2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95
34 * $FreeBSD: src/sys/ufs/ffs/ffs_alloc.c,v 1.64.2.2 2001/09/21 19:15:21 dillon Exp $
35 * $DragonFly: src/sys/vfs/ufs/ffs_alloc.c,v 1.27 2006/12/29 17:10:20 swildner Exp $
38 #include "opt_quota.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
45 #include <sys/vnode.h>
46 #include <sys/mount.h>
47 #include <sys/kernel.h>
48 #include <sys/sysctl.h>
49 #include <sys/syslog.h>
51 #include <machine/inttypes.h>
55 #include "ufs_extern.h"
59 #include "ffs_extern.h"
61 typedef ufs_daddr_t
allocfcn_t (struct inode
*ip
, int cg
, ufs_daddr_t bpref
,
64 static ufs_daddr_t
ffs_alloccg (struct inode
*, int, ufs_daddr_t
, int);
66 ffs_alloccgblk (struct inode
*, struct buf
*, ufs_daddr_t
);
68 static int ffs_checkblk (struct inode
*, ufs_daddr_t
, long);
70 static void ffs_clusteracct (struct fs
*, struct cg
*, ufs_daddr_t
,
72 static ufs_daddr_t
ffs_clusteralloc (struct inode
*, int, ufs_daddr_t
,
74 static ino_t
ffs_dirpref (struct inode
*);
75 static ufs_daddr_t
ffs_fragextend (struct inode
*, int, long, int, int);
76 static void ffs_fserr (struct fs
*, uint
, char *);
77 static u_long ffs_hashalloc
78 (struct inode
*, int, long, int, allocfcn_t
*);
79 static ino_t
ffs_nodealloccg (struct inode
*, int, ufs_daddr_t
, int);
80 static ufs_daddr_t
ffs_mapsearch (struct fs
*, struct cg
*, ufs_daddr_t
,
84 * Allocate a block in the filesystem.
86 * The size of the requested block is given, which must be some
87 * multiple of fs_fsize and <= fs_bsize.
88 * A preference may be optionally specified. If a preference is given
89 * the following hierarchy is used to allocate a block:
90 * 1) allocate the requested block.
91 * 2) allocate a rotationally optimal block in the same cylinder.
92 * 3) allocate a block in the same cylinder group.
93 * 4) quadradically rehash into other cylinder groups, until an
94 * available block is located.
95 * If no block preference is given the following heirarchy is used
96 * to allocate a block:
97 * 1) allocate a block in the cylinder group that contains the
99 * 2) quadradically rehash into other cylinder groups, until an
100 * available block is located.
103 ffs_alloc(struct inode
*ip
, ufs_daddr_t lbn
, ufs_daddr_t bpref
, int size
,
104 struct ucred
*cred
, ufs_daddr_t
*bnp
)
116 if ((uint
)size
> fs
->fs_bsize
|| fragoff(fs
, size
) != 0) {
117 kprintf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
118 devtoname(ip
->i_dev
), (long)fs
->fs_bsize
, size
,
120 panic("ffs_alloc: bad size");
123 panic("ffs_alloc: missing credential");
124 #endif /* DIAGNOSTIC */
125 if (size
== fs
->fs_bsize
&& fs
->fs_cstotal
.cs_nbfree
== 0)
127 if (cred
->cr_uid
!= 0 &&
128 freespace(fs
, fs
->fs_minfree
) - numfrags(fs
, size
) < 0)
131 error
= ufs_chkdq(ip
, (long)btodb(size
), cred
, 0);
135 if (bpref
>= fs
->fs_size
)
138 cg
= ino_to_cg(fs
, ip
->i_number
);
140 cg
= dtog(fs
, bpref
);
141 bno
= (ufs_daddr_t
)ffs_hashalloc(ip
, cg
, (long)bpref
, size
,
144 ip
->i_blocks
+= btodb(size
);
145 ip
->i_flag
|= IN_CHANGE
| IN_UPDATE
;
151 * Restore user's disk quota because allocation failed.
153 (void) ufs_chkdq(ip
, (long)-btodb(size
), cred
, FORCE
);
156 ffs_fserr(fs
, cred
->cr_uid
, "filesystem full");
157 uprintf("\n%s: write failed, filesystem is full\n", fs
->fs_fsmnt
);
162 * Reallocate a fragment to a bigger size
164 * The number and size of the old block is given, and a preference
165 * and new size is also specified. The allocator attempts to extend
166 * the original block. Failing that, the regular block allocator is
167 * invoked to get an appropriate block.
170 ffs_realloccg(struct inode
*ip
, ufs_daddr_t lbprev
, ufs_daddr_t bpref
,
171 int osize
, int nsize
, struct ucred
*cred
, struct buf
**bpp
)
175 int cg
, request
, error
;
176 ufs_daddr_t bprev
, bno
;
181 if ((uint
)osize
> fs
->fs_bsize
|| fragoff(fs
, osize
) != 0 ||
182 (uint
)nsize
> fs
->fs_bsize
|| fragoff(fs
, nsize
) != 0) {
184 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
185 devtoname(ip
->i_dev
), (long)fs
->fs_bsize
, osize
,
186 nsize
, fs
->fs_fsmnt
);
187 panic("ffs_realloccg: bad size");
190 panic("ffs_realloccg: missing credential");
191 #endif /* DIAGNOSTIC */
192 if (cred
->cr_uid
!= 0 &&
193 freespace(fs
, fs
->fs_minfree
) - numfrags(fs
, nsize
- osize
) < 0)
195 if ((bprev
= ip
->i_db
[lbprev
]) == 0) {
196 kprintf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n",
197 devtoname(ip
->i_dev
), (long)fs
->fs_bsize
, (long)bprev
,
199 panic("ffs_realloccg: bad bprev");
202 * Allocate the extra space in the buffer.
204 error
= bread(ITOV(ip
), lblktodoff(fs
, lbprev
), osize
, &bp
);
210 if(bp
->b_bio2
.bio_offset
== NOOFFSET
) {
211 if( lbprev
>= NDADDR
)
212 panic("ffs_realloccg: lbprev out of range");
213 bp
->b_bio2
.bio_offset
= fsbtodoff(fs
, bprev
);
217 error
= ufs_chkdq(ip
, (long)btodb(nsize
- osize
), cred
, 0);
224 * Check for extension in the existing location.
226 cg
= dtog(fs
, bprev
);
227 bno
= ffs_fragextend(ip
, cg
, (long)bprev
, osize
, nsize
);
229 if (bp
->b_bio2
.bio_offset
!= fsbtodoff(fs
, bno
))
230 panic("ffs_realloccg: bad blockno");
231 ip
->i_blocks
+= btodb(nsize
- osize
);
232 ip
->i_flag
|= IN_CHANGE
| IN_UPDATE
;
234 bzero((char *)bp
->b_data
+ osize
, (uint
)nsize
- osize
);
239 * Allocate a new disk location.
241 if (bpref
>= fs
->fs_size
)
243 switch ((int)fs
->fs_optim
) {
246 * Allocate an exact sized fragment. Although this makes
247 * best use of space, we will waste time relocating it if
248 * the file continues to grow. If the fragmentation is
249 * less than half of the minimum free reserve, we choose
250 * to begin optimizing for time.
253 if (fs
->fs_minfree
<= 5 ||
254 fs
->fs_cstotal
.cs_nffree
>
255 (off_t
)fs
->fs_dsize
* fs
->fs_minfree
/ (2 * 100))
257 log(LOG_NOTICE
, "%s: optimization changed from SPACE to TIME\n",
259 fs
->fs_optim
= FS_OPTTIME
;
263 * At this point we have discovered a file that is trying to
264 * grow a small fragment to a larger fragment. To save time,
265 * we allocate a full sized block, then free the unused portion.
266 * If the file continues to grow, the `ffs_fragextend' call
267 * above will be able to grow it in place without further
268 * copying. If aberrant programs cause disk fragmentation to
269 * grow within 2% of the free reserve, we choose to begin
270 * optimizing for space.
272 request
= fs
->fs_bsize
;
273 if (fs
->fs_cstotal
.cs_nffree
<
274 (off_t
)fs
->fs_dsize
* (fs
->fs_minfree
- 2) / 100)
276 log(LOG_NOTICE
, "%s: optimization changed from TIME to SPACE\n",
278 fs
->fs_optim
= FS_OPTSPACE
;
281 kprintf("dev = %s, optim = %ld, fs = %s\n",
282 devtoname(ip
->i_dev
), (long)fs
->fs_optim
, fs
->fs_fsmnt
);
283 panic("ffs_realloccg: bad optim");
286 bno
= (ufs_daddr_t
)ffs_hashalloc(ip
, cg
, (long)bpref
, request
,
289 bp
->b_bio2
.bio_offset
= fsbtodoff(fs
, bno
);
290 if (!DOINGSOFTDEP(ITOV(ip
)))
291 ffs_blkfree(ip
, bprev
, (long)osize
);
293 ffs_blkfree(ip
, bno
+ numfrags(fs
, nsize
),
294 (long)(request
- nsize
));
295 ip
->i_blocks
+= btodb(nsize
- osize
);
296 ip
->i_flag
|= IN_CHANGE
| IN_UPDATE
;
298 bzero((char *)bp
->b_data
+ osize
, (uint
)nsize
- osize
);
304 * Restore user's disk quota because allocation failed.
306 (void) ufs_chkdq(ip
, (long)-btodb(nsize
- osize
), cred
, FORCE
);
313 ffs_fserr(fs
, cred
->cr_uid
, "filesystem full");
314 uprintf("\n%s: write failed, filesystem is full\n", fs
->fs_fsmnt
);
318 SYSCTL_NODE(_vfs
, OID_AUTO
, ffs
, CTLFLAG_RW
, 0, "FFS filesystem");
321 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
323 * The vnode and an array of buffer pointers for a range of sequential
324 * logical blocks to be made contiguous is given. The allocator attempts
325 * to find a range of sequential blocks starting as close as possible to
326 * an fs_rotdelay offset from the end of the allocation for the logical
327 * block immediately preceeding the current range. If successful, the
328 * physical block numbers in the buffer pointers and in the inode are
329 * changed to reflect the new allocation. If unsuccessful, the allocation
330 * is left unchanged. The success in doing the reallocation is returned.
331 * Note that the error return is not reflected back to the user. Rather
332 * the previous block allocation will be used.
334 static int doasyncfree
= 1;
335 SYSCTL_INT(_vfs_ffs
, FFS_ASYNCFREE
, doasyncfree
, CTLFLAG_RW
, &doasyncfree
, 0, "");
337 static int doreallocblks
= 1;
338 SYSCTL_INT(_vfs_ffs
, FFS_REALLOCBLKS
, doreallocblks
, CTLFLAG_RW
, &doreallocblks
, 0, "");
341 static volatile int prtrealloc
= 0;
345 * ffs_reallocblks(struct vnode *a_vp, struct cluster_save *a_buflist)
348 ffs_reallocblks(struct vop_reallocblks_args
*ap
)
353 struct buf
*sbp
, *ebp
;
354 ufs_daddr_t
*bap
, *sbap
, *ebap
= 0;
355 struct cluster_save
*buflist
;
356 ufs_daddr_t start_lbn
, end_lbn
, soff
, newblk
, blkno
;
360 struct indir start_ap
[NIADDR
+ 1], end_ap
[NIADDR
+ 1], *idp
;
361 int i
, len
, slen
, start_lvl
, end_lvl
, pref
, ssize
;
363 if (doreallocblks
== 0)
368 if (fs
->fs_contigsumsize
<= 0)
370 buflist
= ap
->a_buflist
;
371 len
= buflist
->bs_nchildren
;
372 start_lbn
= lblkno(fs
, buflist
->bs_children
[0]->b_loffset
);
373 end_lbn
= start_lbn
+ len
- 1;
375 for (i
= 0; i
< len
; i
++)
376 if (!ffs_checkblk(ip
,
377 dofftofsb(fs
, buflist
->bs_children
[i
]->b_bio2
.bio_offset
), fs
->fs_bsize
))
378 panic("ffs_reallocblks: unallocated block 1");
379 for (i
= 1; i
< len
; i
++) {
380 if (buflist
->bs_children
[i
]->b_loffset
!= lblktodoff(fs
, start_lbn
) + lblktodoff(fs
, i
))
381 panic("ffs_reallocblks: non-logical cluster");
383 boffset
= buflist
->bs_children
[0]->b_bio2
.bio_offset
;
384 ssize
= (int)fsbtodoff(fs
, fs
->fs_frag
);
385 for (i
= 1; i
< len
- 1; i
++)
386 if (buflist
->bs_children
[i
]->b_bio2
.bio_offset
!= boffset
+ (i
* ssize
))
387 panic("ffs_reallocblks: non-physical cluster %d", i
);
390 * If the latest allocation is in a new cylinder group, assume that
391 * the filesystem has decided to move and do not force it back to
392 * the previous cylinder group.
394 if (dtog(fs
, dofftofsb(fs
, buflist
->bs_children
[0]->b_bio2
.bio_offset
)) !=
395 dtog(fs
, dofftofsb(fs
, buflist
->bs_children
[len
- 1]->b_bio2
.bio_offset
)))
397 if (ufs_getlbns(vp
, start_lbn
, start_ap
, &start_lvl
) ||
398 ufs_getlbns(vp
, end_lbn
, end_ap
, &end_lvl
))
401 * Get the starting offset and block map for the first block and
402 * the number of blocks that will fit into sbap starting at soff.
404 if (start_lvl
== 0) {
407 slen
= NDADDR
- soff
;
409 idp
= &start_ap
[start_lvl
- 1];
410 if (bread(vp
, lblktodoff(fs
, idp
->in_lbn
), (int)fs
->fs_bsize
, &sbp
)) {
414 sbap
= (ufs_daddr_t
*)sbp
->b_data
;
416 slen
= fs
->fs_nindir
- soff
;
419 * Find the preferred location for the cluster.
421 pref
= ffs_blkpref(ip
, start_lbn
, soff
, sbap
);
423 * If the block range spans two block maps, get the second map.
425 if (end_lvl
== 0 || (idp
= &end_ap
[end_lvl
- 1])->in_off
+ 1 >= len
) {
429 if (start_ap
[start_lvl
-1].in_lbn
== idp
->in_lbn
)
430 panic("ffs_reallocblk: start == end");
432 ssize
= len
- (idp
->in_off
+ 1);
433 if (bread(vp
, lblktodoff(fs
, idp
->in_lbn
), (int)fs
->fs_bsize
, &ebp
))
435 ebap
= (ufs_daddr_t
*)ebp
->b_data
;
439 * Make sure we aren't spanning more then two blockmaps. ssize is
440 * our calculation of the span we have to scan in the first blockmap,
441 * while slen is our calculation of the number of entries available
442 * in the first blockmap (from soff).
445 panic("ffs_reallocblks: range spans more then two blockmaps!"
446 " start_lbn %ld len %d (%d/%d)",
447 (long)start_lbn
, len
, slen
, ssize
);
450 * Search the block map looking for an allocation of the desired size.
452 if ((newblk
= (ufs_daddr_t
)ffs_hashalloc(ip
, dtog(fs
, pref
), (long)pref
,
453 len
, ffs_clusteralloc
)) == 0)
456 * We have found a new contiguous block.
458 * First we have to replace the old block pointers with the new
459 * block pointers in the inode and indirect blocks associated
464 kprintf("realloc: ino %ju, lbns %d-%d\n\told:",
465 (uintmax_t)ip
->i_number
, start_lbn
, end_lbn
);
468 for (bap
= &sbap
[soff
], i
= 0; i
< len
; i
++, blkno
+= fs
->fs_frag
) {
474 if (!ffs_checkblk(ip
,
475 dofftofsb(fs
, buflist
->bs_children
[i
]->b_bio2
.bio_offset
), fs
->fs_bsize
))
476 panic("ffs_reallocblks: unallocated block 2");
477 if (dofftofsb(fs
, buflist
->bs_children
[i
]->b_bio2
.bio_offset
) != *bap
)
478 panic("ffs_reallocblks: alloc mismatch");
482 kprintf(" %d,", *bap
);
484 if (DOINGSOFTDEP(vp
)) {
485 if (sbap
== &ip
->i_db
[0] && i
< ssize
)
486 softdep_setup_allocdirect(ip
, start_lbn
+ i
,
487 blkno
, *bap
, fs
->fs_bsize
, fs
->fs_bsize
,
488 buflist
->bs_children
[i
]);
490 softdep_setup_allocindir_page(ip
, start_lbn
+ i
,
491 i
< ssize
? sbp
: ebp
, soff
+ i
, blkno
,
492 *bap
, buflist
->bs_children
[i
]);
497 * Next we must write out the modified inode and indirect blocks.
498 * For strict correctness, the writes should be synchronous since
499 * the old block values may have been written to disk. In practise
500 * they are almost never written, but if we are concerned about
501 * strict correctness, the `doasyncfree' flag should be set to zero.
503 * The test on `doasyncfree' should be changed to test a flag
504 * that shows whether the associated buffers and inodes have
505 * been written. The flag should be set when the cluster is
506 * started and cleared whenever the buffer or inode is flushed.
507 * We can then check below to see if it is set, and do the
508 * synchronous write only when it has been cleared.
510 if (sbap
!= &ip
->i_db
[0]) {
516 ip
->i_flag
|= IN_CHANGE
| IN_UPDATE
;
527 * Last, free the old blocks and assign the new blocks to the buffers.
533 for (blkno
= newblk
, i
= 0; i
< len
; i
++, blkno
+= fs
->fs_frag
) {
534 if (!DOINGSOFTDEP(vp
))
536 dofftofsb(fs
, buflist
->bs_children
[i
]->b_bio2
.bio_offset
),
538 buflist
->bs_children
[i
]->b_bio2
.bio_offset
= fsbtodoff(fs
, blkno
);
540 if (!ffs_checkblk(ip
,
541 dofftofsb(fs
, buflist
->bs_children
[i
]->b_bio2
.bio_offset
), fs
->fs_bsize
))
542 panic("ffs_reallocblks: unallocated block 3");
546 kprintf(" %d,", blkno
);
560 if (sbap
!= &ip
->i_db
[0])
566 * Allocate an inode in the filesystem.
568 * If allocating a directory, use ffs_dirpref to select the inode.
569 * If allocating in a directory, the following hierarchy is followed:
570 * 1) allocate the preferred inode.
571 * 2) allocate an inode in the same cylinder group.
572 * 3) quadradically rehash into other cylinder groups, until an
573 * available inode is located.
574 * If no inode preference is given the following heirarchy is used
575 * to allocate an inode:
576 * 1) allocate an inode in cylinder group 0.
577 * 2) quadradically rehash into other cylinder groups, until an
578 * available inode is located.
581 ffs_valloc(struct vnode
*pvp
, int mode
, struct ucred
*cred
, struct vnode
**vpp
)
592 if (fs
->fs_cstotal
.cs_nifree
== 0)
595 if ((mode
& IFMT
) == IFDIR
)
596 ipref
= ffs_dirpref(pip
);
598 ipref
= pip
->i_number
;
599 if (ipref
>= fs
->fs_ncg
* fs
->fs_ipg
)
601 cg
= ino_to_cg(fs
, ipref
);
603 * Track number of dirs created one after another
604 * in a same cg without intervening by files.
606 if ((mode
& IFMT
) == IFDIR
) {
607 if (fs
->fs_contigdirs
[cg
] < 255)
608 fs
->fs_contigdirs
[cg
]++;
610 if (fs
->fs_contigdirs
[cg
] > 0)
611 fs
->fs_contigdirs
[cg
]--;
613 ino
= (ino_t
)ffs_hashalloc(pip
, cg
, (long)ipref
, mode
,
614 (allocfcn_t
*)ffs_nodealloccg
);
617 error
= VFS_VGET(pvp
->v_mount
, ino
, vpp
);
619 ffs_vfree(pvp
, ino
, mode
);
624 kprintf("mode = 0%o, inum = %lu, fs = %s\n",
625 ip
->i_mode
, (u_long
)ip
->i_number
, fs
->fs_fsmnt
);
626 panic("ffs_valloc: dup alloc");
628 if (ip
->i_blocks
) { /* XXX */
629 kprintf("free inode %s/%lu had %ld blocks\n",
630 fs
->fs_fsmnt
, (u_long
)ino
, (long)ip
->i_blocks
);
635 * Set up a new generation number for this inode.
637 if (ip
->i_gen
== 0 || ++ip
->i_gen
== 0)
638 ip
->i_gen
= krandom() / 2 + 1;
641 ffs_fserr(fs
, cred
->cr_uid
, "out of inodes");
642 uprintf("\n%s: create/symlink failed, no inodes free\n", fs
->fs_fsmnt
);
647 * Find a cylinder group to place a directory.
649 * The policy implemented by this algorithm is to allocate a
650 * directory inode in the same cylinder group as its parent
651 * directory, but also to reserve space for its files inodes
652 * and data. Restrict the number of directories which may be
653 * allocated one after another in the same cylinder group
654 * without intervening allocation of files.
656 * If we allocate a first level directory then force allocation
657 * in another cylinder group.
660 ffs_dirpref(struct inode
*pip
)
663 int cg
, prefcg
, dirsize
, cgsize
;
665 int avgifree
, avgbfree
, avgndir
, curdirsize
;
666 int minifree
, minbfree
, maxndir
;
672 avgifree
= fs
->fs_cstotal
.cs_nifree
/ fs
->fs_ncg
;
673 avgbfree
= fs
->fs_cstotal
.cs_nbfree
/ fs
->fs_ncg
;
674 avgndir
= fs
->fs_cstotal
.cs_ndir
/ fs
->fs_ncg
;
677 * Force allocation in another cg if creating a first level dir.
679 if (ITOV(pip
)->v_flag
& VROOT
) {
680 prefcg
= karc4random() % fs
->fs_ncg
;
682 minndir
= fs
->fs_ipg
;
683 for (cg
= prefcg
; cg
< fs
->fs_ncg
; cg
++)
684 if (fs
->fs_cs(fs
, cg
).cs_ndir
< minndir
&&
685 fs
->fs_cs(fs
, cg
).cs_nifree
>= avgifree
&&
686 fs
->fs_cs(fs
, cg
).cs_nbfree
>= avgbfree
) {
688 minndir
= fs
->fs_cs(fs
, cg
).cs_ndir
;
690 for (cg
= 0; cg
< prefcg
; cg
++)
691 if (fs
->fs_cs(fs
, cg
).cs_ndir
< minndir
&&
692 fs
->fs_cs(fs
, cg
).cs_nifree
>= avgifree
&&
693 fs
->fs_cs(fs
, cg
).cs_nbfree
>= avgbfree
) {
695 minndir
= fs
->fs_cs(fs
, cg
).cs_ndir
;
697 return ((ino_t
)(fs
->fs_ipg
* mincg
));
701 * Count various limits which used for
702 * optimal allocation of a directory inode.
704 maxndir
= min(avgndir
+ fs
->fs_ipg
/ 16, fs
->fs_ipg
);
705 minifree
= avgifree
- avgifree
/ 4;
708 minbfree
= avgbfree
- avgbfree
/ 4;
711 cgsize
= fs
->fs_fsize
* fs
->fs_fpg
;
714 * fs_avgfilesize and fs_avgfpdir are user-settable entities and
715 * multiplying them may overflow a 32 bit integer.
717 dirsize64
= fs
->fs_avgfilesize
* (int64_t)fs
->fs_avgfpdir
;
718 if (dirsize64
> 0x7fffffff) {
721 dirsize
= (int)dirsize64
;
722 curdirsize
= avgndir
?
723 (cgsize
- avgbfree
* fs
->fs_bsize
) / avgndir
: 0;
724 if (dirsize
< curdirsize
)
725 dirsize
= curdirsize
;
726 maxcontigdirs
= min((avgbfree
* fs
->fs_bsize
) / dirsize
, 255);
727 if (fs
->fs_avgfpdir
> 0)
728 maxcontigdirs
= min(maxcontigdirs
,
729 fs
->fs_ipg
/ fs
->fs_avgfpdir
);
730 if (maxcontigdirs
== 0)
735 * Limit number of dirs in one cg and reserve space for
736 * regular files, but only if we have no deficit in
739 prefcg
= ino_to_cg(fs
, pip
->i_number
);
740 for (cg
= prefcg
; cg
< fs
->fs_ncg
; cg
++)
741 if (fs
->fs_cs(fs
, cg
).cs_ndir
< maxndir
&&
742 fs
->fs_cs(fs
, cg
).cs_nifree
>= minifree
&&
743 fs
->fs_cs(fs
, cg
).cs_nbfree
>= minbfree
) {
744 if (fs
->fs_contigdirs
[cg
] < maxcontigdirs
)
745 return ((ino_t
)(fs
->fs_ipg
* cg
));
747 for (cg
= 0; cg
< prefcg
; cg
++)
748 if (fs
->fs_cs(fs
, cg
).cs_ndir
< maxndir
&&
749 fs
->fs_cs(fs
, cg
).cs_nifree
>= minifree
&&
750 fs
->fs_cs(fs
, cg
).cs_nbfree
>= minbfree
) {
751 if (fs
->fs_contigdirs
[cg
] < maxcontigdirs
)
752 return ((ino_t
)(fs
->fs_ipg
* cg
));
755 * This is a backstop when we have deficit in space.
757 for (cg
= prefcg
; cg
< fs
->fs_ncg
; cg
++)
758 if (fs
->fs_cs(fs
, cg
).cs_nifree
>= avgifree
)
759 return ((ino_t
)(fs
->fs_ipg
* cg
));
760 for (cg
= 0; cg
< prefcg
; cg
++)
761 if (fs
->fs_cs(fs
, cg
).cs_nifree
>= avgifree
)
763 return ((ino_t
)(fs
->fs_ipg
* cg
));
767 * Select the desired position for the next block in a file. The file is
768 * logically divided into sections. The first section is composed of the
769 * direct blocks. Each additional section contains fs_maxbpg blocks.
771 * If no blocks have been allocated in the first section, the policy is to
772 * request a block in the same cylinder group as the inode that describes
773 * the file. If no blocks have been allocated in any other section, the
774 * policy is to place the section in a cylinder group with a greater than
775 * average number of free blocks. An appropriate cylinder group is found
776 * by using a rotor that sweeps the cylinder groups. When a new group of
777 * blocks is needed, the sweep begins in the cylinder group following the
778 * cylinder group from which the previous allocation was made. The sweep
779 * continues until a cylinder group with greater than the average number
780 * of free blocks is found. If the allocation is for the first block in an
781 * indirect block, the information on the previous allocation is unavailable;
782 * here a best guess is made based upon the logical block number being
785 * If a section is already partially allocated, the policy is to
786 * contiguously allocate fs_maxcontig blocks. The end of one of these
787 * contiguous blocks and the beginning of the next is physically separated
788 * so that the disk head will be in transit between them for at least
789 * fs_rotdelay milliseconds. This is to allow time for the processor to
790 * schedule another I/O transfer.
793 ffs_blkpref(struct inode
*ip
, ufs_daddr_t lbn
, int indx
, ufs_daddr_t
*bap
)
797 int avgbfree
, startcg
;
801 if (indx
% fs
->fs_maxbpg
== 0 || bap
[indx
- 1] == 0) {
802 if (lbn
< NDADDR
+ NINDIR(fs
)) {
803 cg
= ino_to_cg(fs
, ip
->i_number
);
804 return (fs
->fs_fpg
* cg
+ fs
->fs_frag
);
807 * Find a cylinder with greater than average number of
808 * unused data blocks.
810 if (indx
== 0 || bap
[indx
- 1] == 0)
812 ino_to_cg(fs
, ip
->i_number
) + lbn
/ fs
->fs_maxbpg
;
814 startcg
= dtog(fs
, bap
[indx
- 1]) + 1;
815 startcg
%= fs
->fs_ncg
;
816 avgbfree
= fs
->fs_cstotal
.cs_nbfree
/ fs
->fs_ncg
;
817 for (cg
= startcg
; cg
< fs
->fs_ncg
; cg
++)
818 if (fs
->fs_cs(fs
, cg
).cs_nbfree
>= avgbfree
) {
820 return (fs
->fs_fpg
* cg
+ fs
->fs_frag
);
822 for (cg
= 0; cg
<= startcg
; cg
++)
823 if (fs
->fs_cs(fs
, cg
).cs_nbfree
>= avgbfree
) {
825 return (fs
->fs_fpg
* cg
+ fs
->fs_frag
);
830 * One or more previous blocks have been laid out. If less
831 * than fs_maxcontig previous blocks are contiguous, the
832 * next block is requested contiguously, otherwise it is
833 * requested rotationally delayed by fs_rotdelay milliseconds.
835 nextblk
= bap
[indx
- 1] + fs
->fs_frag
;
836 if (fs
->fs_rotdelay
== 0 || indx
< fs
->fs_maxcontig
||
837 bap
[indx
- fs
->fs_maxcontig
] +
838 blkstofrags(fs
, fs
->fs_maxcontig
) != nextblk
)
841 * Here we convert ms of delay to frags as:
842 * (frags) = (ms) * (rev/sec) * (sect/rev) /
843 * ((sect/frag) * (ms/sec))
844 * then round up to the next block.
846 nextblk
+= roundup(fs
->fs_rotdelay
* fs
->fs_rps
* fs
->fs_nsect
/
847 (NSPF(fs
) * 1000), fs
->fs_frag
);
852 * Implement the cylinder overflow algorithm.
854 * The policy implemented by this algorithm is:
855 * 1) allocate the block in its requested cylinder group.
856 * 2) quadradically rehash on the cylinder group number.
857 * 3) brute force search for a free block.
861 ffs_hashalloc(struct inode
*ip
, int cg
, long pref
,
862 int size
, /* size for data blocks, mode for inodes */
863 allocfcn_t
*allocator
)
866 long result
; /* XXX why not same type as we return? */
871 * 1: preferred cylinder group
873 result
= (*allocator
)(ip
, cg
, pref
, size
);
877 * 2: quadratic rehash
879 for (i
= 1; i
< fs
->fs_ncg
; i
*= 2) {
881 if (cg
>= fs
->fs_ncg
)
883 result
= (*allocator
)(ip
, cg
, 0, size
);
888 * 3: brute force search
889 * Note that we start at i == 2, since 0 was checked initially,
890 * and 1 is always checked in the quadratic rehash.
892 cg
= (icg
+ 2) % fs
->fs_ncg
;
893 for (i
= 2; i
< fs
->fs_ncg
; i
++) {
894 result
= (*allocator
)(ip
, cg
, 0, size
);
898 if (cg
== fs
->fs_ncg
)
905 * Determine whether a fragment can be extended.
907 * Check to see if the necessary fragments are available, and
908 * if they are, allocate them.
911 ffs_fragextend(struct inode
*ip
, int cg
, long bprev
, int osize
, int nsize
)
922 if (fs
->fs_cs(fs
, cg
).cs_nffree
< numfrags(fs
, nsize
- osize
))
924 frags
= numfrags(fs
, nsize
);
925 bbase
= fragnum(fs
, bprev
);
926 if (bbase
> fragnum(fs
, (bprev
+ frags
- 1))) {
927 /* cannot extend across a block boundary */
930 KKASSERT(blknum(fs
, bprev
) == blknum(fs
, bprev
+ frags
- 1));
931 error
= bread(ip
->i_devvp
, fsbtodoff(fs
, cgtod(fs
, cg
)),
932 (int)fs
->fs_cgsize
, &bp
);
937 cgp
= (struct cg
*)bp
->b_data
;
938 if (!cg_chkmagic(cgp
)) {
942 cgp
->cg_time
= time_second
;
943 bno
= dtogd(fs
, bprev
);
944 blksfree
= cg_blksfree(cgp
);
945 for (i
= numfrags(fs
, osize
); i
< frags
; i
++) {
946 if (isclr(blksfree
, bno
+ i
)) {
953 * the current fragment can be extended
954 * deduct the count on fragment being extended into
955 * increase the count on the remaining fragment (if any)
956 * allocate the extended piece
958 * ---oooooooooonnnnnnn111----
963 for (i
= frags
; i
< fs
->fs_frag
- bbase
; i
++) {
964 if (isclr(blksfree
, bno
+ i
))
969 * Size of original free frag is [i - numfrags(fs, osize)]
970 * Size of remaining free frag is [i - frags]
972 cgp
->cg_frsum
[i
- numfrags(fs
, osize
)]--;
974 cgp
->cg_frsum
[i
- frags
]++;
975 for (i
= numfrags(fs
, osize
); i
< frags
; i
++) {
976 clrbit(blksfree
, bno
+ i
);
977 cgp
->cg_cs
.cs_nffree
--;
978 fs
->fs_cstotal
.cs_nffree
--;
979 fs
->fs_cs(fs
, cg
).cs_nffree
--;
982 if (DOINGSOFTDEP(ITOV(ip
)))
983 softdep_setup_blkmapdep(bp
, fs
, bprev
);
989 * Determine whether a block can be allocated.
991 * Check to see if a block of the appropriate size is available,
992 * and if it is, allocate it.
995 ffs_alloccg(struct inode
*ip
, int cg
, ufs_daddr_t bpref
, int size
)
1001 ufs_daddr_t bno
, blkno
;
1002 int allocsiz
, error
, frags
;
1006 if (fs
->fs_cs(fs
, cg
).cs_nbfree
== 0 && size
== fs
->fs_bsize
)
1008 error
= bread(ip
->i_devvp
, fsbtodoff(fs
, cgtod(fs
, cg
)),
1009 (int)fs
->fs_cgsize
, &bp
);
1014 cgp
= (struct cg
*)bp
->b_data
;
1015 if (!cg_chkmagic(cgp
) ||
1016 (cgp
->cg_cs
.cs_nbfree
== 0 && size
== fs
->fs_bsize
)) {
1020 cgp
->cg_time
= time_second
;
1021 if (size
== fs
->fs_bsize
) {
1022 bno
= ffs_alloccgblk(ip
, bp
, bpref
);
1027 * Check to see if any fragments of sufficient size are already
1028 * available. Fit the data into a larger fragment if necessary,
1029 * before allocating a whole new block.
1031 blksfree
= cg_blksfree(cgp
);
1032 frags
= numfrags(fs
, size
);
1033 for (allocsiz
= frags
; allocsiz
< fs
->fs_frag
; allocsiz
++) {
1034 if (cgp
->cg_frsum
[allocsiz
] != 0)
1037 if (allocsiz
== fs
->fs_frag
) {
1039 * No fragments were available, allocate a whole block and
1040 * cut the requested fragment (of size frags) out of it.
1042 if (cgp
->cg_cs
.cs_nbfree
== 0) {
1046 bno
= ffs_alloccgblk(ip
, bp
, bpref
);
1047 bpref
= dtogd(fs
, bno
);
1048 for (i
= frags
; i
< fs
->fs_frag
; i
++)
1049 setbit(blksfree
, bpref
+ i
);
1052 * Calculate the number of free frags still remaining after
1053 * we have cut out the requested allocation. Indicate that
1054 * a fragment of that size is now available for future
1057 i
= fs
->fs_frag
- frags
;
1058 cgp
->cg_cs
.cs_nffree
+= i
;
1059 fs
->fs_cstotal
.cs_nffree
+= i
;
1060 fs
->fs_cs(fs
, cg
).cs_nffree
+= i
;
1068 * cg_frsum[] has told us that a free fragment of allocsiz size is
1069 * available. Find it, then clear the bitmap bits associated with
1072 bno
= ffs_mapsearch(fs
, cgp
, bpref
, allocsiz
);
1077 for (i
= 0; i
< frags
; i
++)
1078 clrbit(blksfree
, bno
+ i
);
1079 cgp
->cg_cs
.cs_nffree
-= frags
;
1080 fs
->fs_cstotal
.cs_nffree
-= frags
;
1081 fs
->fs_cs(fs
, cg
).cs_nffree
-= frags
;
1085 * Account for the allocation. The original searched size that we
1086 * found is no longer available. If we cut out a smaller piece then
1087 * a smaller fragment is now available.
1089 cgp
->cg_frsum
[allocsiz
]--;
1090 if (frags
!= allocsiz
)
1091 cgp
->cg_frsum
[allocsiz
- frags
]++;
1092 blkno
= cg
* fs
->fs_fpg
+ bno
;
1093 if (DOINGSOFTDEP(ITOV(ip
)))
1094 softdep_setup_blkmapdep(bp
, fs
, blkno
);
1096 return ((u_long
)blkno
);
1100 * Allocate a block in a cylinder group.
1102 * This algorithm implements the following policy:
1103 * 1) allocate the requested block.
1104 * 2) allocate a rotationally optimal block in the same cylinder.
1105 * 3) allocate the next available block on the block rotor for the
1106 * specified cylinder group.
1107 * Note that this routine only allocates fs_bsize blocks; these
1108 * blocks may be fragmented by the routine that allocates them.
1111 ffs_alloccgblk(struct inode
*ip
, struct buf
*bp
, ufs_daddr_t bpref
)
1115 ufs_daddr_t bno
, blkno
;
1116 int cylno
, pos
, delta
;
1122 cgp
= (struct cg
*)bp
->b_data
;
1123 blksfree
= cg_blksfree(cgp
);
1124 if (bpref
== 0 || dtog(fs
, bpref
) != cgp
->cg_cgx
) {
1125 bpref
= cgp
->cg_rotor
;
1128 bpref
= blknum(fs
, bpref
);
1129 bpref
= dtogd(fs
, bpref
);
1131 * if the requested block is available, use it
1133 if (ffs_isblock(fs
, blksfree
, fragstoblks(fs
, bpref
))) {
1137 if (fs
->fs_nrpos
<= 1 || fs
->fs_cpc
== 0) {
1139 * Block layout information is not available.
1140 * Leaving bpref unchanged means we take the
1141 * next available free block following the one
1142 * we just allocated. Hopefully this will at
1143 * least hit a track cache on drives of unknown
1144 * geometry (e.g. SCSI).
1149 * check for a block available on the same cylinder
1151 cylno
= cbtocylno(fs
, bpref
);
1152 if (cg_blktot(cgp
)[cylno
] == 0)
1155 * check the summary information to see if a block is
1156 * available in the requested cylinder starting at the
1157 * requested rotational position and proceeding around.
1159 cylbp
= cg_blks(fs
, cgp
, cylno
);
1160 pos
= cbtorpos(fs
, bpref
);
1161 for (i
= pos
; i
< fs
->fs_nrpos
; i
++)
1164 if (i
== fs
->fs_nrpos
)
1165 for (i
= 0; i
< pos
; i
++)
1170 * found a rotational position, now find the actual
1171 * block. A panic if none is actually there.
1173 pos
= cylno
% fs
->fs_cpc
;
1174 bno
= (cylno
- pos
) * fs
->fs_spc
/ NSPB(fs
);
1175 if (fs_postbl(fs
, pos
)[i
] == -1) {
1176 kprintf("pos = %d, i = %d, fs = %s\n",
1177 pos
, i
, fs
->fs_fsmnt
);
1178 panic("ffs_alloccgblk: cyl groups corrupted");
1180 for (i
= fs_postbl(fs
, pos
)[i
];; ) {
1181 if (ffs_isblock(fs
, blksfree
, bno
+ i
)) {
1182 bno
= blkstofrags(fs
, (bno
+ i
));
1185 delta
= fs_rotbl(fs
)[i
];
1187 delta
+ i
> fragstoblks(fs
, fs
->fs_fpg
))
1191 kprintf("pos = %d, i = %d, fs = %s\n", pos
, i
, fs
->fs_fsmnt
);
1192 panic("ffs_alloccgblk: can't find blk in cyl");
1196 * no blocks in the requested cylinder, so take next
1197 * available one in this cylinder group.
1199 bno
= ffs_mapsearch(fs
, cgp
, bpref
, (int)fs
->fs_frag
);
1202 cgp
->cg_rotor
= bno
;
1204 blkno
= fragstoblks(fs
, bno
);
1205 ffs_clrblock(fs
, blksfree
, (long)blkno
);
1206 ffs_clusteracct(fs
, cgp
, blkno
, -1);
1207 cgp
->cg_cs
.cs_nbfree
--;
1208 fs
->fs_cstotal
.cs_nbfree
--;
1209 fs
->fs_cs(fs
, cgp
->cg_cgx
).cs_nbfree
--;
1210 cylno
= cbtocylno(fs
, bno
);
1211 cg_blks(fs
, cgp
, cylno
)[cbtorpos(fs
, bno
)]--;
1212 cg_blktot(cgp
)[cylno
]--;
1214 blkno
= cgp
->cg_cgx
* fs
->fs_fpg
+ bno
;
1215 if (DOINGSOFTDEP(ITOV(ip
)))
1216 softdep_setup_blkmapdep(bp
, fs
, blkno
);
1221 * Determine whether a cluster can be allocated.
1223 * We do not currently check for optimal rotational layout if there
1224 * are multiple choices in the same cylinder group. Instead we just
1225 * take the first one that we find following bpref.
1228 ffs_clusteralloc(struct inode
*ip
, int cg
, ufs_daddr_t bpref
, int len
)
1233 int i
, got
, run
, bno
, bit
, map
;
1239 if (fs
->fs_maxcluster
[cg
] < len
)
1241 if (bread(ip
->i_devvp
, fsbtodoff(fs
, cgtod(fs
, cg
)),
1242 (int)fs
->fs_cgsize
, &bp
)) {
1245 cgp
= (struct cg
*)bp
->b_data
;
1246 if (!cg_chkmagic(cgp
))
1250 * Check to see if a cluster of the needed size (or bigger) is
1251 * available in this cylinder group.
1253 lp
= &cg_clustersum(cgp
)[len
];
1254 for (i
= len
; i
<= fs
->fs_contigsumsize
; i
++)
1257 if (i
> fs
->fs_contigsumsize
) {
1259 * This is the first time looking for a cluster in this
1260 * cylinder group. Update the cluster summary information
1261 * to reflect the true maximum sized cluster so that
1262 * future cluster allocation requests can avoid reading
1263 * the cylinder group map only to find no clusters.
1265 lp
= &cg_clustersum(cgp
)[len
- 1];
1266 for (i
= len
- 1; i
> 0; i
--)
1269 fs
->fs_maxcluster
[cg
] = i
;
1273 * Search the cluster map to find a big enough cluster.
1274 * We take the first one that we find, even if it is larger
1275 * than we need as we prefer to get one close to the previous
1276 * block allocation. We do not search before the current
1277 * preference point as we do not want to allocate a block
1278 * that is allocated before the previous one (as we will
1279 * then have to wait for another pass of the elevator
1280 * algorithm before it will be read). We prefer to fail and
1281 * be recalled to try an allocation in the next cylinder group.
1283 if (dtog(fs
, bpref
) != cg
)
1286 bpref
= fragstoblks(fs
, dtogd(fs
, blknum(fs
, bpref
)));
1287 mapp
= &cg_clustersfree(cgp
)[bpref
/ NBBY
];
1289 bit
= 1 << (bpref
% NBBY
);
1290 for (run
= 0, got
= bpref
; got
< cgp
->cg_nclusterblks
; got
++) {
1291 if ((map
& bit
) == 0) {
1298 if ((got
& (NBBY
- 1)) != (NBBY
- 1)) {
1305 if (got
>= cgp
->cg_nclusterblks
)
1308 * Allocate the cluster that we have found.
1310 blksfree
= cg_blksfree(cgp
);
1311 for (i
= 1; i
<= len
; i
++) {
1312 if (!ffs_isblock(fs
, blksfree
, got
- run
+ i
))
1313 panic("ffs_clusteralloc: map mismatch");
1315 bno
= cg
* fs
->fs_fpg
+ blkstofrags(fs
, got
- run
+ 1);
1316 if (dtog(fs
, bno
) != cg
)
1317 panic("ffs_clusteralloc: allocated out of group");
1318 len
= blkstofrags(fs
, len
);
1319 for (i
= 0; i
< len
; i
+= fs
->fs_frag
) {
1320 if ((got
= ffs_alloccgblk(ip
, bp
, bno
+ i
)) != bno
+ i
)
1321 panic("ffs_clusteralloc: lost block");
1332 * Determine whether an inode can be allocated.
1334 * Check to see if an inode is available, and if it is,
1335 * allocate it using the following policy:
1336 * 1) allocate the requested inode.
1337 * 2) allocate the next available inode after the requested
1338 * inode in the specified cylinder group.
1339 * 3) the inode must not already be in the inode hash table. We
1340 * can encounter such a case because the vnode reclamation sequence
1342 * 3) the inode must not already be in the inode hash, otherwise it
1343 * may be in the process of being deallocated. This can occur
1344 * because the bitmap is updated before the inode is removed from
1345 * hash. If we were to reallocate the inode the caller could wind
1346 * up returning a vnode/inode combination which is in an indeterminate
1350 ffs_nodealloccg(struct inode
*ip
, int cg
, ufs_daddr_t ipref
, int mode
)
1357 int error
, len
, arraysize
, i
;
1362 if (fs
->fs_cs(fs
, cg
).cs_nifree
== 0)
1364 error
= bread(ip
->i_devvp
, fsbtodoff(fs
, cgtod(fs
, cg
)),
1365 (int)fs
->fs_cgsize
, &bp
);
1370 cgp
= (struct cg
*)bp
->b_data
;
1371 if (!cg_chkmagic(cgp
) || cgp
->cg_cs
.cs_nifree
== 0) {
1375 inosused
= cg_inosused(cgp
);
1379 * Quick check, reuse the most recently free inode or continue
1380 * a scan from where we left off the last time.
1382 ibase
= cg
* fs
->fs_ipg
;
1384 ipref
%= fs
->fs_ipg
;
1385 if (isclr(inosused
, ipref
)) {
1386 if (ufs_ihashcheck(ip
->i_dev
, ibase
+ ipref
) == 0)
1392 * Scan the inode bitmap starting at irotor, be sure to handle
1393 * the edge case by going back to the beginning of the array.
1395 * If the number of inodes is not byte-aligned, the unused bits
1396 * should be set to 1. This will be sanity checked in gotit. Note
1397 * that we have to be sure not to overlap the beginning and end
1398 * when irotor is in the middle of a byte as this will cause the
1399 * same bitmap byte to be checked twice. To solve this problem we
1400 * just convert everything to a byte index for the loop.
1402 ipref
= (cgp
->cg_irotor
% fs
->fs_ipg
) >> 3; /* byte index */
1403 len
= (fs
->fs_ipg
+ 7) >> 3; /* byte size */
1407 map
= inosused
[ipref
];
1409 for (i
= 0; i
< NBBY
; ++i
) {
1411 * If we find a free bit we have to make sure
1412 * that the inode is not in the middle of
1413 * being destroyed. The inode should not exist
1414 * in the inode hash.
1416 * Adjust the rotor to try to hit the
1417 * quick-check up above.
1419 if ((map
& (1 << i
)) == 0) {
1420 if (ufs_ihashcheck(ip
->i_dev
, ibase
+ (ipref
<< 3) + i
) == 0) {
1421 ipref
= (ipref
<< 3) + i
;
1422 cgp
->cg_irotor
= (ipref
+ 1) % fs
->fs_ipg
;
1431 * Setup for the next byte, start at the beginning again if
1432 * we hit the end of the array.
1434 if (++ipref
== arraysize
)
1438 if (icheckmiss
== cgp
->cg_cs
.cs_nifree
) {
1442 kprintf("fs = %s\n", fs
->fs_fsmnt
);
1443 panic("ffs_nodealloccg: block not in map, icheckmiss/nfree %d/%d",
1444 icheckmiss
, cgp
->cg_cs
.cs_nifree
);
1448 * ipref is a bit index as of the gotit label.
1451 KKASSERT(ipref
>= 0 && ipref
< fs
->fs_ipg
);
1452 cgp
->cg_time
= time_second
;
1453 if (DOINGSOFTDEP(ITOV(ip
)))
1454 softdep_setup_inomapdep(bp
, ip
, ibase
+ ipref
);
1455 setbit(inosused
, ipref
);
1456 cgp
->cg_cs
.cs_nifree
--;
1457 fs
->fs_cstotal
.cs_nifree
--;
1458 fs
->fs_cs(fs
, cg
).cs_nifree
--;
1460 if ((mode
& IFMT
) == IFDIR
) {
1461 cgp
->cg_cs
.cs_ndir
++;
1462 fs
->fs_cstotal
.cs_ndir
++;
1463 fs
->fs_cs(fs
, cg
).cs_ndir
++;
1466 return (ibase
+ ipref
);
1470 * Free a block or fragment.
1472 * The specified block or fragment is placed back in the
1473 * free map. If a fragment is deallocated, a possible
1474 * block reassembly is checked.
1477 ffs_blkfree(struct inode
*ip
, ufs_daddr_t bno
, long size
)
1483 int i
, error
, cg
, blk
, frags
, bbase
;
1487 VOP_FREEBLKS(ip
->i_devvp
, fsbtodoff(fs
, bno
), size
);
1488 if ((uint
)size
> fs
->fs_bsize
|| fragoff(fs
, size
) != 0 ||
1489 fragnum(fs
, bno
) + numfrags(fs
, size
) > fs
->fs_frag
) {
1490 kprintf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n",
1491 devtoname(ip
->i_dev
), (long)bno
, (long)fs
->fs_bsize
, size
,
1493 panic("ffs_blkfree: bad size");
1496 if ((uint
)bno
>= fs
->fs_size
) {
1497 kprintf("bad block %ld, ino %lu\n",
1498 (long)bno
, (u_long
)ip
->i_number
);
1499 ffs_fserr(fs
, ip
->i_uid
, "bad block");
1504 * Load the cylinder group
1506 error
= bread(ip
->i_devvp
, fsbtodoff(fs
, cgtod(fs
, cg
)),
1507 (int)fs
->fs_cgsize
, &bp
);
1512 cgp
= (struct cg
*)bp
->b_data
;
1513 if (!cg_chkmagic(cgp
)) {
1517 cgp
->cg_time
= time_second
;
1518 bno
= dtogd(fs
, bno
);
1519 blksfree
= cg_blksfree(cgp
);
1521 if (size
== fs
->fs_bsize
) {
1523 * Free a whole block
1525 blkno
= fragstoblks(fs
, bno
);
1526 if (!ffs_isfreeblock(fs
, blksfree
, blkno
)) {
1527 kprintf("dev = %s, block = %ld, fs = %s\n",
1528 devtoname(ip
->i_dev
), (long)bno
, fs
->fs_fsmnt
);
1529 panic("ffs_blkfree: freeing free block");
1531 ffs_setblock(fs
, blksfree
, blkno
);
1532 ffs_clusteracct(fs
, cgp
, blkno
, 1);
1533 cgp
->cg_cs
.cs_nbfree
++;
1534 fs
->fs_cstotal
.cs_nbfree
++;
1535 fs
->fs_cs(fs
, cg
).cs_nbfree
++;
1536 i
= cbtocylno(fs
, bno
);
1537 cg_blks(fs
, cgp
, i
)[cbtorpos(fs
, bno
)]++;
1538 cg_blktot(cgp
)[i
]++;
1541 * Free a fragment within a block.
1543 * bno is the starting block number of the fragment being
1546 * bbase is the starting block number for the filesystem
1547 * block containing the fragment.
1549 * blk is the current bitmap for the fragments within the
1550 * filesystem block containing the fragment.
1552 * frags is the number of fragments being freed
1554 * Call ffs_fragacct() to account for the removal of all
1555 * current fragments, then adjust the bitmap to free the
1556 * requested fragment, and finally call ffs_fragacct() again
1557 * to regenerate the accounting.
1559 bbase
= bno
- fragnum(fs
, bno
);
1560 blk
= blkmap(fs
, blksfree
, bbase
);
1561 ffs_fragacct(fs
, blk
, cgp
->cg_frsum
, -1);
1562 frags
= numfrags(fs
, size
);
1563 for (i
= 0; i
< frags
; i
++) {
1564 if (isset(blksfree
, bno
+ i
)) {
1565 kprintf("dev = %s, block = %ld, fs = %s\n",
1566 devtoname(ip
->i_dev
), (long)(bno
+ i
),
1568 panic("ffs_blkfree: freeing free frag");
1570 setbit(blksfree
, bno
+ i
);
1572 cgp
->cg_cs
.cs_nffree
+= i
;
1573 fs
->fs_cstotal
.cs_nffree
+= i
;
1574 fs
->fs_cs(fs
, cg
).cs_nffree
+= i
;
1577 * Add back in counts associated with the new frags
1579 blk
= blkmap(fs
, blksfree
, bbase
);
1580 ffs_fragacct(fs
, blk
, cgp
->cg_frsum
, 1);
1583 * If a complete block has been reassembled, account for it
1585 blkno
= fragstoblks(fs
, bbase
);
1586 if (ffs_isblock(fs
, blksfree
, blkno
)) {
1587 cgp
->cg_cs
.cs_nffree
-= fs
->fs_frag
;
1588 fs
->fs_cstotal
.cs_nffree
-= fs
->fs_frag
;
1589 fs
->fs_cs(fs
, cg
).cs_nffree
-= fs
->fs_frag
;
1590 ffs_clusteracct(fs
, cgp
, blkno
, 1);
1591 cgp
->cg_cs
.cs_nbfree
++;
1592 fs
->fs_cstotal
.cs_nbfree
++;
1593 fs
->fs_cs(fs
, cg
).cs_nbfree
++;
1594 i
= cbtocylno(fs
, bbase
);
1595 cg_blks(fs
, cgp
, i
)[cbtorpos(fs
, bbase
)]++;
1596 cg_blktot(cgp
)[i
]++;
1605 * Verify allocation of a block or fragment. Returns true if block or
1606 * fragment is allocated, false if it is free.
1609 ffs_checkblk(struct inode
*ip
, ufs_daddr_t bno
, long size
)
1614 int i
, error
, frags
, free
;
1618 if ((uint
)size
> fs
->fs_bsize
|| fragoff(fs
, size
) != 0) {
1619 kprintf("bsize = %ld, size = %ld, fs = %s\n",
1620 (long)fs
->fs_bsize
, size
, fs
->fs_fsmnt
);
1621 panic("ffs_checkblk: bad size");
1623 if ((uint
)bno
>= fs
->fs_size
)
1624 panic("ffs_checkblk: bad block %d", bno
);
1625 error
= bread(ip
->i_devvp
, fsbtodoff(fs
, cgtod(fs
, dtog(fs
, bno
))),
1626 (int)fs
->fs_cgsize
, &bp
);
1628 panic("ffs_checkblk: cg bread failed");
1629 cgp
= (struct cg
*)bp
->b_data
;
1630 if (!cg_chkmagic(cgp
))
1631 panic("ffs_checkblk: cg magic mismatch");
1632 blksfree
= cg_blksfree(cgp
);
1633 bno
= dtogd(fs
, bno
);
1634 if (size
== fs
->fs_bsize
) {
1635 free
= ffs_isblock(fs
, blksfree
, fragstoblks(fs
, bno
));
1637 frags
= numfrags(fs
, size
);
1638 for (free
= 0, i
= 0; i
< frags
; i
++)
1639 if (isset(blksfree
, bno
+ i
))
1641 if (free
!= 0 && free
!= frags
)
1642 panic("ffs_checkblk: partially free fragment");
1647 #endif /* DIAGNOSTIC */
1653 ffs_vfree(struct vnode
*pvp
, ino_t ino
, int mode
)
1655 if (DOINGSOFTDEP(pvp
)) {
1656 softdep_freefile(pvp
, ino
, mode
);
1659 return (ffs_freefile(pvp
, ino
, mode
));
1663 * Do the actual free operation.
1664 * The specified inode is placed back in the free map.
1667 ffs_freefile(struct vnode
*pvp
, ino_t ino
, int mode
)
1678 if ((uint
)ino
>= fs
->fs_ipg
* fs
->fs_ncg
)
1679 panic("ffs_vfree: range: dev = (%d,%d), ino = %"PRId64
", fs = %s",
1680 major(pip
->i_dev
), minor(pip
->i_dev
), ino
, fs
->fs_fsmnt
);
1681 cg
= ino_to_cg(fs
, ino
);
1682 error
= bread(pip
->i_devvp
, fsbtodoff(fs
, cgtod(fs
, cg
)),
1683 (int)fs
->fs_cgsize
, &bp
);
1688 cgp
= (struct cg
*)bp
->b_data
;
1689 if (!cg_chkmagic(cgp
)) {
1693 cgp
->cg_time
= time_second
;
1694 inosused
= cg_inosused(cgp
);
1696 if (isclr(inosused
, ino
)) {
1697 kprintf("dev = %s, ino = %lu, fs = %s\n",
1698 devtoname(pip
->i_dev
), (u_long
)ino
, fs
->fs_fsmnt
);
1699 if (fs
->fs_ronly
== 0)
1700 panic("ffs_vfree: freeing free inode");
1702 clrbit(inosused
, ino
);
1703 if (ino
< cgp
->cg_irotor
)
1704 cgp
->cg_irotor
= ino
;
1705 cgp
->cg_cs
.cs_nifree
++;
1706 fs
->fs_cstotal
.cs_nifree
++;
1707 fs
->fs_cs(fs
, cg
).cs_nifree
++;
1708 if ((mode
& IFMT
) == IFDIR
) {
1709 cgp
->cg_cs
.cs_ndir
--;
1710 fs
->fs_cstotal
.cs_ndir
--;
1711 fs
->fs_cs(fs
, cg
).cs_ndir
--;
1719 * Find a block of the specified size in the specified cylinder group.
1721 * It is a panic if a request is made to find a block if none are
1725 ffs_mapsearch(struct fs
*fs
, struct cg
*cgp
, ufs_daddr_t bpref
, int allocsiz
)
1728 int start
, len
, loc
, i
;
1729 int blk
, field
, subfield
, pos
;
1733 * find the fragment by searching through the free block
1734 * map for an appropriate bit pattern.
1737 start
= dtogd(fs
, bpref
) / NBBY
;
1739 start
= cgp
->cg_frotor
/ NBBY
;
1740 blksfree
= cg_blksfree(cgp
);
1741 len
= howmany(fs
->fs_fpg
, NBBY
) - start
;
1742 loc
= scanc((uint
)len
, (u_char
*)&blksfree
[start
],
1743 (u_char
*)fragtbl
[fs
->fs_frag
],
1744 (u_char
)(1 << (allocsiz
- 1 + (fs
->fs_frag
% NBBY
))));
1746 len
= start
+ 1; /* XXX why overlap here? */
1748 loc
= scanc((uint
)len
, (u_char
*)&blksfree
[0],
1749 (u_char
*)fragtbl
[fs
->fs_frag
],
1750 (u_char
)(1 << (allocsiz
- 1 + (fs
->fs_frag
% NBBY
))));
1752 kprintf("start = %d, len = %d, fs = %s\n",
1753 start
, len
, fs
->fs_fsmnt
);
1754 panic("ffs_alloccg: map corrupted");
1758 bno
= (start
+ len
- loc
) * NBBY
;
1759 cgp
->cg_frotor
= bno
;
1761 * found the byte in the map
1762 * sift through the bits to find the selected frag
1764 for (i
= bno
+ NBBY
; bno
< i
; bno
+= fs
->fs_frag
) {
1765 blk
= blkmap(fs
, blksfree
, bno
);
1767 field
= around
[allocsiz
];
1768 subfield
= inside
[allocsiz
];
1769 for (pos
= 0; pos
<= fs
->fs_frag
- allocsiz
; pos
++) {
1770 if ((blk
& field
) == subfield
)
1776 kprintf("bno = %lu, fs = %s\n", (u_long
)bno
, fs
->fs_fsmnt
);
1777 panic("ffs_alloccg: block not in map");
1782 * Update the cluster map because of an allocation or free.
1784 * Cnt == 1 means free; cnt == -1 means allocating.
1787 ffs_clusteracct(struct fs
*fs
, struct cg
*cgp
, ufs_daddr_t blkno
, int cnt
)
1791 u_char
*freemapp
, *mapp
;
1792 int i
, start
, end
, forw
, back
, map
, bit
;
1794 if (fs
->fs_contigsumsize
<= 0)
1796 freemapp
= cg_clustersfree(cgp
);
1797 sump
= cg_clustersum(cgp
);
1799 * Allocate or clear the actual block.
1802 setbit(freemapp
, blkno
);
1804 clrbit(freemapp
, blkno
);
1806 * Find the size of the cluster going forward.
1809 end
= start
+ fs
->fs_contigsumsize
;
1810 if (end
>= cgp
->cg_nclusterblks
)
1811 end
= cgp
->cg_nclusterblks
;
1812 mapp
= &freemapp
[start
/ NBBY
];
1814 bit
= 1 << (start
% NBBY
);
1815 for (i
= start
; i
< end
; i
++) {
1816 if ((map
& bit
) == 0)
1818 if ((i
& (NBBY
- 1)) != (NBBY
- 1)) {
1827 * Find the size of the cluster going backward.
1830 end
= start
- fs
->fs_contigsumsize
;
1833 mapp
= &freemapp
[start
/ NBBY
];
1835 bit
= 1 << (start
% NBBY
);
1836 for (i
= start
; i
> end
; i
--) {
1837 if ((map
& bit
) == 0)
1839 if ((i
& (NBBY
- 1)) != 0) {
1843 bit
= 1 << (NBBY
- 1);
1848 * Account for old cluster and the possibly new forward and
1851 i
= back
+ forw
+ 1;
1852 if (i
> fs
->fs_contigsumsize
)
1853 i
= fs
->fs_contigsumsize
;
1860 * Update cluster summary information.
1862 lp
= &sump
[fs
->fs_contigsumsize
];
1863 for (i
= fs
->fs_contigsumsize
; i
> 0; i
--)
1866 fs
->fs_maxcluster
[cgp
->cg_cgx
] = i
;
1870 * Fserr prints the name of a filesystem with an error diagnostic.
1872 * The form of the error message is:
1876 ffs_fserr(struct fs
*fs
, uint uid
, char *cp
)
1878 struct thread
*td
= curthread
;
1881 if ((p
= td
->td_proc
) != NULL
) {
1882 log(LOG_ERR
, "pid %d (%s), uid %d on %s: %s\n", p
? p
->p_pid
: -1,
1883 p
? p
->p_comm
: "-", uid
, fs
->fs_fsmnt
, cp
);
1885 log(LOG_ERR
, "system thread %p, uid %d on %s: %s\n",
1886 td
, uid
, fs
->fs_fsmnt
, cp
);