Save and restore the FP context in the signal stack frame.
[dragonfly.git] / sys / platform / pc64 / amd64 / cpu_regs.c
blobcc65ae408997b55c24a492ff000acccc5181f6cf
1 /*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (C) 1994, David Greenman
4 * Copyright (c) 1982, 1987, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
39 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
40 * $DragonFly: src/sys/platform/pc64/amd64/Attic/cpu_regs.c,v 1.4 2007/12/12 23:49:22 dillon Exp $
43 #include "use_ether.h"
44 #include "use_npx.h"
45 #include "use_isa.h"
46 #include "opt_atalk.h"
47 #include "opt_compat.h"
48 #include "opt_ddb.h"
49 #include "opt_directio.h"
50 #include "opt_inet.h"
51 #include "opt_ipx.h"
52 #include "opt_msgbuf.h"
53 #include "opt_swap.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/sysproto.h>
58 #include <sys/signalvar.h>
59 #include <sys/kernel.h>
60 #include <sys/linker.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/buf.h>
64 #include <sys/reboot.h>
65 #include <sys/mbuf.h>
66 #include <sys/msgbuf.h>
67 #include <sys/sysent.h>
68 #include <sys/sysctl.h>
69 #include <sys/vmmeter.h>
70 #include <sys/bus.h>
71 #include <sys/upcall.h>
72 #include <sys/usched.h>
73 #include <sys/reg.h>
75 #include <vm/vm.h>
76 #include <vm/vm_param.h>
77 #include <sys/lock.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vm_extern.h>
85 #include <sys/thread2.h>
87 #include <sys/user.h>
88 #include <sys/exec.h>
89 #include <sys/cons.h>
91 #include <ddb/ddb.h>
93 #include <machine/cpu.h>
94 #include <machine/clock.h>
95 #include <machine/specialreg.h>
96 #include <machine/md_var.h>
97 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
98 #include <machine/globaldata.h> /* CPU_prvspace */
99 #include <machine/smp.h>
100 #ifdef PERFMON
101 #include <machine/perfmon.h>
102 #endif
103 #include <machine/cputypes.h>
105 #include <bus/isa/rtc.h>
106 /* #include <machine/vm86.h> */
107 #include <sys/random.h>
108 #include <sys/ptrace.h>
109 #include <machine/sigframe.h>
110 #include <unistd.h> /* umtx_* functions */
112 extern void dblfault_handler (void);
114 #ifndef CPU_DISABLE_SSE
115 static void set_fpregs_xmm (struct save87 *, struct savexmm *);
116 static void fill_fpregs_xmm (struct savexmm *, struct save87 *);
117 #endif /* CPU_DISABLE_SSE */
118 #ifdef DIRECTIO
119 extern void ffs_rawread_setup(void);
120 #endif /* DIRECTIO */
122 #ifdef SMP
123 int64_t tsc_offsets[MAXCPU];
124 #else
125 int64_t tsc_offsets[1];
126 #endif
128 #if defined(SWTCH_OPTIM_STATS)
129 extern int swtch_optim_stats;
130 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
131 CTLFLAG_RD, &swtch_optim_stats, 0, "");
132 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
133 CTLFLAG_RD, &tlb_flush_count, 0, "");
134 #endif
136 static int
137 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
139 int error = sysctl_handle_int(oidp, 0, ctob((int)Maxmem), req);
140 return (error);
143 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
144 0, 0, sysctl_hw_physmem, "IU", "");
146 static int
147 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
149 int error = sysctl_handle_int(oidp, 0,
150 ctob((int)Maxmem - vmstats.v_wire_count), req);
151 return (error);
154 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
155 0, 0, sysctl_hw_usermem, "IU", "");
157 SYSCTL_ULONG(_hw, OID_AUTO, availpages, CTLFLAG_RD, &Maxmem, NULL, "");
159 #if 0
161 static int
162 sysctl_machdep_msgbuf(SYSCTL_HANDLER_ARGS)
164 int error;
166 /* Unwind the buffer, so that it's linear (possibly starting with
167 * some initial nulls).
169 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
170 msgbufp->msg_size-msgbufp->msg_bufr,req);
171 if(error) return(error);
172 if(msgbufp->msg_bufr>0) {
173 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
174 msgbufp->msg_bufr,req);
176 return(error);
179 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
180 0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
182 static int msgbuf_clear;
184 static int
185 sysctl_machdep_msgbuf_clear(SYSCTL_HANDLER_ARGS)
187 int error;
188 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
189 req);
190 if (!error && req->newptr) {
191 /* Clear the buffer and reset write pointer */
192 bzero(msgbufp->msg_ptr,msgbufp->msg_size);
193 msgbufp->msg_bufr=msgbufp->msg_bufx=0;
194 msgbuf_clear=0;
196 return (error);
199 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
200 &msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
201 "Clear kernel message buffer");
203 #endif
206 * Send an interrupt to process.
208 * Stack is set up to allow sigcode stored
209 * at top to call routine, followed by kcall
210 * to sigreturn routine below. After sigreturn
211 * resets the signal mask, the stack, and the
212 * frame pointer, it returns to the user
213 * specified pc, psl.
216 extern int _ucodesel, _udatasel;
217 void
218 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
220 struct lwp *lp = curthread->td_lwp;
221 struct proc *p = lp->lwp_proc;
222 struct trapframe *regs;
223 struct sigacts *psp = p->p_sigacts;
224 struct sigframe sf, *sfp;
225 int oonstack;
227 regs = lp->lwp_md.md_regs;
228 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
230 /* save user context */
231 bzero(&sf, sizeof(struct sigframe));
232 sf.sf_uc.uc_sigmask = *mask;
233 sf.sf_uc.uc_stack = lp->lwp_sigstk;
234 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
235 /* bcopy(regs, &sf.sf_uc.uc_mcontext.mc_gs, sizeof(struct trapframe)); */
237 /* make the size of the saved context visible to userland */
238 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
240 /* save mailbox pending state for syscall interlock semantics */
241 if (p->p_flag & P_MAILBOX)
242 sf.sf_uc.uc_mcontext.mc_flags |= PGEX_MAILBOX;
245 /* Allocate and validate space for the signal handler context. */
246 if ((lp->lwp_flag & LWP_ALTSTACK) != 0 && !oonstack &&
247 SIGISMEMBER(psp->ps_sigonstack, sig)) {
248 sfp = (struct sigframe *)(lp->lwp_sigstk.ss_sp +
249 lp->lwp_sigstk.ss_size - sizeof(struct sigframe));
250 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
252 else
253 sfp = (struct sigframe *)regs->tf_rsp - 1;
255 /* Translate the signal is appropriate */
256 if (p->p_sysent->sv_sigtbl) {
257 if (sig <= p->p_sysent->sv_sigsize)
258 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
261 /* Build the argument list for the signal handler. */
262 sf.sf_signum = sig;
263 sf.sf_ucontext = (register_t)&sfp->sf_uc;
264 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
265 /* Signal handler installed with SA_SIGINFO. */
266 sf.sf_siginfo = (register_t)&sfp->sf_si;
267 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
269 /* fill siginfo structure */
270 sf.sf_si.si_signo = sig;
271 sf.sf_si.si_code = code;
272 sf.sf_si.si_addr = (void*)regs->tf_err;
274 else {
275 /* Old FreeBSD-style arguments. */
276 sf.sf_siginfo = code;
277 sf.sf_addr = regs->tf_err;
278 sf.sf_ahu.sf_handler = catcher;
281 #if 0
283 * If we're a vm86 process, we want to save the segment registers.
284 * We also change eflags to be our emulated eflags, not the actual
285 * eflags.
287 if (regs->tf_rflags & PSL_VM) {
288 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
289 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
291 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
292 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
293 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
294 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
296 if (vm86->vm86_has_vme == 0)
297 sf.sf_uc.uc_mcontext.mc_eflags =
298 (tf->tf_rflags & ~(PSL_VIF | PSL_VIP)) |
299 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
302 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
303 * syscalls made by the signal handler. This just avoids
304 * wasting time for our lazy fixup of such faults. PSL_NT
305 * does nothing in vm86 mode, but vm86 programs can set it
306 * almost legitimately in probes for old cpu types.
308 tf->tf_rflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
310 #endif
313 * Save the FPU state and reinit the FP unit
315 npxpush(&sf.sf_uc.uc_mcontext);
318 * Copy the sigframe out to the user's stack.
320 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
322 * Something is wrong with the stack pointer.
323 * ...Kill the process.
325 sigexit(p, SIGILL);
328 regs->tf_rsp = (int)sfp;
329 regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
330 regs->tf_rflags &= ~PSL_T;
331 regs->tf_cs = _ucodesel;
332 /* regs->tf_ds = _udatasel;
333 regs->tf_es = _udatasel; */
334 if (regs->tf_trapno == T_PROTFLT) {
335 /* regs->tf_fs = _udatasel;
336 regs->tf_gs = _udatasel; */
338 regs->tf_ss = _udatasel;
342 * Sanitize the trapframe for a virtual kernel passing control to a custom
343 * VM context.
345 * Allow userland to set or maintain PSL_RF, the resume flag. This flag
346 * basically controls whether the return PC should skip the first instruction
347 * (as in an explicit system call) or re-execute it (as in an exception).
350 cpu_sanitize_frame(struct trapframe *frame)
352 frame->tf_cs = _ucodesel;
353 #if 0
354 frame->tf_ds = _udatasel;
355 frame->tf_es = _udatasel;
356 frame->tf_fs = _udatasel;
357 frame->tf_gs = _udatasel;
358 #endif
359 frame->tf_ss = _udatasel;
360 frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE);
361 frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
362 return(0);
366 cpu_sanitize_tls(struct savetls *tls)
368 struct segment_descriptor *desc;
369 int i;
371 for (i = 0; i < NGTLS; ++i) {
372 desc = &tls->tls[i];
373 if (desc->sd_dpl == 0 && desc->sd_type == 0)
374 continue;
375 if (desc->sd_def32 == 0)
376 return(ENXIO);
377 if (desc->sd_type != SDT_MEMRWA)
378 return(ENXIO);
379 if (desc->sd_dpl != SEL_UPL)
380 return(ENXIO);
381 if (desc->sd_xx != 0 || desc->sd_p != 1)
382 return(ENXIO);
384 return(0);
388 * sigreturn(ucontext_t *sigcntxp)
390 * System call to cleanup state after a signal
391 * has been taken. Reset signal mask and
392 * stack state from context left by sendsig (above).
393 * Return to previous pc and psl as specified by
394 * context left by sendsig. Check carefully to
395 * make sure that the user has not modified the
396 * state to gain improper privileges.
398 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
399 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
402 sys_sigreturn(struct sigreturn_args *uap)
404 struct lwp *lp = curthread->td_lwp;
405 struct proc *p = lp->lwp_proc;
406 struct trapframe *regs;
407 ucontext_t ucp;
408 int cs;
409 int rflags;
410 int error;
412 error = copyin(uap->sigcntxp, &ucp, sizeof(ucp));
413 if (error)
414 return (error);
416 regs = lp->lwp_md.md_regs;
417 rflags = ucp.uc_mcontext.mc_rflags;
419 #if 0
420 if (eflags & PSL_VM) {
421 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
422 struct vm86_kernel *vm86;
425 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
426 * set up the vm86 area, and we can't enter vm86 mode.
428 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
429 return (EINVAL);
430 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
431 if (vm86->vm86_inited == 0)
432 return (EINVAL);
434 /* go back to user mode if both flags are set */
435 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
436 trapsignal(lp->lwp_proc, SIGBUS, 0);
438 if (vm86->vm86_has_vme) {
439 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
440 (eflags & VME_USERCHANGE) | PSL_VM;
441 } else {
442 vm86->vm86_eflags = eflags; /* save VIF, VIP */
443 eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM;
445 bcopy(&ucp.uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
446 tf->tf_eflags = eflags;
447 tf->tf_vm86_ds = tf->tf_ds;
448 tf->tf_vm86_es = tf->tf_es;
449 tf->tf_vm86_fs = tf->tf_fs;
450 tf->tf_vm86_gs = tf->tf_gs;
451 tf->tf_ds = _udatasel;
452 tf->tf_es = _udatasel;
453 #if 0
454 tf->tf_fs = _udatasel;
455 tf->tf_gs = _udatasel;
456 #endif
457 } else
458 #endif
461 * Don't allow users to change privileged or reserved flags.
464 * XXX do allow users to change the privileged flag PSL_RF.
465 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
466 * should sometimes set it there too. tf_eflags is kept in
467 * the signal context during signal handling and there is no
468 * other place to remember it, so the PSL_RF bit may be
469 * corrupted by the signal handler without us knowing.
470 * Corruption of the PSL_RF bit at worst causes one more or
471 * one less debugger trap, so allowing it is fairly harmless.
473 if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
474 kprintf("sigreturn: eflags = 0x%x\n", rflags);
475 return(EINVAL);
479 * Don't allow users to load a valid privileged %cs. Let the
480 * hardware check for invalid selectors, excess privilege in
481 * other selectors, invalid %eip's and invalid %esp's.
483 cs = ucp.uc_mcontext.mc_cs;
484 if (!CS_SECURE(cs)) {
485 kprintf("sigreturn: cs = 0x%x\n", cs);
486 trapsignal(lp, SIGBUS, T_PROTFLT);
487 return(EINVAL);
489 /* bcopy(&ucp.uc_mcontext.mc_gs, regs, sizeof(struct trapframe)); */
493 * Restore the FPU state from the frame
495 npxpop(&ucp.uc_mcontext);
498 * Merge saved signal mailbox pending flag to maintain interlock
499 * semantics against system calls.
501 if (ucp.uc_mcontext.mc_flags & PGEX_MAILBOX)
502 p->p_flag |= P_MAILBOX;
504 if (ucp.uc_mcontext.mc_onstack & 1)
505 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
506 else
507 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
509 lp->lwp_sigmask = ucp.uc_sigmask;
510 SIG_CANTMASK(lp->lwp_sigmask);
511 return(EJUSTRETURN);
515 * Stack frame on entry to function. %eax will contain the function vector,
516 * %ecx will contain the function data. flags, ecx, and eax will have
517 * already been pushed on the stack.
519 struct upc_frame {
520 register_t eax;
521 register_t ecx;
522 register_t edx;
523 register_t flags;
524 register_t oldip;
527 void
528 sendupcall(struct vmupcall *vu, int morepending)
530 struct lwp *lp = curthread->td_lwp;
531 struct trapframe *regs;
532 struct upcall upcall;
533 struct upc_frame upc_frame;
534 int crit_count = 0;
537 * If we are a virtual kernel running an emulated user process
538 * context, switch back to the virtual kernel context before
539 * trying to post the signal.
541 if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
542 lp->lwp_md.md_regs->tf_trapno = 0;
543 vkernel_trap(lp, lp->lwp_md.md_regs);
547 * Get the upcall data structure
549 if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
550 copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
552 vu->vu_pending = 0;
553 kprintf("bad upcall address\n");
554 return;
558 * If the data structure is already marked pending or has a critical
559 * section count, mark the data structure as pending and return
560 * without doing an upcall. vu_pending is left set.
562 if (upcall.upc_pending || crit_count >= vu->vu_pending) {
563 if (upcall.upc_pending < vu->vu_pending) {
564 upcall.upc_pending = vu->vu_pending;
565 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
566 sizeof(upcall.upc_pending));
568 return;
572 * We can run this upcall now, clear vu_pending.
574 * Bump our critical section count and set or clear the
575 * user pending flag depending on whether more upcalls are
576 * pending. The user will be responsible for calling
577 * upc_dispatch(-1) to process remaining upcalls.
579 vu->vu_pending = 0;
580 upcall.upc_pending = morepending;
581 crit_count += TDPRI_CRIT;
582 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
583 sizeof(upcall.upc_pending));
584 copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
585 sizeof(int));
588 * Construct a stack frame and issue the upcall
590 regs = lp->lwp_md.md_regs;
591 upc_frame.eax = regs->tf_rax;
592 upc_frame.ecx = regs->tf_rcx;
593 upc_frame.edx = regs->tf_rdx;
594 upc_frame.flags = regs->tf_rflags;
595 upc_frame.oldip = regs->tf_rip;
596 if (copyout(&upc_frame, (void *)(regs->tf_rsp - sizeof(upc_frame)),
597 sizeof(upc_frame)) != 0) {
598 kprintf("bad stack on upcall\n");
599 } else {
600 regs->tf_rax = (register_t)vu->vu_func;
601 regs->tf_rcx = (register_t)vu->vu_data;
602 regs->tf_rdx = (register_t)lp->lwp_upcall;
603 regs->tf_rip = (register_t)vu->vu_ctx;
604 regs->tf_rsp -= sizeof(upc_frame);
609 * fetchupcall occurs in the context of a system call, which means that
610 * we have to return EJUSTRETURN in order to prevent eax and edx from
611 * being overwritten by the syscall return value.
613 * if vu is not NULL we return the new context in %edx, the new data in %ecx,
614 * and the function pointer in %eax.
617 fetchupcall (struct vmupcall *vu, int morepending, void *rsp)
619 struct upc_frame upc_frame;
620 struct lwp *lp = curthread->td_lwp;
621 struct trapframe *regs;
622 int error;
623 struct upcall upcall;
624 int crit_count;
626 regs = lp->lwp_md.md_regs;
628 error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
629 if (error == 0) {
630 if (vu) {
632 * This jumps us to the next ready context.
634 vu->vu_pending = 0;
635 error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
636 crit_count = 0;
637 if (error == 0)
638 error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
639 crit_count += TDPRI_CRIT;
640 if (error == 0)
641 error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
642 regs->tf_rax = (register_t)vu->vu_func;
643 regs->tf_rcx = (register_t)vu->vu_data;
644 regs->tf_rdx = (register_t)lp->lwp_upcall;
645 regs->tf_rip = (register_t)vu->vu_ctx;
646 regs->tf_rsp = (register_t)rsp;
647 } else {
649 * This returns us to the originally interrupted code.
651 error = copyin(rsp, &upc_frame, sizeof(upc_frame));
652 regs->tf_rax = upc_frame.eax;
653 regs->tf_rcx = upc_frame.ecx;
654 regs->tf_rdx = upc_frame.edx;
655 regs->tf_rflags = (regs->tf_rflags & ~PSL_USERCHANGE) |
656 (upc_frame.flags & PSL_USERCHANGE);
657 regs->tf_rip = upc_frame.oldip;
658 regs->tf_rsp = (register_t)((char *)rsp + sizeof(upc_frame));
661 if (error == 0)
662 error = EJUSTRETURN;
663 return(error);
667 * cpu_idle() represents the idle LWKT. You cannot return from this function
668 * (unless you want to blow things up!). Instead we look for runnable threads
669 * and loop or halt as appropriate. Giant is not held on entry to the thread.
671 * The main loop is entered with a critical section held, we must release
672 * the critical section before doing anything else. lwkt_switch() will
673 * check for pending interrupts due to entering and exiting its own
674 * critical section.
676 * Note on cpu_idle_hlt: On an SMP system we rely on a scheduler IPI
677 * to wake a HLTed cpu up. However, there are cases where the idlethread
678 * will be entered with the possibility that no IPI will occur and in such
679 * cases lwkt_switch() sets TDF_IDLE_NOHLT.
681 static int cpu_idle_hlt = 1;
682 static int cpu_idle_hltcnt;
683 static int cpu_idle_spincnt;
684 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
685 &cpu_idle_hlt, 0, "Idle loop HLT enable");
686 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
687 &cpu_idle_hltcnt, 0, "Idle loop entry halts");
688 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
689 &cpu_idle_spincnt, 0, "Idle loop entry spins");
691 void
692 cpu_idle(void)
694 struct thread *td = curthread;
695 struct mdglobaldata *gd = mdcpu;
697 crit_exit();
698 KKASSERT(td->td_pri < TDPRI_CRIT);
699 for (;;) {
701 * See if there are any LWKTs ready to go.
703 lwkt_switch();
706 * The idle loop halts only if no threads are scheduleable
707 * and no signals have occured.
709 if (cpu_idle_hlt && !lwkt_runnable() &&
710 (td->td_flags & TDF_IDLE_NOHLT) == 0) {
711 splz();
712 if (!lwkt_runnable()) {
713 #ifdef DEBUGIDLE
714 struct timeval tv1, tv2;
715 gettimeofday(&tv1, NULL);
716 #endif
717 /* umtx_sleep(&gd->mi.gd_runqmask, 0, 1000000); */
718 #ifdef DEBUGIDLE
719 gettimeofday(&tv2, NULL);
720 if (tv2.tv_usec - tv1.tv_usec +
721 (tv2.tv_sec - tv1.tv_sec) * 1000000
722 > 500000) {
723 kprintf("cpu %d idlelock %08x %08x\n",
724 gd->mi.gd_cpuid,
725 gd->mi.gd_runqmask,
726 gd->gd_fpending);
728 #endif
730 #ifdef SMP
731 else {
732 __asm __volatile("pause");
734 #endif
735 ++cpu_idle_hltcnt;
736 } else {
737 td->td_flags &= ~TDF_IDLE_NOHLT;
738 splz();
739 #ifdef SMP
740 /*__asm __volatile("sti; pause");*/
741 __asm __volatile("pause");
742 #else
743 /*__asm __volatile("sti");*/
744 #endif
745 ++cpu_idle_spincnt;
750 #ifdef SMP
753 * Called by the LWKT switch core with a critical section held if the only
754 * schedulable thread needs the MP lock and we couldn't get it. On
755 * a real cpu we just spin in the scheduler. In the virtual kernel
756 * we sleep for a bit.
758 void
759 cpu_mplock_contested(void)
761 usleep(1000);
765 * Called by the spinlock code with or without a critical section held
766 * when a spinlock is found to be seriously constested.
768 void
769 cpu_spinlock_contested(void)
771 usleep(1000);
774 #endif
777 * Clear registers on exec
779 void
780 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
782 struct thread *td = curthread;
783 struct lwp *lp = td->td_lwp;
784 struct trapframe *regs = lp->lwp_md.md_regs;
785 struct pcb *pcb = lp->lwp_thread->td_pcb;
787 /* was i386_user_cleanup() in NetBSD */
788 user_ldt_free(pcb);
790 bzero((char *)regs, sizeof(struct trapframe));
791 regs->tf_rip = entry;
792 regs->tf_rsp = stack;
793 regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
794 regs->tf_ss = 0;
795 /* regs->tf_ds = 0;
796 regs->tf_es = 0;
797 regs->tf_fs = 0;
798 regs->tf_gs = 0; */
799 regs->tf_cs = 0;
801 /* PS_STRINGS value for BSD/OS binaries. It is 0 for non-BSD/OS. */
802 regs->tf_rbx = ps_strings;
805 * Reset the hardware debug registers if they were in use.
806 * They won't have any meaning for the newly exec'd process.
808 if (pcb->pcb_flags & PCB_DBREGS) {
809 pcb->pcb_dr0 = 0;
810 pcb->pcb_dr1 = 0;
811 pcb->pcb_dr2 = 0;
812 pcb->pcb_dr3 = 0;
813 pcb->pcb_dr6 = 0;
814 pcb->pcb_dr7 = 0;
815 if (pcb == td->td_pcb) {
817 * Clear the debug registers on the running
818 * CPU, otherwise they will end up affecting
819 * the next process we switch to.
821 reset_dbregs();
823 pcb->pcb_flags &= ~PCB_DBREGS;
827 * Initialize the math emulator (if any) for the current process.
828 * Actually, just clear the bit that says that the emulator has
829 * been initialized. Initialization is delayed until the process
830 * traps to the emulator (if it is done at all) mainly because
831 * emulators don't provide an entry point for initialization.
833 /* pcb->pcb_flags &= ~FP_SOFTFP; */
836 * note: do not set CR0_TS here. npxinit() must do it after clearing
837 * gd_npxthread. Otherwise a preemptive interrupt thread may panic
838 * in npxdna().
840 crit_enter();
841 #if 0
842 load_cr0(rcr0() | CR0_MP);
843 #endif
845 #if NNPX > 0
846 /* Initialize the npx (if any) for the current process. */
847 npxinit(__INITIAL_NPXCW__);
848 #endif
849 crit_exit();
852 * note: linux emulator needs edx to be 0x0 on entry, which is
853 * handled in execve simply by setting the 64 bit syscall
854 * return value to 0.
858 void
859 cpu_setregs(void)
861 #if 0
862 unsigned int cr0;
864 cr0 = rcr0();
865 cr0 |= CR0_NE; /* Done by npxinit() */
866 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
867 cr0 |= CR0_WP | CR0_AM;
868 load_cr0(cr0);
869 load_gs(_udatasel);
870 #endif
873 static int
874 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
876 int error;
877 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
878 req);
879 if (!error && req->newptr)
880 resettodr();
881 return (error);
884 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
885 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
887 extern u_long bootdev; /* not a cdev_t - encoding is different */
888 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
889 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
892 * Initialize 386 and configure to run kernel
896 * Initialize segments & interrupt table
899 extern struct user *proc0paddr;
901 #if 0
903 extern inthand_t
904 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
905 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
906 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
907 IDTVEC(page), IDTVEC(mchk), IDTVEC(fpu), IDTVEC(align),
908 IDTVEC(xmm), IDTVEC(syscall),
909 IDTVEC(rsvd0);
910 extern inthand_t
911 IDTVEC(int0x80_syscall);
913 #endif
915 #ifdef DEBUG_INTERRUPTS
916 extern inthand_t *Xrsvdary[256];
917 #endif
920 ptrace_set_pc(struct lwp *lp, unsigned long addr)
922 lp->lwp_md.md_regs->tf_rip = addr;
923 return (0);
927 ptrace_single_step(struct lwp *lp)
929 lp->lwp_md.md_regs->tf_rflags |= PSL_T;
930 return (0);
934 fill_regs(struct lwp *lp, struct reg *regs)
936 struct trapframe *tp;
938 tp = lp->lwp_md.md_regs;
939 /* regs->r_gs = tp->tf_gs;
940 regs->r_fs = tp->tf_fs;
941 regs->r_es = tp->tf_es;
942 regs->r_ds = tp->tf_ds; */
943 regs->r_rdi = tp->tf_rdi;
944 regs->r_rsi = tp->tf_rsi;
945 regs->r_rbp = tp->tf_rbp;
946 regs->r_rbx = tp->tf_rbx;
947 regs->r_rdx = tp->tf_rdx;
948 regs->r_rcx = tp->tf_rcx;
949 regs->r_rax = tp->tf_rax;
950 regs->r_rip = tp->tf_rip;
951 regs->r_cs = tp->tf_cs;
952 regs->r_rflags = tp->tf_rflags;
953 regs->r_rsp = tp->tf_rsp;
954 regs->r_ss = tp->tf_ss;
955 return (0);
959 set_regs(struct lwp *lp, struct reg *regs)
961 struct trapframe *tp;
963 tp = lp->lwp_md.md_regs;
964 if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
965 !CS_SECURE(regs->r_cs))
966 return (EINVAL);
967 /* tp->tf_gs = regs->r_gs;
968 tp->tf_fs = regs->r_fs;
969 tp->tf_es = regs->r_es;
970 tp->tf_ds = regs->r_ds; */
971 tp->tf_rdi = regs->r_rdi;
972 tp->tf_rsi = regs->r_rsi;
973 tp->tf_rbp = regs->r_rbp;
974 tp->tf_rbx = regs->r_rbx;
975 tp->tf_rdx = regs->r_rdx;
976 tp->tf_rcx = regs->r_rcx;
977 tp->tf_rax = regs->r_rax;
978 tp->tf_rip = regs->r_rip;
979 tp->tf_cs = regs->r_cs;
980 tp->tf_rflags = regs->r_rflags;
981 tp->tf_rsp = regs->r_rsp;
982 tp->tf_ss = regs->r_ss;
983 return (0);
986 #ifndef CPU_DISABLE_SSE
987 static void
988 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
990 struct env87 *penv_87 = &sv_87->sv_env;
991 struct envxmm *penv_xmm = &sv_xmm->sv_env;
992 int i;
994 /* FPU control/status */
995 penv_87->en_cw = penv_xmm->en_cw;
996 penv_87->en_sw = penv_xmm->en_sw;
997 penv_87->en_tw = penv_xmm->en_tw;
998 penv_87->en_fip = penv_xmm->en_fip;
999 penv_87->en_fcs = penv_xmm->en_fcs;
1000 penv_87->en_opcode = penv_xmm->en_opcode;
1001 penv_87->en_foo = penv_xmm->en_foo;
1002 penv_87->en_fos = penv_xmm->en_fos;
1004 /* FPU registers */
1005 for (i = 0; i < 8; ++i)
1006 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
1008 sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
1011 static void
1012 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
1014 struct env87 *penv_87 = &sv_87->sv_env;
1015 struct envxmm *penv_xmm = &sv_xmm->sv_env;
1016 int i;
1018 /* FPU control/status */
1019 penv_xmm->en_cw = penv_87->en_cw;
1020 penv_xmm->en_sw = penv_87->en_sw;
1021 penv_xmm->en_tw = penv_87->en_tw;
1022 penv_xmm->en_fip = penv_87->en_fip;
1023 penv_xmm->en_fcs = penv_87->en_fcs;
1024 penv_xmm->en_opcode = penv_87->en_opcode;
1025 penv_xmm->en_foo = penv_87->en_foo;
1026 penv_xmm->en_fos = penv_87->en_fos;
1028 /* FPU registers */
1029 for (i = 0; i < 8; ++i)
1030 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
1032 sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
1034 #endif /* CPU_DISABLE_SSE */
1037 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
1039 #ifndef CPU_DISABLE_SSE
1040 if (cpu_fxsr) {
1041 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
1042 (struct save87 *)fpregs);
1043 return (0);
1045 #endif /* CPU_DISABLE_SSE */
1046 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
1047 return (0);
1051 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
1053 #ifndef CPU_DISABLE_SSE
1054 if (cpu_fxsr) {
1055 set_fpregs_xmm((struct save87 *)fpregs,
1056 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
1057 return (0);
1059 #endif /* CPU_DISABLE_SSE */
1060 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
1061 return (0);
1065 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
1067 if (lp == NULL) {
1068 dbregs->dr[0] = rdr0();
1069 dbregs->dr[1] = rdr1();
1070 dbregs->dr[2] = rdr2();
1071 dbregs->dr[3] = rdr3();
1072 dbregs->dr[4] = rdr4();
1073 dbregs->dr[5] = rdr5();
1074 dbregs->dr[6] = rdr6();
1075 dbregs->dr[7] = rdr7();
1076 } else {
1077 struct pcb *pcb;
1079 pcb = lp->lwp_thread->td_pcb;
1080 dbregs->dr[0] = pcb->pcb_dr0;
1081 dbregs->dr[1] = pcb->pcb_dr1;
1082 dbregs->dr[2] = pcb->pcb_dr2;
1083 dbregs->dr[3] = pcb->pcb_dr3;
1084 dbregs->dr[4] = 0;
1085 dbregs->dr[5] = 0;
1086 dbregs->dr[6] = pcb->pcb_dr6;
1087 dbregs->dr[7] = pcb->pcb_dr7;
1089 return (0);
1093 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
1095 if (lp == NULL) {
1096 load_dr0(dbregs->dr[0]);
1097 load_dr1(dbregs->dr[1]);
1098 load_dr2(dbregs->dr[2]);
1099 load_dr3(dbregs->dr[3]);
1100 load_dr4(dbregs->dr[4]);
1101 load_dr5(dbregs->dr[5]);
1102 load_dr6(dbregs->dr[6]);
1103 load_dr7(dbregs->dr[7]);
1104 } else {
1105 struct pcb *pcb;
1106 struct ucred *ucred;
1107 int i;
1108 uint32_t mask1, mask2;
1111 * Don't let an illegal value for dr7 get set. Specifically,
1112 * check for undefined settings. Setting these bit patterns
1113 * result in undefined behaviour and can lead to an unexpected
1114 * TRCTRAP.
1116 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
1117 i++, mask1 <<= 2, mask2 <<= 2)
1118 if ((dbregs->dr[7] & mask1) == mask2)
1119 return (EINVAL);
1121 pcb = lp->lwp_thread->td_pcb;
1122 ucred = lp->lwp_proc->p_ucred;
1125 * Don't let a process set a breakpoint that is not within the
1126 * process's address space. If a process could do this, it
1127 * could halt the system by setting a breakpoint in the kernel
1128 * (if ddb was enabled). Thus, we need to check to make sure
1129 * that no breakpoints are being enabled for addresses outside
1130 * process's address space, unless, perhaps, we were called by
1131 * uid 0.
1133 * XXX - what about when the watched area of the user's
1134 * address space is written into from within the kernel
1135 * ... wouldn't that still cause a breakpoint to be generated
1136 * from within kernel mode?
1139 if (suser_cred(ucred, 0) != 0) {
1140 if (dbregs->dr[7] & 0x3) {
1141 /* dr0 is enabled */
1142 if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
1143 return (EINVAL);
1146 if (dbregs->dr[7] & (0x3<<2)) {
1147 /* dr1 is enabled */
1148 if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
1149 return (EINVAL);
1152 if (dbregs->dr[7] & (0x3<<4)) {
1153 /* dr2 is enabled */
1154 if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
1155 return (EINVAL);
1158 if (dbregs->dr[7] & (0x3<<6)) {
1159 /* dr3 is enabled */
1160 if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
1161 return (EINVAL);
1165 pcb->pcb_dr0 = dbregs->dr[0];
1166 pcb->pcb_dr1 = dbregs->dr[1];
1167 pcb->pcb_dr2 = dbregs->dr[2];
1168 pcb->pcb_dr3 = dbregs->dr[3];
1169 pcb->pcb_dr6 = dbregs->dr[6];
1170 pcb->pcb_dr7 = dbregs->dr[7];
1172 pcb->pcb_flags |= PCB_DBREGS;
1175 return (0);
1178 #if 0
1180 * Return > 0 if a hardware breakpoint has been hit, and the
1181 * breakpoint was in user space. Return 0, otherwise.
1184 user_dbreg_trap(void)
1186 u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
1187 u_int32_t bp; /* breakpoint bits extracted from dr6 */
1188 int nbp; /* number of breakpoints that triggered */
1189 caddr_t addr[4]; /* breakpoint addresses */
1190 int i;
1192 dr7 = rdr7();
1193 if ((dr7 & 0x000000ff) == 0) {
1195 * all GE and LE bits in the dr7 register are zero,
1196 * thus the trap couldn't have been caused by the
1197 * hardware debug registers
1199 return 0;
1202 nbp = 0;
1203 dr6 = rdr6();
1204 bp = dr6 & 0x0000000f;
1206 if (!bp) {
1208 * None of the breakpoint bits are set meaning this
1209 * trap was not caused by any of the debug registers
1211 return 0;
1215 * at least one of the breakpoints were hit, check to see
1216 * which ones and if any of them are user space addresses
1219 if (bp & 0x01) {
1220 addr[nbp++] = (caddr_t)rdr0();
1222 if (bp & 0x02) {
1223 addr[nbp++] = (caddr_t)rdr1();
1225 if (bp & 0x04) {
1226 addr[nbp++] = (caddr_t)rdr2();
1228 if (bp & 0x08) {
1229 addr[nbp++] = (caddr_t)rdr3();
1232 for (i=0; i<nbp; i++) {
1233 if (addr[i] <
1234 (caddr_t)VM_MAX_USER_ADDRESS) {
1236 * addr[i] is in user space
1238 return nbp;
1243 * None of the breakpoints are in user space.
1245 return 0;
1248 #endif
1251 #ifndef DDB
1252 void
1253 Debugger(const char *msg)
1255 kprintf("Debugger(\"%s\") called.\n", msg);
1257 #endif /* no DDB */