
2380 /* Mark decls. */
2381 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2382 if (DECL_RTL_SET_P (t))
2383 reset_used_flags (DECL_RTL (t));
2385 /* Now process sub-blocks. */
2386 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2387 reset_used_decls (t);
2390 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2391 Recursively does the same for subexpressions. Uses
2392 copy_rtx_if_shared_1 to reduce stack space. */
2395 copy_rtx_if_shared (rtx orig)
2397 copy_rtx_if_shared_1 (&orig);
2398 return orig;
2401 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2402 use. Recursively does the same for subexpressions. */
2404 static void
2405 copy_rtx_if_shared_1 (rtx *orig1)
2407 rtx x;
2408 int i;
2409 enum rtx_code code;
2410 rtx *last_ptr;
2411 const char *format_ptr;
2412 int copied = 0;
2413 int length;
2415 /* Repeat is used to turn tail-recursion into iteration. */
2416 repeat:
2417 x = *orig1;
2419 if (x == 0)
2420 return;
2422 code = GET_CODE (x);
2424 /* These types may be freely shared. */
2426 switch (code)
2428 case REG:
2429 case CONST_INT:
2430 case CONST_DOUBLE:
2431 case CONST_VECTOR:
2432 case SYMBOL_REF:
2433 case LABEL_REF:
2434 case CODE_LABEL:
2435 case PC:
2436 case CC0:
2437 case SCRATCH:
2438 /* SCRATCH must be shared because they represent distinct values. */
2439 return;
2440 case CLOBBER:
2441 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2442 return;
2443 break;
2445 case CONST:
2446 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2447 a LABEL_REF, it isn't sharable. */
2448 if (GET_CODE (XEXP (x, 0)) == PLUS
2449 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2450 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2451 return;
2452 break;
2454 case INSN:
2455 case JUMP_INSN:
2456 case CALL_INSN:
2457 case NOTE:
2458 case BARRIER:
2459 /* The chain of insns is not being copied. */
2460 return;
2462 default:
2463 break;
2466 /* This rtx may not be shared. If it has already been seen,
2467 replace it with a copy of itself. */
2469 if (RTX_FLAG (x, used))
2471 rtx copy;
2473 copy = rtx_alloc (code);
2474 memcpy (copy, x, RTX_SIZE (code));
2475 x = copy;
2476 copied = 1;
2478 RTX_FLAG (x, used) = 1;
2480 /* Now scan the subexpressions recursively.
2481 We can store any replaced subexpressions directly into X
2482 since we know X is not shared! Any vectors in X
2483 must be copied if X was copied. */
2485 format_ptr = GET_RTX_FORMAT (code);
2486 length = GET_RTX_LENGTH (code);
2487 last_ptr = NULL;
2489 for (i = 0; i < length; i++)
2491 switch (*format_ptr++)
2493 case 'e':
2494 if (last_ptr)
2495 copy_rtx_if_shared_1 (last_ptr);
2496 last_ptr = &XEXP (x, i);
2497 break;
2499 case 'E':
2500 if (XVEC (x, i) != NULL)
2502 int j;
2503 int len = XVECLEN (x, i);
2505 /* Copy the vector iff I copied the rtx and the length
2506 is nonzero. */
2507 if (copied && len > 0)
2508 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2510 /* Call recursively on all inside the vector. */
2511 for (j = 0; j < len; j++)
2513 if (last_ptr)
2514 copy_rtx_if_shared_1 (last_ptr);
2515 last_ptr = &XVECEXP (x, i, j);
2518 break;
2521 *orig1 = x;
2522 if (last_ptr)
2524 orig1 = last_ptr;
2525 goto repeat;
2527 return;
2530 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2531 to look for shared sub-parts. */
2533 void
2534 reset_used_flags (rtx x)
2536 int i, j;
2537 enum rtx_code code;
2538 const char *format_ptr;
2539 int length;
2541 /* Repeat is used to turn tail-recursion into iteration. */
2542 repeat:
2543 if (x == 0)
2544 return;
2546 code = GET_CODE (x);
2548 /* These types may be freely shared so we needn't do any resetting
2549 for them. */
2551 switch (code)
2553 case REG:
2554 case CONST_INT:
2555 case CONST_DOUBLE:
2556 case CONST_VECTOR:
2557 case SYMBOL_REF:
2558 case CODE_LABEL:
2559 case PC:
2560 case CC0:
2561 return;
2563 case INSN:
2564 case JUMP_INSN:
2565 case CALL_INSN:
2566 case NOTE:
2567 case LABEL_REF:
2568 case BARRIER:
2569 /* The chain of insns is not being copied. */
2570 return;
2572 default:
2573 break;
2576 RTX_FLAG (x, used) = 0;
2578 format_ptr = GET_RTX_FORMAT (code);
2579 length = GET_RTX_LENGTH (code);
2581 for (i = 0; i < length; i++)
2583 switch (*format_ptr++)
2585 case 'e':
2586 if (i == length-1)
2588 x = XEXP (x, i);
2589 goto repeat;
2591 reset_used_flags (XEXP (x, i));
2592 break;
2594 case 'E':
2595 for (j = 0; j < XVECLEN (x, i); j++)
2596 reset_used_flags (XVECEXP (x, i, j));
2597 break;
2602 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2603 to look for shared sub-parts. */
2605 void
2606 set_used_flags (rtx x)
2608 int i, j;
2609 enum rtx_code code;
2610 const char *format_ptr;
2612 if (x == 0)
2613 return;
2615 code = GET_CODE (x);
2617 /* These types may be freely shared so we needn't do any resetting
2618 for them. */
2620 switch (code)
2622 case REG:
2623 case CONST_INT:
2624 case CONST_DOUBLE:
2625 case CONST_VECTOR:
2626 case SYMBOL_REF:
2627 case CODE_LABEL:
2628 case PC:
2629 case CC0:
2630 return;
2632 case INSN:
2633 case JUMP_INSN:
2634 case CALL_INSN:
2635 case NOTE:
2636 case LABEL_REF:
2637 case BARRIER:
2638 /* The chain of insns is not being copied. */
2639 return;
2641 default:
2642 break;
2645 RTX_FLAG (x, used) = 1;
2647 format_ptr = GET_RTX_FORMAT (code);
2648 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2650 switch (*format_ptr++)
2652 case 'e':
2653 set_used_flags (XEXP (x, i));
2654 break;
2656 case 'E':
2657 for (j = 0; j < XVECLEN (x, i); j++)
2658 set_used_flags (XVECEXP (x, i, j));
2659 break;
2664 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2665 Return X or the rtx for the pseudo reg the value of X was copied into.
2666 OTHER must be valid as a SET_DEST. */
2669 make_safe_from (rtx x, rtx other)
2671 while (1)
2672 switch (GET_CODE (other))
2674 case SUBREG:
2675 other = SUBREG_REG (other);
2676 break;
2677 case STRICT_LOW_PART:
2678 case SIGN_EXTEND:
2679 case ZERO_EXTEND:
2680 other = XEXP (other, 0);
2681 break;
2682 default:
2683 goto done;
2685 done:
2686 if ((MEM_P (other)
2687 && ! CONSTANT_P (x)
2688 && !REG_P (x)
2689 && GET_CODE (x) != SUBREG)
2690 || (REG_P (other)
2691 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2692 || reg_mentioned_p (other, x))))
2694 rtx temp = gen_reg_rtx (GET_MODE (x));
2695 emit_move_insn (temp, x);
2696 return temp;
2698 return x;
2701 /* Emission of insns (adding them to the doubly-linked list). */
2703 /* Return the first insn of the current sequence or current function. */
2706 get_insns (void)
2708 return first_insn;
2711 /* Specify a new insn as the first in the chain. */
2713 void
2714 set_first_insn (rtx insn)
2716 gcc_assert (!PREV_INSN (insn));
2717 first_insn = insn;
2720 /* Return the last insn emitted in current sequence or current function. */
2723 get_last_insn (void)
2725 return last_insn;
2728 /* Specify a new insn as the last in the chain. */
2730 void
2731 set_last_insn (rtx insn)
2733 gcc_assert (!NEXT_INSN (insn));
2734 last_insn = insn;
2737 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2740 get_last_insn_anywhere (void)
2742 struct sequence_stack *stack;
2743 if (last_insn)
2744 return last_insn;
2745 for (stack = seq_stack; stack; stack = stack->next)
2746 if (stack->last != 0)
2747 return stack->last;
2748 return 0;
2751 /* Return the first nonnote insn emitted in current sequence or current
2752 function. This routine looks inside SEQUENCEs. */
2755 get_first_nonnote_insn (void)
2757 rtx insn = first_insn;
2759 if (insn)
2761 if (NOTE_P (insn))
2762 for (insn = next_insn (insn);
2763 insn && NOTE_P (insn);
2764 insn = next_insn (insn))
2765 continue;
2766 else
2768 if (NONJUMP_INSN_P (insn)
2769 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2770 insn = XVECEXP (PATTERN (insn), 0, 0);
2774 return insn;
2777 /* Return the last nonnote insn emitted in current sequence or current
2778 function. This routine looks inside SEQUENCEs. */
2781 get_last_nonnote_insn (void)
2783 rtx insn = last_insn;
2785 if (insn)
2787 if (NOTE_P (insn))
2788 for (insn = previous_insn (insn);
2789 insn && NOTE_P (insn);
2790 insn = previous_insn (insn))
2791 continue;
2792 else
2794 if (NONJUMP_INSN_P (insn)
2795 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2796 insn = XVECEXP (PATTERN (insn), 0,
2797 XVECLEN (PATTERN (insn), 0) - 1);
2801 return insn;
2804 /* Return a number larger than any instruction's uid in this function. */
2807 get_max_uid (void)
2809 return cur_insn_uid;
2812 /* Renumber instructions so that no instruction UIDs are wasted. */
2814 void
2815 renumber_insns (FILE *stream)
2817 rtx insn;
2819 /* If we're not supposed to renumber instructions, don't. */
2820 if (!flag_renumber_insns)
2821 return;
2823 /* If there aren't that many instructions, then it's not really
2824 worth renumbering them. */
2825 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2826 return;
2828 cur_insn_uid = 1;
2830 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2832 if (stream)
2833 fprintf (stream, "Renumbering insn %d to %d\n",
2834 INSN_UID (insn), cur_insn_uid);
2835 INSN_UID (insn) = cur_insn_uid++;
2839 /* Return the next insn. If it is a SEQUENCE, return the first insn
2840 of the sequence. */
2843 next_insn (rtx insn)
2845 if (insn)
2847 insn = NEXT_INSN (insn);
2848 if (insn && NONJUMP_INSN_P (insn)
2849 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2850 insn = XVECEXP (PATTERN (insn), 0, 0);
2853 return insn;
2856 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2857 of the sequence. */
2860 previous_insn (rtx insn)
2862 if (insn)
2864 insn = PREV_INSN (insn);
2865 if (insn && NONJUMP_INSN_P (insn)
2866 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2867 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2870 return insn;
2873 /* Return the next insn after INSN that is not a NOTE. This routine does not
2874 look inside SEQUENCEs. */
2877 next_nonnote_insn (rtx insn)
2879 while (insn)
2881 insn = NEXT_INSN (insn);
2882 if (insn == 0 || !NOTE_P (insn))
2883 break;
2886 return insn;
2889 /* Return the previous insn before INSN that is not a NOTE. This routine does
2890 not look inside SEQUENCEs. */
2893 prev_nonnote_insn (rtx insn)
2895 while (insn)
2897 insn = PREV_INSN (insn);
2898 if (insn == 0 || !NOTE_P (insn))
2899 break;
2902 return insn;
2905 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2906 or 0, if there is none. This routine does not look inside
2907 SEQUENCEs. */
2910 next_real_insn (rtx insn)
2912 while (insn)
2914 insn = NEXT_INSN (insn);
2915 if (insn == 0 || INSN_P (insn))
2916 break;
2919 return insn;
2922 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2923 or 0, if there is none. This routine does not look inside
2924 SEQUENCEs. */
2927 prev_real_insn (rtx insn)
2929 while (insn)
2931 insn = PREV_INSN (insn);
2932 if (insn == 0 || INSN_P (insn))
2933 break;
2936 return insn;
2939 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2940 This routine does not look inside SEQUENCEs. */
2943 last_call_insn (void)
2945 rtx insn;
2947 for (insn = get_last_insn ();
2948 insn && !CALL_P (insn);
2949 insn = PREV_INSN (insn))
2952 return insn;
2955 /* Find the next insn after INSN that really does something. This routine
2956 does not look inside SEQUENCEs. Until reload has completed, this is the
2957 same as next_real_insn. */
2960 active_insn_p (rtx insn)
2962 return (CALL_P (insn) || JUMP_P (insn)
2963 || (NONJUMP_INSN_P (insn)
2964 && (! reload_completed
2965 || (GET_CODE (PATTERN (insn)) != USE
2966 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2970 next_active_insn (rtx insn)
2972 while (insn)
2974 insn = NEXT_INSN (insn);
2975 if (insn == 0 || active_insn_p (insn))
2976 break;
2979 return insn;
2982 /* Find the last insn before INSN that really does something. This routine
2983 does not look inside SEQUENCEs. Until reload has completed, this is the
2984 same as prev_real_insn. */
2987 prev_active_insn (rtx insn)
2989 while (insn)
2991 insn = PREV_INSN (insn);
2992 if (insn == 0 || active_insn_p (insn))
2993 break;
2996 return insn;
2999 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3002 next_label (rtx insn)
3004 while (insn)
3006 insn = NEXT_INSN (insn);
3007 if (insn == 0 || LABEL_P (insn))
3008 break;
3011 return insn;
3014 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3017 prev_label (rtx insn)
3019 while (insn)
3021 insn = PREV_INSN (insn);
3022 if (insn == 0 || LABEL_P (insn))
3023 break;
3026 return insn;
3029 /* Return the last label to mark the same position as LABEL. Return null
3030 if LABEL itself is null. */
3033 skip_consecutive_labels (rtx label)
3035 rtx insn;
3037 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3038 if (LABEL_P (insn))
3039 label = insn;
3041 return label;
3044 #ifdef HAVE_cc0
3045 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3046 and REG_CC_USER notes so we can find it. */
3048 void
3049 link_cc0_insns (rtx insn)
3051 rtx user = next_nonnote_insn (insn);
3053 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3054 user = XVECEXP (PATTERN (user), 0, 0);
3056 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3057 REG_NOTES (user));
3058 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3061 /* Return the next insn that uses CC0 after INSN, which is assumed to
3062 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3063 applied to the result of this function should yield INSN).
3065 Normally, this is simply the next insn. However, if a REG_CC_USER note
3066 is present, it contains the insn that uses CC0.
3068 Return 0 if we can't find the insn. */
3071 next_cc0_user (rtx insn)
3073 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3075 if (note)
3076 return XEXP (note, 0);
3078 insn = next_nonnote_insn (insn);
3079 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3080 insn = XVECEXP (PATTERN (insn), 0, 0);
3082 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3083 return insn;
3085 return 0;
3088 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3089 note, it is the previous insn. */
3092 prev_cc0_setter (rtx insn)
3094 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3096 if (note)
3097 return XEXP (note, 0);
3099 insn = prev_nonnote_insn (insn);
3100 gcc_assert (sets_cc0_p (PATTERN (insn)));
3102 return insn;
3104 #endif
3106 /* Increment the label uses for all labels present in rtx. */
3108 static void
3109 mark_label_nuses (rtx x)
3111 enum rtx_code code;
3112 int i, j;
3113 const char *fmt;
3115 code = GET_CODE (x);
3116 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3117 LABEL_NUSES (XEXP (x, 0))++;
3119 fmt = GET_RTX_FORMAT (code);
3120 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3122 if (fmt[i] == 'e')
3123 mark_label_nuses (XEXP (x, i));
3124 else if (fmt[i] == 'E')
3125 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3126 mark_label_nuses (XVECEXP (x, i, j));
3131 /* Try splitting insns that can be split for better scheduling.
3132 PAT is the pattern which might split.
3133 TRIAL is the insn providing PAT.
3134 LAST is nonzero if we should return the last insn of the sequence produced.
3136 If this routine succeeds in splitting, it returns the first or last
3137 replacement insn depending on the value of LAST. Otherwise, it
3138 returns TRIAL. If the insn to be returned can be split, it will be. */
3141 try_split (rtx pat, rtx trial, int last)
3143 rtx before = PREV_INSN (trial);
3144 rtx after = NEXT_INSN (trial);
3145 int has_barrier = 0;
3146 rtx tem;
3147 rtx note, seq;
3148 int probability;
3149 rtx insn_last, insn;
3150 int njumps = 0;
3152 if (any_condjump_p (trial)
3153 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3154 split_branch_probability = INTVAL (XEXP (note, 0));
3155 probability = split_branch_probability;
3157 seq = split_insns (pat, trial);
3159 split_branch_probability = -1;
3161 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3162 We may need to handle this specially. */
3163 if (after && BARRIER_P (after))
3165 has_barrier = 1;
3166 after = NEXT_INSN (after);
3169 if (!seq)
3170 return trial;
3172 /* Avoid infinite loop if any insn of the result matches
3173 the original pattern. */
3174 insn_last = seq;
3175 while (1)
3177 if (INSN_P (insn_last)
3178 && rtx_equal_p (PATTERN (insn_last), pat))
3179 return trial;
3180 if (!NEXT_INSN (insn_last))
3181 break;
3182 insn_last = NEXT_INSN (insn_last);
3185 /* Mark labels. */
3186 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3188 if (JUMP_P (insn))
3190 mark_jump_label (PATTERN (insn), insn, 0);
3191 njumps++;
3192 if (probability != -1
3193 && any_condjump_p (insn)
3194 && !find_reg_note (insn, REG_BR_PROB, 0))
3196 /* We can preserve the REG_BR_PROB notes only if exactly
3197 one jump is created, otherwise the machine description
3198 is responsible for this step using
3199 split_branch_probability variable. */
3200 gcc_assert (njumps == 1);
3201 REG_NOTES (insn)
3202 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3203 GEN_INT (probability),
3204 REG_NOTES (insn));
3209 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3210 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3211 if (CALL_P (trial))
3213 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3214 if (CALL_P (insn))
3216 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3217 while (*p)
3218 p = &XEXP (*p, 1);
3219 *p = CALL_INSN_FUNCTION_USAGE (trial);
3220 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3224 /* Copy notes, particularly those related to the CFG. */
3225 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3227 switch (REG_NOTE_KIND (note))
3229 case REG_EH_REGION:
3230 insn = insn_last;
3231 while (insn != NULL_RTX)
3233 if (CALL_P (insn)
3234 || (flag_non_call_exceptions && INSN_P (insn)
3235 && may_trap_p (PATTERN (insn))))
3236 REG_NOTES (insn)
3237 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3238 XEXP (note, 0),
3239 REG_NOTES (insn));
3240 insn = PREV_INSN (insn);
3242 break;
3244 case REG_NORETURN:
3245 case REG_SETJMP:
3246 insn = insn_last;
3247 while (insn != NULL_RTX)
3249 if (CALL_P (insn))
3250 REG_NOTES (insn)
3251 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3252 XEXP (note, 0),
3253 REG_NOTES (insn));
3254 insn = PREV_INSN (insn);
3256 break;
3258 case REG_NON_LOCAL_GOTO:
3259 insn = insn_last;
3260 while (insn != NULL_RTX)
3262 if (JUMP_P (insn))
3263 REG_NOTES (insn)
3264 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3265 XEXP (note, 0),
3266 REG_NOTES (insn));
3267 insn = PREV_INSN (insn);
3269 break;
3271 default:
3272 break;
3276 /* If there are LABELS inside the split insns increment the
3277 usage count so we don't delete the label. */
3278 if (NONJUMP_INSN_P (trial))
3280 insn = insn_last;
3281 while (insn != NULL_RTX)
3283 if (NONJUMP_INSN_P (insn))
3284 mark_label_nuses (PATTERN (insn));
3286 insn = PREV_INSN (insn);
3290 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3292 delete_insn (trial);
3293 if (has_barrier)
3294 emit_barrier_after (tem);
3296 /* Recursively call try_split for each new insn created; by the
3297 time control returns here that insn will be fully split, so
3298 set LAST and continue from the insn after the one returned.
3299 We can't use next_active_insn here since AFTER may be a note.
3300 Ignore deleted insns, which can be occur if not optimizing. */
3301 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3302 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3303 tem = try_split (PATTERN (tem), tem, 1);
3305 /* Return either the first or the last insn, depending on which was
3306 requested. */
3307 return last
3308 ? (after ? PREV_INSN (after) : last_insn)
3309 : NEXT_INSN (before);
3312 /* Make and return an INSN rtx, initializing all its slots.
3313 Store PATTERN in the pattern slots. */
3316 make_insn_raw (rtx pattern)
3318 rtx insn;
3320 insn = rtx_alloc (INSN);
3322 INSN_UID (insn) = cur_insn_uid++;
3323 PATTERN (insn) = pattern;
3324 INSN_CODE (insn) = -1;
3325 LOG_LINKS (insn) = NULL;
3326 REG_NOTES (insn) = NULL;
3327 INSN_LOCATOR (insn) = 0;
3328 BLOCK_FOR_INSN (insn) = NULL;
3330 #ifdef ENABLE_RTL_CHECKING
3331 if (insn
3332 && INSN_P (insn)
3333 && (returnjump_p (insn)
3334 || (GET_CODE (insn) == SET
3335 && SET_DEST (insn) == pc_rtx)))
3337 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3338 debug_rtx (insn);
3340 #endif
3342 return insn;
3345 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3347 static rtx
3348 make_jump_insn_raw (rtx pattern)
3350 rtx insn;
3352 insn = rtx_alloc (JUMP_INSN);
3353 INSN_UID (insn) = cur_insn_uid++;
3355 PATTERN (insn) = pattern;
3356 INSN_CODE (insn) = -1;
3357 LOG_LINKS (insn) = NULL;
3358 REG_NOTES (insn) = NULL;
3359 JUMP_LABEL (insn) = NULL;
3360 INSN_LOCATOR (insn) = 0;
3361 BLOCK_FOR_INSN (insn) = NULL;
3363 return insn;
3366 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3368 static rtx
3369 make_call_insn_raw (rtx pattern)
3371 rtx insn;
3373 insn = rtx_alloc (CALL_INSN);
3374 INSN_UID (insn) = cur_insn_uid++;
3376 PATTERN (insn) = pattern;
3377 INSN_CODE (insn) = -1;
3378 LOG_LINKS (insn) = NULL;
3379 REG_NOTES (insn) = NULL;
3380 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3381 INSN_LOCATOR (insn) = 0;
3382 BLOCK_FOR_INSN (insn) = NULL;
3384 return insn;
3387 /* Add INSN to the end of the doubly-linked list.
3388 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3390 void
3391 add_insn (rtx insn)
3393 PREV_INSN (insn) = last_insn;
3394 NEXT_INSN (insn) = 0;
3396 if (NULL != last_insn)
3397 NEXT_INSN (last_insn) = insn;
3399 if (NULL == first_insn)
3400 first_insn = insn;
3402 last_insn = insn;
3405 /* Add INSN into the doubly-linked list after insn AFTER. This and
3406 the next should be the only functions called to insert an insn once
3407 delay slots have been filled since only they know how to update a
3408 SEQUENCE. */
3410 void
3411 add_insn_after (rtx insn, rtx after)
3413 rtx next = NEXT_INSN (after);
3414 basic_block bb;
3416 gcc_assert (!optimize || !INSN_DELETED_P (after));
3418 NEXT_INSN (insn) = next;
3419 PREV_INSN (insn) = after;
3421 if (next)
3423 PREV_INSN (next) = insn;
3424 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3425 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3427 else if (last_insn == after)
3428 last_insn = insn;
3429 else
3431 struct sequence_stack *stack = seq_stack;
3432 /* Scan all pending sequences too. */
3433 for (; stack; stack = stack->next)
3434 if (after == stack->last)
3436 stack->last = insn;
3437 break;
3440 gcc_assert (stack);
3443 if (!BARRIER_P (after)
3444 && !BARRIER_P (insn)
3445 && (bb = BLOCK_FOR_INSN (after)))
3447 set_block_for_insn (insn, bb);
3448 if (INSN_P (insn))
3449 bb->flags |= BB_DIRTY;
3450 /* Should not happen as first in the BB is always
3451 either NOTE or LABEL. */
3452 if (BB_END (bb) == after
3453 /* Avoid clobbering of structure when creating new BB. */
3454 && !BARRIER_P (insn)
3455 && (!NOTE_P (insn)
3456 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3457 BB_END (bb) = insn;
3460 NEXT_INSN (after) = insn;
3461 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3463 rtx sequence = PATTERN (after);
3464 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3468 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3469 the previous should be the only functions called to insert an insn once
3470 delay slots have been filled since only they know how to update a
3471 SEQUENCE. */
3473 void
3474 add_insn_before (rtx insn, rtx before)
3476 rtx prev = PREV_INSN (before);
3477 basic_block bb;
3479 gcc_assert (!optimize || !INSN_DELETED_P (before));
3481 PREV_INSN (insn) = prev;
3482 NEXT_INSN (insn) = before;
3484 if (prev)
3486 NEXT_INSN (prev) = insn;
3487 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3489 rtx sequence = PATTERN (prev);
3490 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3493 else if (first_insn == before)
3494 first_insn = insn;
3495 else
3497 struct sequence_stack *stack = seq_stack;
3498 /* Scan all pending sequences too. */
3499 for (; stack; stack = stack->next)
3500 if (before == stack->first)
3502 stack->first = insn;
3503 break;
3506 gcc_assert (stack);
3509 if (!BARRIER_P (before)
3510 && !BARRIER_P (insn)
3511 && (bb = BLOCK_FOR_INSN (before)))
3513 set_block_for_insn (insn, bb);
3514 if (INSN_P (insn))
3515 bb->flags |= BB_DIRTY;
3516 /* Should not happen as first in the BB is always either NOTE or
3517 LABEL. */
3518 gcc_assert (BB_HEAD (bb) != insn
3519 /* Avoid clobbering of structure when creating new BB. */
3520 || BARRIER_P (insn)
3521 || (NOTE_P (insn)
3522 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3525 PREV_INSN (before) = insn;
3526 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3527 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3530 /* Remove an insn from its doubly-linked list. This function knows how
3531 to handle sequences. */
3532 void
3533 remove_insn (rtx insn)
3535 rtx next = NEXT_INSN (insn);
3536 rtx prev = PREV_INSN (insn);
3537 basic_block bb;
3539 if (prev)
3541 NEXT_INSN (prev) = next;
3542 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3544 rtx sequence = PATTERN (prev);
3545 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3548 else if (first_insn == insn)
3549 first_insn = next;
3550 else
3552 struct sequence_stack *stack = seq_stack;
3553 /* Scan all pending sequences too. */
3554 for (; stack; stack = stack->next)
3555 if (insn == stack->first)
3557 stack->first = next;
3558 break;
3561 gcc_assert (stack);
3564 if (next)
3566 PREV_INSN (next) = prev;
3567 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3568 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3570 else if (last_insn == insn)
3571 last_insn = prev;
3572 else
3574 struct sequence_stack *stack = seq_stack;
3575 /* Scan all pending sequences too. */
3576 for (; stack; stack = stack->next)
3577 if (insn == stack->last)
3579 stack->last = prev;
3580 break;
3583 gcc_assert (stack);
3585 if (!BARRIER_P (insn)
3586 && (bb = BLOCK_FOR_INSN (insn)))
3588 if (INSN_P (insn))
3589 bb->flags |= BB_DIRTY;
3590 if (BB_HEAD (bb) == insn)
3592 /* Never ever delete the basic block note without deleting whole
3593 basic block. */
3594 gcc_assert (!NOTE_P (insn));
3595 BB_HEAD (bb) = next;
3597 if (BB_END (bb) == insn)
3598 BB_END (bb) = prev;
3602 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3604 void
3605 add_function_usage_to (rtx call_insn, rtx call_fusage)
3607 gcc_assert (call_insn && CALL_P (call_insn));
3609 /* Put the register usage information on the CALL. If there is already
3610 some usage information, put ours at the end. */
3611 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3613 rtx link;
3615 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3616 link = XEXP (link, 1))
3619 XEXP (link, 1) = call_fusage;
3621 else
3622 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3625 /* Delete all insns made since FROM.
3626 FROM becomes the new last instruction. */
3628 void
3629 delete_insns_since (rtx from)
3631 if (from == 0)
3632 first_insn = 0;
3633 else
3634 NEXT_INSN (from) = 0;
3635 last_insn = from;
3638 /* This function is deprecated, please use sequences instead.
3640 Move a consecutive bunch of insns to a different place in the chain.
3641 The insns to be moved are those between FROM and TO.
3642 They are moved to a new position after the insn AFTER.
3643 AFTER must not be FROM or TO or any insn in between.
3645 This function does not know about SEQUENCEs and hence should not be
3646 called after delay-slot filling has been done. */
3648 void
3649 reorder_insns_nobb (rtx from, rtx to, rtx after)
3651 /* Splice this bunch out of where it is now. */
3652 if (PREV_INSN (from))
3653 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3654 if (NEXT_INSN (to))
3655 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3656 if (last_insn == to)
3657 last_insn = PREV_INSN (from);
3658 if (first_insn == from)
3659 first_insn = NEXT_INSN (to);
3661 /* Make the new neighbors point to it and it to them. */
3662 if (NEXT_INSN (after))
3663 PREV_INSN (NEXT_INSN (after)) = to;
3665 NEXT_INSN (to) = NEXT_INSN (after);
3666 PREV_INSN (from) = after;
3667 NEXT_INSN (after) = from;
3668 if (after == last_insn)
3669 last_insn = to;
3672 /* Same as function above, but take care to update BB boundaries. */
3673 void
3674 reorder_insns (rtx from, rtx to, rtx after)
3676 rtx prev = PREV_INSN (from);
3677 basic_block bb, bb2;
3679 reorder_insns_nobb (from, to, after);
3681 if (!BARRIER_P (after)
3682 && (bb = BLOCK_FOR_INSN (after)))
3684 rtx x;
3685 bb->flags |= BB_DIRTY;
3687 if (!BARRIER_P (from)
3688 && (bb2 = BLOCK_FOR_INSN (from)))
3690 if (BB_END (bb2) == to)
3691 BB_END (bb2) = prev;
3692 bb2->flags |= BB_DIRTY;
3695 if (BB_END (bb) == after)
3696 BB_END (bb) = to;
3698 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3699 if (!BARRIER_P (x))
3700 set_block_for_insn (x, bb);
3704 /* Return the line note insn preceding INSN. */
3706 static rtx
3707 find_line_note (rtx insn)
3709 if (no_line_numbers)
3710 return 0;
3712 for (; insn; insn = PREV_INSN (insn))
3713 if (NOTE_P (insn)
3714 && NOTE_LINE_NUMBER (insn) >= 0)
3715 break;
3717 return insn;
3720 /* Remove unnecessary notes from the instruction stream. */
3722 void
3723 remove_unnecessary_notes (void)
3725 rtx eh_stack = NULL_RTX;
3726 rtx insn;
3727 rtx next;
3728 rtx tmp;
3730 /* We must not remove the first instruction in the function because
3731 the compiler depends on the first instruction being a note. */
3732 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3734 /* Remember what's next. */
3735 next = NEXT_INSN (insn);
3737 /* We're only interested in notes. */
3738 if (!NOTE_P (insn))
3739 continue;
3741 switch (NOTE_LINE_NUMBER (insn))
3743 case NOTE_INSN_DELETED:
3744 remove_insn (insn);
3745 break;
3747 case NOTE_INSN_EH_REGION_BEG:
3748 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3749 break;
3751 case NOTE_INSN_EH_REGION_END:
3752 /* Too many end notes. */
3753 gcc_assert (eh_stack);
3754 /* Mismatched nesting. */
3755 gcc_assert (NOTE_EH_HANDLER (XEXP (eh_stack, 0))
3756 == NOTE_EH_HANDLER (insn));
3757 tmp = eh_stack;
3758 eh_stack = XEXP (eh_stack, 1);
3759 free_INSN_LIST_node (tmp);
3760 break;
3762 case NOTE_INSN_BLOCK_BEG:
3763 case NOTE_INSN_BLOCK_END:
3764 /* BLOCK_END and BLOCK_BEG notes only exist in the `final' pass. */
3765 gcc_unreachable ();
3767 default:
3768 break;
3772 /* Too many EH_REGION_BEG notes. */
3773 gcc_assert (!eh_stack);
3776 struct tree_opt_pass pass_remove_unnecessary_notes =
3778 "eunotes", /* name */
3779 NULL, /* gate */
3780 remove_unnecessary_notes, /* execute */
3781 NULL, /* sub */
3782 NULL, /* next */
3783 0, /* static_pass_number */
3784 0, /* tv_id */
3785 0, /* properties_required */
3786 0, /* properties_provided */
3787 0, /* properties_destroyed */
3788 0, /* todo_flags_start */
3789 TODO_dump_func, /* todo_flags_finish */
3790 0 /* letter */
3794 /* Emit insn(s) of given code and pattern
3795 at a specified place within the doubly-linked list.
3797 All of the emit_foo global entry points accept an object
3798 X which is either an insn list or a PATTERN of a single
3799 instruction.
3801 There are thus a few canonical ways to generate code and
3802 emit it at a specific place in the instruction stream. For
3803 example, consider the instruction named SPOT and the fact that
3804 we would like to emit some instructions before SPOT. We might
3805 do it like this:
3807 start_sequence ();
3808 ... emit the new instructions ...
3809 insns_head = get_insns ();
3810 end_sequence ();
3812 emit_insn_before (insns_head, SPOT);
3814 It used to be common to generate SEQUENCE rtl instead, but that
3815 is a relic of the past which no longer occurs. The reason is that
3816 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3817 generated would almost certainly die right after it was created. */
3819 /* Make X be output before the instruction BEFORE. */
3822 emit_insn_before_noloc (rtx x, rtx before)
3824 rtx last = before;
3825 rtx insn;
3827 gcc_assert (before);
3829 if (x == NULL_RTX)
3830 return last;
3832 switch (GET_CODE (x))
3834 case INSN:
3835 case JUMP_INSN:
3836 case CALL_INSN:
3837 case CODE_LABEL:
3838 case BARRIER:
3839 case NOTE:
3840 insn = x;
3841 while (insn)
3843 rtx next = NEXT_INSN (insn);
3844 add_insn_before (insn, before);
3845 last = insn;
3846 insn = next;
3848 break;
3850 #ifdef ENABLE_RTL_CHECKING
3851 case SEQUENCE:
3852 gcc_unreachable ();
3853 break;
3854 #endif
3856 default:
3857 last = make_insn_raw (x);
3858 add_insn_before (last, before);
3859 break;
3862 return last;
3865 /* Make an instruction with body X and code JUMP_INSN
3866 and output it before the instruction BEFORE. */
3869 emit_jump_insn_before_noloc (rtx x, rtx before)
3871 rtx insn, last = NULL_RTX;
3873 gcc_assert (before);
3875 switch (GET_CODE (x))
3877 case INSN:
3878 case JUMP_INSN:
3879 case CALL_INSN:
3880 case CODE_LABEL:
3881 case BARRIER:
3882 case NOTE:
3883 insn = x;
3884 while (insn)
3886 rtx next = NEXT_INSN (insn);
3887 add_insn_before (insn, before);
3888 last = insn;
3889 insn = next;
3891 break;
3893 #ifdef ENABLE_RTL_CHECKING
3894 case SEQUENCE:
3895 gcc_unreachable ();
3896 break;
3897 #endif
3899 default:
3900 last = make_jump_insn_raw (x);
3901 add_insn_before (last, before);
3902 break;
3905 return last;
3908 /* Make an instruction with body X and code CALL_INSN
3909 and output it before the instruction BEFORE. */
3912 emit_call_insn_before_noloc (rtx x, rtx before)
3914 rtx last = NULL_RTX, insn;
3916 gcc_assert (before);
3918 switch (GET_CODE (x))
3920 case INSN:
3921 case JUMP_INSN:
3922 case CALL_INSN:
3923 case CODE_LABEL:
3924 case BARRIER:
3925 case NOTE:
3926 insn = x;
3927 while (insn)
3929 rtx next = NEXT_INSN (insn);
3930 add_insn_before (insn, before);
3931 last = insn;
3932 insn = next;
3934 break;
3936 #ifdef ENABLE_RTL_CHECKING
3937 case SEQUENCE:
3938 gcc_unreachable ();
3939 break;
3940 #endif
3942 default:
3943 last = make_call_insn_raw (x);
3944 add_insn_before (last, before);
3945 break;
3948 return last;
3951 /* Make an insn of code BARRIER
3952 and output it before the insn BEFORE. */
3955 emit_barrier_before (rtx before)
3957 rtx insn = rtx_alloc (BARRIER);
3959 INSN_UID (insn) = cur_insn_uid++;
3961 add_insn_before (insn, before);
3962 return insn;
3965 /* Emit the label LABEL before the insn BEFORE. */
3968 emit_label_before (rtx label, rtx before)
3970 /* This can be called twice for the same label as a result of the
3971 confusion that follows a syntax error! So make it harmless. */
3972 if (INSN_UID (label) == 0)
3974 INSN_UID (label) = cur_insn_uid++;
3975 add_insn_before (label, before);
3978 return label;
3981 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3984 emit_note_before (int subtype, rtx before)
3986 rtx note = rtx_alloc (NOTE);
3987 INSN_UID (note) = cur_insn_uid++;
3988 #ifndef USE_MAPPED_LOCATION
3989 NOTE_SOURCE_FILE (note) = 0;
3990 #endif
3991 NOTE_LINE_NUMBER (note) = subtype;
3992 BLOCK_FOR_INSN (note) = NULL;
3994 add_insn_before (note, before);
3995 return note;
3998 /* Helper for emit_insn_after, handles lists of instructions
3999 efficiently. */
4001 static rtx emit_insn_after_1 (rtx, rtx);
4003 static rtx
4004 emit_insn_after_1 (rtx first, rtx after)
4006 rtx last;
4007 rtx after_after;
4008 basic_block bb;
4010 if (!BARRIER_P (after)
4011 && (bb = BLOCK_FOR_INSN (after)))
4013 bb->flags |= BB_DIRTY;
4014 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4015 if (!BARRIER_P (last))
4016 set_block_for_insn (last, bb);
4017 if (!BARRIER_P (last))
4018 set_block_for_insn (last, bb);
4019 if (BB_END (bb) == after)
4020 BB_END (bb) = last;
4022 else
4023 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4024 continue;
4026 after_after = NEXT_INSN (after);
4028 NEXT_INSN (after) = first;
4029 PREV_INSN (first) = after;
4030 NEXT_INSN (last) = after_after;
4031 if (after_after)
4032 PREV_INSN (after_after) = last;
4034 if (after == last_insn)
4035 last_insn = last;
4036 return last;
4039 /* Make X be output after the insn AFTER. */
4042 emit_insn_after_noloc (rtx x, rtx after)
4044 rtx last = after;
4046 gcc_assert (after);
4048 if (x == NULL_RTX)
4049 return last;
4051 switch (GET_CODE (x))
4053 case INSN:
4054 case JUMP_INSN:
4055 case CALL_INSN:
4056 case CODE_LABEL:
4057 case BARRIER:
4058 case NOTE:
4059 last = emit_insn_after_1 (x, after);
4060 break;
4062 #ifdef ENABLE_RTL_CHECKING
4063 case SEQUENCE:
4064 gcc_unreachable ();
4065 break;
4066 #endif
4068 default:
4069 last = make_insn_raw (x);
4070 add_insn_after (last, after);
4071 break;
4074 return last;
4077 /* Similar to emit_insn_after, except that line notes are to be inserted so
4078 as to act as if this insn were at FROM. */
4080 void
4081 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4083 rtx from_line = find_line_note (from);
4084 rtx after_line = find_line_note (after);
4085 rtx insn = emit_insn_after (x, after);
4087 if (from_line)
4088 emit_note_copy_after (from_line, after);
4090 if (after_line)
4091 emit_note_copy_after (after_line, insn);
4094 /* Make an insn of code JUMP_INSN with body X
4095 and output it after the insn AFTER. */
4098 emit_jump_insn_after_noloc (rtx x, rtx after)
4100 rtx last;
4102 gcc_assert (after);
4104 switch (GET_CODE (x))
4106 case INSN:
4107 case JUMP_INSN:
4108 case CALL_INSN:
4109 case CODE_LABEL:
4110 case BARRIER:
4111 case NOTE:
4112 last = emit_insn_after_1 (x, after);
4113 break;
4115 #ifdef ENABLE_RTL_CHECKING
4116 case SEQUENCE:
4117 gcc_unreachable ();
4118 break;
4119 #endif
4121 default:
4122 last = make_jump_insn_raw (x);
4123 add_insn_after (last, after);
4124 break;
4127 return last;
4130 /* Make an instruction with body X and code CALL_INSN
4131 and output it after the instruction AFTER. */
4134 emit_call_insn_after_noloc (rtx x, rtx after)
4136 rtx last;
4138 gcc_assert (after);
4140 switch (GET_CODE (x))
4142 case INSN:
4143 case JUMP_INSN:
4144 case CALL_INSN:
4145 case CODE_LABEL:
4146 case BARRIER:
4147 case NOTE:
4148 last = emit_insn_after_1 (x, after);
4149 break;
4151 #ifdef ENABLE_RTL_CHECKING
4152 case SEQUENCE:
4153 gcc_unreachable ();
4154 break;
4155 #endif
4157 default:
4158 last = make_call_insn_raw (x);
4159 add_insn_after (last, after);
4160 break;
4163 return last;
4166 /* Make an insn of code BARRIER
4167 and output it after the insn AFTER. */
4170 emit_barrier_after (rtx after)
4172 rtx insn = rtx_alloc (BARRIER);
4174 INSN_UID (insn) = cur_insn_uid++;
4176 add_insn_after (insn, after);
4177 return insn;
4180 /* Emit the label LABEL after the insn AFTER. */
4183 emit_label_after (rtx label, rtx after)
4185 /* This can be called twice for the same label
4186 as a result of the confusion that follows a syntax error!
4187 So make it harmless. */
4188 if (INSN_UID (label) == 0)
4190 INSN_UID (label) = cur_insn_uid++;
4191 add_insn_after (label, after);
4194 return label;
4197 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4200 emit_note_after (int subtype, rtx after)
4202 rtx note = rtx_alloc (NOTE);
4203 INSN_UID (note) = cur_insn_uid++;
4204 #ifndef USE_MAPPED_LOCATION
4205 NOTE_SOURCE_FILE (note) = 0;
4206 #endif
4207 NOTE_LINE_NUMBER (note) = subtype;
4208 BLOCK_FOR_INSN (note) = NULL;
4209 add_insn_after (note, after);
4210 return note;
4213 /* Emit a copy of note ORIG after the insn AFTER. */
4216 emit_note_copy_after (rtx orig, rtx after)
4218 rtx note;
4220 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4222 cur_insn_uid++;
4223 return 0;
4226 note = rtx_alloc (NOTE);
4227 INSN_UID (note) = cur_insn_uid++;
4228 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4229 NOTE_DATA (note) = NOTE_DATA (orig);
4230 BLOCK_FOR_INSN (note) = NULL;
4231 add_insn_after (note, after);
4232 return note;
4235 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4237 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4239 rtx last = emit_insn_after_noloc (pattern, after);
4241 if (pattern == NULL_RTX || !loc)
4242 return last;
4244 after = NEXT_INSN (after);
4245 while (1)
4247 if (active_insn_p (after) && !INSN_LOCATOR (after))
4248 INSN_LOCATOR (after) = loc;
4249 if (after == last)
4250 break;
4251 after = NEXT_INSN (after);
4253 return last;
4256 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4258 emit_insn_after (rtx pattern, rtx after)
4260 if (INSN_P (after))
4261 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4262 else
4263 return emit_insn_after_noloc (pattern, after);
4266 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4268 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4270 rtx last = emit_jump_insn_after_noloc (pattern, after);
4272 if (pattern == NULL_RTX || !loc)
4273 return last;
4275 after = NEXT_INSN (after);
4276 while (1)
4278 if (active_insn_p (after) && !INSN_LOCATOR (after))
4279 INSN_LOCATOR (after) = loc;
4280 if (after == last)
4281 break;
4282 after = NEXT_INSN (after);
4284 return last;
4287 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4289 emit_jump_insn_after (rtx pattern, rtx after)
4291 if (INSN_P (after))
4292 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4293 else
4294 return emit_jump_insn_after_noloc (pattern, after);
4297 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4299 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4301 rtx last = emit_call_insn_after_noloc (pattern, after);
4303 if (pattern == NULL_RTX || !loc)
4304 return last;
4306 after = NEXT_INSN (after);
4307 while (1)
4309 if (active_insn_p (after) && !INSN_LOCATOR (after))
4310 INSN_LOCATOR (after) = loc;
4311 if (after == last)
4312 break;
4313 after = NEXT_INSN (after);
4315 return last;
4318 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4320 emit_call_insn_after (rtx pattern, rtx after)
4322 if (INSN_P (after))
4323 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4324 else
4325 return emit_call_insn_after_noloc (pattern, after);
4328 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4330 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4332 rtx first = PREV_INSN (before);
4333 rtx last = emit_insn_before_noloc (pattern, before);
4335 if (pattern == NULL_RTX || !loc)
4336 return last;
4338 first = NEXT_INSN (first);
4339 while (1)
4341 if (active_insn_p (first) && !INSN_LOCATOR (first))
4342 INSN_LOCATOR (first) = loc;
4343 if (first == last)
4344 break;
4345 first = NEXT_INSN (first);
4347 return last;
4350 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4352 emit_insn_before (rtx pattern, rtx before)
4354 if (INSN_P (before))
4355 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4356 else
4357 return emit_insn_before_noloc (pattern, before);
4360 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4362 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4364 rtx first = PREV_INSN (before);
4365 rtx last = emit_jump_insn_before_noloc (pattern, before);
4367 if (pattern == NULL_RTX)
4368 return last;
4370 first = NEXT_INSN (first);
4371 while (1)
4373 if (active_insn_p (first) && !INSN_LOCATOR (first))
4374 INSN_LOCATOR (first) = loc;
4375 if (first == last)
4376 break;
4377 first = NEXT_INSN (first);
4379 return last;
4382 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4384 emit_jump_insn_before (rtx pattern, rtx before)
4386 if (INSN_P (before))
4387 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4388 else
4389 return emit_jump_insn_before_noloc (pattern, before);
4392 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4394 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4396 rtx first = PREV_INSN (before);
4397 rtx last = emit_call_insn_before_noloc (pattern, before);
4399 if (pattern == NULL_RTX)
4400 return last;
4402 first = NEXT_INSN (first);
4403 while (1)
4405 if (active_insn_p (first) && !INSN_LOCATOR (first))
4406 INSN_LOCATOR (first) = loc;
4407 if (first == last)
4408 break;
4409 first = NEXT_INSN (first);
4411 return last;
4414 /* like emit_call_insn_before_noloc,
4415 but set insn_locator according to before. */
4417 emit_call_insn_before (rtx pattern, rtx before)
4419 if (INSN_P (before))
4420 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4421 else
4422 return emit_call_insn_before_noloc (pattern, before);
4425 /* Take X and emit it at the end of the doubly-linked
4426 INSN list.
4428 Returns the last insn emitted. */
4431 emit_insn (rtx x)
4433 rtx last = last_insn;
4434 rtx insn;
4436 if (x == NULL_RTX)
4437 return last;
4439 switch (GET_CODE (x))
4441 case INSN:
4442 case JUMP_INSN:
4443 case CALL_INSN:
4444 case CODE_LABEL:
4445 case BARRIER:
4446 case NOTE:
4447 insn = x;
4448 while (insn)
4450 rtx next = NEXT_INSN (insn);
4451 add_insn (insn);
4452 last = insn;
4453 insn = next;
4455 break;
4457 #ifdef ENABLE_RTL_CHECKING
4458 case SEQUENCE:
4459 gcc_unreachable ();
4460 break;
4461 #endif
4463 default:
4464 last = make_insn_raw (x);
4465 add_insn (last);
4466 break;
4469 return last;
4472 /* Make an insn of code JUMP_INSN with pattern X
4473 and add it to the end of the doubly-linked list. */
4476 emit_jump_insn (rtx x)
4478 rtx last = NULL_RTX, insn;
4480 switch (GET_CODE (x))
4482 case INSN:
4483 case JUMP_INSN:
4484 case CALL_INSN:
4485 case CODE_LABEL:
4486 case BARRIER:
4487 case NOTE:
4488 insn = x;
4489 while (insn)
4491 rtx next = NEXT_INSN (insn);
4492 add_insn (insn);
4493 last = insn;
4494 insn = next;
4496 break;
4498 #ifdef ENABLE_RTL_CHECKING
4499 case SEQUENCE:
4500 gcc_unreachable ();
4501 break;
4502 #endif
4504 default:
4505 last = make_jump_insn_raw (x);
4506 add_insn (last);
4507 break;
4510 return last;
4513 /* Make an insn of code CALL_INSN with pattern X
4514 and add it to the end of the doubly-linked list. */
4517 emit_call_insn (rtx x)
4519 rtx insn;
4521 switch (GET_CODE (x))
4523 case INSN:
4524 case JUMP_INSN:
4525 case CALL_INSN:
4526 case CODE_LABEL:
4527 case BARRIER:
4528 case NOTE:
4529 insn = emit_insn (x);
4530 break;
4532 #ifdef ENABLE_RTL_CHECKING
4533 case SEQUENCE:
4534 gcc_unreachable ();
4535 break;
4536 #endif
4538 default:
4539 insn = make_call_insn_raw (x);
4540 add_insn (insn);
4541 break;
4544 return insn;
4547 /* Add the label LABEL to the end of the doubly-linked list. */
4550 emit_label (rtx label)
4552 /* This can be called twice for the same label
4553 as a result of the confusion that follows a syntax error!
4554 So make it harmless. */
4555 if (INSN_UID (label) == 0)
4557 INSN_UID (label) = cur_insn_uid++;
4558 add_insn (label);
4560 return label;
4563 /* Make an insn of code BARRIER
4564 and add it to the end of the doubly-linked list. */
4567 emit_barrier (void)
4569 rtx barrier = rtx_alloc (BARRIER);
4570 INSN_UID (barrier) = cur_insn_uid++;
4571 add_insn (barrier);
4572 return barrier;
4575 /* Make line numbering NOTE insn for LOCATION add it to the end
4576 of the doubly-linked list, but only if line-numbers are desired for
4577 debugging info and it doesn't match the previous one. */
4580 emit_line_note (location_t location)
4582 rtx note;
4584 #ifdef USE_MAPPED_LOCATION
4585 if (location == last_location)
4586 return NULL_RTX;
4587 #else
4588 if (location.file && last_location.file
4589 && !strcmp (location.file, last_location.file)
4590 && location.line == last_location.line)
4591 return NULL_RTX;
4592 #endif
4593 last_location = location;
4595 if (no_line_numbers)
4597 cur_insn_uid++;
4598 return NULL_RTX;
4601 #ifdef USE_MAPPED_LOCATION
4602 note = emit_note ((int) location);
4603 #else
4604 note = emit_note (location.line);
4605 NOTE_SOURCE_FILE (note) = location.file;
4606 #endif
4608 return note;
4611 /* Emit a copy of note ORIG. */
4614 emit_note_copy (rtx orig)
4616 rtx note;
4618 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4620 cur_insn_uid++;
4621 return NULL_RTX;
4624 note = rtx_alloc (NOTE);
4626 INSN_UID (note) = cur_insn_uid++;
4627 NOTE_DATA (note) = NOTE_DATA (orig);
4628 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4629 BLOCK_FOR_INSN (note) = NULL;
4630 add_insn (note);
4632 return note;
4635 /* Make an insn of code NOTE or type NOTE_NO
4636 and add it to the end of the doubly-linked list. */
4639 emit_note (int note_no)
4641 rtx note;
4643 note = rtx_alloc (NOTE);
4644 INSN_UID (note) = cur_insn_uid++;
4645 NOTE_LINE_NUMBER (note) = note_no;
4646 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4647 BLOCK_FOR_INSN (note) = NULL;
4648 add_insn (note);
4649 return note;
4652 /* Cause next statement to emit a line note even if the line number
4653 has not changed. */
4655 void
4656 force_next_line_note (void)
4658 #ifdef USE_MAPPED_LOCATION
4659 last_location = -1;
4660 #else
4661 last_location.line = -1;
4662 #endif
4665 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4666 note of this type already exists, remove it first. */
4669 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4671 rtx note = find_reg_note (insn, kind, NULL_RTX);
4673 switch (kind)
4675 case REG_EQUAL:
4676 case REG_EQUIV:
4677 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4678 has multiple sets (some callers assume single_set
4679 means the insn only has one set, when in fact it
4680 means the insn only has one * useful * set). */
4681 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4683 gcc_assert (!note);
4684 return NULL_RTX;
4687 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4688 It serves no useful purpose and breaks eliminate_regs. */
4689 if (GET_CODE (datum) == ASM_OPERANDS)
4690 return NULL_RTX;
4691 break;
4693 default:
4694 break;
4697 if (note)
4699 XEXP (note, 0) = datum;
4700 return note;
4703 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4704 return REG_NOTES (insn);
4707 /* Return an indication of which type of insn should have X as a body.
4708 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4710 static enum rtx_code
4711 classify_insn (rtx x)
4713 if (LABEL_P (x))
4714 return CODE_LABEL;
4715 if (GET_CODE (x) == CALL)
4716 return CALL_INSN;
4717 if (GET_CODE (x) == RETURN)
4718 return JUMP_INSN;
4719 if (GET_CODE (x) == SET)
4721 if (SET_DEST (x) == pc_rtx)
4722 return JUMP_INSN;
4723 else if (GET_CODE (SET_SRC (x)) == CALL)
4724 return CALL_INSN;
4725 else
4726 return INSN;
4728 if (GET_CODE (x) == PARALLEL)
4730 int j;
4731 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4732 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4733 return CALL_INSN;
4734 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4735 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4736 return JUMP_INSN;
4737 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4738 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4739 return CALL_INSN;
4741 return INSN;
4744 /* Emit the rtl pattern X as an appropriate kind of insn.
4745 If X is a label, it is simply added into the insn chain. */
4748 emit (rtx x)
4750 enum rtx_code code = classify_insn (x);
4752 switch (code)
4754 case CODE_LABEL:
4755 return emit_label (x);
4756 case INSN:
4757 return emit_insn (x);
4758 case JUMP_INSN:
4760 rtx insn = emit_jump_insn (x);
4761 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4762 return emit_barrier ();
4763 return insn;
4765 case CALL_INSN:
4766 return emit_call_insn (x);
4767 default:
4768 gcc_unreachable ();
4772 /* Space for free sequence stack entries. */
4773 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4775 /* Begin emitting insns to a sequence. If this sequence will contain
4776 something that might cause the compiler to pop arguments to function
4777 calls (because those pops have previously been deferred; see
4778 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4779 before calling this function. That will ensure that the deferred
4780 pops are not accidentally emitted in the middle of this sequence. */
4782 void
4783 start_sequence (void)
4785 struct sequence_stack *tem;
4787 if (free_sequence_stack != NULL)
4789 tem = free_sequence_stack;
4790 free_sequence_stack = tem->next;
4792 else
4793 tem = ggc_alloc (sizeof (struct sequence_stack));
4795 tem->next = seq_stack;
4796 tem->first = first_insn;
4797 tem->last = last_insn;
4799 seq_stack = tem;
4801 first_insn = 0;
4802 last_insn = 0;
4805 /* Set up the insn chain starting with FIRST as the current sequence,
4806 saving the previously current one. See the documentation for
4807 start_sequence for more information about how to use this function. */
4809 void
4810 push_to_sequence (rtx first)
4812 rtx last;
4814 start_sequence ();
4816 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4818 first_insn = first;
4819 last_insn = last;
4822 /* Set up the outer-level insn chain
4823 as the current sequence, saving the previously current one. */
4825 void
4826 push_topmost_sequence (void)
4828 struct sequence_stack *stack, *top = NULL;
4830 start_sequence ();
4832 for (stack = seq_stack; stack; stack = stack->next)
4833 top = stack;
4835 first_insn = top->first;
4836 last_insn = top->last;
4839 /* After emitting to the outer-level insn chain, update the outer-level
4840 insn chain, and restore the previous saved state. */
4842 void
4843 pop_topmost_sequence (void)
4845 struct sequence_stack *stack, *top = NULL;
4847 for (stack = seq_stack; stack; stack = stack->next)
4848 top = stack;
4850 top->first = first_insn;
4851 top->last = last_insn;
4853 end_sequence ();
4856 /* After emitting to a sequence, restore previous saved state.
4858 To get the contents of the sequence just made, you must call
4859 `get_insns' *before* calling here.
4861 If the compiler might have deferred popping arguments while
4862 generating this sequence, and this sequence will not be immediately
4863 inserted into the instruction stream, use do_pending_stack_adjust
4864 before calling get_insns. That will ensure that the deferred
4865 pops are inserted into this sequence, and not into some random
4866 location in the instruction stream. See INHIBIT_DEFER_POP for more
4867 information about deferred popping of arguments. */
4869 void
4870 end_sequence (void)
4872 struct sequence_stack *tem = seq_stack;
4874 first_insn = tem->first;
4875 last_insn = tem->last;
4876 seq_stack = tem->next;
4878 memset (tem, 0, sizeof (*tem));
4879 tem->next = free_sequence_stack;
4880 free_sequence_stack = tem;
4883 /* Return 1 if currently emitting into a sequence. */
4886 in_sequence_p (void)
4888 return seq_stack != 0;
4891 /* Put the various virtual registers into REGNO_REG_RTX. */
4893 void
4894 init_virtual_regs (struct emit_status *es)
4896 rtx *ptr = es->x_regno_reg_rtx;
4897 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4898 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4899 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4900 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4901 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4905 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4906 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4907 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4908 static int copy_insn_n_scratches;
4910 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4911 copied an ASM_OPERANDS.
4912 In that case, it is the original input-operand vector. */
4913 static rtvec orig_asm_operands_vector;
4915 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4916 copied an ASM_OPERANDS.
4917 In that case, it is the copied input-operand vector. */
4918 static rtvec copy_asm_operands_vector;
4920 /* Likewise for the constraints vector. */
4921 static rtvec orig_asm_constraints_vector;
4922 static rtvec copy_asm_constraints_vector;
4924 /* Recursively create a new copy of an rtx for copy_insn.
4925 This function differs from copy_rtx in that it handles SCRATCHes and
4926 ASM_OPERANDs properly.
4927 Normally, this function is not used directly; use copy_insn as front end.
4928 However, you could first copy an insn pattern with copy_insn and then use
4929 this function afterwards to properly copy any REG_NOTEs containing
4930 SCRATCHes. */
4933 copy_insn_1 (rtx orig)
4935 rtx copy;
4936 int i, j;
4937 RTX_CODE code;
4938 const char *format_ptr;
4940 code = GET_CODE (orig);
4942 switch (code)
4944 case REG:
4945 case CONST_INT:
4946 case CONST_DOUBLE:
4947 case CONST_VECTOR:
4948 case SYMBOL_REF:
4949 case CODE_LABEL:
4950 case PC:
4951 case CC0:
4952 return orig;
4953 case CLOBBER:
4954 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4955 return orig;
4956 break;
4958 case SCRATCH:
4959 for (i = 0; i < copy_insn_n_scratches; i++)
4960 if (copy_insn_scratch_in[i] == orig)
4961 return copy_insn_scratch_out[i];
4962 break;
4964 case CONST:
4965 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4966 a LABEL_REF, it isn't sharable. */
4967 if (GET_CODE (XEXP (orig, 0)) == PLUS
4968 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4969 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4970 return orig;
4971 break;
4973 /* A MEM with a constant address is not sharable. The problem is that
4974 the constant address may need to be reloaded. If the mem is shared,
4975 then reloading one copy of this mem will cause all copies to appear
4976 to have been reloaded. */
4978 default:
4979 break;
4982 copy = rtx_alloc (code);
4984 /* Copy the various flags, and other information. We assume that
4985 all fields need copying, and then clear the fields that should
4986 not be copied. That is the sensible default behavior, and forces
4987 us to explicitly document why we are *not* copying a flag. */
4988 memcpy (copy, orig, RTX_HDR_SIZE);
4990 /* We do not copy the USED flag, which is used as a mark bit during
4991 walks over the RTL. */
4992 RTX_FLAG (copy, used) = 0;
4994 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4995 if (INSN_P (orig))
4997 RTX_FLAG (copy, jump) = 0;
4998 RTX_FLAG (copy, call) = 0;
4999 RTX_FLAG (copy, frame_related) = 0;
5002 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5004 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5006 copy->u.fld[i] = orig->u.fld[i];
5007 switch (*format_ptr++)
5009 case 'e':
5010 if (XEXP (orig, i) != NULL)
5011 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5012 break;
5014 case 'E':
5015 case 'V':
5016 if (XVEC (orig, i) == orig_asm_constraints_vector)
5017 XVEC (copy, i) = copy_asm_constraints_vector;
5018 else if (XVEC (orig, i) == orig_asm_operands_vector)
5019 XVEC (copy, i) = copy_asm_operands_vector;
5020 else if (XVEC (orig, i) != NULL)
5022 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5023 for (j = 0; j < XVECLEN (copy, i); j++)
5024 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5026 break;
5028 case 't':
5029 case 'w':
5030 case 'i':
5031 case 's':
5032 case 'S':
5033 case 'u':
5034 case '0':
5035 /* These are left unchanged. */
5036 break;
5038 default:
5039 gcc_unreachable ();
5043 if (code == SCRATCH)
5045 i = copy_insn_n_scratches++;
5046 gcc_assert (i < MAX_RECOG_OPERANDS);
5047 copy_insn_scratch_in[i] = orig;
5048 copy_insn_scratch_out[i] = copy;
5050 else if (code == ASM_OPERANDS)
5052 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5053 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5054 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5055 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5058 return copy;
5061 /* Create a new copy of an rtx.
5062 This function differs from copy_rtx in that it handles SCRATCHes and
5063 ASM_OPERANDs properly.
5064 INSN doesn't really have to be a full INSN; it could be just the
5065 pattern. */
5067 copy_insn (rtx insn)
5069 copy_insn_n_scratches = 0;
5070 orig_asm_operands_vector = 0;
5071 orig_asm_constraints_vector = 0;
5072 copy_asm_operands_vector = 0;
5073 copy_asm_constraints_vector = 0;
5074 return copy_insn_1 (insn);
5077 /* Initialize data structures and variables in this file
5078 before generating rtl for each function. */
5080 void
5081 init_emit (void)
5083 struct function *f = cfun;
5085 f->emit = ggc_alloc (sizeof (struct emit_status));
5086 first_insn = NULL;
5087 last_insn = NULL;
5088 cur_insn_uid = 1;
5089 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5090 last_location = UNKNOWN_LOCATION;
5091 first_label_num = label_num;
5092 seq_stack = NULL;
5094 /* Init the tables that describe all the pseudo regs. */
5096 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5098 f->emit->regno_pointer_align
5099 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5100 * sizeof (unsigned char));
5102 regno_reg_rtx
5103 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5105 /* Put copies of all the hard registers into regno_reg_rtx. */
5106 memcpy (regno_reg_rtx,
5107 static_regno_reg_rtx,
5108 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5110 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5111 init_virtual_regs (f->emit);
5113 /* Indicate that the virtual registers and stack locations are
5114 all pointers. */
5115 REG_POINTER (stack_pointer_rtx) = 1;
5116 REG_POINTER (frame_pointer_rtx) = 1;
5117 REG_POINTER (hard_frame_pointer_rtx) = 1;
5118 REG_POINTER (arg_pointer_rtx) = 1;
5120 REG_POINTER (virtual_incoming_args_rtx) = 1;
5121 REG_POINTER (virtual_stack_vars_rtx) = 1;
5122 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5123 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5124 REG_POINTER (virtual_cfa_rtx) = 1;
5126 #ifdef STACK_BOUNDARY
5127 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5128 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5129 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5130 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5132 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5133 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5134 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5135 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5136 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5137 #endif
5139 #ifdef INIT_EXPANDERS
5140 INIT_EXPANDERS;
5141 #endif
5144 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5146 static rtx
5147 gen_const_vector (enum machine_mode mode, int constant)
5149 rtx tem;
5150 rtvec v;
5151 int units, i;
5152 enum machine_mode inner;
5154 units = GET_MODE_NUNITS (mode);
5155 inner = GET_MODE_INNER (mode);
5157 v = rtvec_alloc (units);
5159 /* We need to call this function after we set the scalar const_tiny_rtx
5160 entries. */
5161 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5163 for (i = 0; i < units; ++i)
5164 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5166 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5167 return tem;
5170 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5171 all elements are zero, and the one vector when all elements are one. */
5173 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5175 enum machine_mode inner = GET_MODE_INNER (mode);
5176 int nunits = GET_MODE_NUNITS (mode);
5177 rtx x;
5178 int i;
5180 /* Check to see if all of the elements have the same value. */
5181 x = RTVEC_ELT (v, nunits - 1);
5182 for (i = nunits - 2; i >= 0; i--)
5183 if (RTVEC_ELT (v, i) != x)
5184 break;
5186 /* If the values are all the same, check to see if we can use one of the
5187 standard constant vectors. */
5188 if (i == -1)
5190 if (x == CONST0_RTX (inner))
5191 return CONST0_RTX (mode);
5192 else if (x == CONST1_RTX (inner))
5193 return CONST1_RTX (mode);
5196 return gen_rtx_raw_CONST_VECTOR (mode, v);
5199 /* Create some permanent unique rtl objects shared between all functions.
5200 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5202 void
5203 init_emit_once (int line_numbers)
5205 int i;
5206 enum machine_mode mode;
5207 enum machine_mode double_mode;
5209 /* We need reg_raw_mode, so initialize the modes now. */
5210 init_reg_modes_once ();
5212 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5213 tables. */
5214 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5215 const_int_htab_eq, NULL);
5217 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5218 const_double_htab_eq, NULL);
5220 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5221 mem_attrs_htab_eq, NULL);
5222 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5223 reg_attrs_htab_eq, NULL);
5225 no_line_numbers = ! line_numbers;
5227 /* Compute the word and byte modes. */
5229 byte_mode = VOIDmode;
5230 word_mode = VOIDmode;
5231 double_mode = VOIDmode;
5233 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5234 mode = GET_MODE_WIDER_MODE (mode))
5236 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5237 && byte_mode == VOIDmode)
5238 byte_mode = mode;
5240 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5241 && word_mode == VOIDmode)
5242 word_mode = mode;
5245 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5246 mode = GET_MODE_WIDER_MODE (mode))
5248 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5249 && double_mode == VOIDmode)
5250 double_mode = mode;
5253 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5255 /* Assign register numbers to the globally defined register rtx.
5256 This must be done at runtime because the register number field
5257 is in a union and some compilers can't initialize unions. */
5259 pc_rtx = gen_rtx_PC (VOIDmode);
5260 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5261 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5262 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5263 if (hard_frame_pointer_rtx == 0)
5264 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5265 HARD_FRAME_POINTER_REGNUM);
5266 if (arg_pointer_rtx == 0)
5267 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5268 virtual_incoming_args_rtx =
5269 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5270 virtual_stack_vars_rtx =
5271 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5272 virtual_stack_dynamic_rtx =
5273 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5274 virtual_outgoing_args_rtx =
5275 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5276 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5278 /* Initialize RTL for commonly used hard registers. These are
5279 copied into regno_reg_rtx as we begin to compile each function. */
5280 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5281 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5283 #ifdef INIT_EXPANDERS
5284 /* This is to initialize {init|mark|free}_machine_status before the first
5285 call to push_function_context_to. This is needed by the Chill front
5286 end which calls push_function_context_to before the first call to
5287 init_function_start. */
5288 INIT_EXPANDERS;
5289 #endif
5291 /* Create the unique rtx's for certain rtx codes and operand values. */
5293 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5294 tries to use these variables. */
5295 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5296 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5297 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5299 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5300 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5301 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5302 else
5303 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5305 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5306 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5307 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5308 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5309 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5310 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5311 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5313 dconsthalf = dconst1;
5314 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5316 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5318 /* Initialize mathematical constants for constant folding builtins.
5319 These constants need to be given to at least 160 bits precision. */
5320 real_from_string (&dconstpi,
5321 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5322 real_from_string (&dconste,
5323 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5325 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5327 REAL_VALUE_TYPE *r =
5328 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5330 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5331 mode = GET_MODE_WIDER_MODE (mode))
5332 const_tiny_rtx[i][(int) mode] =
5333 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5335 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5337 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5338 mode = GET_MODE_WIDER_MODE (mode))
5339 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5341 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5342 mode != VOIDmode;
5343 mode = GET_MODE_WIDER_MODE (mode))
5344 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5347 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5348 mode != VOIDmode;
5349 mode = GET_MODE_WIDER_MODE (mode))
5351 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5352 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5355 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5356 mode != VOIDmode;
5357 mode = GET_MODE_WIDER_MODE (mode))
5359 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5360 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5363 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5364 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5365 const_tiny_rtx[0][i] = const0_rtx;
5367 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5368 if (STORE_FLAG_VALUE == 1)
5369 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5371 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5372 return_address_pointer_rtx
5373 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5374 #endif
5376 #ifdef STATIC_CHAIN_REGNUM
5377 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5379 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5380 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5381 static_chain_incoming_rtx
5382 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5383 else
5384 #endif
5385 static_chain_incoming_rtx = static_chain_rtx;
5386 #endif
5388 #ifdef STATIC_CHAIN
5389 static_chain_rtx = STATIC_CHAIN;
5391 #ifdef STATIC_CHAIN_INCOMING
5392 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5393 #else
5394 static_chain_incoming_rtx = static_chain_rtx;
5395 #endif
5396 #endif
5398 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5399 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5402 /* Produce exact duplicate of insn INSN after AFTER.
5403 Care updating of libcall regions if present. */
5406 emit_copy_of_insn_after (rtx insn, rtx after)
5408 rtx new;
5409 rtx note1, note2, link;
5411 switch (GET_CODE (insn))
5413 case INSN:
5414 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5415 break;
5417 case JUMP_INSN:
5418 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5419 break;
5421 case CALL_INSN:
5422 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5423 if (CALL_INSN_FUNCTION_USAGE (insn))
5424 CALL_INSN_FUNCTION_USAGE (new)
5425 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5426 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5427 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5428 break;
5430 default:
5431 gcc_unreachable ();
5434 /* Update LABEL_NUSES. */
5435 mark_jump_label (PATTERN (new), new, 0);
5437 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5439 /* If the old insn is frame related, then so is the new one. This is
5440 primarily needed for IA-64 unwind info which marks epilogue insns,
5441 which may be duplicated by the basic block reordering code. */
5442 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5444 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5445 make them. */
5446 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5447 if (REG_NOTE_KIND (link) != REG_LABEL)
5449 if (GET_CODE (link) == EXPR_LIST)
5450 REG_NOTES (new)
5451 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5452 XEXP (link, 0),
5453 REG_NOTES (new)));
5454 else
5455 REG_NOTES (new)
5456 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5457 XEXP (link, 0),
5458 REG_NOTES (new)));
5461 /* Fix the libcall sequences. */
5462 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5464 rtx p = new;
5465 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5466 p = PREV_INSN (p);
5467 XEXP (note1, 0) = p;
5468 XEXP (note2, 0) = new;
5470 INSN_CODE (new) = INSN_CODE (insn);
5471 return new;
5474 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5476 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5478 if (hard_reg_clobbers[mode][regno])
5479 return hard_reg_clobbers[mode][regno];
5480 else
5481 return (hard_reg_clobbers[mode][regno] =
5482 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5485 #include "gt-emit-rtl.h"