we do not want to shift by the block size, which is much larger than
[dragonfly.git] / sys / platform / pc32 / i386 / trap.c
blobae9ddbfea539d02432267df697a45b431cd0a936
1 /*-
2 * Copyright (C) 1994, David Greenman
3 * Copyright (c) 1990, 1993
4 * The Regents of the University of California. All rights reserved.
6 * This code is derived from software contributed to Berkeley by
7 * the University of Utah, and William Jolitz.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
37 * from: @(#)trap.c 7.4 (Berkeley) 5/13/91
38 * $FreeBSD: src/sys/i386/i386/trap.c,v 1.147.2.11 2003/02/27 19:09:59 luoqi Exp $
39 * $DragonFly: src/sys/platform/pc32/i386/trap.c,v 1.104 2007/04/29 18:25:36 dillon Exp $
43 * 386 Trap and System call handling
46 #include "use_isa.h"
47 #include "use_npx.h"
49 #include "opt_cpu.h"
50 #include "opt_ddb.h"
51 #include "opt_ktrace.h"
52 #include "opt_clock.h"
53 #include "opt_trap.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/proc.h>
58 #include <sys/pioctl.h>
59 #include <sys/kernel.h>
60 #include <sys/resourcevar.h>
61 #include <sys/signalvar.h>
62 #include <sys/signal2.h>
63 #include <sys/syscall.h>
64 #include <sys/sysctl.h>
65 #include <sys/sysent.h>
66 #include <sys/uio.h>
67 #include <sys/vmmeter.h>
68 #include <sys/malloc.h>
69 #ifdef KTRACE
70 #include <sys/ktrace.h>
71 #endif
72 #include <sys/upcall.h>
73 #include <sys/vkernel.h>
74 #include <sys/sysproto.h>
75 #include <sys/sysunion.h>
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/pmap.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_extern.h>
86 #include <machine/cpu.h>
87 #include <machine/md_var.h>
88 #include <machine/pcb.h>
89 #include <machine/smp.h>
90 #include <machine/tss.h>
91 #include <machine/specialreg.h>
92 #include <machine/globaldata.h>
94 #include <machine_base/isa/intr_machdep.h>
96 #ifdef POWERFAIL_NMI
97 #include <sys/syslog.h>
98 #include <machine/clock.h>
99 #endif
101 #include <machine/vm86.h>
103 #include <ddb/ddb.h>
104 #include <sys/msgport2.h>
105 #include <sys/thread2.h>
107 #ifdef SMP
109 #define MAKEMPSAFE(have_mplock) \
110 if (have_mplock == 0) { \
111 get_mplock(); \
112 have_mplock = 1; \
115 #else
117 #define MAKEMPSAFE(have_mplock)
119 #endif
121 int (*pmath_emulate) (struct trapframe *);
123 extern void trap (struct trapframe *frame);
124 extern int trapwrite (unsigned addr);
125 extern void syscall2 (struct trapframe *frame);
127 static int trap_pfault (struct trapframe *, int, vm_offset_t);
128 static void trap_fatal (struct trapframe *, vm_offset_t);
129 void dblfault_handler (void);
131 extern inthand_t IDTVEC(syscall);
133 #define MAX_TRAP_MSG 28
134 static char *trap_msg[] = {
135 "", /* 0 unused */
136 "privileged instruction fault", /* 1 T_PRIVINFLT */
137 "", /* 2 unused */
138 "breakpoint instruction fault", /* 3 T_BPTFLT */
139 "", /* 4 unused */
140 "", /* 5 unused */
141 "arithmetic trap", /* 6 T_ARITHTRAP */
142 "system forced exception", /* 7 T_ASTFLT */
143 "", /* 8 unused */
144 "general protection fault", /* 9 T_PROTFLT */
145 "trace trap", /* 10 T_TRCTRAP */
146 "", /* 11 unused */
147 "page fault", /* 12 T_PAGEFLT */
148 "", /* 13 unused */
149 "alignment fault", /* 14 T_ALIGNFLT */
150 "", /* 15 unused */
151 "", /* 16 unused */
152 "", /* 17 unused */
153 "integer divide fault", /* 18 T_DIVIDE */
154 "non-maskable interrupt trap", /* 19 T_NMI */
155 "overflow trap", /* 20 T_OFLOW */
156 "FPU bounds check fault", /* 21 T_BOUND */
157 "FPU device not available", /* 22 T_DNA */
158 "double fault", /* 23 T_DOUBLEFLT */
159 "FPU operand fetch fault", /* 24 T_FPOPFLT */
160 "invalid TSS fault", /* 25 T_TSSFLT */
161 "segment not present fault", /* 26 T_SEGNPFLT */
162 "stack fault", /* 27 T_STKFLT */
163 "machine check trap", /* 28 T_MCHK */
166 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
167 extern int has_f00f_bug;
168 #endif
170 #ifdef DDB
171 static int ddb_on_nmi = 1;
172 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
173 &ddb_on_nmi, 0, "Go to DDB on NMI");
174 #endif
175 static int panic_on_nmi = 1;
176 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
177 &panic_on_nmi, 0, "Panic on NMI");
178 static int fast_release;
179 SYSCTL_INT(_machdep, OID_AUTO, fast_release, CTLFLAG_RW,
180 &fast_release, 0, "Passive Release was optimal");
181 static int slow_release;
182 SYSCTL_INT(_machdep, OID_AUTO, slow_release, CTLFLAG_RW,
183 &slow_release, 0, "Passive Release was nonoptimal");
184 #ifdef SMP
185 static int syscall_mpsafe = 0;
186 SYSCTL_INT(_kern, OID_AUTO, syscall_mpsafe, CTLFLAG_RW,
187 &syscall_mpsafe, 0, "Allow MPSAFE marked syscalls to run without BGL");
188 TUNABLE_INT("kern.syscall_mpsafe", &syscall_mpsafe);
189 static int trap_mpsafe = 0;
190 SYSCTL_INT(_kern, OID_AUTO, trap_mpsafe, CTLFLAG_RW,
191 &trap_mpsafe, 0, "Allow traps to mostly run without the BGL");
192 TUNABLE_INT("kern.trap_mpsafe", &trap_mpsafe);
193 #endif
195 MALLOC_DEFINE(M_SYSMSG, "sysmsg", "sysmsg structure");
196 extern int max_sysmsg;
199 * Passive USER->KERNEL transition. This only occurs if we block in the
200 * kernel while still holding our userland priority. We have to fixup our
201 * priority in order to avoid potential deadlocks before we allow the system
202 * to switch us to another thread.
204 static void
205 passive_release(struct thread *td)
207 struct lwp *lp = td->td_lwp;
209 td->td_release = NULL;
210 lwkt_setpri_self(TDPRI_KERN_USER);
211 lp->lwp_proc->p_usched->release_curproc(lp);
215 * userenter() passively intercepts the thread switch function to increase
216 * the thread priority from a user priority to a kernel priority, reducing
217 * syscall and trap overhead for the case where no switch occurs.
220 static __inline void
221 userenter(struct thread *curtd)
223 curtd->td_release = passive_release;
227 * Handle signals, upcalls, profiling, and other AST's and/or tasks that
228 * must be completed before we can return to or try to return to userland.
230 * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
231 * arithmatic on the delta calculation so the absolute tick values are
232 * truncated to an integer.
234 static void
235 userret(struct lwp *lp, struct trapframe *frame, int sticks)
237 struct proc *p = lp->lwp_proc;
238 int sig;
241 * Charge system time if profiling. Note: times are in microseconds.
242 * This may do a copyout and block, so do it first even though it
243 * means some system time will be charged as user time.
245 if (p->p_flag & P_PROFIL) {
246 addupc_task(p, frame->tf_eip,
247 (u_int)((int)lp->lwp_thread->td_sticks - sticks));
250 recheck:
252 * If the jungle wants us dead, so be it.
254 if (lp->lwp_flag & LWP_WEXIT)
255 lwp_exit(0);
258 * Block here if we are in a stopped state.
260 if (p->p_stat == SSTOP) {
261 get_mplock();
262 tstop();
263 rel_mplock();
264 goto recheck;
268 * Post any pending upcalls. If running a virtual kernel be sure
269 * to restore the virtual kernel's vmspace before posting the upcall.
271 if (p->p_flag & P_UPCALLPEND) {
272 p->p_flag &= ~P_UPCALLPEND;
273 get_mplock();
274 postupcall(lp);
275 rel_mplock();
276 goto recheck;
280 * Post any pending signals. If running a virtual kernel be sure
281 * to restore the virtual kernel's vmspace before posting the signal.
283 if ((sig = CURSIG(lp)) != 0) {
284 get_mplock();
285 postsig(sig);
286 rel_mplock();
287 goto recheck;
291 * block here if we are swapped out, but still process signals
292 * (such as SIGKILL). proc0 (the swapin scheduler) is already
293 * aware of our situation, we do not have to wake it up.
295 if (p->p_flag & P_SWAPPEDOUT) {
296 get_mplock();
297 p->p_flag |= P_SWAPWAIT;
298 swapin_request();
299 if (p->p_flag & P_SWAPWAIT)
300 tsleep(p, PCATCH, "SWOUT", 0);
301 p->p_flag &= ~P_SWAPWAIT;
302 rel_mplock();
303 goto recheck;
308 * Cleanup from userenter and any passive release that might have occured.
309 * We must reclaim the current-process designation before we can return
310 * to usermode. We also handle both LWKT and USER reschedule requests.
312 static __inline void
313 userexit(struct lwp *lp)
315 struct thread *td = lp->lwp_thread;
316 globaldata_t gd = td->td_gd;
318 #if 0
320 * If a user reschedule is requested force a new process to be
321 * chosen by releasing the current process. Our process will only
322 * be chosen again if it has a considerably better priority.
324 if (user_resched_wanted())
325 lp->lwp_proc->p_usched->release_curproc(lp);
326 #endif
329 * Handle a LWKT reschedule request first. Since our passive release
330 * is still in place we do not have to do anything special.
332 if (lwkt_resched_wanted())
333 lwkt_switch();
336 * Acquire the current process designation for this user scheduler
337 * on this cpu. This will also handle any user-reschedule requests.
339 lp->lwp_proc->p_usched->acquire_curproc(lp);
340 /* We may have switched cpus on acquisition */
341 gd = td->td_gd;
344 * Reduce our priority in preparation for a return to userland. If
345 * our passive release function was still in place, our priority was
346 * never raised and does not need to be reduced.
348 if (td->td_release == NULL)
349 lwkt_setpri_self(TDPRI_USER_NORM);
350 td->td_release = NULL;
353 * After reducing our priority there might be other kernel-level
354 * LWKTs that now have a greater priority. Run them as necessary.
355 * We don't have to worry about losing cpu to userland because
356 * we still control the current-process designation and we no longer
357 * have a passive release function installed.
359 if (lwkt_checkpri_self())
360 lwkt_switch();
364 * Exception, fault, and trap interface to the kernel.
365 * This common code is called from assembly language IDT gate entry
366 * routines that prepare a suitable stack frame, and restore this
367 * frame after the exception has been processed.
369 * This function is also called from doreti in an interlock to handle ASTs.
370 * For example: hardwareint->INTROUTINE->(set ast)->doreti->trap
372 * NOTE! We have to retrieve the fault address prior to obtaining the
373 * MP lock because get_mplock() may switch out. YYY cr2 really ought
374 * to be retrieved by the assembly code, not here.
376 * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
377 * if an attempt is made to switch from a fast interrupt or IPI. This is
378 * necessary to properly take fatal kernel traps on SMP machines if
379 * get_mplock() has to block.
382 void
383 trap(struct trapframe *frame)
385 struct globaldata *gd = mycpu;
386 struct thread *td = gd->gd_curthread;
387 struct lwp *lp = td->td_lwp;
388 struct proc *p;
389 int sticks = 0;
390 int i = 0, ucode = 0, type, code;
391 #ifdef SMP
392 int have_mplock = 0;
393 #endif
394 #ifdef INVARIANTS
395 int crit_count = td->td_pri & ~TDPRI_MASK;
396 #endif
397 vm_offset_t eva;
399 p = td->td_proc;
400 #ifdef DDB
401 if (db_active) {
402 eva = (frame->tf_trapno == T_PAGEFLT ? rcr2() : 0);
403 ++gd->gd_trap_nesting_level;
404 MAKEMPSAFE(have_mplock);
405 trap_fatal(frame, eva);
406 --gd->gd_trap_nesting_level;
407 goto out2;
409 #endif
411 eva = 0;
412 ++gd->gd_trap_nesting_level;
413 if (frame->tf_trapno == T_PAGEFLT) {
415 * For some Cyrix CPUs, %cr2 is clobbered by interrupts.
416 * This problem is worked around by using an interrupt
417 * gate for the pagefault handler. We are finally ready
418 * to read %cr2 and then must reenable interrupts.
420 * XXX this should be in the switch statement, but the
421 * NO_FOOF_HACK and VM86 goto and ifdefs obfuscate the
422 * flow of control too much for this to be obviously
423 * correct.
425 eva = rcr2();
426 cpu_enable_intr();
428 #ifdef SMP
429 if (trap_mpsafe == 0)
430 MAKEMPSAFE(have_mplock);
431 #endif
433 --gd->gd_trap_nesting_level;
435 if (!(frame->tf_eflags & PSL_I)) {
437 * Buggy application or kernel code has disabled interrupts
438 * and then trapped. Enabling interrupts now is wrong, but
439 * it is better than running with interrupts disabled until
440 * they are accidentally enabled later.
442 type = frame->tf_trapno;
443 if (ISPL(frame->tf_cs)==SEL_UPL || (frame->tf_eflags & PSL_VM)) {
444 MAKEMPSAFE(have_mplock);
445 kprintf(
446 "pid %ld (%s): trap %d with interrupts disabled\n",
447 (long)curproc->p_pid, curproc->p_comm, type);
448 } else if (type != T_BPTFLT && type != T_TRCTRAP) {
450 * XXX not quite right, since this may be for a
451 * multiple fault in user mode.
453 MAKEMPSAFE(have_mplock);
454 kprintf("kernel trap %d with interrupts disabled\n",
455 type);
457 cpu_enable_intr();
460 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
461 restart:
462 #endif
463 type = frame->tf_trapno;
464 code = frame->tf_err;
466 if (in_vm86call) {
467 ASSERT_MP_LOCK_HELD(curthread);
468 if (frame->tf_eflags & PSL_VM &&
469 (type == T_PROTFLT || type == T_STKFLT)) {
470 #ifdef SMP
471 KKASSERT(td->td_mpcount > 0);
472 #endif
473 i = vm86_emulate((struct vm86frame *)frame);
474 #ifdef SMP
475 KKASSERT(td->td_mpcount > 0);
476 #endif
477 if (i != 0) {
479 * returns to original process
481 #ifdef SMP
482 vm86_trap((struct vm86frame *)frame,
483 have_mplock);
484 #else
485 vm86_trap((struct vm86frame *)frame, 0);
486 #endif
487 KKASSERT(0); /* NOT REACHED */
489 goto out2;
491 switch (type) {
493 * these traps want either a process context, or
494 * assume a normal userspace trap.
496 case T_PROTFLT:
497 case T_SEGNPFLT:
498 trap_fatal(frame, eva);
499 goto out2;
500 case T_TRCTRAP:
501 type = T_BPTFLT; /* kernel breakpoint */
502 /* FALL THROUGH */
504 goto kernel_trap; /* normal kernel trap handling */
507 if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {
508 /* user trap */
510 userenter(td);
512 sticks = (int)td->td_sticks;
513 lp->lwp_md.md_regs = frame;
515 switch (type) {
516 case T_PRIVINFLT: /* privileged instruction fault */
517 ucode = type;
518 i = SIGILL;
519 break;
521 case T_BPTFLT: /* bpt instruction fault */
522 case T_TRCTRAP: /* trace trap */
523 frame->tf_eflags &= ~PSL_T;
524 i = SIGTRAP;
525 break;
527 case T_ARITHTRAP: /* arithmetic trap */
528 ucode = code;
529 i = SIGFPE;
530 break;
532 case T_ASTFLT: /* Allow process switch */
533 mycpu->gd_cnt.v_soft++;
534 if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
535 atomic_clear_int_nonlocked(&mycpu->gd_reqflags,
536 RQF_AST_OWEUPC);
537 addupc_task(p, p->p_prof.pr_addr,
538 p->p_prof.pr_ticks);
540 goto out;
543 * The following two traps can happen in
544 * vm86 mode, and, if so, we want to handle
545 * them specially.
547 case T_PROTFLT: /* general protection fault */
548 case T_STKFLT: /* stack fault */
549 if (frame->tf_eflags & PSL_VM) {
550 i = vm86_emulate((struct vm86frame *)frame);
551 if (i == 0)
552 goto out;
553 break;
555 /* FALL THROUGH */
557 case T_SEGNPFLT: /* segment not present fault */
558 case T_TSSFLT: /* invalid TSS fault */
559 case T_DOUBLEFLT: /* double fault */
560 default:
561 ucode = code + BUS_SEGM_FAULT ;
562 i = SIGBUS;
563 break;
565 case T_PAGEFLT: /* page fault */
566 MAKEMPSAFE(have_mplock);
567 i = trap_pfault(frame, TRUE, eva);
568 if (i == -1)
569 goto out;
570 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
571 if (i == -2)
572 goto restart;
573 #endif
574 if (i == 0)
575 goto out;
577 ucode = T_PAGEFLT;
578 break;
580 case T_DIVIDE: /* integer divide fault */
581 ucode = FPE_INTDIV;
582 i = SIGFPE;
583 break;
585 #if NISA > 0
586 case T_NMI:
587 MAKEMPSAFE(have_mplock);
588 #ifdef POWERFAIL_NMI
589 goto handle_powerfail;
590 #else /* !POWERFAIL_NMI */
591 /* machine/parity/power fail/"kitchen sink" faults */
592 if (isa_nmi(code) == 0) {
593 #ifdef DDB
595 * NMI can be hooked up to a pushbutton
596 * for debugging.
598 if (ddb_on_nmi) {
599 kprintf ("NMI ... going to debugger\n");
600 kdb_trap (type, 0, frame);
602 #endif /* DDB */
603 goto out2;
604 } else if (panic_on_nmi)
605 panic("NMI indicates hardware failure");
606 break;
607 #endif /* POWERFAIL_NMI */
608 #endif /* NISA > 0 */
610 case T_OFLOW: /* integer overflow fault */
611 ucode = FPE_INTOVF;
612 i = SIGFPE;
613 break;
615 case T_BOUND: /* bounds check fault */
616 ucode = FPE_FLTSUB;
617 i = SIGFPE;
618 break;
620 case T_DNA:
622 * Virtual kernel intercept - pass the DNA exception
623 * to the virtual kernel if it asked to handle it.
624 * This occurs when the virtual kernel is holding
625 * onto the FP context for a different emulated
626 * process then the one currently running.
628 * We must still call npxdna() since we may have
629 * saved FP state that the virtual kernel needs
630 * to hand over to a different emulated process.
632 if (p->p_vkernel && p->p_vkernel->vk_current &&
633 (td->td_pcb->pcb_flags & FP_VIRTFP)
635 npxdna();
636 break;
639 #if NNPX > 0
641 * The kernel may have switched out the FP unit's
642 * state, causing the user process to take a fault
643 * when it tries to use the FP unit. Restore the
644 * state here
646 if (npxdna())
647 goto out;
648 #endif
649 if (!pmath_emulate) {
650 i = SIGFPE;
651 ucode = FPE_FPU_NP_TRAP;
652 break;
654 i = (*pmath_emulate)(frame);
655 if (i == 0) {
656 if (!(frame->tf_eflags & PSL_T))
657 goto out2;
658 frame->tf_eflags &= ~PSL_T;
659 i = SIGTRAP;
661 /* else ucode = emulator_only_knows() XXX */
662 break;
664 case T_FPOPFLT: /* FPU operand fetch fault */
665 ucode = T_FPOPFLT;
666 i = SIGILL;
667 break;
669 case T_XMMFLT: /* SIMD floating-point exception */
670 ucode = 0; /* XXX */
671 i = SIGFPE;
672 break;
674 } else {
675 kernel_trap:
676 /* kernel trap */
678 switch (type) {
679 case T_PAGEFLT: /* page fault */
680 MAKEMPSAFE(have_mplock);
681 trap_pfault(frame, FALSE, eva);
682 goto out2;
684 case T_DNA:
685 #if NNPX > 0
687 * The kernel may be using npx for copying or other
688 * purposes.
690 if (npxdna())
691 goto out2;
692 #endif
693 break;
695 case T_PROTFLT: /* general protection fault */
696 case T_SEGNPFLT: /* segment not present fault */
698 * Invalid segment selectors and out of bounds
699 * %eip's and %esp's can be set up in user mode.
700 * This causes a fault in kernel mode when the
701 * kernel tries to return to user mode. We want
702 * to get this fault so that we can fix the
703 * problem here and not have to check all the
704 * selectors and pointers when the user changes
705 * them.
707 #define MAYBE_DORETI_FAULT(where, whereto) \
708 do { \
709 if (frame->tf_eip == (int)where) { \
710 frame->tf_eip = (int)whereto; \
711 goto out2; \
713 } while (0)
714 if (mycpu->gd_intr_nesting_level == 0) {
716 * Invalid %fs's and %gs's can be created using
717 * procfs or PT_SETREGS or by invalidating the
718 * underlying LDT entry. This causes a fault
719 * in kernel mode when the kernel attempts to
720 * switch contexts. Lose the bad context
721 * (XXX) so that we can continue, and generate
722 * a signal.
724 MAYBE_DORETI_FAULT(doreti_iret,
725 doreti_iret_fault);
726 MAYBE_DORETI_FAULT(doreti_popl_ds,
727 doreti_popl_ds_fault);
728 MAYBE_DORETI_FAULT(doreti_popl_es,
729 doreti_popl_es_fault);
730 MAYBE_DORETI_FAULT(doreti_popl_fs,
731 doreti_popl_fs_fault);
732 MAYBE_DORETI_FAULT(doreti_popl_gs,
733 doreti_popl_gs_fault);
734 if (td->td_pcb->pcb_onfault) {
735 frame->tf_eip =
736 (register_t)td->td_pcb->pcb_onfault;
737 goto out2;
740 break;
742 case T_TSSFLT:
744 * PSL_NT can be set in user mode and isn't cleared
745 * automatically when the kernel is entered. This
746 * causes a TSS fault when the kernel attempts to
747 * `iret' because the TSS link is uninitialized. We
748 * want to get this fault so that we can fix the
749 * problem here and not every time the kernel is
750 * entered.
752 if (frame->tf_eflags & PSL_NT) {
753 frame->tf_eflags &= ~PSL_NT;
754 goto out2;
756 break;
758 case T_TRCTRAP: /* trace trap */
759 if (frame->tf_eip == (int)IDTVEC(syscall)) {
761 * We've just entered system mode via the
762 * syscall lcall. Continue single stepping
763 * silently until the syscall handler has
764 * saved the flags.
766 goto out2;
768 if (frame->tf_eip == (int)IDTVEC(syscall) + 1) {
770 * The syscall handler has now saved the
771 * flags. Stop single stepping it.
773 frame->tf_eflags &= ~PSL_T;
774 goto out2;
777 * Ignore debug register trace traps due to
778 * accesses in the user's address space, which
779 * can happen under several conditions such as
780 * if a user sets a watchpoint on a buffer and
781 * then passes that buffer to a system call.
782 * We still want to get TRCTRAPS for addresses
783 * in kernel space because that is useful when
784 * debugging the kernel.
786 if (user_dbreg_trap()) {
788 * Reset breakpoint bits because the
789 * processor doesn't
791 load_dr6(rdr6() & 0xfffffff0);
792 goto out2;
795 * Fall through (TRCTRAP kernel mode, kernel address)
797 case T_BPTFLT:
799 * If DDB is enabled, let it handle the debugger trap.
800 * Otherwise, debugger traps "can't happen".
802 #ifdef DDB
803 MAKEMPSAFE(have_mplock);
804 if (kdb_trap (type, 0, frame))
805 goto out2;
806 #endif
807 break;
809 #if NISA > 0
810 case T_NMI:
811 MAKEMPSAFE(have_mplock);
812 #ifdef POWERFAIL_NMI
813 #ifndef TIMER_FREQ
814 # define TIMER_FREQ 1193182
815 #endif
816 handle_powerfail:
818 static unsigned lastalert = 0;
820 if(time_second - lastalert > 10)
822 log(LOG_WARNING, "NMI: power fail\n");
823 sysbeep(TIMER_FREQ/880, hz);
824 lastalert = time_second;
826 /* YYY mp count */
827 goto out2;
829 #else /* !POWERFAIL_NMI */
830 /* machine/parity/power fail/"kitchen sink" faults */
831 if (isa_nmi(code) == 0) {
832 #ifdef DDB
834 * NMI can be hooked up to a pushbutton
835 * for debugging.
837 if (ddb_on_nmi) {
838 kprintf ("NMI ... going to debugger\n");
839 kdb_trap (type, 0, frame);
841 #endif /* DDB */
842 goto out2;
843 } else if (panic_on_nmi == 0)
844 goto out2;
845 /* FALL THROUGH */
846 #endif /* POWERFAIL_NMI */
847 #endif /* NISA > 0 */
850 MAKEMPSAFE(have_mplock);
851 trap_fatal(frame, eva);
852 goto out2;
856 * Virtual kernel intercept - if the fault is directly related to a
857 * VM context managed by a virtual kernel then let the virtual kernel
858 * handle it.
860 if (p->p_vkernel && p->p_vkernel->vk_current) {
861 vkernel_trap(p, frame);
862 goto out;
866 * Translate fault for emulators (e.g. Linux)
868 if (*p->p_sysent->sv_transtrap)
869 i = (*p->p_sysent->sv_transtrap)(i, type);
871 MAKEMPSAFE(have_mplock);
872 trapsignal(lp, i, ucode);
874 #ifdef DEBUG
875 if (type <= MAX_TRAP_MSG) {
876 uprintf("fatal process exception: %s",
877 trap_msg[type]);
878 if ((type == T_PAGEFLT) || (type == T_PROTFLT))
879 uprintf(", fault VA = 0x%lx", (u_long)eva);
880 uprintf("\n");
882 #endif
884 out:
885 #ifdef SMP
886 if (ISPL(frame->tf_cs) == SEL_UPL)
887 KASSERT(td->td_mpcount == have_mplock, ("badmpcount trap/end from %p", (void *)frame->tf_eip));
888 #endif
889 userret(lp, frame, sticks);
890 userexit(lp);
891 out2: ;
892 #ifdef SMP
893 if (have_mplock)
894 rel_mplock();
895 #endif
896 #ifdef INVARIANTS
897 KASSERT(crit_count == (td->td_pri & ~TDPRI_MASK),
898 ("syscall: critical section count mismatch! %d/%d",
899 crit_count / TDPRI_CRIT, td->td_pri / TDPRI_CRIT));
900 #endif
904 trap_pfault(struct trapframe *frame, int usermode, vm_offset_t eva)
906 vm_offset_t va;
907 struct vmspace *vm = NULL;
908 vm_map_t map = 0;
909 int rv = 0;
910 vm_prot_t ftype;
911 thread_t td = curthread;
912 struct proc *p = td->td_proc;
914 va = trunc_page(eva);
915 if (va >= KERNBASE) {
917 * Don't allow user-mode faults in kernel address space.
918 * An exception: if the faulting address is the invalid
919 * instruction entry in the IDT, then the Intel Pentium
920 * F00F bug workaround was triggered, and we need to
921 * treat it is as an illegal instruction, and not a page
922 * fault.
924 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
925 if ((eva == (unsigned int)&idt[6]) && has_f00f_bug) {
926 frame->tf_trapno = T_PRIVINFLT;
927 return -2;
929 #endif
930 if (usermode)
931 goto nogo;
933 map = &kernel_map;
934 } else {
936 * This is a fault on non-kernel virtual memory.
937 * vm is initialized above to NULL. If curproc is NULL
938 * or curproc->p_vmspace is NULL the fault is fatal.
940 if (p != NULL)
941 vm = p->p_vmspace;
943 if (vm == NULL)
944 goto nogo;
946 map = &vm->vm_map;
949 if (frame->tf_err & PGEX_W)
950 ftype = VM_PROT_WRITE;
951 else
952 ftype = VM_PROT_READ;
954 if (map != &kernel_map) {
956 * Keep swapout from messing with us during this
957 * critical time.
959 PHOLD(p);
962 * Grow the stack if necessary
964 /* grow_stack returns false only if va falls into
965 * a growable stack region and the stack growth
966 * fails. It returns true if va was not within
967 * a growable stack region, or if the stack
968 * growth succeeded.
970 if (!grow_stack (p, va)) {
971 rv = KERN_FAILURE;
972 PRELE(p);
973 goto nogo;
976 /* Fault in the user page: */
977 rv = vm_fault(map, va, ftype,
978 (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
979 : VM_FAULT_NORMAL);
981 PRELE(p);
982 } else {
984 * Don't have to worry about process locking or stacks in the kernel.
986 rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
989 if (rv == KERN_SUCCESS)
990 return (0);
991 nogo:
992 if (!usermode) {
993 if (td->td_gd->gd_intr_nesting_level == 0 &&
994 td->td_pcb->pcb_onfault) {
995 frame->tf_eip = (register_t)td->td_pcb->pcb_onfault;
996 return (0);
998 trap_fatal(frame, eva);
999 return (-1);
1002 /* kludge to pass faulting virtual address to sendsig */
1003 frame->tf_xflags = frame->tf_err;
1004 frame->tf_err = eva;
1006 return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
1009 static void
1010 trap_fatal(struct trapframe *frame, vm_offset_t eva)
1012 int code, type, ss, esp;
1013 struct soft_segment_descriptor softseg;
1015 code = frame->tf_err;
1016 type = frame->tf_trapno;
1017 sdtossd(&gdt[mycpu->gd_cpuid * NGDT + IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
1019 if (type <= MAX_TRAP_MSG)
1020 kprintf("\n\nFatal trap %d: %s while in %s mode\n",
1021 type, trap_msg[type],
1022 frame->tf_eflags & PSL_VM ? "vm86" :
1023 ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
1024 #ifdef SMP
1025 /* three separate prints in case of a trap on an unmapped page */
1026 kprintf("mp_lock = %08x; ", mp_lock);
1027 kprintf("cpuid = %d; ", mycpu->gd_cpuid);
1028 kprintf("lapic.id = %08x\n", lapic.id);
1029 #endif
1030 if (type == T_PAGEFLT) {
1031 kprintf("fault virtual address = 0x%x\n", eva);
1032 kprintf("fault code = %s %s, %s\n",
1033 code & PGEX_U ? "user" : "supervisor",
1034 code & PGEX_W ? "write" : "read",
1035 code & PGEX_P ? "protection violation" : "page not present");
1037 kprintf("instruction pointer = 0x%x:0x%x\n",
1038 frame->tf_cs & 0xffff, frame->tf_eip);
1039 if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {
1040 ss = frame->tf_ss & 0xffff;
1041 esp = frame->tf_esp;
1042 } else {
1043 ss = GSEL(GDATA_SEL, SEL_KPL);
1044 esp = (int)&frame->tf_esp;
1046 kprintf("stack pointer = 0x%x:0x%x\n", ss, esp);
1047 kprintf("frame pointer = 0x%x:0x%x\n", ss, frame->tf_ebp);
1048 kprintf("code segment = base 0x%x, limit 0x%x, type 0x%x\n",
1049 softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
1050 kprintf(" = DPL %d, pres %d, def32 %d, gran %d\n",
1051 softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
1052 softseg.ssd_gran);
1053 kprintf("processor eflags = ");
1054 if (frame->tf_eflags & PSL_T)
1055 kprintf("trace trap, ");
1056 if (frame->tf_eflags & PSL_I)
1057 kprintf("interrupt enabled, ");
1058 if (frame->tf_eflags & PSL_NT)
1059 kprintf("nested task, ");
1060 if (frame->tf_eflags & PSL_RF)
1061 kprintf("resume, ");
1062 if (frame->tf_eflags & PSL_VM)
1063 kprintf("vm86, ");
1064 kprintf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
1065 kprintf("current process = ");
1066 if (curproc) {
1067 kprintf("%lu (%s)\n",
1068 (u_long)curproc->p_pid, curproc->p_comm ?
1069 curproc->p_comm : "");
1070 } else {
1071 kprintf("Idle\n");
1073 kprintf("current thread = pri %d ", curthread->td_pri);
1074 if (curthread->td_pri >= TDPRI_CRIT)
1075 kprintf("(CRIT)");
1076 kprintf("\n");
1077 #ifdef SMP
1079 * XXX FIXME:
1080 * we probably SHOULD have stopped the other CPUs before now!
1081 * another CPU COULD have been touching cpl at this moment...
1083 kprintf(" <- SMP: XXX");
1084 #endif
1085 kprintf("\n");
1087 #ifdef KDB
1088 if (kdb_trap(&psl))
1089 return;
1090 #endif
1091 #ifdef DDB
1092 if ((debugger_on_panic || db_active) && kdb_trap(type, code, frame))
1093 return;
1094 #endif
1095 kprintf("trap number = %d\n", type);
1096 if (type <= MAX_TRAP_MSG)
1097 panic("%s", trap_msg[type]);
1098 else
1099 panic("unknown/reserved trap");
1103 * Double fault handler. Called when a fault occurs while writing
1104 * a frame for a trap/exception onto the stack. This usually occurs
1105 * when the stack overflows (such is the case with infinite recursion,
1106 * for example).
1108 * XXX Note that the current PTD gets replaced by IdlePTD when the
1109 * task switch occurs. This means that the stack that was active at
1110 * the time of the double fault is not available at <kstack> unless
1111 * the machine was idle when the double fault occurred. The downside
1112 * of this is that "trace <ebp>" in ddb won't work.
1114 void
1115 dblfault_handler(void)
1117 struct mdglobaldata *gd = mdcpu;
1119 kprintf("\nFatal double fault:\n");
1120 kprintf("eip = 0x%x\n", gd->gd_common_tss.tss_eip);
1121 kprintf("esp = 0x%x\n", gd->gd_common_tss.tss_esp);
1122 kprintf("ebp = 0x%x\n", gd->gd_common_tss.tss_ebp);
1123 #ifdef SMP
1124 /* three separate prints in case of a trap on an unmapped page */
1125 kprintf("mp_lock = %08x; ", mp_lock);
1126 kprintf("cpuid = %d; ", mycpu->gd_cpuid);
1127 kprintf("lapic.id = %08x\n", lapic.id);
1128 #endif
1129 panic("double fault");
1133 * Compensate for 386 brain damage (missing URKR).
1134 * This is a little simpler than the pagefault handler in trap() because
1135 * it the page tables have already been faulted in and high addresses
1136 * are thrown out early for other reasons.
1139 trapwrite(unsigned addr)
1141 struct proc *p;
1142 vm_offset_t va;
1143 struct vmspace *vm;
1144 int rv;
1146 va = trunc_page((vm_offset_t)addr);
1148 * XXX - MAX is END. Changed > to >= for temp. fix.
1150 if (va >= VM_MAX_USER_ADDRESS)
1151 return (1);
1153 p = curproc;
1154 vm = p->p_vmspace;
1156 PHOLD(p);
1158 if (!grow_stack (p, va)) {
1159 PRELE(p);
1160 return (1);
1164 * fault the data page
1166 rv = vm_fault(&vm->vm_map, va, VM_PROT_WRITE, VM_FAULT_DIRTY);
1168 PRELE(p);
1170 if (rv != KERN_SUCCESS)
1171 return 1;
1173 return (0);
1177 * syscall2 - MP aware system call request C handler
1179 * A system call is essentially treated as a trap except that the
1180 * MP lock is not held on entry or return. We are responsible for
1181 * obtaining the MP lock if necessary and for handling ASTs
1182 * (e.g. a task switch) prior to return.
1184 * In general, only simple access and manipulation of curproc and
1185 * the current stack is allowed without having to hold MP lock.
1187 * MPSAFE - note that large sections of this routine are run without
1188 * the MP lock.
1191 void
1192 syscall2(struct trapframe *frame)
1194 struct thread *td = curthread;
1195 struct proc *p = td->td_proc;
1196 struct lwp *lp = td->td_lwp;
1197 caddr_t params;
1198 struct sysent *callp;
1199 register_t orig_tf_eflags;
1200 int sticks;
1201 int error;
1202 int narg;
1203 #ifdef INVARIANTS
1204 int crit_count = td->td_pri & ~TDPRI_MASK;
1205 #endif
1206 #ifdef SMP
1207 int have_mplock = 0;
1208 #endif
1209 u_int code;
1210 union sysunion args;
1212 #ifdef DIAGNOSTIC
1213 if (ISPL(frame->tf_cs) != SEL_UPL) {
1214 get_mplock();
1215 panic("syscall");
1216 /* NOT REACHED */
1218 #endif
1220 #ifdef SMP
1221 KASSERT(td->td_mpcount == 0, ("badmpcount syscall2 from %p", (void *)frame->tf_eip));
1222 if (syscall_mpsafe == 0)
1223 MAKEMPSAFE(have_mplock);
1224 #endif
1225 userenter(td); /* lazy raise our priority */
1228 * Misc
1230 sticks = (int)td->td_sticks;
1231 orig_tf_eflags = frame->tf_eflags;
1234 * Virtual kernel intercept - if a VM context managed by a virtual
1235 * kernel issues a system call the virtual kernel handles it, not us.
1236 * Restore the virtual kernel context and return from its system
1237 * call. The current frame is copied out to the virtual kernel.
1239 if (p->p_vkernel && p->p_vkernel->vk_current) {
1240 error = vkernel_trap(p, frame);
1241 frame->tf_eax = error;
1242 if (error)
1243 frame->tf_eflags |= PSL_C;
1244 error = EJUSTRETURN;
1245 goto out;
1249 * Get the system call parameters and account for time
1251 lp->lwp_md.md_regs = frame;
1252 params = (caddr_t)frame->tf_esp + sizeof(int);
1253 code = frame->tf_eax;
1255 if (p->p_sysent->sv_prepsyscall) {
1256 (*p->p_sysent->sv_prepsyscall)(
1257 frame, (int *)(&args.nosys.sysmsg + 1),
1258 &code, &params);
1259 } else {
1261 * Need to check if this is a 32 bit or 64 bit syscall.
1262 * fuword is MP aware.
1264 if (code == SYS_syscall) {
1266 * Code is first argument, followed by actual args.
1268 code = fuword(params);
1269 params += sizeof(int);
1270 } else if (code == SYS___syscall) {
1272 * Like syscall, but code is a quad, so as to maintain
1273 * quad alignment for the rest of the arguments.
1275 code = fuword(params);
1276 params += sizeof(quad_t);
1280 code &= p->p_sysent->sv_mask;
1281 if (code >= p->p_sysent->sv_size)
1282 callp = &p->p_sysent->sv_table[0];
1283 else
1284 callp = &p->p_sysent->sv_table[code];
1286 narg = callp->sy_narg & SYF_ARGMASK;
1289 * copyin is MP aware, but the tracing code is not
1291 if (narg && params) {
1292 error = copyin(params, (caddr_t)(&args.nosys.sysmsg + 1),
1293 narg * sizeof(register_t));
1294 if (error) {
1295 #ifdef KTRACE
1296 if (KTRPOINT(td, KTR_SYSCALL)) {
1297 MAKEMPSAFE(have_mplock);
1299 ktrsyscall(p, code, narg,
1300 (void *)(&args.nosys.sysmsg + 1));
1302 #endif
1303 goto bad;
1307 #ifdef KTRACE
1308 if (KTRPOINT(td, KTR_SYSCALL)) {
1309 MAKEMPSAFE(have_mplock);
1310 ktrsyscall(p, code, narg, (void *)(&args.nosys.sysmsg + 1));
1312 #endif
1315 * For traditional syscall code edx is left untouched when 32 bit
1316 * results are returned. Since edx is loaded from fds[1] when the
1317 * system call returns we pre-set it here.
1319 args.sysmsg_fds[0] = 0;
1320 args.sysmsg_fds[1] = frame->tf_edx;
1323 * The syscall might manipulate the trap frame. If it does it
1324 * will probably return EJUSTRETURN.
1326 args.sysmsg_frame = frame;
1328 STOPEVENT(p, S_SCE, narg); /* MP aware */
1330 #ifdef SMP
1332 * Try to run the syscall without the MP lock if the syscall
1333 * is MP safe. We have to obtain the MP lock no matter what if
1334 * we are ktracing
1336 if ((callp->sy_narg & SYF_MPSAFE) == 0)
1337 MAKEMPSAFE(have_mplock);
1338 #endif
1340 error = (*callp->sy_call)(&args);
1342 out:
1344 * MP SAFE (we may or may not have the MP lock at this point)
1346 switch (error) {
1347 case 0:
1349 * Reinitialize proc pointer `p' as it may be different
1350 * if this is a child returning from fork syscall.
1352 p = curproc;
1353 lp = curthread->td_lwp;
1354 frame->tf_eax = args.sysmsg_fds[0];
1355 frame->tf_edx = args.sysmsg_fds[1];
1356 frame->tf_eflags &= ~PSL_C;
1357 break;
1358 case ERESTART:
1360 * Reconstruct pc, assuming lcall $X,y is 7 bytes,
1361 * int 0x80 is 2 bytes. We saved this in tf_err.
1363 frame->tf_eip -= frame->tf_err;
1364 break;
1365 case EJUSTRETURN:
1366 break;
1367 case EASYNC:
1368 panic("Unexpected EASYNC return value (for now)");
1369 default:
1370 bad:
1371 if (p->p_sysent->sv_errsize) {
1372 if (error >= p->p_sysent->sv_errsize)
1373 error = -1; /* XXX */
1374 else
1375 error = p->p_sysent->sv_errtbl[error];
1377 frame->tf_eax = error;
1378 frame->tf_eflags |= PSL_C;
1379 break;
1383 * Traced syscall. trapsignal() is not MP aware.
1385 if ((orig_tf_eflags & PSL_T) && !(orig_tf_eflags & PSL_VM)) {
1386 MAKEMPSAFE(have_mplock);
1387 frame->tf_eflags &= ~PSL_T;
1388 trapsignal(lp, SIGTRAP, 0);
1392 * Handle reschedule and other end-of-syscall issues
1394 userret(lp, frame, sticks);
1396 #ifdef KTRACE
1397 if (KTRPOINT(td, KTR_SYSRET)) {
1398 MAKEMPSAFE(have_mplock);
1399 ktrsysret(p, code, error, args.sysmsg_result);
1401 #endif
1404 * This works because errno is findable through the
1405 * register set. If we ever support an emulation where this
1406 * is not the case, this code will need to be revisited.
1408 STOPEVENT(p, S_SCX, code);
1410 userexit(lp);
1411 #ifdef SMP
1413 * Release the MP lock if we had to get it
1415 KASSERT(td->td_mpcount == have_mplock,
1416 ("badmpcount syscall2/end from %p", (void *)frame->tf_eip));
1417 if (have_mplock)
1418 rel_mplock();
1419 #endif
1420 #ifdef INVARIANTS
1421 KASSERT(crit_count == (td->td_pri & ~TDPRI_MASK),
1422 ("syscall: critical section count mismatch! %d/%d",
1423 crit_count / TDPRI_CRIT, td->td_pri / TDPRI_CRIT));
1424 #endif
1427 void
1428 fork_return(struct lwp *lp, struct trapframe *frame)
1430 frame->tf_eax = 0; /* Child returns zero */
1431 frame->tf_eflags &= ~PSL_C; /* success */
1432 frame->tf_edx = 1;
1434 generic_lwp_return(lp, frame);
1438 * Simplified back end of syscall(), used when returning from fork()
1439 * directly into user mode. MP lock is held on entry and should be
1440 * released on return. This code will return back into the fork
1441 * trampoline code which then runs doreti.
1443 void
1444 generic_lwp_return(struct lwp *lp, struct trapframe *frame)
1446 struct proc *p = lp->lwp_proc;
1449 * Newly forked processes are given a kernel priority. We have to
1450 * adjust the priority to a normal user priority and fake entry
1451 * into the kernel (call userenter()) to install a passive release
1452 * function just in case userret() decides to stop the process. This
1453 * can occur when ^Z races a fork. If we do not install the passive
1454 * release function the current process designation will not be
1455 * released when the thread goes to sleep.
1457 lwkt_setpri_self(TDPRI_USER_NORM);
1458 userenter(lp->lwp_thread);
1459 userret(lp, frame, 0);
1460 #ifdef KTRACE
1461 if (KTRPOINT(lp->lwp_thread, KTR_SYSRET))
1462 ktrsysret(p, SYS_fork, 0, 0);
1463 #endif
1464 p->p_flag |= P_PASSIVE_ACQ;
1465 userexit(lp);
1466 p->p_flag &= ~P_PASSIVE_ACQ;
1467 #ifdef SMP
1468 KKASSERT(lp->lwp_thread->td_mpcount == 1);
1469 rel_mplock();
1470 #endif
1474 * If PGEX_FPFAULT is set then set FP_VIRTFP in the PCB to force a T_DNA
1475 * fault (which is then passed back to the virtual kernel) if an attempt is
1476 * made to use the FP unit.
1478 * XXX this is a fairly big hack.
1480 void
1481 set_vkernel_fp(struct trapframe *frame)
1483 struct thread *td = curthread;
1485 if (frame->tf_xflags & PGEX_FPFAULT) {
1486 td->td_pcb->pcb_flags |= FP_VIRTFP;
1487 if (mdcpu->gd_npxthread == td)
1488 npxexit();
1489 } else {
1490 td->td_pcb->pcb_flags &= ~FP_VIRTFP;